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Abstract

Dielectric substrates are technologically necessary components of various microwave
and optical structures and devices, and may strongly affect their performance. For
metasurfaces composed of subwavelength resonators, placing dielectric components in
the proximity of resonators can lead to strong modification of subwavelength reso-
nances and related transmission regimes. We focus on the effects exerted by material
and geometrical parameters of such a dielectric substrate on linear-to-linear polarization
conversion that appears in quasiplanar structures containing two coupled metasurfaces
and enabling chirality. It is shown that spectral locations of the polarization conversion
resonances and transmission efficiency at these resonances are strongly sensitive to the
substrate parameters, whereas the ability of polarization conversion and related asym-
metry of transmission can be preserved in wide ranges of parameter variation. The
effects of a substrate are considered in detail for the mechanisms with and without
tunneling, indicating a route to compact designs of quasiplanar structures for single-
and multiband polarization conversion.

Keywords: metasurface, polarization conversion, subwavelength resonator, permittivity

1. Introduction

It is well known that material parameters of the components of an entire structure can

strongly affect dispersion, transmission, and scattering characteristics. For some classes of

the structures, such as the idealized lossless cavities and waveguides, effects of variation of

the material parameters can be easily quantified. In particular, the rule of ε−1=2, being applica-

ble to eigenfrequencies of the closed cavities filled with a linear isotropic dielectric, is com-

monly known. The quantifying of resonances becomes much more complicated in the case of

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



open resonance structures, where the resonance fields can be strong beyond the resonators

[1]. In this case, an a priori estimate of the strength of the effect of dielectric is very compli-

cated and, moreover, one cannot predict the principal possibility of obtaining of a desired

transmission regime. It can be even more difficult to preserve the same strength of some

effects, e.g., efficiency of conversion of the incident wave energy to a certain diffraction order

or polarization state, simultaneously with the shift of resonance frequencies, while only

varying characteristics of the dielectric layer(s) adjacent to the resonators. Nevertheless,

stacking resonant or nonresonant arrays with dielectric layers and placing dielectric compo-

nents inside individual resonators are known as effective tools to control resonance frequen-

cies and transmission and scattering characteristics [2–5].

Theory and technology related to subwavelength resonators have extensively been developed

since the early 2000s. Initially, the interest to them has been stimulated by the possibility of

obtaining artificial magnetism and negative refraction [6]. Later, a chiral way to negative

refraction has been proposed, which is realized with the aid of planar metamaterials [7].

Artificial bianisotropic [8] and, in particular, electrically thin chiral structures based on

metasurfaces composed of subwavelength resonators [9] have extensively been studied. The

latter suggest efficient solutions for polarization conversion problem. Circular dichroism and

polarization rotation belong to the most distinguished properties of the artificial chiral mate-

rials. One of the basic features is that electric and magnetic dipoles are strongly coupled and

excited simultaneously, so that chirality originates from the collinear excitation of the effective

electric and magnetic responses. Moreover, these responses can be switched at a fixed fre-

quency by changing polarization of the incident electromagnetic wave. It is noteworthy that

manipulation by polarization states can be achieved, in addition to the chiral structures, which

are based on two coupled metasurfaces, with the aid of various other schemes and classes of

the structures. In particular, high-contrast gratings, advanced quarter-wave plates, and struc-

tures with a single or multiple (anisotropic) metasurfaces can be mentioned [10–15].

In the coupled arrays of subwavelength resonators, conversion of the incident linear polariza-

tion to the circular polarization [16–21] and to the orthogonal linear polarization [22, 23] has

been demonstrated. These conversions are directly related to asymmetric transmission, a Lorentz

reciprocal phenomenon that enables strong forward-to-backward transmission contrast

between two opposite incidence directions [22, 24–28]. Since reciprocity forbids one-way

transmission in two-port reciprocal systems, asymmetric transmission requires breaking of

spatial inversion symmetry and, hence, new transmission and reflection channels. For the

twisted metasurfaces, they can be obtained by involving polarization states different from the

incident one [16–18, 22, 29]. Diodelike asymmetric transmission with reflections vanishing for

one of two opposite incidence directions has been theoretically predicted in the zero-loss

approximation for both diffraction [30] and polarization conversion [1, 23] inspired mecha-

nisms. The principal possibility of the perfect polarization conversion in a generalized double-

layer structure has been demonstrated [31].

In one of the recent studies, linear-to-linear polarization conversion and diodelike asymmetric

transmission in a thin chiral structure with 4-U unit cells have been obtained [23]. It was shown

that the problem of their perfectness is an eigenstate, phase propagation, and impedance

matching. It can be reached due to the coexistence of tunneling, optimization of the axial ratio

Metamaterials - Devices and Applications2



of the eigenwaves, and optimization of transmission phases of the eigenwaves that destruc-

tively interfere in one direction and constructively interfere in the opposite one. Recently,

similar mechanisms have been realized in the structures with U-type unit cells, with and

without an evanescent-wave metallic mesh and, thus, with and without tunneling [1]. More-

over, perfect multiband linear-to-linear polarization conversion and asymmetric transmission

can be obtained with the aid of the coupled arrays of U-shaped apertures [32]. Besides, many

recent studies should be mentioned which are dedicated to dual-band and broadband conver-

sions of polarization that involve linear and circular states [1, 20, 21, 33–36].

In this chapter, the emphasis is put on the effects exerted by variations of the dielectric

substrate parameters on subwavelength resonances and related regimes of linear-to-linear

polarization conversion and asymmetric transmission. Consideration is restricted to

quasiplanar structures containing two coupled metasurfaces that represent arrays of

subwavelength split-ring resonators (SRRs) enabling simple U-type unit cells with resonant

behavior at microwave frequencies, and to the case of normal incidence. Zero-loss approxima-

tion is utilized to clarify the main components of the underlying physical mechanisms. Two

mechanisms will be discussed, which are realized in the structures with and without a metallic

mesh (small-hole array) placed between the SRR arrays, i.e., tunneling either appears and

contributes or does not. The focus will be on sensitivity of the subwavelength resonances in

the studied structures with chirality to the variations in permittivity and thickness of the

dielectric substrate layers located between the SRR arrays and the metallic mesh, or simply

between two SRR arrays. Indeed, in the both cases, the resonance characteristics of individual

resonators and those of the coupled metasurfaces can be strongly affected, because the resona-

tors are placed directly on the dielectric layer(s). Perfect transmission that originates from the

perfect matching of real impedances can be obtained in the mesh-free structures in some

ranges of parameter variation. These ranges either coincide or do not coincide with the ranges,

in which matching can appear for the structures with a mesh as a result of fulfillment of certain

phase conditions. The role of the choice of permittivity and thickness of the dielectric layers can

be very important for preserving the features related to the matching and perfect polarization

conversion. While variations of substrate characteristics give big freedom in design without

changes in SRR arrays, it can be further extended by a proper selection of an array period.

