
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 9

Stimulated Raman Scattering for All Optical Switches

Ariel Flores-Rosas, Evgeny A. Kuzin,
Orlando Díaz-Hernández,
Gerardo J. Escalera-Santos, Roberto Arceo-Reyes,
Baldemar Ibarra-Escamilla and Víctor I. Ruiz-Pérez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66320

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Ariel Flores-Rosas, Evgeny A. Kuzin, Orlando 
Díaz-Hernández, Gerardo J. Escalera-Santos, 
Roberto Arceo-Reyes, Baldemar Ibarra-
Escamilla and Víctor I. Ruiz-Pérez

Additional information is available at the end of the chapter

Abstract

We theoretically and experimentally investigate an all optical switch based on stimu‐
lated Raman scattering in optical fibers. The experimental setup consists of a Raman 
circuit of two stages connected in series through a bandpass filter. In the first stage, we 
have a saturated amplifier, in this stage the pump pulses are saturated when pump and 
signal are launched to the input or the pump pulses remain without saturation when 
pump only is launched at the input. The second stage works as the Raman amplifier; 
for this stage amplification is directly dependent on the pump power entering from the 
first stage. For the case when pump pulse only is launched at the input pass to the sec‐
ond stage without saturation and amplifies the signal entering in the second stage, very 
intense signal pulses appear at the output of this stage. For the case when both pump 
and signal pulses are launched to the input, the pump pulse is saturated in the first 
stage and the filter rejected the amplified signal, so that only low power pump enters 
the second stage and consequently no signal pulses appear at the output. We show that 
the contrast can be improved when using fibers with normal and anomalous dispersion 
connected in series in the first stage. The best contrast (the ratio of energies) obtained was 
15 dB at 6 W pump peak power.

Keywords: fiber optics, fiber nonlinearities, optical signal processing, stimulated Raman 
scattering, optical switch

1. Introduction

All‐optical signal processing can be applied in the fields of optical communication and com‐

putation for its high speed. As a fundamental and key part for all‐optical signal processing, 
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whose operation relies on nonlinear optical phenomena, has raised great interests in recent 
years as an alternative to electronic switching in optical communication systems [1, 2]. These 
devices have a strong potential and can be very useful for a number of applications in diverse 
areas such as ultrahigh‐speed optical telecommunications, wavelength conversion, pulse 
regeneration, optical monitoring, optical computing, etc. Nonlinear effects will be particularly 
important in the next generation of optical networks, which will rely on all‐optical functions 
for higher speed and greater capacity. Many principles and devices have been reported; of 
them a great part is performed by devices based on the Kerr effect in optical fibers, such as the 
nonlinear optical loop mirror (NOLM) first proposed by Doran and Wood [3], devices based 
on cross‐phase modulation (XPM) proposed by Mamyshev and four‐wave mixing (FWM) 
proposed by Caramella and Stefano [4, 5], logic gates [6], and wavelength conversion [7]. 
First reports were followed by numerous investigations proving high performance of all‐fiber 
devices. The NOLM was investigated for soliton switch [8], wavelength demultiplexing [9], 
mode locking [10], etc. Some interferometric devices such as NOLM present an oscillating 
power transfer function but the ideal characteristic is the step‐like function. The power trans‐

fer function of the FWM‐based devices approaches the step‐like function; nevertheless, for an 
only stage scheme, a flat response is obtained only at spaces, whereas at marks an oscillating 
dependence was measured [11]. A flat response was shown in double stage scheme at both 
spaces and marks [12].

