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Abstract

Insects are the most numerous of all animals and are found in almost every inhabitable 
place on earth. The order Diptera (true flies) contains many members that are notorious 
agricultural pests, nuisance or vectors of diseases. The list is long: mosquitoes, tsetse flies, 
screw worms, fruit flies, sand flies, blow flies, house flies, gall and biting midges, black 
flies, leaf miners, horse flies, and so on. Efforts to combat some of these pests and vec-
tors have resulted in control measures such as the chemical, physical, and cultural control 
methods. These methods, though largely beneficial, have disadvantages and limitations, 
which sometimes seem to outweigh the problems initially sought to be controlled. The 
chemical method, for example, is not environment-friendly since it negatively affects many 
nontarget organisms and disrupts ecosystem balance. Development of insecticide resis-
tance by pests/vectors is another concern. Molecular biotechnology has introduced vast 
arrays of novel ways to tackle pests and disease vectors, as well as improve the potency of 
existing control methods. This chapter looks at transgenic and paratransgenic biotechnolo-
gies and how they have been applied so far to develop and expand the arsenal against 
dipteran pests and disease vectors. Further, we discuss the advantages, disadvantages, and 
limitations of these technologies.

Keywords: insects, dipterans, crop pests, disease vectors, transgenesis, paratransgenesis

1. Introduction

Insects are highly abundant and are the most numerous classes of all described living ani-

mals. They account for about half or more of all living animals and are found in almost 

every inhabitable place on earth [1, 2]. Their success and abundance could be attributed 
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to their ability to adapt and colonize diverse habitats. Among insects, the order Diptera is 

one of the largest orders with an estimated 120 families and 250,000 described species [1]. 

They are generally regarded as the two-winged insects or true flies [2, 3]. The main charac-

teristics for members of this order include larvae that lack legs (apodous maggots), pupae 
enclosed in a thick larval cuticle (puparium), and adults that possess a pair of membranous 
forewings, vestigial hindwing modified into halters, as well as a tubular sucking or spong-

ing mouthparts [2]. Dipterans are longtime foes and arguably considered the insect arch-

enemy of man. This stems from the fact that many members of this order constitute pests 

of cultivated crops, are major causes of annoyance or are highly notorious as vectors of 

human diseases either in their larval or adult stages. Examples of pest, annoyance causing 
and vector dipterans are given in Table 1 [4–8].

Efforts by man in the fight against dipteran pest and vector insects have resulted in the 
generation of an arsenal with several weapons. These range from chemical method which 

involves the use of insecticides to cultural methods such as sanitation, physical interference 

or destruction of breeding sites, and cropping methods. However, many of these methods 

have major disadvantages and (or) limitations that sometime seem to outweigh their ben-

efits. For example, the chemical method is very widely used, but has the disadvantages of 
environmental consequences such as pollution, health challenges on man and livestock, 
killing of nontarget insect species, as well as the challenge of the targeted insect species 
developing resistance to the insecticides applied [9, 10]. Most cultural methods applied 

against dipteran pest or vector control are labor-intensive and can only be most suitably 

applied on a small scale.

Biologically-based approaches are generally friendlier to the environment, more sustainable 

and cost-effective than many other methods used for dipteran control. Here, control methods 
such as the use of natural enemies like predators and parasitoids are environment-friendly 
with varying levels of success, but the major limitation is the fact that it is unpredictable 

as chances are usually low on finding a suitable parasitoid or predator that can survive the 
weather and conditions wherever the pest or vector dipteran is and continue to effectively eat 
or parasitize the host [10]. The time it takes to find a good parasitoid may be so long that farm-

ers or entomologists concerned may opt for other control methods, in addition to the fact that 

the process of actual control by a parasitoid or predator itself is slow. The biological method 

of using pathogens (microbial or biopesticides) has been quite promising, but recently there 
has been concerns of insect resistance as is the case with Bacillus thuringiensis, and also the 

disadvantage that the applied pathogen may infect other nontarget insects, livestock, or man 
himself. Major limitations of biopesticides are usually that one may need to find an efficient 
way to get the pathogens to their host and that the pathogens may be negatively affected by 
environmental conditions such as weather.

Another biologically-oriented and environment-friendly method for controlling dipterans is 

the use of pheromones or suitable attractants. However, the scale of its application and area 
that it covers is also limited, while the potency of the attractants does reduce gradually with 
time or could easily be influenced by environmental factors such as rainfall or masked by 
other chemicals within the vicinity.
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Family Genus/species involved Problematic or damage-causing stage; 

problem caused

Agromyzidae (leaf miners) Phytomyza angelicastri; Melani agromyza Larva; damage to leaves of crops

Anthomyiidae Antherigona spp; Delia radicum Larva; damage to stems of crops like 
cauliflower and sorghum causing disease like 
“dead heart”

Calliphoridae (blow flies) Callitroga spp.; Cordylobia 

anthropophaga; Lucilia spp; Chrysomya 

bezziana

Larva; myiasis or flesh infesting damage to 
man and livestock

Cecidomyiidae (gall 

midges)
Contarinia sorghicola Larva; damage to leaves of crops such as rice, 

pear, sorghum, etc.

