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Abstract

In this chapter, the ability of artificial neural networks was evaluated to predict the influ-
ence of amphiphiles as additive upon the electrical percolation of dioctyl sodium sul-
fosuccinate (AOT)/isooctane/water microemulsions. In particular, water/AOT/isooctane 
microemulsion behaviour has been modelled. These microemulsions have been developed 
in presence of 1-n-alcohols, 2-n-alcohols, n-alkylamines and n-alkyl acids. In all cases, a 
neural network has been obtained to predict with accuracy the experimental behaviour to 
identify the physico-chemical variables (such as additive concentration, molecular mass, 
log P, pK

a
 or chain length) that exert a greater influence on the model. All models are 

valuable tools to evaluate the percolation temperature for AOT-based microemulsions.

Keywords: percolation, microemulsion, AOT, additives, modelling, artificial neural 
network

1. Introduction

Microemulsions are colloidal self-organized systems, composed of a polar phase, in our case 
water, and a non-polar phase, isooctane, stabilized by a surfactant film that causes the forma-

tion of droplets of the dispersed phase in the continuous phase. In our case, the surfactant 
used was the AOT (dioctyl sodium sulfosuccinate) whose main advantage is the formation of 
a stable microemulsion in wide concentration ranges. Actually, this kind of microemulsion is 
known as water in oil (w/o), that is, water is the dispersed phase and continuous phase will 
be the apolar medium.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Internal dynamics of microemulsions has been largely studied, especially on the phenomenon 
of electrical percolation [1–4]. Electrical percolation is characterized by an increment in electri-
cal conductivity when the temperature, or the volume fraction of the dispersed phase, reaches 
a critical value [5]. In this sense, the change in electrical conductivity is very characteristic, 
with variations from small values to large values, which is the typical behaviour of small 
droplets dispersed in a non-conductive continuous medium [5, 6].

Relationship between electrical percolation and constant rates was demonstrated by Lang 
and co-workers [7–9], and they showed that the exchange of materials between droplets has 
influence on the rate of fast chemical reactions in w/o microemulsions [5]. Mathew et al. [10] 

observed that percolation threshold is altered by small additives concentrations such as cho-

lesterol or gramicidin [5]. These findings have been confirmed by literature during the last 
decade [11–14]. In support of this, we can say that percolation is not a consequence of bicon-

tinuous structures presented in the medium, because the structure of discrete droplets is not 
changed [5]. When percolation threshold is approached, the number of collisions presents a 
huge increment, leading to the formation of droplet clusters with interdroplet channels that 
allow transport of ions, giving rise to an increase in conductivity [5].

In the last decade, our research group has studied the effects of different additives on the 
electrical conductivity, and other properties, for water/AOT/isooctane microemulsions (aero-

sol OT or dioctyl sodium sulfosuccinate, isooctane and water) [5, 15–22]. The influence of 
different additives was explained on the basis of changes in the surfactant film structure and 
different solubility of the complex system. The manuscript shows the artificial neural net-
works (ANNs) as a valuable tool to predict percolation threshold for microemulsions (AOT/
isooctane/water) in the presence of different amphiphiles, because there are no mathemati-
cal tools to predict the influence of additives on the internal dynamics of microemulsions. 
The different additives were molecules with amphiphilic character composed of a variable 
apolar hydrocarbon chain, with a polar head group. In particular, the effect of 1-n-alcohols, 
2-n-alcohols, n-alkylamines and n-alkyl acids was modelled. The effects of these compounds 
have been previously described in the literature (vide infra).

In the last two or three decades, artificial neural networks have become one of the most 
applied methodologies to develop models for non-linear behaviours [23–25]. ANNs are a 
mathematical method that tries to imitate the reasoning of human brain [26]. Individual 
units, called neurons, form neural models that are the fundamental unit to model com-

plex problems [24]. For this reason, neural models are being applied in different areas 
of study, such as (i) hydrology to predict the discharge of rivers and prevent floods and 
water loggings in spite of the large number of variables involved in the process [25, 27], (ii) 
chemistry to model the infinite dilution activity coefficients of halogenated hydrocarbons 
that provide important information about the solute-solvent interactions [28], (iii) energy 
science to model wind speed which is important for renewable energy and energy market 
efficiency [29], (iv) biorefinery to determine ideal conditions to obtain new oligosaccharide 
mixtures production from sugar beet pulp [24], or, even, (v) business, management and 
accounting to predict overall bank customer satisfaction and to prioritize factors for cus-

tomer satisfaction [30], inter alia.
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In our research group, we use a multi-layer perceptron (MLP), which can model complex non-
linear relationship between independent and dependent variables. This kind of ANNs is one 
of the most used neural models in the literature [23, 31, 32].