Recently, there has been a lot of interest in stimulated Raman scattering (SRS) and is con‐

sidered one of the most important nonlinear effects in optical fibers. SRS is one of the oldest 
and most well‐studied optical phenomena and can anticipate great advantages for optical 
signal processing circuits because of high amplification of the signal and naturally existing 
possibility for wavelength conversion. In spite of that, SRS has just obtained some attention 
in the context of Raman amplifiers and only a few works were published on the use of SRS 
for designing optical signal processing circuits and optical switches. Furthermore, SRS can 
be hoped to present many advantages due to high amplification of the signal and intrinsi‐
cal compatibility with communications systems using Raman amplification of signals [13]. 
The strong dependence of the Raman amplification on pump power that was considered for 
wavelength conversion with high extinction ratio of the output signal and can be base for the 
design of Raman circuits [14]. In this work, the output signal pulses at Stokes wavelength 
are generated as result of the Raman amplification caused by input signal used as the pump. 
Because of the strong dependence of Raman amplification on pump power, the extinction 
ratio of the output signal can be much higher than that of the input signal. The exploitation 
of pump saturation in presence of the signal was shown in [15]. In this work, the pulses at 
Stokes wavelength are used as input signal, and the pump pulses are considered as an output 
signal. In the absence of the Stokes pulse (spaces), the pump pulse travel in the fiber without 
saturation and has high power at the fiber output (marks), whereas in presence of the Stokes 
signal (marks) the pump pulse is depleted and has a low power at the fiber output (spaces). 
Disadvantage of this approach is the low extinction ration of the output signal. The most 
interesting work was suggested by Belotiskii [16] where authors used a two‐stage setup. In 
this work, we consider experimentally, the Raman circuit using the approach suggested in 
[16] and show that it allows the step‐like power transfer function with high differential gain 
and low input signals.
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2. Theoretical analysis

In this section, we present simple numerical calculations to show the basic principles and poten‐

tial of the approach [17]. Figure 1 presents the diagram of the Raman circuit, it consists of two 
stages. In stage 1, the pump pulses are saturated if the signal is at “ON” or passes through stage 
1 without saturation if the signal is at “OFF,” this means that stage 1 woks as saturated amplifier. 
The amplification in stage 2 depends on the pump power entering from stage 1; that is, stage 2 
works as Raman amplifier. When the pump pulse enters stage 2 without saturation as a result of 
that the input signal is at “OFF,” then this will result in the generation of the high output pulses 
at the Stokes wavelength, this mean that the output signal is at “ON.” For the opposite case 
when the input signal is at “ON,” then the pump pulse is depleted in stage 1, the input signal is 
at “ONs” and therefore the output signal is at “OFF,” so in this way the Raman circuit works as 
an inverter. For this operation of the Raman circuit one should take into account the following 
considerations: (a) the pump power has to be high enough to provide strong amplification of 
the signal and (b) at the same time the pump power has to be lower than the SRS threshold at 
which strong Stokes pulses and pump depletion appears as a result of the amplification of the 
initial spontaneous Stokes waves. The wavelength of the continuous wave (CW) seeding laser 
wave defines the wavelength of the output signal. The walk‐off effect between pump and Stokes 
pulses is inevitable because of the big difference between pump and signal wavelengths. To 
avoid the degradation of the operation of the Raman circuit because of walk‐off effect we pro‐

pose to use the dispersion management using the special fibers, which they are formed by con‐

necting the fibers in which the signal travels faster than pump with the fibers in which the signal 
travels slower than pump. We must consider that if we use the fibers with anomalous, the modu‐

lation instability (MI) effect can be expected, which will complicate circuit operation drastically.

Because of its speed and good results split‐step Fourier method (SSFM) is the most commonly 
used method for numerical analysis of the nonlinear equation of Schrödinger (NLSE), which 
uses the algorithm's finite Fourier transforms. We use this method to evaluate the operation of 
the Raman circuit based on the coupled equations for pump AP, and Stokes A
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Figure 1. Setup of Raman circuit.
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where β
2
 is the group velocity dispersion (GVD) parameter considered equal for pump and 

Stokes wavelengths; g is the Raman gain coefficient equal to 10‐13 m/W for silica glass at 1550 
nm wavelength; VP and V

S
 are the group velocity of pump and Stokes pulses, respectively. 