Ceratopogonidae (biting 

midges)
Adult; blood sucker from man and livestock

Chloropidae (chloropid 

flies)
Larva; damage to leaves of crops like rice and 
cereals

Culicidae (mosquitoes) Anopheles spp.; Aedes spp.; Culex 

spp.; Mansonia spp.; Psorophora spp.; 

Stegomyia spp

Adult; blood sucker from man and livestock 
transmitting parasites that cause various 
diseases like malaria, dengue fever, West 
Nile fever, yellow fever, encephalitis, 

O’nyong nyong fever, Bancroftian filariasis, 
chikungunya, Igbo-Ora, Zika, etc.; nuisance, 
major cause of disturbance and annoyance to 

man at night

Drosophilidae Drosophila suzukii Larva; damage to fruits

Glossinidae (tsetse flies) Glossina spp. Adult; blood sucker from man and 
livestock transmitting the causative agent of 
Trypanosomiasis (sleeping sickness)

Muscidae (house flies) Musca domestica Adult; transmits microorganisms that cause 

cholera and amoebic dysentery; nuisance, major 

cause of annoyance to man during the day

Oestridae (warble or bot 

flies)
Oestrus ovis; Gasterophilus spp.; 

Hypoderma bovis; Dermatobia hominis

Larva; myiasis or flesh infesting damage to 
man and livestock

Psychodidae (sand flies and 
moth flies)

Phlebotomus spp. Adult; blood sucker from man transmitting the 
parasite causing disease leishmaniasis

Sarcophagidae (flesh flies or 
screw worms)

Cochliomyia hominivorax; Sarcophaga 

spp; Wohlfahrtia spp.

Larva; myiasis or flesh infesting damage to 
man and livestock

Simuliidae (black flies) Simulium spp. Adult; blood sucker from man transmitting the 
causative agent of the disease onchocerciasis 

(river blindness)

Tabanidae (horse flies) Tabanus spp.; Haematopota spp.; 

Chrysops spp.

Adult; blood sucker from man and livestock 
transmitting the causative agent of diseases like 
trypanosomiasis (sleeping sickness) and loasis

Tephritidae (fruit flies) Anastrepha spp.; Bactrocera spp.; 

Ceratitis spp.; Dacus spp.; Rhagoletis 

spp.; Tephritis spp.

Larva; serious damage to fruits and vegetables

Table 1. Dipteran crop pests, nuisance or vectors of diseases [4–8].
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Genetic methods such as the sterile insect technique (SIT) majorly use radiation to steril-
ize male insects and thus reduce the fertility of females that mate with them [11, 12]. This 

method works well with sexually reproducing insects and has so far has great success 
among many dipterans [13]. Its major problem is the fact that the gamma radiation used 

for sterilization also reduces the fitness of the males and makes them less competitive than 
the wild males.

Obviously, no present method of pest control is devoid of disadvantages or limitations. 

As such, an integration of different control methods that are compatible is the recent paradigm. 
Integrated pest management (IPM) has offered a way to augment control methods to achieve a 
more efficient and sustainable management of pests and vectors.

The new millennium has witnessed advanced progress in genetic biotechnology which in 

turn has greatly influenced insect control. Biotechnology approaches have been used and are 
continually been pursued as a means to develop novel ways or improve some of the meth-

ods used to fight pest and vector dipterans. For example, new strains of reproductively sterile 
insects or strains exhibiting other desired traits could be engineered to control a population 

or designed to fit into control methods like SIT, entomopathogens or biopesticides that are 
adversely affected by weather conditions where a pest or vector is located or have environmen-

tal concerns regarding nontarget insects could be encapsulated in materials that will release the 

pathogens only in a desired condition, while nonharmful microorganisms could be engineered 

to deliver therapeutic or antiparasitic molecules to pathogens in their environment. Many of 

these new biotechnology approaches could also be used as a part of IPM programs which is 

suitable for other methods. In this chapter, we focus on how transgenic and paratransgenic 

biotechnologies have been applied to expand the array of weapons in man’s arsenal against 

dipteran crop pests and vectors of diseases.