2. Materials and methods

2.1. Percolation temperature determination

An experimental procedure to determine percolation temperature has been described pre-

viously [20–22]. A Crison GPL 32 conductivity meter was used. Percolation threshold (T
p
) 

can be represented using the method described by Kim et al. [33], or using the sigmoidal 
Boltzmann equation (SBE), suggested by Moulik et al. [34].
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In Eq. (1), k is the conductance, T represents temperature and ΔT is the constant range of 

temperatures. In the equation, the different subscripts i, f and p represent the initial state, 

final state and percolation threshold, respectively. Percolation temperatures obtained by both 
methods [33–34] are compatible, as we can see in Figure 1. T

p
 obtained from the SBE [34] will 

be used in the discussion.

Figure 1. Determination of percolation threshold for water in oil AOT-based microemulsion (AOT/iC
8
/H

2
O) for both 

Kim et al. method and Moulik et al. method [34]. Lower insert corresponds with SBE method and upper insert stands 
the graphical approach. Microemulsion composition: [AOT] = 0.5 M, W = [H

2
O]/[AOT] = 22.
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2.2. Artificial neural networks

The ANN procedure starts choosing different groups of data. The first group, called train-

ing group, is formed by the training cases used to develop the neural model. The second 
group, called validation group, is formed by reserved cases used to validate the model. When 
two groups are selected, neural models must be developed using trial and error technique to 
determine the best configuration parameters (weights and bias values) and the best model 
topology to predict the desired variable [24, 27, 35, 36].

The training cases are presented to the first layer, called input layer, which is formed by dif-
ferent neurons to receive the input information. This information is presented as an input 
vector (Eq. (2)), and it is propagated using a specific function, called propagation function, 
from input layer to the first intermediate layer where learning process occurs (Eq. (3)), and 
then to the final layer [24, 27, 35, 36]. This equation is implemented in each intermediate and 
output neurons. Propagation function converts all input information into one signal response 
(S). The input values (x

i
) are processed with the neuron weight (wik) linking the intermediate 

neuron (k) with the previous neuron (i), and added to the bias value associated to neuron k 

(Figure 2).
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The single data (S) is treated by an activation function that provides an output neuron signal 
(yk). This procedure is performed in each neural neuron to obtain a final value (predicted 
value (ypredicted)). There are different activation functions, but the most used activation function 
is the logistic function [24, 36–39], which is the function used in all the studies conducted by 
our research group (Eq. (4)).
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Figure 2. Artificial neuron operating procedure.
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To facilitate the model topology identification, in our research group we use the following 
terminology [24, 27, 35]: N

in
, Nk-1, Nk-2, Nk-3 and Nout, where N

in
 and Nout represent the neurons 

in the input and output layers, respectively. Nk-1, Nk-2 and Nk-3 are the neurons in the first, 
second and third hidden layers, respectively. In Figure 3, we can see an example of neural 
models with five neurons in the input layer, three intermediate neurons in the next layer and 
only one output neuron.

2.3. Neural power prediction

Neural models learn from the training cases and generalize the acquired knowledge to valida-

tion cases, which provide an idea of neural model power prediction. This power prediction 
must be checked using different adjustment parameters [24, 27, 35]; in our research group, 
we usually used (i) the determination coefficient (R2) (Eq. (5)) and (ii) the root-mean-squared 
error (RMSE) (Eq. (6)). As we know, good determination coefficient is necessary, a small error 
between real data and predicted data is also necessary [24]; for this reason, RMSE must be 
checked to know how close to zero is the model error. The best models have been chosen 
based on the lowest RMSE in the validation phase.
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Figure 3. Example of neural model topology 5-3-1 with five neurons in the input layer, three neurons in intermediate 
layers and one neuron in the output layer.
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2.4. Equipment and software

All models have been implemented in two servers specifically designed with a client-server 
architecture. Clients running virtual machines optimized for peak performance implemen-

tation. ANN models were developed using EasyNN plus (from Neural Planner Software 
Ltd.), and data were fitted, and plotted, using commercial software (Microsoft Excel from 
Microsoft, USA) and Sigmaplot Trial versions, respectively. The figures were developed 
using Power Point from Microsoft. Geometrical parameters of amphiphiles were deter-

mined by MM2 with CS Chem Bats 3D Pro 4.0 by Cambridge Soft Corporation, based on 
QCPE 395 [40, 41].