Here we do not consider the effects connected to the Kerr effect and widening of the pulses 
due to GVD that is possible if the fiber length is less than the scattering length. The param‐

eters of the fibers used in calculations correspond to the fibers used in experiments. Fiber 
1, Corning SMF‐LS dispersion shifted fiber with normal dispersion; Fiber 2, SMF‐28 fiber 
with anomalous dispersion; and Fiber 3, OFS True Wave fiber with anomalous dispersion. 
Figure 2 shows examples of the pump pulses at the output of Fiber 1 (Figure 2a) and at 
the output of Fiber 2 (Figure 2b). Input pulse is shown by the solid line and the output by 
dashed line.

Figure 2. Input (solid line) and output (dashed line) waveforms of the pump at the end of (a) fiber 1 and (b) fiber 2.
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The parameters used for calculations were as follow: Fiber 1 SMF‐LS with 100 m length, Fiber 
2 SMF‐28 with 25 m length. The pump pulse presents the Gaussian shape of 100 ps and 25 W 
of power. The input Stokes pulse has a super Gaussian shape with 300 ps and a peak power 
of 1 mW and effective area of fibers of 50 μm2. Fiber 1 has normal dispersion, so Stokes pulse 
has high speed and the first half of pulse manifests stronger depletion than the second half of 
pulse. Depletion can be made large when normal dispersion fiber is spliced with a fiber with 
anomalous dispersion, see Figure 2(b), this happens because in fiber with normal dispersion 
the signal travels faster than the pump and the fibers with anomalous dispersion the signal 
travels slower than the pump, therefore pumping depletion becomes stronger in this case [18].

To calculate the depletion of the pump pulse we use as a ratio between the pulse energies at the 
output and the input. Figure 3 shows the dependencies of the depletion of the pump on the input 
Stokes signal peak power. In the figure, the solid line represents the depletion when only the 
SMF‐LS fiber is considered; the fiber length is equals to 100 m (pump power is equals to 30 W). 
For the dashed line we have 100 m of SMF‐LS fiber added with 40 m of SMF‐28 fiber (pump power 
equals to 24 W to have the same total Raman amplification as it was in the first case). Finally, we 
show the depletion for dotted line and for this case we used 100 m of fiber 1 with low GVD so that 
walk‐off length is much longer than the length of the fiber (pump power was 30 W). It can be seen 
that the best results obtained are for the fiber with low dispersion; however, in practice it is not 
easy to fulfill the condition that the walk‐off length is larger than the length of the fiber, a special 
case is when we have low potencies and for this case are required large fiber lengths. However, 
a simple dispersion management technique using fibers with normal and anomalous dispersion 
may provide switching with a contrast (the ratio between the energies of the signals at the second 
stage output) of about 20 dB at input power less than 10‐3 of pump power [17].

Figure 3. Depletion of the pump at first stage. Solid line is for fiber 1, dashed line is for fiber 1 + fiber 2, and dotted line 
is for fiber 1 with low dispersion.
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We calculate the energy of Stokes pulse of the input in the output circuit depending on the 
power input Stokes in the first state. The calculations were made with SSFM with g = 0.6×10−13 

m/W corresponding to the maximum Raman gain for the pump wavelength 1550 nm, the pulse 
duration pump of input is 100 ps with a power of 15 W, and the effective area of the fibers is 
50 μm2. Three types of fibers with different GVD were used: fiber 1 D = −6 ps/(nm‐km); fiber 
2 D = 20 ps/(nm‐km); fiber 3 D = −0.01 ps/(nm‐km). Fiber 1 corresponds to dispersion shifted 
fiber, fiber 2 is the SMF‐28 fiber, and fiber 3 corresponds to the fiber without walk‐off between 
pulses pump and Stokes. Figure 4 shows the results for three different configurations of stage 
1. Stage 1 is only of fiber 1 with 295 m of length (solid line). Stage 1 is comprised of three fibers 
connected in series: 150 m of fiber 1, 45 m of fiber 2, and 100 m of fiber 3 (dashed line). Stage 1 
is also comprised of 295 m of fiber 3 (the dotted line). For the three cases 350 m of fiber 3 was 
used for stage 2. The best result is provided by the fiber with low dispersion.