Simulation results are obtained by using CST Microwave Studio, a full-wave commercial

solver based on the finite integration method (see www.cst.com for software details). The same

methodology can be applied to study the effects of a substrate for linear-to-circular and

circular-to-circular polarization conversion in various structures based on metasurfaces. This

chapter presents a review of the basic effects achievable by variations of substrate parameters

in the structures with U-type assembly, while a comparative study of the existing and

suggested performances for multi-/broadband polarization conversion is beyond its scope.

2. Polarization conversion, asymmetry in transmission and tunneling

First, let us briefly describe the structures to be studied that may enable polarization conver-

sion and related asymmetry in transmission. Schematic of a unit cell and perspective view of

the studied periodic structure are presented in Figure 1. Each of two SRR arrays has period of a

Effects of Dielectric Substrate on Polarization Conversion Using Coupled Metasurfaces With and Without Tunneling
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in the x and y directions. The metallic mesh with thickness d and period p is obtained by periodic

arrangement of the square holes, i.e., a > p; p is assumed to be the same over x and y. For the basic

configuration with the metallic mesh [1], we take a = 22 mm, p = 4.4 mm, h = 2.2 mm,

L1¼ L2 ¼ 1:25 mm, d = 0.5 mm, s1¼ s2 ¼ 10 mm, s3 ¼ 1:5 mm, and w = 3 mm. Hence, the total

thickness of the structure is S ¼ dþ 2s3þL1þL2. The back-side SRR array represents the front-

side SRR array rotated by 90∘ in the clockwise direction. Such a location of the SRR arrays can

create chirality and, thus, the ability of polarization conversion. The stronger the conversion, the

stronger asymmetry in the transmission. In fact, the ability of asymmetric transmission originates

from the fact that conversion of the incident wave is distinguished at front-side illumination and

at back-side illumination, so that the different channels (e.g., that associated with the orthogonal

polarization in transmission mode for the former, and that associated with the same polarization

in reflection mode for the latter) are the main acceptors of the incident wave energy.

The use of the layers with ε < 0 (metallic mesh) and ε > 0 (dielectric substrate) in the same

structure should allow one obtaining destructive interferences of the waves reflected at the

interfaces between the layers from A to E and those between air and the layers A and E. This

can result in zero reflection and, accordingly, in perfect tunneling. Generally, the operation is

based on wave interference, and, thus, the phase is a critical parameter. However, a negative-ε

layer is not necessary for obtaining of zero reflections, if input impedances at the interfaces of

the individual layers are properly adjusted. This is a reason why similar regimes of polariza-

tion conversion can be obtained in the structures with and without a metallic mesh and, thus,

the mechanisms with and without tunneling are worth comparing [1].

In the general case, a linearly polarized incident wave changes its polarization state when

passing through such a coupled system. The complex amplitudes of the incident (E
f ,b
xi and E

f ,b
yi )

and transmitted (Ef ,b
x and Ef ,b

y ) waves are expressed through each other with the aid of the

T-matrix as follows [22, 23]:

E f ,b
x

E f ,b
y

 !

¼
T f ,b
xx T

f ,b
xy

T
f ,b
yx T

f ,b
yy

 !

E
f ,b
xi

E
f ,b
yi

 !

, (1)

where E
f ,b
xi and E

f ,b
yi are the x and y components of the incident wave; Tf ,b

xx and T
f ,b
yy are the

copolarized transmission coefficients, and T
f ,b
xy and T

f ,b
yx are the cross-polarized transmission

Figure 1. (a) Schematic of a complex unit cell (side view): A—SRR, B and D—dielectric layers with permittivity ε1 and ε2,

respectively, C—metallic mesh, E—rotated SRR. (b) Metallic mesh with square holes seen from the frontside and backside

at a = 2p. (c) SRR seen from the backside (denoted by E in the side view). (d) (3a) · (3a) fragment of the basic configuration

at a = 5p (perspective view).
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coefficients, f and b stand for the forward and the backward transmission cases, which corre-

spond to front-side and back-side illumination, respectively.

The amplitudes in these two cases are related to each other, depending on the structural symme-

tries. For the structures showing the same symmetries as the studied one, T
f
xy ¼ −Tb

yx, T
f
yx ¼ −Tb

xy

and Tf
xx ¼ Tb

xx ¼ T
f
yy ¼ Tb

yy, provided that ε ¼ ε1 ¼ ε2. According to references [23, 29], if the

structure parameters can be adjusted so that Tf ,b
xx ¼ 0, T

f ,b
yy ¼ 0, T

f
yx ¼ Tb

xy ¼ 0 and

jT
f
xyj ¼ jTb

yxj ¼ 1 at some resonances, then perfect linear-to-linear polarization conversion is

achieved. This regime is schematically illustrated in Figure 2(a), where transmission, reflec-

tion, and polarization conversion are explained by using a four-port system. Perfect polariza-

tion conversion and perfect asymmetry in transmission may occur when either y-polarized

plane wave is incident from the frontside, or x-polarized plane wave is incident from the

backside. In turn, if either y-polarized wave is incident from the backside, or x-polarized

wave is incident from the frontside, perfect reflection takes place. As a result, transmission

may be strong at either front-side or back-side illumination, depending on which of two

incident linear polarizations is utilized. At the same time, it vanishes at the opposite-side

illumination when the same polarization state of the incident wave is used. Clearly, this

reversibility of the direction of diodelike transmission occurs when the incident polarization

is changed (for the both incidence directions) to the orthogonal one, because Lorentz reci-

procity forces the scattering matrix to be symmetric.

It may occur that at the other polarization conversion resonances the above-described opera-

tion regime appears when Tf ,b
xx ¼ 0, T

f ,b
yy ¼ 0, Tb

yx ¼ T
f
xy ¼ 0 and jTb

xyj ¼ jT
f
yxj ¼ 1. In this case,

the schematic in Figure 2(a) should be modified, i.e., the ports with perfect reflection and those

with perfect transmission replace each other.