2. Transgenic biotechnology

Transgenesis aims at the transformation of an organism by altering its genetic composition 

and the final outcome is the generation of a transgenic or a genetically modified organ-

ism (GMO). Basically, desired genes or genes-of-interest from a different organism(s) are 
inserted into the genome of a wild type organism majorly with the aid of “jumping genes” 

called transposable elements or transposons and the transgenic organism generated carry 

these desired genes (transgenes), while exhibiting characters or traits encoded by the trans-

genes as well (Figure 1). For insects, germline transformation is sought and microinjec-

tions are performed to achieve it, allowing the genome modification to be passed on from 
generation to generation [14]. To enable detection of successfully transformed organisms, 

fluorescent proteins such as the green fluorescent protein (GFP), the red fluorescent protein 
(RFP), and fluorescent proteins of other colors are used as markers [15–18]. Consequently, 

GM dipterans harboring a transgene that incorporates a fluorescent protein gene cassette 
as marker would express the fluorescent protein and can be visualized under a fluorescent 
microscope (Figure 2).
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2.1. Transgenic strategies against agricultural crop pest dipterans

2.1.1. Drosophilids

The family Drosophilidae consists of many members including the well-known model fly 
Drosophila melanogaster, but only the spotted wing drosophila, Drosophila suzukii, is considered 

a major pest of cultivated crops [19]. However, D. melanogaster has been immensely benefi-

cial in genetic studies and many proofs-of-principle of transgenic strategies against dipteran 

population control, or even for other insect orders, have been developed in this model insect.

A proof-of-principle transgene-based, embryo-specific lethality system for insect control was 
developed by Horn and Wimmer [20]. The system used embryo stage-specific promoters such 
as serendipity alpha (sryα) to regulate the expression of a hidAla5 lethal effector placed under 
the control of a tetracycline-response element [20]. Such a strain would effectively achieve 
reproductive sterility in insect populations because the offspring die during the embryo stage 
and could replace radiation sterilization of insects as is the case for conventional SIT.

Two proofs-of-principle for transgenic sex-specific lethality systems for insect population 
control were developed: (i) using female-specific enhancers of yolk protein 1 (yp1) gene 
to drive expression of a hid effector under control of tetracycline-responsive element [21]. 

(ii) using a female-specific yolk protein and fat-body enhancer Yp3 to regulate the expression 
of a Ras64BV12 effector under control of tetracycline-responsive element, as well as using a 

Figure 1. Schematic representation of transgenesis: desired gene-of-interest is cloned into a vector to generate a plasmid 

or transgene construct which is then microinjected into embryos. Adults developing from the injected embryos are 

outcrossed to non-injected ones and their progeny are screened. Progeny that are stably germline transformed express 

traits encoded by the genes in the plasmid construct injected, for example a red fluorescent protein, and as such are 
distinguished from untransformed ones.

Developing the Arsenal Against Pest and Vector Dipterans: Inputs of Transgenic and Paratransgenic Biotechnologies
http://dx.doi.org/10.5772/66440

329



Hsp26 promoter to regulate expression of a dose-compensation gene, mutant male-specific 
lethal 2 (msl-2NOPU), under the control of a tetracycline-response element [22]. These kinds 
of systems limit lethality or death of offspring to only female individuals and could be used 
for efficient sex separation of dipterans prior to field release during area-wide dipteran pest 
control programs such as SIT.

Besides these afore-mentioned transgenic lethality systems which were all based on the tet-

racycline-repressible binary expression system (Figure 3) [23], a gene-driven system capable 

of driving population replacement was also developed in Drosophila [24]. Basically, a gene-

driven system such as a maternal-effect dominant embryonic arrest (Medea) system use a 
combination of two genes that encode for a toxin and its antidote, respectively, to create a 

condition whereby a heterozygote female would express only the maternal toxin in half of her 

oocytes without the antidote resulting in death of those offspring. The Medea strain which 
was developed by Chen et al. in Drosophila used microRNA-mediated silencing of a mater-

nally expressed embryonic development gene, my88, as its toxin and early zygotic expression 

of a rescuing transgene as the antidote. A more complex Medea system employing additional 

mechanisms such as targeting signaling pathways like the Notch pathway has since been also 
demonstrated in D. melanogaster [25].

Figure 2. A transgenic strain of the Mediterranean fruit fly Ceratitis capitata: (A) visualized under cold light, (B) 
visualized under fluorescent light, the same transgenic fly shows a pattern of expression of green fluorescent protein 
GFP in its thorax and legs.
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For the crop pest Drosophilid, the spotted wing drosophila D. suzukii, germline transforma-

tion has recently been performed and transgenic strains for control of this strain may soon be 

generated [26].