3. Results

3.1. Percolation prediction in AOT-based microemulsions

Our first tests for the prediction from the influence of additives on the percolation phenom-

enon were performed to analyse the influence of salts on the percolation temperature of AOT-
based microemulsions [42]. For this neural model, 58 cases were used [5, 43–45] in which the 
kind of salt, concentration and microemulsion composition were varied [42]. In these neu-

ral models, (i) W value of the microemulsion (W = [H2O]/[AOT]), (ii) additive concentration 
([Add]), (iii) molecular weight of the additive (Mw), (iv) atomic radii of salt components (r

atomic
) 

and (v) ionic radii (r
ionic

) of salt were used as input variables [42]. In this case, the best ANN 
presents a topology with five input nodes, two middle layers with 11 and seven nodes and 
one output neuron (see Figure 4) [42].

The obtained root-mean-squared error was 0.18°C (R = 0.9994) for the training phase and 
0.64°C (R = 0.9789) for the prediction set [42]. It should be emphasized that power predic-

tions for all salt families were satisfactory (see Figure 5) [42]. Comparing the R values for 
lithium, sodium and potassium salts, we can see that these values were 0.8997, 0.9993 and 
0.9970, respectively [42]. Anion analysis shows that the correlation coefficients were 0.9953, 
0.9971, 0.9989, 0.9762 and 0.9712 for the different salts, fluorides, chlorides, bromides, iodides 
and perchlorates, respectively [42]. In the developed model, there are two cases having a 
significant deviation (cases with HCl as additive) [42]. Experimental and predicted values for 
these two cases present standard deviations of 1.01 and 1.09°C, which correspond with errors 
below 3% [42].

Since the efficiency of ANNs to predict the influence of salts on the electrical percolation has been 
demonstrated, we have addressed the possibility of extending our studies to other additives.

Our laboratory has conducted extensive studies on the effect of additives on the internal 
dynamics of microemulsions in recent years [46]; so, the next step was the application of 
ANNs on the systems in which the additives were small organic molecules, particularly 
ureas and thioureas [47]. In this research, the developed ANN model presents a topol-
ogy with three input nodes, one hidden layer composed for two neurons and one node 
in the output layer [47]. ANN model presents a correlation coefficient of 0.9251 for the 
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training phase and 0.9719 for the validation phase [47] (see Figure 6). To develop the best 
model,  different input variables were assayed, including (i) critical molecules volume and 
(ii) molecular weight, (iii) water solubility, (iv) log P and (v) concentration for additive 
component [47]. Nevertheless, some of these variables had no statistical importance to 
improve the model results, and therefore only (i) additive concentration, (ii) log P and (iii) 
W value of the microemulsion were used as input variables [47]. With these new input 
parameters, we can observe that the new neural model is simpler than the previous model 
developed for salts as additives [42]. In this case, 95 microemulsion compositions were 
used in the training phase and 15 microemulsion compositions were used in the validation 
phase [5, 47, 48]. The neural model for salts as additives present an average error equal 
to <0.3 and <1.4% for the training and validation phases, respectively [42], while for the 
model for ureas and thioureas, the error was ≈1% for the training phase and 0.9% for the 
validation phase [47]. In this neural model, the ANN presents bigger errors for the training 
and validation phases against the previous model (vide supra) [47].

Figure 4. ANN architecture for salt influence prediction upon AOT-based microemulsions percolation. Modified with 
permission from Cid et al. [42].
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Nevertheless, these results prove that our ANNs are valid predictive tools for percolative 
phenomena of microemulsions. In fact, satisfactory results were found for crown ethers 
[49–53]–both crown ethers and aza-crown ethers–glymes and polyethylene glycols [54, 55].

Figure 6. Experimental versus calculated value of T
p
 for AOT-based microemulsions with ureas and thioureas as 

additive. Modified with permission from Montoya et al. [47].