For the circularly polarized (CP) waves, we have, instead of Eq. (1),

Figure 2. (a) Schematic of perfect polarization conversion and asymmetric transmission regime. (b) Schematic of tunnel-

ing in ABA-type stack with propagating-wave layers A and evanescent-wave layer B; red line shows possible (simplified)

variation of the field magnitude in the propagation (normal) direction.
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E
f ,b
þ

Ef ,b
−

 !

¼
T
f ,b
þþ T

f ,b
þ −

T
f ,b
− þ Tf ,b

− −

 !

E
f ,b
þi

E
f ,b
−i

 !

, (2)

where E
f ,b
þi and E

f ,b
−i are the components of the incident wave that correspond to right- and left-

handed CP waves; T
f ,b
þþ and Tf ,b

− −
are the transmission coefficients of right- and left-handed CP

waves, and T
f ,b
þ−

and T
f ,b
−þ are the cross-coupling transmission coefficients, superscripts f and b

indicate the forward and backward transmission cases; T
f ,b
þþ ¼ Tf ,b

xx þ T
f ,b
yy þ iðT

f ,b
xy −T

f ,b
yx Þ,

Tf ,b
− −

¼ Tf ,b
xx þ T

f ,b
yy −iðT

f ,b
xy −T

f ,b
yx Þ, T

f ,b
þ−

¼ Tf ,b
xx −T

f ,b
yy −iðT

f ,b
xy þ T

f ,b
yx Þ, T

f ,b
−þ ¼ Tf ,b

xx −T
f ,b
yy þ iðT

f ,b
xy þ T

f ,b
yx Þ,

T
f
−þ ¼ Tb

þ−
and T

f
þ−

¼ Tb
−þ. Efficient polarization conversion and asymmetry in transmission

can also be obtained for the CP waves [18, 19, 21, 36]. However, the focus in this chapter is

related to the effects arising for the linearly polarized waves.

For a part of the structures considered here, tunneling is an important component of the

resulting polarization conversion mechanism that has initially been suggested in reference

[23]. Previously, a similar tunneling-based mechanism has been utilized for obtaining perfect

transmission through the sandwiched structures comprising evanescent-wave layers, which

do not enable polarization conversion [37–39]. In particular, it was shown that arrays of

subwavelength resonators may play two roles: either work as positive-ε layers in the tunneling

mechanism or contribute to the effective negative-index behavior.

The general idea of matching in case of the presence of evanescent-wave components can be

explained in terms of transmission through isotropic AB type (bilayer) and ABA type (trilayer)

stacks, in which A and B stand for propagating-wave and evanescent-wave layers, respec-

tively, see Figure 2(b). According to reference [37], the criterion of the perfect transmission for

AB stack can be written as follows:

ðk1=k0 � k0=k1Þtanðk1d1Þ � ðα2=k0 þ k0=α2Þtanhðα2d2Þ þ iðk1=α2 þ α2=k1Þtanðk1d1Þtanhðα2d2Þ ¼ 0,

(3)

where k1 and d1 are wave number and thickness of the layer A, k2 = iα2 and d2 are wave number

and thickness of the layer B. This criterion cannot be satisfied, since the second term is

imaginary, i.e., the waves scattered by the layers A and B, being in different phase planes,

cannot entirely cancel each other. Then, if we add one more layer A, as shown in Figure 2(b),

the criterion can be rewritten as follows:

ðk1=k0 � k0=k1Þ2tanðk1d1Þ � ðα2=k0 þ k0=α2Þtanhðα2d2Þ−½k
2
1=ðα2k0Þ

þðα2k0Þ=k
2
1�tan

2ðk1d1Þtanhðα2d2Þ ¼ 0:
(4)

Now, both the first and the second term are real and, thus, Eq. (4) has a solution that corre-

sponds to the perfect transmission. This model enables a qualitative but physically correct

prediction of the perfect transmission also for complex anisotropic structures with the polari-

zation conversion ability, including the case of coupled metasurfaces with a metallic mesh [23].

For the structures without a mesh and, hence, without tunneling, conditions of the perfect

Metamaterials - Devices and Applications6



transmission can easily be obtained from matching of impedances. For an ABA-type stack, this

yields

tanðk1d1Þ ¼ 0 and tanðk2d2Þ ¼ 0, (5)

where k2 is real wave number of the layer B. In the next sections, the existence, efficiency, and

generality of polarization conversion achievable in ABA-type stacks at variations of substrate

parameters will be discussed.

3. Varying characteristics of dielectric substrate

3.1. Basic effects of substrate permittivity

Here, we demonstrate how the choice of a dielectric substrate material can affect the ability

and manifestations of polarization conversion in the structures based on coupled

metasurfaces. Let us consider the case of an intermediate distance between metasurfaces and

vary ε from 1 (substrate-free case) to 40 (some types of ceramics, e.g., see reference [40]). In

Figure 3, results are presented for the structures with and without a mesh. In the latter case, it

is assumed that the mesh is simply removed from the mesh-containing structures, and a

homogeneous dielectric layer fully occupies the region between two metasurfaces. Then, its

thickness is L ¼ dþ L1 þ L2. To better illustrate the basic features, we first consider the case of

ε = 1, see Figure 3(b, c). For the mesh-free structure in Figure 3(b), polarization conversion is

observed between 6 and 8 GHz. However, all of the diagonal and nondiagonal components of

the T-matrix are of the same order, so that a nearly perfect one-way linear-to-linear polariza-

tion conversion and relevant diodelike transmission cannot be obtained. At the same time,

conversion into polarization states being different from a linear one can be quite strong. The

twin maxima like those shown in Figure 3(b) are typical for the coupled SRR arrays. They may

appear regardless of whether polarization conversion is possible or not, and can be explained

by using Lagrange (hybridization) formalism [9, 41–43]. The strength of coupling can be

utilized to control optical activity and polarization conversion. In particular, either two narrow

bands of polarization conversion, which are well separated from each other, or a wide band

with two weak maxima might be obtained.

Each SRR can approximately be presented as an LC circuit, with inductance L and capacitance

C, and resonance angular frequency ω0 ¼ ðLCÞ−1=2. Accordingly, the Lagrangian of a single

SRR can be written as Γ ¼ ðL=2Þð _q2−ω2
0q

2Þ, where q stands for a charge that is considered as a

generalized coordinate. In the case of two coupled SRRs that belong to different metasurfaces,

the Lagrangian represents the sum of the Lagrangians of two individual SRRs plus the cou-

pling term, i.e.