The characteristics of a circuit of two stages depend on the attenuation between them, and 
two circuits connected in series provide the step‐like dependence. The dependence of two cir‐

cuits for the case when stage 1 is comprised of only fiber 3 and stage 2 is comprised of fiber 3 
is shown in Figure 5(a). The dependence for the case when stage 1 is comprised of three fibers 
connected in series, fiber 1, fiber 2, and fiber 3, and for stage 2 that is comprised of fiber 3 is 
shown in Figure 5(b). As mentioned earlier, the dependence of two circuits depends on the 
attenuation between them, and for Figure 5(a) and (b) the attenuation is different and shows 
the dependence of the circuits connected in series.

Figure 4. Energy of Stokes pulses at the output of the circuit.
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A strong dependence of the output signal energy on the input signal power allows for 
improved signal‐to‐noise ratio of the signal. To show it, we put Gaussian noise to input 
Stokes. The Gaussian noise added to input Stokes is shown in Figure 6a) and the result of 
the input Stokes with Gaussian noise is shown in Figure 6(b). We can consider two possibili‐
ties: one possibility, when input signal is “OFF,” Gaussian noise is launched for fiber 1, and 
two possibility when input signal is “ON,” Stokes more Gaussian noise is launched for fiber 
1. We applied random noise and the results are show in Figure 7 for 10 Stokes pulses when 
input signal is “ON” and “OFF.” The parameters of the setup used for calculations were as 
follows: 100 m of fiber 1, 40 m of fiber 2, and 300 m of fiber 3, input pump power of 24 W, 
and the power of the input signal of 1 mW. As we can see, the output Stokes pulses are well 
distinguished [18].

Figure 5. Dependencies of the output Stokes energy on the input power for two circuits connected in series: (a) 
attenuation is 10 times and (b) attenuation is 3 times.
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From the above results, we can say that the setup of Raman circuit allows effective optical 
switching, logic operation, and noise reduction with signal of low power of the pump power. 
As we show above, to improve the operation of the Raman circuit we proposed the connection 
in series of fibers with normal and anomalous dispersion. We must consider that the power 
required for strong Raman amplification is lower than that required for the effects of MI and 

Figure 7. Output Stokes pulses for input pulses “ON” and “OFF.”

Figure 6. The input signal “off” (a) and the input signal “on” (b) in the presence of random noise.
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pulse breakup in fibers with anomalous GVD [19]. The pulse breakup will affect the depletion 
of the pump pulse and amplification of the Stokes pulses. There are few works that are related 
to this problem, especially related to supercontinuum generation and Raman amplification [20].

3. Experimental results

Figure 8 shows the experimental setup, the setup used as a source of pump pulse is a diode 
laser with λ = 1528 nm. This diode laser is directly modulated by the pulse generator to gener‐

ate pulses with duration of 2 ns. The pulses from the diode laser are amplified by an Erbium 
Doped Fiber Amplifier (EDFA) for power of several tens of Watts [21]. The pump pulses are 
introduced to the Coupler 1 (85/15), whose 85% port is spliced with the first stage comprising 
Fiber 1 + Fiber 2. In Fiber 1 we used the Corning SMF‐28 fiber with anomalous GVD equal 
to 20 ps/nm‐km, in the Fiber 2 we used the Corning SMF‐LS dispersion shifted fiber with 
GVD equal to −6 ps/nm‐km (normal dispersion at pump wavelength). The CW radiation with 
wavelength equal to 1620 nm is also introduced using the coupler 3 for two stages, the sig‐

nal power introduced into Fiber 1 was 0.5 mW. The polarization controller inserted after the 
EDFA allows adjusting the polarization of the pump to provide maximum Raman amplifica‐