Figure 5. Experimental versus calculated value of T
p
 for AOT-based microemulsions with salts as additive. Modified 

with permission from Cid et al. [42].
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Previously, huge numbers of neural models had been developed to obtain a good predic-
tion model. In this sense, the best neural model, with topology 10-8-1, presents a good 
root-mean-squared error around 1.169°C [49]. This error is in concordance with other neu-
ral models developed for different additives described above. Different input variables 
were chosen due its relationship with the nature and structure of the molecule, which 
influence the packing capabilities of surfactant film [49]. In this sense, the following vari-
ables: (i) additive concentration, (ii) number of atoms that conform a ring in a crown ether, 
(iii) number of heteroatoms, (iv) number of oxygen atoms, (v) number of nitrogen atoms, 
(vi) number of benzene rings in the molecule, (vii) molecular mass, (viii) log P, (ix) maxi-
mum number of bonds between rings and (x) minimum number of bonds between rings 
were used as input variables for neural model [49]. Each variable provide different infor-
mation for neural model such as: (i) additive concentration provides information about 
the impact of different additive amounts, (ii) number of atoms, molecular mass, bond and 
rings provide information about structure that can affect interactions with surfactant and 
(iii) log P provides information about polarity [49]. With the use of these variables, our 
research group has been able to simulate the effect of four different families of structur-
ally related compounds (crown ethers, azo-crown ethers, benzo-crown ether and dibenzo-
crown ethers) [49].

For the former, two series of models were developed, one for glymes and the other for poly-
ethylene glycols. Available datasets for glymes [55] consisted of 44 microemulsion composi-
tions and for polyethylene glycols [55–57] consisted of 82 microemulsion compositions.

The best developed neural model to predict glymes percolation temperature presents a topol-
ogy 5-5-1, that is, five nodes in input layer, five nodes in the only intermediate layer and one 
neuron in the output layer [55]. This neural model has been trained with 32 experimental 
cases, and 11 experimental cases were used to validate the neural model [55]. Figure 7 shows 
a scheme of this neural model [55]. Best polyethylene glycols model presents a topology with 
five input neurons, three intermediate layers with eight, eight and five neurons and an output 
layer with one node (see Figure 8) [55]. This model was developed using 68 training cases 
and were validated with 14 experimental cases [55]. These two neural models present RMSE 
values of 0.19 and 0.06°C for glymes and polyethylene glycols training phases, respectively, 
with correlation coefficients of 0.9996 and 0.9999 [55], on the other hand, for the validation 
phase, the models presents RMSE values of 0.75, and 0.10°C, respectively, with correlation 
coefficients of 0.9938 and 0.9952 [55].

Crown ethers, glymes and polyethylene glycols are similar molecules; however, the first is char-
acterized by being cyclic molecules and the others are linear. Beside this, crown ethers have a 
complex behaviour when they are used as additives in AOT microemulsions; this behaviour 
contrasts with glymes and polyethylene glycols. In crown ether microemulsions, percolation 
temperature increases slowly with concentration, nevertheless the value begins to decrease from 
a certain value, so higher concentrations reduce the percolation threshold. This behaviour is a 
combination of the two effects: (i) the microdroplet structure reinforcement by ion capture and 
a subsequent transference to surfactant film and (ii) the destabilization effect due to the non-
polar region of the additive. On the other hand, glymes and polyethylene glycols microemulsions 

Influence of Amphiphiles on Percolation of AOT-Based Microemulsions Prediction Using Artificial Neural Networks
http://dx.doi.org/10.5772/66766

163



Figure 8. ANN architecture for polyethylene glycol influence prediction upon AOT-based microemulsions percolation. 
Modified with permission from Moldes et al. [55].

Figure 7. ANN architecture for glyme influence prediction upon AOT-based microemulsions percolation. Modified with 
permission from Moldes et al. [55].
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behaviour is simpler than crown ethers behaviour, mainly like the effect exerted by urea and 
other small organic molecules (vide supra). Due to the impossibility to develop an accurate predic-
tion model for crown ethers, glymes and polyethylene glycols, it is necessary to limit the inputs 
variables to molecular descriptor and concentration in order to develop a simple model.

Another neural model has been developed for similar additives, propylene glycols, which 
produce a decrease in percolation temperature [58]. However, neural model cannot predict 
successfully the predicting percolation threshold in presence of these kinds of additives. In 
this sense, a single neural model for three additives is not possible yet. Even though, accept-
able root-mean-squared errors were obtained with the two models described in this work.