Γ ¼ ðL=2Þð _q21−ω
2
0q

2
1Þ þ ðL=2Þð _q22−ω

2
0q

2
2Þ þM _q1 _q2, (6)

where q1 and q2 correspond to the first and the second SRR, respectively, and M is mutual

inductance arising due to the magnetic coupling of two SRRs. Magnetic coupling is considered

Effects of Dielectric Substrate on Polarization Conversion Using Coupled Metasurfaces With and Without Tunneling
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to be independent of the angle of rotation of the second SRR [43]. The eigenfrequencies are

given by ω� ¼ ω0½1∓ðM=LÞ�−1=2, where ωþ and ω− correspond to an antisymmetric and a

symmetric charge distribution, respectively [41]. Hence, a spectral distance between the

eigenfrequencies is

Δω ¼ ωþ−ω−≈ðM=LÞω0: (7)

Mutual inductance quickly decreases while the distance between SRRs is increased and, thus,

the spectral separation becomes smaller. Electric coupling of two SRRs, which depends on the

rotation angle, can be easily involved into this model [9, 43].

Figure 3. (a) Front, back, and side view of a unit cell, and transmission for the basic configuration (b, d, f, h) without and

(c, e, g, i) with metallic mesh; (b, c) ε = 1, (d, e) ε = 2.1, (f, g) ε = 5.8, (h, i) ε = 11.4; solid blue line – jT
f
xyj ¼ jTb

yxj, dashed green

line – jT
f
yxj ¼ jTb

xyj, and dotted red line – jTf
xxj ¼ jTb

xxj ¼ jT
f
yyj ¼ jTb

yyj.
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For the structure with the metallic mesh in Figure 3(c), the diagonal components and one of the

nondiagonal components of the T-matrix are suppressed, as desired. As a result, one-way

polarization conversion can be obtained. However, a nearly perfect transmission is again not

reached: maxjTf
xyj ¼ 0:54 and maxjTb

yyj ¼ 0:067 at f = 6.59 GHz. On the contrary to the mesh-

containing structure with 4U-type unit cells [23] and the mesh-free structure in Figure 3(b), the

unwanted components of the T-matrix are well suppressed, enabling strong directional selec-

tivity in a wide frequency band. Note that the mesh alone only allows one obtaining a very

weak transmission in this band, i.e., evanescent-wave regime is evident. In this case, Lagrange

formalism in the above-presented form is not applicable, since additional modifications are

required to properly take into account the effects of the mesh.

Placing a low-ε layer between two metasurfaces in the mesh-free configurations and between

each metasurface and the mesh in the mesh-containing configurations results in that all of the

basic transmission and polarization conversion features observed in Figure 3(b, c) are pre-

served, while the resonance frequencies are redshifted. This is quite expectable, although the

obtained shift is weaker than it would be when the rule of ε−1=2 is valid. In Figure 3(d, e), we

use a material with ε = 2.1 that belongs to the ε-range, to which many materials that are widely

used at microwave and optical frequencies (e.g., polytetrafluoroethylene/Teflon, SiO2) do

belong. In particular, the first maximum of jT
f
xyj in the case of the mesh-containing structure

is redshifted from f = 6.59 to f = 5.29 GHz, compare Figure 3(c, e). In turn, two first maxima of

jT
f
yxj in the case of the mesh-free structures are redshifted from f = 6.35 and f = 7.3 GHz to f =

5.27 and f = 6.09 GHz, respectively, see Figure 3(b, d) for comparison. Moreover, the maximal

values of jT
f
yxj shown in Figure 3(d) are several times larger than the values of jT

f
xyj at the same

frequencies. The maximal values of jT
f
xyj in Figure 3(d, e) become closer to unity, so the nearly

perfect conversion regime is approached.

The above-discussed features can be enhanced at a further increase of ε. In Figure 3(f, g), the

results are presented for ε = 5.8 (e.g., some types of glass and diamond). Now, we obtain

maxjTf
yxj > 0:8 at f = 3.67 and f = 4.22 GHz, and maxjTf

xyj > 0:89 at f = 7.22 and f = 7.49 GHz for

the mesh-free structure in Figure 3(f), and maxjTf
xyj > 0:8 at f = 3.6 GHz, and maxjTf

xyj > 0:995

near f = 7.9 GHz for the mesh-containing structure in Figure 3(g), while the second cross-

polarized component is well suppressed. Higher resonances are redshifted so that dual-band

operation with a large distance between the bands is possible at f < 8.5 GHz. Note that

S=λ < 0:17 and a=λ < 0:62 at f < 8.5 GHz, where λ is the free-space wavelength.

What can be even more important for practical applications is that the high-frequency polari-

zation conversion band at f > 7 GHz is wider than those connected with the maxima near f = 4

GHz, in Figure 3(f, g). If single-band operation is sufficient, design can be optimized based on

the trade-off between the bandwidth and electrical size. It is worth noting that a part of the

near-unity transmission scenarios is realized by using the y-polarized incident wave, while the

other part does with the aid of the x-polarized incident wave. In particular, for the mesh-free

structure in Figure 3(f) we obtain different directions of near-unity transmission for the first

two maxima and for the high-frequency band, while this direction is the same for the both

bands in the mesh-containing structure in Figure 3(g).

Effects of Dielectric Substrate on Polarization Conversion Using Coupled Metasurfaces With and Without Tunneling
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While the maxima twinning is a general feature shown by the mesh-free structures, there is no

twinning for the mesh-containing structures. The absence of twinning may originate from the

merging of the maxima, which correspond to different but very weakly separated resonances.

An additional study based on Lagrange formalism or other models of resonance coupling is

required to clarify this difference. Due to the Lorentz reciprocity, a nearly perfect polarization

conversion is a one-way effect. Indeed, if the same polarization state is used at both frontside

and backside illumination, we obtain the perfect reflection for illumination from the side being

opposite to that one, at which a nearly perfect polarization conversion is obtained. A key

feature is that the copolarized components are well suppressed in a wide frequency range,

including the polarization conversion bands. Up to now, the mesh free and the mesh-

containing performances that contain the dielectric layers with ε = 5.8 have been the best

among the discussed ones in terms of conversion efficiency, suppression of the unwanted

components, and number of the achievable conversion bands.