tion in the fibers because Raman amplification depends on polarization states of the pump 
and Stokes [22, 23]. The SRS in the first stage causes the signal amplification of 1620 nm and 
depletion pump pulse. In the experiment, two filters were used to reject the 1620 nm radiation 
at the end of the first stage. The Fabry‐Perot (FP) filter and a broadband filter were used. For 
the launch the 1528 nm pump pulses and 1620 nm CW signal to the second stage of the experi‐
mental setup was used, Coupler 2 (90/10). The signal power of 1620 nm launched into fiber 3 
was of 0.5 mW. We used 4.5 km of OFS True Wave (RS) fiber as fiber 3. With this configuration, 
we can measure simultaneously the pump pulse at the input of the first stage (pump monitor‐

ing, output 1), the pump output of the first stage (output 3), and pulses Stokes at the output 
of the second stage (output 2). We use the laser at this wavelength because it was what was 
available, but as the displacement of the wavelength between the signal and pumping must be 
very close to the maximum gain Raman (about 110 nm for the band of 1550 nm), thought we 
could use other lasers of around 1550 nm and can get a good operation of the device.

Figure 8. Experimental setup of Raman circuit.

Stimulated Raman Scattering for All Optical Switches
http://dx.doi.org/10.5772/66320

189



To measure the Raman gains were launched to test fibers 0.5 mW of power with CW diode 
at 1620 nm. Stokes signal at output 3 of Figure 8 was measured with a monochromator. The 
fiber used was SMF‐28 with 100, 200, 300, 600, and 4500 m of length. The polarization of 
the pump was adjusted with the PC for maximum Raman amplification. The dependencies 
of powers Stokes with pump powers fit well with an exponential dependence, which cor‐

responds to the Raman amplification given by exp (gP
b
L/Aeff), where g is the coefficient of 

Raman amplification, P
b
 is the pumping power, Aeff is the effective area of the fiber core, and L 

is fiber length. In the results are also shown the critical power for breaking pulses. From these 
results we can say that the breaking of the pulse always starts with lower power compared to 
the Raman effect threshold. This can affect the efficiency of the switch since the breakup of the 
pulse starts before Raman amplification reaches significant values. The Raman gain average 
experimental value = 0.72 W−1/km and the theoretical value for linearly polarized pump and 
Stokes = 0.72 W−1/km (see Figure 9). Theoretical calculations agree well with the experiment.

The experimental setup is shown in Figure 8. We used the composed fiber, which consists of 
different spans of fiber 1 and fiber 2 for the investigated pump saturation in the first stage. 
Figure 10 presents the results of waveforms of pump pulses at the output of the filter for differ‐

ent pump powers when only fiber 1 was used in the first stage. In the experiment, we used dif‐
ferent span of fiber SMF‐28. Figure 10(a) was obtained with a fiber length of 300 m and the inset 
is for the fiber with a length of 600 m. Strong depletion of the pump pulse was observed for the 
300 m y 600 m of fiber even if the 1620 nm radiation was not applied. In this case, the effect of 

Figure 9. Raman gain.
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the 1620 nm radiation on the pulse depletion was not detected. The maximum power at the FP 
filter output was measured to be equal to 7 W for 300 m y 3 w for 600 m. The pump depletion is 
caused by the pulse breakup process followed by the soliton self‐frequency shift that results in 
broadening of the spectrum and the decrease of the power at the output of the FP filter.

According to previous results, it can be concluded that for fiber lengths long critical power 
required for breaking pulses decays slower compared to the power required for Raman ampli‐
fication. Therefore we assume that the effect of input radiation 1620 nm may be larger for 
larger fiber lengths. The pump saturation for 1 km of fiber SMF‐28 is shown in Figure 10(b), 

Figure 10. Pump pulses at the output of the FP filter when the SMF‐28 fiber was used as the Fiber 1; (a) fiber length is 
equal to 300 m and the inset 600 m; (b) fiber length is equal to 1 km.

Stimulated Raman Scattering for All Optical Switches
http://dx.doi.org/10.5772/66320

191



the dashed line shows the pulse when radiation 1620 nm is off, and the solid line shows when 
we have 0.5 mW of 1620 nm radiation. The delay between pump pulses of 1528 nm and Stokes 
pulse 1620 nm for SMF‐28 fiber is 2 ns for 1 km fiber, for this reason only the second half of the 
pulse is reduced. Depletion of the pump pulse when there was no input signal revealed that 
an effect of breaking pulse appears. The pump power for Figure 10(b) is 26 W.