Neural model topologies for glymes and glycols are different, as we can see above (see 
Figure 7 and Figure 8). Neural models for glymes present just one intermediate layer, while 
neural model for polyethylene glycols present three intermediate layers [55]. Log P, which 
provides information of polarity for neural generalization, was not the most important input 
variable [55] and has been relegated to a second position by additive concentration in both 
models [55]. The importance of a non-dimensional parameter is obtained from the sum of 
importance of each input neuron with intermediate neurons [55]. Despite the difference in the 
order of these two variables, the importance of every input node was in a similar range for 
both models, which indicates similarity [55].

Figure 9. Amphiphiles used as additives in AOT-based microemulsions.
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3.2. Percolation prediction in AOT-based microemulsions in the presence of amphiphiles

In order to evaluate the effect of amphiphiles on percolation threshold, the influence of 
1-n-alcohols [59], 2-n-alcohols [59], n-alkylamines [60-63] and n-alkyl acids [64, 65] had been 
analysed. This allowed us to estimate the influence of the chain length of the molecule with 
constant head group and also the influence of the head group while the chain length remains 
invariant (see Figure 9).

The alcohols (both 1-n-alcohols and 2-n-alcohols) were modelled using the same ANN [59]. 
The best neural model presents a topology with five input nodes, a single intermediate layer 
with 11 neurons and one node in the output layer to predict percolation temperature (5-11-1) 
[59] (Figure 10). This model was developed with five input neurons: (i) additive concentra-

tion [Add], (ii) molecular weight (Mw), (iii) number of carbon atoms (n°C), (iv) pK
a
, and (v) 

log P [59].

Figure 10. ANN architecture for 1-n-alcohols and 2-n-alcohols influence prediction upon AOT-based microemulsions 
percolation. Modified with permission from Moldes et al. [59].
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This neural model was trained with 41 microemulsion compositions (67.2% of the total cases) 
and 20 compositions for valuation phase (32.8% of the total cases) [59]. Best neural model, 
5-11-1, presents a root-mean-squared error of 0.73°C (R = 0.9939) in the training phase and 
0.98°C (R =0.9869) for the validation phase [59] (see Figure 11 and Figure 12).

Figure 12. Experimental versus calculated value of T
p
 for AOT-based microemulsions with 2-n-alcohols as additive. 

Modified with permission from Moldes et al. [59].

Figure 11. Experimental versus calculated value of T
p
 for AOT-based microemulsions with 1-n-alcohols as additive. 

Modified with permission from Moldes et al. [59].
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In the case of carboxylic acids [65], the best neural model presents a topology with five neu-
rons in the input layer, two intermediate layers with five and 10 neurons and an output layer 
with one node [65]. Related to this model, we can check that the most important variable, 
according to importance value, is the acid concentration, followed by log P, the number 
of carbons, chain length (these two input variables with a similar importance) and finally, 
pK

a
[65]. Neural models present a root-mean-squared error for the training phase of 0.41°C, 

corresponding to a 0.72% average percentage deviation (APD) [65]. These models were 
checked with two different validation data groups: the first one, with similar cases used 
to train the model, presents an RMSE of 0.61°C (APD of 1.20%) and the second group was 
composed of two unknown n-alkyl acids (not previously trained), and presents an RMSE of 
0.75°C (APD of 1.43%), (Figure 13) [65].

The input variables used for the n-alkylamine model were as follows: (i) additive concentra-
tion, (ii) log P, (iii) pK

a
, (iv) hydrocarbon chain length and (v) molecular mass of the additive 

[60]. Different neural models were developed with different 55 amine experimental cases, 
where 42 experimental cases were used to train the models and 13 experimental cases were 
used to validate the model [60]. The best neural model presents a topology with five input 
nodes, two intermediate layers (with 15 and 10 nodes) and one node in the output layer to 
 ̀predict percolation temperature [60]. This model presents a root-mean-squared error of 

Figure 13. Experimental versus calculated value of T
p
 for AOT-based microemulsions with carboxylic acids as additive. 

Modified with permission from Moldes et al. [65].
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0.08°C, with correlation coefficient of 0.9999, for the training phase, and an RMSE of 0.54°C, 
with R of 0.9976 for the validation phase, see Figure 14 [60].

4. Conclusions

To summarise, we have demonstrated that ANNs are useful tools for percolation phenomena 
prediction. Unfortunately, at the moment, we are not able to design a single neural model 
architecture for additive effect on percolation. There is no doubt that it will be necessary to 
improve the number of families of molecules used as additives in the design of new models. 
This way, a single satisfactory model, which is able to predict the behaviour of different addi-
tives in a microemulsion system, will be possible.
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