Next, we investigate whether we have more flexibility in choice of ε, i.e., whether the basic

features observed in Figure 3(f, g) can be kept when a higher-ε material (i.e., with ε > 5.8) is

used for the dielectric layers. Indeed, since the resonance frequencies are expected to be further

redshifted, the desired values of impedances, phases, and efficiency of one-way polarization

conversion are not guaranteed. Figure 3(h, i) present the transmission results for the two

structures at ε = 11.4. The chosen value of ε corresponds to the range, to which many materials

such as graphite, Si, and GaAs are belonging. By comparing to Figure 3(f, g), the spectra shown

in Figure 3(h, i) are very similar but are much denser. For instance, the dependences in Figure 3

(f) at f < 8.5 GHz are similar to those in Figure 3(h) at f < 6.3 GHz, so that changing a scale at the

abscissa axis would make these dependences almost identical. The same remains true for the

dependences in Figure 3(g) at f < 8.5 GHz and those in Figure 3(i) at f < 6.3 GHz. In Figure 3(h),

we obtain maxjTf
yxj ¼ 0:885 and maxjTf

yxj ¼ 0:88 at f = 2.76 and f = 3.14 GHz, respectively,

whereas jTf
xyj ¼ 0:87 and jTf

xyj ¼ 0:96 for two maxima in the vicinity of f = 5.5 GHz. Thus, the

cross-polarized components with magnitudes higher than 0.9 can be obtained even without a

metallic mesh and tunneling, i.e., only due to matching of the real input impedances. In spite of

that the copolarized components are still significant, high-efficiency transmission and polari-

zation conversion are possible for this structure at two different incident polarizations.

From the broadband operation perspective, bringing the neighboring resonances together might

be useful, as shown in Figure 3(i) around 5.76 GHz for the structure with the mesh. Indeed,

such a coupling of two resonances can be obtained that the dip between the neighboring

maxima is very weak and two neighboring bands are merged. In this regime, jTf
xyj > 0:99 at

the maxima, whereas minjTf
xyj ¼ 0:88 between them. Thus, the vicinity of f = 5.76 GHz can be

suggested for broadband operation. One more high-efficiency polarization conversion band

occurs at f = 2.66 GHz, where maxjTf
xyj≈0:94. Note that a=λ≈0:2 and S=λ≈0:05, and a=λ≈0:42 and

S=λ≈0:12 at f = 2.66 GHz and f = 5.76 GHz, respectively.

Based on the obtained results, one can conclude that the main functions of the high-ε layers

include redshift of the resonances, at which polarization conversionmay occur, and improvement

Metamaterials - Devices and Applications10



of the phase and/or real impedance matching, which results in that the regime of perfect one-way

polarization conversion is approached. The functions of the mesh include suppression of the

unwanted components of the T-matrix and the collaborative effect with the high-ε layers and

SRR arrays in the tunneling mechanism. In turn, the coupled SRR arrays enable polarization

conversion, on the one hand, and contribute to the resulting transmission mechanism due to

either tunneling or real impedance matching, on the other hand. The role of the SRR arrays here is

similar, in principle, to that in the structures with 4U-type unit cells [23]. However, wideband

suppression of the unwanted components has not been reached therein, in contrast with the

results shown in Figure 3. To compare, transmission for the structures obtained from those in

Figure 3(c, e, g, i) by removing the SRR arrays remains low, i.e., jTf
xxj ¼ jTf

yyj < 0:1 and

jTf
xyj ¼ jTb

yxj ¼ 0. Hence, the roles of the different structural components in obtaining of the nearly

perfect matching and tunneling are clear.

The above-discussed features are kept even in wider ranges of variation of the problem

parameters, including very high values of ε. For example, for the mesh-free structure similar

to those in Figure 3 but with ε = 35.4, we obtain the maxima of jTf
yxj ¼ 0:96 and jTf

yxj ¼ 0:94 at

f = 1.63 and f = 1.87 GHz, respectively. The values of jTf
xyj that are equal to 0.86, 0.97, 0.88, 0.86,

0.92, and 0.98 correspond to the well-separated peaks located at 3.11, 3.4, 3.72, 4.32, 4.49, and

4.69 GHz, respectively. Among them, there are four narrow bands, in which either

jTf
xyj > 0:99 (jTb

xyj≈0) or jTf
yxj > 0:99 (jTb

yxj≈0). More than five bands of high-efficiency, one-

way polarization conversion can be easily obtained in one structure at subwavelength scale,

i.e., at a=λ < 0:5 and S=λ < 0:5. This structure is really very thin as compared to λ, e.g.,

S=λ≈0:03 at f = 1.63 GHz and S=λ≈0:09 at f = 4.69 GHz. Note that ε
1=2L=λ≈0:095 and

ε
1=2L=λ≈0:28, respectively. Thus, classical Fabry-Perot resonances in the dielectric layer are not

expected to contribute to the resulting transmission mechanism that distinguishes our struc-

tures from those studied by Markovich et al. [31]. For the mesh-containing structure with ε =

35.4, we obtain four maxima, at which either jTf
xyj > 0:99 (Tb

xy≈0), or jTf
yxj > 0:99 (Tb

yx≈0),

whereas S=λ < 0:11 and a=λ < 0:4. Although the total number of the polarization conversion

bands (within the same frequency range) is usually larger for the mesh-free structures, those

with the mesh often allow a better approaching to the case of perfect polarization conversion.

The resonance frequencies corresponding to the first maxima of jTf
xyj in Figure 3(c, e, g, i) are

approximated by

f¼ f ð0Þε
−0:36, (8)

where f ð0Þ stands for the resonance frequency at ε = 1. If a wider range of ε variation is considered

(i.e., εmax > 11:4), 0.36 in Eq. (8) must be replaced with a larger value, e.g., with 0.39 [1]. For a

more accurate approximation, subranges of larger ε and smaller ε should be considered sepa-

rately. In turn, for the both maxima of jTf
yxj from the first pair in Figure 3(b, d, f, h), the following

approximation can be used:
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f¼ f ð0Þε
−0:33: (9)

Thus, comparing with the classical scaling rule of ε−1=2, one obtains similar rules for the

basic configuration, so that the effect of variations in ε can be quantified. Surprisingly, the

appropriate exponent values differ from the classical rule not strongly, although a large part

of the resonance field energy may correspond to the exterior of subwavelength resonators.