2.1.2. Tephritid fruit flies

Tephritids are very important pests of fruits and vegetables and majority of transgenic strate-

gies for crop pests have been developed against members of this group. Lethality systems 

that their proofs-of-principle have earlier been developed in Drosophila have also been suc-

cessfully transferred to many Tephritids. Among these are the conditional embryonic lethality 

strains transferred from D. melanogaster to both the Mediterranean fruit fly, Ceratitis capitata 

and the Caribbean fruit fly, Anastrepha suspensa, and using the tetracycline-regulated binary 

expression system, embryonic promoters/enhancers and proapoptotic hid effector [27, 28]. 

In addition, the lethality strains not previously established in Drosophila was developed for 

C. capitata using a simplification of the tetracycline-regulated binary expression system to a 
single expression component that relies on auto feedback-driven overexpression of a version 
of the tetracycline-repressible transactivator (tTA) for its lethality (Figure 3) [29].

For sex separation of Tephritids, transgenic sexing strains were developed for different fruit fly 
genera: (i) an RNA interference (RNAi) system developed for C. capitata based on  knockdown 

Figure 3. Diagrams showing different versions of tetracycline-repressible expression system: (A) binary component 
tet-off system, (B) single component tet-off system [23, 29]. In the absence of tetracycline, tetracycline-represssible 

transactivator (tTA) is produced and goes on to bind to the tetracycline-response element (TRE) to activate expression 
of a downstream gene. Both systems are turned off in the presence of tetracycline which bind to the tTA and stops 
expression of a downstream gene. The binary system needs an effector for lethality, while the single component uses 
tTA which is toxic at high concentration.
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of transcripts of the sex determination gene transformer (tra) [30], (ii) lethality systems relying 
on a simplified single component tetracycline expression system and developed for C. capitata 

and the olive fruit fly, Bactrocera oleae [31, 32], (iii) lethality systems relying on a tetracycline-
regulated binary expression system [23], embryonic promoters/enhancers and proapoptotic 

hid effector, and developed for C. capitata, A. suspensa, and the Mexican fruit fly, Anastrepha 

ludens [33–35]. Unlike the two proof-of-principle transgenic sexing systems based on lethality 
earlier developed in Drosophila, all the afore-mentioned transgenic sexing systems based on 

lethality in Tephritids employed the sex-specifically spliced intron of the gene transformer 
(tra) to confer lethality only to the female individuals. However, only those systems employ-

ing the tetracycline-regulated binary expression system and embryonic promoters or enhanc-

ers achieved female-specific lethality in the embryo stage [33–35]. Another type of transgenic 

sex-specific lethality system has recently been developed for the Oriental fruit fly, Bactrocera 

dorsalis [36]. This system combined the mechanism of alternative splicing of the double sex 

(dsx) gene and the toxicity of expressed ricin to ensure female-specific lethality and kill off the 
female progeny in B. dorsalis [36].

Since area-wide dipteran pest control strategies like SIT involve release of sterile males, a way 
to monitor the released males is also as important as the sterilization and sex separation of 

the males. Scolari et al. developed a transgenic strain that would facilitate such monitoring 

in C. capitata by using the promoter of a sperm-specifically expressed gene β2-tubulin (β2t) 
to regulate the expression of RFP and GFP to only male testis. Males of this sperm-marked 
fly strain were shown to still have brightly glowing fluorescent testis for several months after 
they had died [37]. As such, the released males could easily be monitored if caught in traps or 

found dead in the field in the case they were used in any SIT control program.

2.2. Transgenic strategies against dipterans of medical and veterinary importance

2.2.1. Mosquitoes

The battle against any other dipteran insects has perhaps never been as intense as it is for 
mosquitoes due to the wide range of diseases they vector and transmit. Almost every kind of 
approach that is imaginable is under development or has been developed in the effort to win 
the battle against mosquitoes. Ever since the first germline transformation of an Anopheles 
mosquito [38], several transgenic strategies have been constructed including gene drive sys-

tems, lethality, flightless, sperm-monitoring, as well as spermless systems, and mosquito 
strains that have been impaired in their ability to transmit a parasite.

Among the gene-driven systems include a maternally-regulated transposition system in the 

yellow fever mosquito, Aedes aegypti, which utilized regulatory elements of a maternal gene 

Nanos to control events in mosquito embryos [39]. A synthetic gene drive system developed 

in the human malaria mosquito, Anopheles gambiae, exploited I-SceI which is a selfish genetic 
element known as a homing endonuclease gene (HEG) to drive rapid invasion of mosquito 
population genomes by the engineered gene of interest [40]. The recently developed clus-

tered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated pro-

tein (Cas), better known as the CRISPR-Cas9 system that enables flexible genome editing in 
both prokaryotic and eukaryotic cells [41–43] using a guide-RNA to direct the nuclease to its 
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target has also been exploited to develop a gene drive system with high transmission rate to 

progeny of up to 99.6% in An. gambiae [44].