Figure 11. (a) Saturation of the pump by the input signal with 350 m of SMF‐LS fiber for 20 W and the inset for 33 W 
pump power and (b) for 550 m SMF‐Ls for 17 W and the inset for 30 W pump power.
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Also tested in the experiment is the SMF‐LS fiber, this fiber has normal dispersion for a wave‐

length of 1528 nm and so the effect of MI and breaking pulses are suppressed. The fiber 
shows conventional saturation of the pump and corroborates well with the simulations based 
on Eq. (1). Figure 11 presents the results for a fiber of 350 and 550 m of length. Figure 11(a) 

shows pump power equal to 20 W and the inset of 33 W for 350 m of SMF‐LS; Figure 11(b) 

shows pump power equal to 17 W and the inset of 30 W for 550 m of SMF‐LS. Without input 
signal (solid line), no change in the waveform of the pump pulse is observed for Figure 11(a) 

and (b). However, at 0.5 mW strong depletion of signal input power (dashed line) can be seen 
in Figure 11(a) and (b). At 33 W for 350 m of SMF‐LS and 30 W for 550 m of SMF‐LS pumps 
power the depletion (solid line) is observed even without input signal, see insets of Figure 11.

We use a special fiber, consisting of a span of SMF‐LS fiber spliced with another span of 
SMF‐28 fiber, which was also tested in the experiment. Several tests were done and found that 
if the span of the fiber SMF‐28 was respectively shorter than approximately 300 m, the effect 
of this span of fiber in low powers was negligible and depletion of the pump was determined 
by the fiber SMF‐LS. For the case when we used 600 m of SMF‐28 fiber spliced with 550 m 
fiber SMF‐LS the effect of SMF‐28 fiber was significant (with pump powers of 18 and 23 W). 
From these results, we can conclude that the effect of saturation of the pump by input signal 
was observed if the length of SMF‐LS fiber is at least two times longer than the length of the 
SMF‐28 fiber. For this case, the power required for MI effect is higher than that required for 
effective pump depletion. Figure 12 presents an example of the output pump pulses for the 
first stage and the composed fiber consisted of a 550 m span of SMF‐LS spliced with 300 m 
span of SMF‐28, with pump power of 17 W and the inset for 20 W [17].

Figure 12. Saturation of the pump by the input signal if the first stage comprises a 550 m SMF‐LS fiber connected to a 300 
m SMF‐28; pump power is 17 W and the inset for 20 W.
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We can say that using the broadband filter obtain a considerable improvement in pump satura‐
tion, and with this result, we obtain a considerable improvement to the efficiency of the switch. 
The saturation measured for the composed fibers, which consists of a span of SMF‐28 fiber spliced 
with another span of SMF‐LS fiber, is shown in Figure 13 and it presents the results of saturation 
for these fibers. Figure 13(a) presents results for 350 m SMF‐LS fiber spliced with 300 m SMF‐28 
fiber, and Figure 13(b) presents results for 350 m SMF‐LS fiber spliced with 600 m SMF‐28 fiber. 
These graphs were obtained when using the broadband filter and spectral filter. We can see that 
when connecting the SMF‐LS fiber, SMF‐28 fiber can increase the saturation of the pump.

Figure 13. Saturation of peak power pump for variety of pump powers for two configurations: (a) 350 m SMF‐LS fiber + 
350 m SMF‐28 fiber and (b) 350 m SMF‐LS + 600 m SMF‐28.
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If the pump depletion in the first state of the SMF‐28 fiber is determined by the MI, the deple‐
tion has to be dependent on the bandwidth of the filter inserted between the first and second 
stage. To show this, we use a broadband filter which is made with a spam of SMF‐28 fiber. 
The difference between losses is sufficient to measure the depletion of pump of the broadband 
filter. Figure 14 shows the results of the depletion measured with the broadband filter and the 
inset shows the results of the depletion measured with Fabry‐Perot filter. We can see from the 
figure that with the narrow band filter pump depletion occurs in low power pump (about 5 
W) and for the case with the broadband filter pump depletion occurs in about 30 W of pump 
power. We can conclude that the problem connected with the MI could be overcome using 
wideband filter between the first and the second stage. We can consider, for example, a filter 
based on a liquid filled photonic crystal fiber filter [24].