Moreover, not only locations of the maxima but also separation between them, Δ f, can be

predicted for different values of ε. In terms of the Lagrange model, a decrease in Δ f at larger

ε indicates a weaker coupling that might be connected with a larger electrical thickness of

the dielectric substrate and a larger phase difference at the opposite sides of a dielectric

layer.

A simultaneous widening of two polarization conversion bands can be achieved in the basic

configuration just by modification of the metallic mesh parameters. Figure 4 presents an

example, in which the mesh has a larger period than that shown in Figure 3. In fact, this

structure differs from that in Figure 3(i) only in the values of p and h. One can see that the

second band of jT
f
xyj ¼ jTb

yxj≈1 in the vicinity of f = 6.4 GHz is similar to such bands shown in

Figure 3(g, i). However, the first band (at f = 2.8 GHz) has now two neighboring maxima with a

very weak dip between them, so that our guess regarding a possible nature of the single

maxima observed in the structures with the mesh in Figure 3 may be correct. Note that the

values of jT
f
yxj ¼ jTb

xyj can also be quite large within the bands of jT
f
xyj ¼ jTb

yxj≈1, as shown in

Figure 4(b) at f = 6.5 GHz. In this case, nearly perfect two-way polarization conversion is

obtained, i.e., it occurs for both incident linear polarizations. Thus, both one-way and two-

way polarization conversion bands can appear in one structure. Besides, it is interesting to

compare locations of the maxima in Figures 3(i) and 4(b), while p is varied but the total volume

occupied by a metal is fixed. The first band is shifted from f = 2.66 GHz to the vicinity of f = 2.8

GHz (two close maxima at 2.78 and 2.84 GHz, with a weak dip between them). The second

band is shifted from the vicinity of f = 5.75 GHz to the vicinity f = 6.4 GHz. Hence, the

introduced modification of the mesh geometry leads to the enhancement of the capacitive

effect for the both broadbands.

Figure 4. (a) Front, back, and side view of a unit cell, and (b) transmission for the basic configuration with a modified

metallic mesh, p = 11 mm and h = 6 mm: solid blue line – jT
f
xyj ¼ jTb

yxj, dashed green line – jT
f
yxj ¼ jTb

xyj, and dotted red line

– jTf
xxj ¼ jTb

xxj ¼ jT
f
yyj ¼ jTb

yyj; ε = 11.4.
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3.2. Thin and thick configurations

Next, we consider the structures with a smaller and a larger distance between the coupled

metasurfaces. Results for the structures with L1¼ L2 ¼ 0:25mm, s3 ¼ 0:5mm, and the same

remaining parameters as for the basic configuration are presented in Figure 5. Now, we

have S ¼ 2mm, so that we refer to it as thin configuration. First, one should notice that

separation of the resonances is here stronger pronounced than for the basic configuration.

Generally, it may occur because each metasurface strongly affects the resonance field of the

other in the thin configuration, leading to a stronger coupling. For example, the difference

in location of the maxima observed in Figure 5(b) for the mesh-free structure with ε = 2.1 is

larger than 2 GHz. In this case, the maximal values for two cross-polarized components are

close to each other, while the copolarized components are not suppressed at the resonances.

Introducing a metallic mesh between the metasurfaces results in that the distance between the

maxima dramatically decreases. Indeed, the center frequency f 0¼ ðf u þ f lÞ=2, where f u and f l
are the upper and the lower frequencies in a pair of the coupled (neighboring) resonances, is

Figure 5. (a) Front, back, and side view of a unit cell, and transmission for the thin configuration (b, d, f) without and (c, e, g)

with metallic mesh; (b, c) ε = 2.1, (d, e) ε = 5.8, (f, g) ε = 11.4; solid blue line – jT
f
xyj ¼ jTb

yxj, dashed green line – jT
f
yxj ¼ jTb

xyj,

and dotted red line – jTf
xxj ¼ jTb

xxj ¼ jT
f
yyj ¼ jTb

yyj.
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equal to 5.16 and 4.99 GHz in Figure 5(b) and Figure 5(c), respectively, i.e., the shift is not very

strong. At the same time, Δf ¼ f u−f l is 2.45 and 0.23 GHz, i.e., the difference between two

structures in terms of resonance separation is very strong. For the mesh-free structures in

Figure 5(b, d, f), these features are in agreement with the predictions based on the Lagrange

model (f u and f l correspond to ωþ and ω
−
): stronger coupling appears at smaller distances

between the SRRs [41, 42]. On the other hand, assuming that the spectral separation of the

neighboring maxima is connected with the strength of resonance coupling for a wider class of

the structures, one may expect that in the mesh-containing structures in Figure 5(c, e, g), the

coupling is substantially weaker because of the effect exerted by the mesh. This feature

probably originates from the fact that the mesh prevents direct coupling of nonevanescent

waves at two sides of the entire structure. Similarly to Figure 3, nearly perfect polarization

conversion and related diodelike transmission are obtained for the mesh-containing structures

in Figure 5. Moreover, on the contrary to Figure 3, jT
f
xyj > 0:99 is achieved in a very wide range

of variation of ε, while other components of the T-matrix are weak.

An increase of ε only leads to the resonance redshift, so that a larger number of narrow bands of

polarization conversion might appear at the subwavelength range. Four nearly perfect maxima

of jT
f
xyj are observed in Figure 5(g) at ε = 11.4. Accordingly, Δf is decreased for each pair of the

coupled resonances. For instance, for the first pair of resonances, we obtain Δf ¼ f u−f l
¼ 0:15GHz and 1:64GHz in the structures with and without mesh at ε = 5.8, see Figure 5(d, e)

and Δf ¼ 0:11GHz and 1:14GHz for similar structures at ε = 11.4, see Figure 5(f, g). Hence, a

strong effect of the metallic mesh on coupling and location of high-Q resonances is typical at

small distances between metasurfaces. Whereas obtaining nearly perfect polarization conver-

sion does not need a special choice of substrate materials in the mesh-containing structures with

small distance between metasurfaces, obtaining a near-unity cross-polarized component in

similar mesh-free structures is a more challenging task.

The resonance frequencies corresponding to the first maxima of jTf
yxj in Figure 5(b, d, f) can be

approximated by Eq. (9) but with the exponent of -0.375 instead of -0.33. For the first and

second maxima of jTf
xyj (in the first pair) in Figure 5(c, e, g), it is recommended to use Eq. (8)

with -0.42 instead of -0.36. Note that the difference in the exponent required in the case of mesh

free and mesh-containing structures is increased as compared to the basic configuration.