Strains exhibiting dominant lethality or major incapacitation in the form of a flightless phe-

notype have also been generated. A transgenic strain based on the expression of dominant 

lethality in Ae. aegypti was constructed using similar components (a single expression com-

ponent that relies on auto feedback-driven overexpression of a version of tTA) as was used 
for the Mediterranean fruit fly C. capitata [29, 45]. Fu et al. also generated a flightless strain 
of Ae. aegypti for dengue fever control by using its Actin4 (Act4) gene promoter in the sin-

gle component tet-off expression system (Figure 3) to regulate the expression of tTA [46]. 

Act4 is female-specifically expressed in the indirect flight muscles [47], and as such, the tTA-

mediated lethality regulated by its promoter is obtained predominantly in the female indirect 

flight muscles rendering them flightless and providing a way to genetically separate the sexes 
or enable possible male-only mosquito release in an SIT program [46].

For transgenic sexing and sperm monitoring, Catteruccia et al. established a strain that exhib-

ited fluorescent sperms in the Asian malaria mosquito Anopheles stephensi, employing the pro-

moter/enhancer elements of the β2 tubulin gene to control and ensure expression of enhanced 
green fluorescent protein (EGFP) in male testis [48]. This has been followed by further sperm 

manipulation whereby to study possible roles of sperms in regulation of postmating female 

responses in the major malaria mosquito An. gambiae, a spermless strain was engineered by 

RNAi-mediated silencing of a developmental gene required for early germ cell differentia-

tion, zero population growth (zpg) [49]. Mosquito control programs may benefit from the 
interesting report that female mosquitoes mated to the spermless males become refractory to 

further mating [49]. Moreover, such a spermless mosquito strain also possesses reproductive 

sterility and could also find application in SIT programs for mosquito population control. A 
very recent sex distorting system developed in An. gambiae employs the CRISPR/Cas9 endo-

nuclease to shred the X chromosome and lead to male bias in progeny without significantly 
reducing the adult’s fertility [50].

Another strategy that has also been pursued is to transgenically impair the ability of mos-

quitoes to transmit malaria Plasmodium parasites. To this end, transgenic Anophelines were 

developed that were unable to vector Plasmodium parasites as they express an antiparasitic 

peptide, the salivary gland and midgut peptide 1 (SM1) in their midgut epithelia under 
regulation by a carboxypeptidase promoter [51]. In the wake of insecticide and drug resis-

tance by both vector and parasite, respectively, this approach offered an avenue to curtail 
transmission while not removing the vector and could easily be spread to wild mosquito 

population using some of the gene drive systems developed. Several other researchers have 

followed this strategy and developed transgenic mosquitoes that cannot transmit their par-

asites. Bee venom phospholipases, synthetic antimalaria proteins like vida3, single chain 
antibodies (scFv) targeting malaria parasites, as well as an antimicrobial peptide cecropin 
A have been used as effectors and mosquitoes engineered to express them lack the ability 
to effectively transmit parasites [52–56]. RNAi-based resistance to dengue virus has also 

been engineered in Ae. aegypti mosquitoes by using inverted-repeat RNA (IR-RNA) from 
the premembrane protein coding region of the DENV-2 RNA genome whose expression  
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was regulated by a carboxypeptidase promoter to suppressed viral replication in the  

midgut [57].

2.2.2. Blow flies

Veterinary pests such as Blow flies that inflict enormous damage to sheep and other livestock 
have also received attention lately. Transgenic sexing strains that allow male-only produc-

tion for control of the Australian sheep blow fly Lucilia cuprina were developed using both 
the single and binary component tetracycline-repressible expression system. An initial single 

component female-specific lethality system showing lethality in pupa used a heat shock pro-

moter Hsp70 and the transformer (tra) intron from Cochliomyia hominivorax to limit lethality 

to only females [58, 59]. A later strain which used the binary component of the tetracycline-

repressible expression system and showed lethality in embryos utilized promoters of cellular-

ization genes to drive expression of tTA and the transformer (tra) intron from C. hominivorax 

placed inside a hidAla2 effector gene to confer the lethality to only female individuals [60].

2.2.3. Screwworms

Though the very successful strategy of SIT had originally been developed against the New 

World Screwworm C. hominivorax [11], this has not translated into success in development of 

transgenic strains of this insect. Transformation of C. hominivorax is much more challenging 

than other dipterans and efforts have resulted in few transgenic strains that allow genetic 
marking with fluorescent proteins for management and control of screwworms [61, 62]. It is 

expected that similar transgenic sterile male strains, sexing strains, sperm marked, and organ-

ismal lethal strains will be developed for screwworms in the near future as had already been 

done for other dipterans [62].