We investigate the experimental setup of the Raman circuit composed of two stages. In  stage 1, 
we used different combinations of the SMF‐LS fiber and SMF‐28 fiber, and for stage 2, we used 
OFS True Wave (RS) fiber with 4.5 km of length. The results show the waveforms of the signal 

Figure 14. Saturation of pump measured with broadband and narrowband filter.
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pulses at the output 2 of the experimental setup. We used for stage 1: SMF‐LS with different 
length; the composed fibers, which consists of a span of SMF‐LS fiber spliced with another 
span of SMF‐28 fiber. The results of Figure 15(a) were obtained with 350 m of SMF‐LS as the 
first stage at 37 W pump power and the inset is for 550 m of SMF‐LS at 23 W; the results of 
Figure 15(b) were obtained with 550 m of SMF‐LS spliced with 600 m of SMF‐28 used as the 
first stage at 18 W pump power. The inset of Figure 15(b) show magnifications of the output 
signal when input signal is applied.

Figure 15. The waveforms of the output signal at 1620 nm at the output 2 of the experimental setup; dashed line with 
input signal (OFF), solid line without input signal (ON). The first stage consists of the 350 m of the SMF‐LS fiber and the 
inset for 550 m of SMF‐LS fiber (a); the first stage consists or of the 350 m SMF‐LS connected to the 600 m SMF‐28 the 
inset show the magnification of the when input signal is applied (b).
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Finally, we measured the ratio of output energy without input signal (“OFF”) and with input 
signal (“ON”) for different pump powers. Figure 16 shows the dependencies of the contrast on 
the pump power. The dependencies are shown for the first stage consisting of the 350 m SMF‐
LS fiber, Figure 16(a), and for the first stage consisting of the 350‐m SMF‐LS and the 600 m 
SMF‐28 fiber, Figure 16(b). We can see that the best results from our configuration are for 350 
m from the SMF‐LS fiber in the first stage. For this configuration, the contrast OFF/ON came 
up to 27. With 500 m of SMF‐LS in the first stage maximum contrast was equal to 7 and for 
configuration of 600 m of SMF‐28 m spliced with 500 m of SMF‐LS increase the contrast to 13.

Figure 16. Energy of Stokes pulses, (a) for 350 m SMF‐LS in the first stage; (b) for 550 m SMF‐LS + 600 m SMF‐28 in the 
first stage.
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4. Conclusions

We investigate experimentally and theoretically an all‐optical switch based on the SRS and 

demonstrate its viability. The use of SRS to design an all‐optical switch circuit makes it pos‐

sible to use very low powers of signal to control respectively strong pulses. The best con‐

trast (the ratio of signal energy at the output when the input signal is ON/OFF) was 15 
dB in pump peak power of 6 W and input signal only of 0.5 mW. Since there is a big dif‐
ference between the wavelengths of pumping and signal, the walk‐off between pump and 
Stokes is inevitable. We investigate the possibility to avoid degradation of circuit operation 
by the walk‐off effect connecting fibers with normal and anomalous dispersion. We found 
that fibers with anomalous GVD effect of the MI and the breaking pulse appear lower than 
those required for a strong Raman amplification powers. We propose to use the spectral filter 
large bandwidth between states of Raman circuit for reducing problems of breaking pulses. 
We have built a simple configuration of the device with efficient switching and low power 
pump. Therefore, the experimental setup is compact and can be carried to another labora‐

tory, and results are repeatable, i.e., the measurements are not dependent on environmental 
parameters.
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