Qualitatively, a better approaching to the value of -1/2 that is observed for the thin structures

with the mesh means that the resonance fields are strongly localized and, thus, they may

correspond to larger values of Q. Indeed, one can see that the resonances are sharper in

Figure 5 than in Figure 3. One should keep in mind that high-Q resonances can be more

sensitive to the Ohmic losses, leading to undesired absorption enhancement and suppression

of the transmission maxima [16].

Now, we consider thick configuration, which differs from the basic one in that L1¼ L2 ¼ 2:5mm

and, thus, S ¼ 8:5mm, see Figure 6. Compared to Figures 3 and 5, the mesh-containing

structures seem now less appropriate for high-efficiency polarization conversion. Indeed,

conversion is typically far from the perfect one, whereas reflections are quite strong. For
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instance, in Figure 6(e) we obtain jT
f
xyj≈0:11 and jT

f
xyj≈0:33 at f = 3.65 and f = 7.55 GHz. In

Figure 6(g), jT
f
xyj≈0:14 and jT

f
xyj≈0:51 at f = 2.74 and f = 5.57 GHz, respectively, and jT

f
yxj > 0:96

at the two narrow maxima near f = 7.12 GHz (separation is about 25 MHz). At the same time,

the mesh-free structures enable high-efficiency conversion and rather wide bands already at ε

= 5.8 and, thus, can be more useful. For example, jT
f
yxj≈0:79 and jT

f
xyj > 0:96 at f = 3.9 and f = 7.2

GHz in Figure 6(d). To compare, in Figure 6(f), jT
f
yxj > 0:8 at f = 2.89 GHz and jT

f
xyj > 0:95 at f =

5.29 GHz, for ε = 11.4.

As follows from the comparison of Figure 6(b, d, f) with Figure 6(c, e, g), the case of a large

distance between metasurfaces in combination with the evanescent-wave regime of the metal-

lic mesh is less appropriate for the practical use. At the same time, polarization conversion can

be obtained in such structures for two different polarization states of the incident wave, see

Figure 6(g). Hence, this is not a unique property of the mesh-free structures, compare to

Figure 6. (a) Front, back, and side view of a unit cell, and transmission for the thick configuration (b, d, f) without and

(c, e, g) with metallic mesh; (b, c) ε = 2.1, (d, e) ε = 5.8, (f, g) ε = 11.4; solid blue line – jT
f
xyj ¼ jTb

yxj, dashed green line

– jT
f
yxj ¼ jTb

xyj, and dotted red line – jTf
xxj ¼ jTb

xxj ¼ jT
f
yyj ¼ jTb

yyj.
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Figures 3 and 5. Regardless of this, the combination of variations in ε with those in L1 and L2
gives a big freedom for design. Also in this case, a scaling rule can be introduced, in the

analogy with the rule of ε−1=2 and Eqs. (8) and (9). For instance, for the first maximum of jT
f
xyj

in Figure 6(c, e, g) one can use Eq. (8), in which 0.36 is replaced with 0.23. This approximation

is very rough, and the use of other functions than the exponential one may give a much better

result in this case. However, it demonstrates the main trend quite correctly: the thicker the

dielectric layers, the stronger the deviation from the rule of ε−1=2.

Let us check whether an increase of L up to the values, at which classical Fabry-Perot reso-

nances may appear in the dielectric layers, can improve the performance in terms of polariza-

tion conversion and asymmetric transmission. As an example, Figure 7 presents the results for

the structure, which is distinguished from those in Figures 3(b, d, f, h) and 6(b, d, f) only in the

values of ε and L. Transmission is shown for a high-frequency range, in which the multiple

bands of one-way polarization conversion are located. For instance, the maxima of jT
f
xyj≈0:98

and jT
f
xyj≈0:975 are observed at f = 4.93 and f = 5.32 GHz,where S/λ = 0.164 and ε

1=2L=λ ¼ 0:68,

and S/λ = 0.178 and ε
1=2L=λ ¼ 0:74, respectively. Hence, Fabry-Perot type interferences may, in

principle, contribute to the resulting polarization conversion mechanism, although analytical

description of this regime would require taking into account the effective contribution of SRRs.

One can see that the maxima of jT
f
xyj, at which diodelike asymmetric transmission is well

pronounced, are connected with the different resonances whose Q-factors may be strongly

distinguished from each other. It follows from the obtained results in Figure 7 that the mesh-

free structures with thick dielectric layers may enable a nearly perfect multiband polarization

conversion.

3.3. Role of array period

In addition, the effects exerted by variations of the substrate parameters on transmission and

polarization conversion are sensitive to the array period, a. Changing the period, we change

the distance between the neighboring subwavelength resonators in each metasurface. The

same is related to the resonators belonging to the adjacent unit cells and different

metasurfaces. Thus, it may be expected that such changes affect coupling and, hence, locations

and manifestations of polarization conversion resonances. In Figure 8, the results are

Figure 7. (a) Front, back, and side view of a unit cell, and transmission for the thick configuration with

L ¼ dþ L1 þL2 ¼ 11mm and S ¼ 14mm, and (b) transmission in the case without metallic mesh, ε = 35.4; solid blue

line – jT
f
xyj ¼ jTb

yxj, dashed green line – jT
f
yxj ¼ jTb

xyj, and dotted red line – jTf
xxj ¼ jTb

xxj ¼ jT
f
yyj ¼ jTb

yyj.
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presented for four structures, which differ from the basic configuration in that now a = 3p,

while the remaining parameters are the same. Accordingly, a/λ < 0.5 at f < 11.3 GHz. Surpris-

ingly, the obtained dependences are similar to the case of thick dielectric layers in Figure 6.

This occurs for both the mesh-free and the mesh-containing structures. Thus, the former allow

one obtaining high-efficiency polarization conversion starting from smaller values of ε than the

latter. At the same time, as seen in Figure 8(d, e), ε=11.4 is large enough for obtaining efficient

polarization conversion and asymmetric transmission in the structures both with and without

a mesh.

Finally, we consider the case of a larger array period, a = 7p, while the remaining parameters

are the same as for the basic configuration in Figure 3. The results are presented in Figure 9.