3. Paratransgenic biotechnology

Similar to transgenesis, paratransgenesis also involves the genetic transformation of organ-

isms. However, paratransgenesis targets to achieve the genetic transformation or transgenesis 

of the symbionts that live inside an insect instead of the insect itself and cause the symbionts 

to express or secrete substances that act against parasites and pathogens that are transmitted 
by the insect (Figure 4). Consequently, paratransgenesis is suitably applied against disease 
vectors. Originally developed against the triatomine bug vector of Chagas disease, Rhodinus 

prolixus using its symbiont Rhodococcus rhodnii and the antimicrobial peptide cecropin A 

as an effector [63], this strategy has been adopted for many dipterans that vector diseases of 

humans and livestock.

3.1. Paratransgenic strategies against medical and veterinary important dipterans

3.1.1. Mosquitoes

Since mosquitoes transmit several disease-causing pathogens, many paratransgenic studies 

have been conducted on it. Inhibition of vectorial competence in mosquitoes via bacterial 
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symbiont paratransgenesis were demonstrated in the malaria mosquito An. stephensi using 

genetically modified strains of the popular gram negative bacteria Escherichia coli to express 
scFvs that block development of the parasite Plasmodium berghei [64] or an anti-Plasmodium 

molecule such as SM1 [65]. Other bacteria such as Asaia spp and Pantoea agglomerans (for-

merly Enterobacter agglomerans) have also been used. Favia et al. showed that the Asaia 
associates stably with An. stephensi and that transgenic strain of this bacteria expressing GFP 

are able to colonize the gut and salivary gland of females of this mosquito [66]. In another 

study using Asaia spp, paternal transmission of recombinant strains expressing the green 

fluorescent protein GFP or the red fluorescent protein DsRed to progeny through mating of 
paratransgenic males with wild females was obtained in An. stephensi showing that it is pos-

sible to utilize nonbiting male mosquitoes in malaria transmission [67]. Working with Pantoea 

agglomerans, Wang et al. were able to express several anti-Plasmodium molecules such as SM1 
 peptide, scFv, mutated phospholipase (mPLA2), Plasmodium enolase-plasminogen interac-

tion peptide (EPIP), synthetic antiparasitic lytic peptide Shiva1, etc., in both An. gambiae and 

An. stephensi and successfully suppressed transmission of Plasmodium falciparum and P. berghei,  

respectively [68].

Besides bacteria, fungi and viruses have also been utilized in mosquito paratransgenesis. The 

entomopathogenic fungi Metarhizium anisopliae was engineered by Fang et al. to express the 

anti-Plasmodium molecules SM1, a sporozoite-agglutinating scFv, as well as an antimicrobial 

toxin scorpine in An. gambiae [69]. Using the densonucleosis virus (DNV) in a proof-of-con-

cept viral paratransgenesis work in An. gambiae, the potential of virions in paratransgenesis 

Figure 4. Schematic representation of paratransgenesis: transgenes encoding anti-parasitic molecules are cloned into a 

plasmid which is used to transform suitable symbionts of a vector insect. When the transformed symbiont is introduced 
into the gut of the vector, they colonize the gut whereas the anti-parasitic molecules they produce act against the 

parasites and clear them off.
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was demonstrated by ability of transgenic DNV expressing GFP to infect larvae, persist to the 

adult stage and disperse to vital tissues such as fat bodies, ovaries and midgut, and be trans-

mitted subsequently to other generations [70]. This shows that viruses such as DNV could be 

used to express antiparasitic molecules not only in one but several mosquito developmental 

stages and subsequent generations and could effectively mitigate and eliminate malaria trans-

mission. Another virus, the Sindbis virus, has also been exploited in paratransgenesis and 

used to express scFv that acts against Plasmodium gallinaceum sporozoites in Ae. aegypti [71]. 

As it appears, the Sindbis virus has great potentials for control of various viruses transmitted 
by Aedes mosquitoes [72–74].

3.1.2. Sandflies

Efforts on control of sandfly vectors that transmit Leishmania parasites which cause the 
disease Leishmaniasis has been done mainly with chemical insecticides. To develop a more 

environment-friendly strategy, Hurwitz et al. recently demonstrated the feasibility of para-

transgenesis for sandflies in a proof-of-principle work in Phlebotomus argentipes in which they 

used recombinant Bacillus subtilis fed to larvae to express GFP in the gut lumen of emerging 

adults (Figure 5) [75]. This proof-of-principle study has paved the way for future develop-

ment of strains that will express anti-Leishmania molecules and block transmission of the 
parasites by the sandfly vector.