Now, a/λ < 0.5 at f < 4.87 GHz. Thus, higher diffraction orders may propagate at normal

incidence starting from 9.74 GHz. The basic features are not changed, as compared to Figures 3

and 6. High-efficiency polarization conversion is observed in the mesh-containing structures

with ε = 2.1 and ε = 11.4, see Figure 9(c, e), and in the mesh-free structures at ε = 11.4, see

Figure 9(d). In particular, the first and second maxima with jT
f
yxj > 0:8 can be achieved in the

mesh-free structure in Figure 9(d). In the mesh-containing structures, jT
f
xyj > 0:96 and

jT
f
xyj > 0:99 is obtained for the first maximum in Figure 9(c) and Figure 9(e), respectively.

Hence, high-efficiency transmission may occur even when the distance between the neighbor-

ing SRRs of the same metasurface is rather large. Thus, the energy can be harvested from a large

Figure 8. (a) Front, back, and side view of a unit cell, and transmission at a small array period, a = 3p, in cases (b, d)

without and (c, e) with metallic mesh; (b, c) ε = 2.1, (d, e) ε = 11.4; solid blue line – jT
f
xyj, dashed green line – jT

f
yxj, and

dotted red line – jTf
xxj ¼ jT

f
yyj.
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area and then converted into the orthogonal polarization. In other words, the coupled

metasurfaces work like an array of energy concentrators. It is interesting that the harvesting

occurs in the structures with and without a mesh. A detailed study is needed to clarify possible

connection of this regime with (spoof) surface plasmons.

The effect of an array period on transmission is illustrated by the data shown in Table 1. One

can see that spectral locations of the polarization conversion bands/maxima are rather weakly

affected by the period. This indicates the dominant role of subwavelength resonances of the

complex unit cells and coupling of metasurfaces owing to the resonators located at the front of

each other. The array period strongly affects manifestations of the resonances, e.g., due to the

difference in the value of Q. The presence of the mesh may lead to strong polarization

conversion at the other incident polarization than in the corresponding mesh-free structures

for all three values of the period. Nevertheless, the dominant effect of subwavelength reso-

nances of the unit cells on the location of the polarization conversion bands/maxima remains in

all of the cases studied.

Figure 9. (a) Front, back, and side view of a unit cell, and transmission at a large array period, a = 7p, in cases (b, d)

without and (c, e) with the metallic mesh; (b, c) ε = 2.1, (d, e) ε = 11.4; solid blue line – jT
f
xyj, dashed green line – jT

f
yxj, and

dotted red line – jTf
xxj ¼ jT

f
yyj.
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4. Concluding remarks

To summarize, dielectric substrate parameters can strongly affect polarization conversion and

asymmetric transmission regimes achievable in low-profile structures comprising two coupled

metasurfaces that represent arrays of subwavelength resonant elements. The comparison has

been carried out for the structures with and without metallic mesh and, thus, with and without

tunneling. It has been demonstrated that sometimes the former and sometimes the latter can be

preferable for the practical use. Perfect polarization conversion usually means that asymmetry

in transmission is also perfect, and vice versa. This remains true at least if higher diffraction

orders in the hosting air space are evanescent. The obtained results illustrate the main similar-

ities and differences of the cases of a low-ε and high-ε substrate, a thin and thick dielectric

layer, and a large and small array period. The role of a dielectric substrate that is directly

adjusted to the subwavelength resonators is to modify the resonances that are located in the

subwavelength range and shift more resonances to this range. Thus, it is far beyond of being

just a mechanical support for metallic elements. In the case of small thickness of dielectric

layers, the ability of preserving the secondary electromagnetic characteristics related to trans-

mission and polarization is very general. This means that the required phase-matching condi-

tions that may result in a nearly perfect transmission in the structures with a mesh can be

satisfied in a wide range of ε-variation. This enables a scaling rule, which differs from the

classical rule of ε−1=2, while the polarization and transmission characteristics are preserved.

The same remains true for the impedance-matching conditions in the structures without a

mesh. Generally speaking, tunneling as a part of the resulting conversion mechanism is not

necessary but desirable in many cases. For the fabrication reasons, structures with rather thick

dielectric layers might be preferable. Moreover, thick layers help to obtain wider bands of

Small array period, a = 3p Basic array period, a = 5p Large array period, a = 7p

Structure without mesh, ε = 2.1

Band of jT
f
yxj around 5.58 GHz Two maxima of jT

f
yxj at

5.27 and 6.09 GHz

Two maxima of jT
f
yxj at 5.15 and

6.04 GHz

Structure with mesh, ε = 2.1

Maximum of jT
f
xyj at 5.1 GHz Maximum of jT

f
xyj at 5.31

GHz

Maximum of jT
f
xyj at 5.32 GHz

Structure without mesh, ε = 11.4

Band of jT
f
yxj around f = 2.95 GHz Twomaxima of jT

f
yxj at 2.76

and 3.17 GHz

Two maxima of jT
f
yxj at 2.71 and

3.15 GHz

Structure with mesh, ε = 11.4

Two maxima of jT
f
xyj at 2.66 and 6.1 GHz Maximum at 2.66 GHz and

twin maximum at 5.72/5.82

GHz for jT
f
xyj

Twin maximum at 2.701/2.717 GHz

and twin maximum at 5.8/5.91

GHz for jT
f
xyj

Table 1. Comparison of the bands/transmission maxima at which polarization conversion takes place, for a = 3p, a = 5p,

and a = 7p; p = 4.4 mm.
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polarization conversion, which are however not perfect. Unfortunately, conditions of nearly

perfect polarization conversion are not satisfied for these structures in a wide ε-range, while

thickness is fixed. Hence, more accurate adjustment of geometrical parameters is needed for a

given material. In spite of this, variations in ε remain an efficient tool for manipulation by

subwavelength resonances and related polarization conversion. The presented results give one

useful guidelines, which are hopefully sufficient at least for initial-stage design. It is notewor-

thy that the resulting structures are electrically thin, e.g., S/λ < 1/10 and even S/λ < 1/30 for the

selected operation regimes, when a substrate with ε > 5 is utilized. Although the zero-loss

approximation has been used here, the basic effects are expected to remain when the actual

Ohmic losses are taken into account, at least if Q-factor is not very high (i.e., resonances in

zero-loss approximation are not very sharp). In particular, substrate parameters should exert a

strong effect on the resulting performance at microwave, terahertz, and, probably, infrared

frequencies. Finally, it should be noted that polarization conversion regimes that involve

circular polarization can also be efficiently controlled by variations of the substrate parameters,

while the individual metasurfaces are kept without change.
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