3.1.3. Tsetse flies

Although several control strategies including SIT have been applied against tsetse flies, con-

tinual effort is made to develop other methods that would not have limitations of the exist-
ing methods, be more sustainable, more cost-effective or suitable for use in IPM control. To 
investigate the possibility of paratransgenesis in tsetse flies, transgenic Sodalis glossinidius 

were introduced into adult females where they were able to express GFP and interestingly 

passed on subsequently to the progeny of those females [76, 77]. Actual utilization of antitry-

panosomal molecules to block parasite development and transmission by tsetse flies could be 
achieved in the near future.

Figure 5. Paratransgenic sandfly Phlebotomus argentipes: (A) auto fluorescence of the outer carapace of the sand fly is 
seen amidst the presence of GFP expressed by the symbiont, (B) subtilis in the sand fly’s midgut B. visualization of GFP 
specifically localized in the sand fly’s midgut chamber upon uncoupling of the GFP signal from the background [75].
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4. Advantages, disadvantages and limitations of transgenic and 

paratransgenic technologies

4.1. Transgenic technology

4.1.1. Advantages of transgenic technology

The main advantage of transgenic biotechnology is its ability to generate strains that pos-

sess traits that are unique and special, and accurately designed or tailored to be specific 
as desired. Also, the flexibility of transgenic technology allows generation of such desired 
strains in many species which would have been very difficult or impossible to achieve by 
other means. Transgenic strains are usually generated after one generation (Figure 1), and 
hence take less time to generate compared to other methods like classical genetics. Moreover, 
generation of strains possessing desired traits in one species can almost always be reproduced 

and transferred to related species with relative ease [78]. Quite unlike earlier genetic methods 
such as SIT where the use of radiation generates unknown and uncharacterized genetic muta-

tions, transgenic technologies generate known and characterizable genetic modifications. 
Transgenes could easily be thoroughly characterized, and same goes for genomic positions in 

the dipteran insect where desired transgenes had got inserted. Also, most transgenic strate-

gies are environment-friendly, sustainable and target-specific. For example, while chemicals 
developed against fruit flies may kill pollinator insects, transgenic strains developed for con-

trol of fruit flies are not likely to have any negative effect on pollinators that their wild coun-

terparts do not already exhibit. Also, the development of resistance against control agents is 

less likely to occur when using transgenics.

In terms of costs, transgenic technologies as well as many other control strategies are not so 

cheap to develop. But it is difficult to say with all certainty whether transgenic (and para-

transgenic technology) is cheaper than many other methods as there have not been any such 
economic studies to the best of our knowledge. Nevertheless, transgenic (and paratransgenic) 
approaches are considered less expensive with regards to the farmer or public beneficiaries as 
they are usually area-wide-oriented and implemented by big organizations at overall little or 
no cost to the individual farmers or the public.

4.1.2. Disadvantages of transgenic technology

Probably due to the fact that transgenic technology is just beginning to move from laboratory 

to the field [79, 80], there are yet no scientifically proven disadvantages. Despite this, many 
public negative concerns already exist on the use of transgenics [78], mostly environmental 

and social, as well as safety and ethical issues. These are mainly due to speculations and the 

uncertainty as to what might happen in nature following field use of transgenics, and whether 
unintentional and unforeseen mutations could lead to harmful consequences (though these 

can potentially occur also in nontransgenics). There are also thoughts on how field use of 
transgenics could interfere with diversity and evolution due to possible loss of genetic mate-

rial of original insects and the associated future downstream events. Potential horizontal 

transfer of transgenes could also be a potential disadvantage that could be associated with the 

use of transgenic technology. However, a ”self-limiting” transgenic approach such as use of 
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transgenic lethality dipteran strains should not present some of the afore-mentioned environ-

mental problems since they are most likely to remove themselves from the environment with 
time unlike “self-sustaining” strains [81]. Though not always the case, there may be fitness 
costs that might arise in dipterans and other insects due to the various loads of transgenes 

they carry [82, 83]. When well assessed, the fitness costs could be determined and measures 
taken to eliminate them if necessary or avoid using strains that suffer such lack of fitness. 
New transgenic strains that may not have the observed fitness cost could also be developed 
and utilized instead. Proper assessment should be done to determine the associated risks and 
benefits before any GMO can be utilized [84].

4.1.3. Limitations of transgenic technology

Transposable elements or “jumping genes” have been the main tool relied on to achieve germ-

line transformation and generate transgenic dipterans. However, most of the transposons 

used in dipterans (and other insects too) are insect-derived [85] and a major concern is that 

a transposon could potentially be remobilized from its integrated genomic position in the 

insect if transposases required for its activity is encountered in the field. The consequence of 
such transgene-transposase exposure could be the remobilization of a transgene to another 

genomic location or total loss of a transgene from an insect’s genome. Measures to avoid 

potential transgene remobilization in engineered dipterans such as postintegrational trans-

gene modification to alter the transposon and achieve nonmobilization or stability has been 
demonstrated in D. melanogaster and C. capitata [86–88]. Other strategies that offer transgene 
stability are becoming available. The recently developed genome editing tool, CRISPR/Cas9, 

which allows RNA-guided modification of target DNA locations [41] has been utilized to 

achieve stable germline transformation in D. melanogaster [43]. Unlike transposon-mediated 
germline transformation, CRISR/Cas9-mediated germline transformation is seamless and 

should not be prone to subsequent remobilization.

Transgenesis is not yet possible in all dipterans as not all members are amenable to it. Since 

the development of a transgenic insect strain involves germline transformation (Figure 1), it 
is therefore important that the biology of a target insect must be in such a way that allows the 

necessary manipulations to achieve genetic transformation. Tsetse flies are yet to be geneti-
cally transformed due to their viviparity which makes it difficult to obtain embryos needed 
for microinjections and subsequent germline transformation [77].

4.2. Paratransgenic technology

4.2.1. Advantages of paratransgenic technology

While similar to transgenic approach in terms of its ability to generate within a short time 
strains that possess unique and special traits designed specifically as desired, paratransgen-

esis also has an additional advantage of leaving the insect itself genetically unmodified and 
rather targets the parasites transmitted. This gives paratransgenic approaches a major plus in 
the sense that it has a more positive public perception than transgenic approaches as many 

of the disadvantages with use of transgenics would not be present [78, 89]. In addition, this 

technology has a high potential to be transferred between different species [78]. Moreover, 
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paratransgenic biotechnology mostly employs microorganisms that live within the target dip-

terans (symbionts) and as a result also has a high likelihood of field success. Another advan-

tage of paratransgenics is the absence of fitness cost of genetic manipulation compared to 
transgenics or other control strategies [90].

4.2.2. Disadvantages of paratransgenic technology

Field application of paratransgenic strategies is yet to be actualized and any potential disad-

vantage of this technology is still to be proven scientifically. Nevertheless, safety concerns and 
risk assessments have become necessary requirements that need to be addressed to ensure 
that the benefits outweigh the risks of utilized genetically modified organisms [84]. One con-

cern for paratransgenics is the potential exposure of engineered symbionts to the environ-

ment and likely consequences such as horizontal gene transfer. Measures such as symbiont 
encapsulation to ensure regulated release are being taken to address some of these regulatory 
concerns [91].

4.2.3. Limitations of paratransgenic technology

Despite the known advantages of the paratransgenic approach, a major limitation is that it 
is not suitable for most dipteran crop pests and has been developed mostly for those dipter-

ans (and other insects) that transmit disease pathogens. Symbiont choice and utilization in a 
paratransgenic expression approach depend not only on availability of symbionts that can be 

isolated, cultured, reintroduced, and survive well in the targeted host, but also on the ability 

of the symbiont to be genetically transformed and to possibly express antiparasitic molecules 

[77]. The lack of some of these requirements would render several good symbionts unusable 
for paratransgenic control. The bacteria symbiont Wolbachia is one such microorganism that 
is promising for paratransgenic application, but the lack of success in genetically transform-

ing it has hindered its further utilization for expression of antiparasitic molecules.

5. Future of transgenic and paratransgenic technologies

In the near future, transgenic and paratransgenic pest/vector control strategies may become 

common place and more widely applied than it is now. Some of the novel approaches of 

these technologies are promising and offer great hopes for control of several human diseases 
and could be implemented in the near future if regulatory and ethical issues are satisfied [92, 

93]. This could usher in a new era where cases major dipteran-vectored diseases of man such 

as malaria and dengue, as well as agricultural pest like Tephritid fruit flies become much 
reduced or even eradicated.

The arrays of weapons in man’s arsenal against his dipteran enemies are also expected to 

continue to expand. Continuous improvement will be made to existing control strategies, 

while new and better strategies are expected to be developed in the future as more advances 
are made in genetics and molecular biology. The RNA-guided genome editing tool, the 

CRISPR/Cas9 endonuclease recently developed from bacteria such as Streptococcus pyogenes 

Developing the Arsenal Against Pest and Vector Dipterans: Inputs of Transgenic and Paratransgenic Biotechnologies
http://dx.doi.org/10.5772/66440

339



and Neisseria meningitidis [41, 94] has equally enabled genome modification and generation 
of transgenic control strategies in dipterans [43, 44, 50, 95]. More recently, a DNA-guided 

genome editing which makes use of an argonaute from the bacteria Natronobacterium gregoryi 

[96] has also been developed and it is expected that this new tool, as well as others that may 

soon be developed, will definitely lead to the generation of new transgenic or paratransgenic 
approaches to better control pest, nuisance or vector dipterans.
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