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Abstract

In this chapter, we introduce the theory of sub-manifolds of a Riemannian manifold. The
fundamental notations are given. The theory of sub-manifolds of an almost Riemannian
product manifold is one of the most interesting topics in differential geometry.
According to the behaviour of the tangent bundle of a sub-manifold, with respect to
the action of almost Riemannian product structure of the ambient manifolds, we have
three typical classes of sub-manifolds such as invariant sub-manifolds, anti-invariant
sub-manifolds and semi-invariant sub-manifolds. In addition, slant, semi-slant and
pseudo-slant sub-manifolds are introduced by many geometers.

Keywords: Riemannian product manifold, Riemannian product structure, integral
manifold, a distribution on a manifold, real product space forms, a slant distribution

1. Introduction

Let i : M ! ~M be an immersion of an n-dimensional manifold M into an m-dimensional

Riemannian manifold ð ~M, ~gÞ. Denote by g ¼ i�~g the induced Riemannian metric on M. Thus, i

become an isometric immersion and M is also a Riemannian manifold with the Riemannian

metric gðX,YÞ ¼ ~gðX,YÞ for any vector fields X,Y in M. The Riemannian metric g on M is

called the induced metric on M. In local components, gij ¼ gABB
B
j B

A
i with g ¼ gjidx

jdxj and

~g ¼ gBAdU
BdUA.

If a vector field ξp of ~M at a point p∈M satisfies

~gðXp,ξpÞ ¼ 0 (1)

for any vector Xp of M at p, then ξp is called a normal vector of M in ~M at p. A unit normal

vector field of M in ~M is called a normal section on M [3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



By T⊥M, we denote the vector bundle of all normal vectors of M in ~M. Then, the tangent

bundle of ~M is the direct sum of the tangent bundle TM of M and the normal bundle T⊥M of

M in ~M, i:e:,

T ~M ¼ TM⊕T⊥M: (2)

We note that if the sub-manifold M is of codimension one in ~M and they are both orientiable,

we can always choose a normal section ξ on M, i:e:,

gðX, ξÞ ¼ 0, gðξ, ξÞ ¼ 1, (3)

where X is any arbitrary vector field on M.

By ~∇, denote the Riemannian connection on ~M and we put

~∇XY ¼ ∇XY þ hðX,YÞ (4)

for any vector fields X,Y tangent to M, where ∇XY and hðX,YÞ are tangential and the normal

components of ~∇XY, respectively. Formula ð4Þ is called the Gauss formula for the sub-manifold

M of a Riemannian manifold ð ~M, ~gÞ.

Proposition 1.1. ∇ is the Riemannian connection of the induced metric g ¼ i�~g on M and

hðX,YÞ is a normal vector field over M, which is symmetric and bilinear in X and Y.

Proof: Let α and β be differentiable functions on M. Then, we have

~∇αXðβYÞ ¼ αfXðβÞY þ β~∇XYg

¼ αfXðβÞY þ β∇XY þ βhðX,YÞg

∇αXβY þ hðαX, βYÞ ¼ αβ∇XY þ αXðβÞY þ αβhðX,YÞ (5)

This implies that

∇αXðβYÞ ¼ αXðβÞY þ αβ∇XY (6)

and

hðαX, βYÞ ¼ αβhðX,YÞ: (7)

Eq. (6) shows that ∇ defines an affine connection on M and Eq. (4) shows that h is bilinear in X

and Y since additivity is trivial [1].

Since the Riemannian connection ~∇ has no torsion, we have

0 ¼ ~∇XY−~∇YX−½X,Y� ¼ ∇XY þ hðX,YÞ−∇XY−hðY,XÞ−½X,Y�: (8)

By comparing the tangential and normal parts of the last equality, we obtain
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∇XY−∇YX ¼ ½X,Y� (9)

and

hðX,YÞ ¼ hðY,XÞ: (10)

These equations show that ∇ has no torsion and h is a symmetric bilinear map. Since the metric

~g is parallel, we can easily see that

ð∇XgÞðY,ZÞ ¼ ð~∇X~gÞðY,ZÞ

¼ ~gð~∇XY,ZÞ þ ~gðY, ~∇XZÞ

¼ ~g
�

∇XY þ hðX,YÞ,Z
�

þ ~gðY,∇XZþ hðX,ZÞÞ

¼ ~gð∇XY,ZÞ þ ~gðY,∇XZÞ

¼ gð∇XY,ZÞ þ gðY,∇XZÞ (11)

for any vector fields X,Y,Z tangent to M, that is, ∇ is also the Riemannian connection of the

induced metric g on M.

We recall h the second fundamental form of the sub-manifold M (or immersion i), which is

defined by

h : ΓðTMÞ ·ΓðTMÞ ! ΓðT⊥MÞ: (12)

If h ¼ 0 identically, then sub-manifoldM is said to be totally geodesic, where ΓðT⊥MÞ is the set

of the differentiable vector fields on normal bundle of M.

Totally geodesic sub-manifolds are simplest sub-manifolds.

Definition 1.1. Let M be an n-dimensional sub-manifold of an m-dimensional Riemannian

manifold ð ~M, ~gÞ. By h, we denote the second fundamental form of M in ~M.

H ¼ 1
n traceðhÞ is called the mean curvature vector of M in ~M. If H ¼ 0, the sub-manifold is

called minimal.

On the other hand, M is called pseudo-umbilical if there exists a function λ on M, such that

~g
�

hðX,YÞ,H
�

¼ λgðX,YÞ (13)

for any vector fields X,Y on M and M is called totally umbilical sub-manifold if

hðX,YÞ ¼ gðX,YÞH: (14)

It is clear that every minimal sub-manifold is pseudo-umbilical with λ ¼ 0. On the other hand,

by a direct calculation, we can find λ ¼ ~gðH,HÞ for a pseudo-umbilical sub-manifold. So, every
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totally umbilical sub-manifold is a pseudo-umbilical and a totally umbilical sub-manifold is

totally geodesic if and only if it is minimal [2].

Now, let M be a sub-manifold of a Riemannian manifold ð ~M, ~gÞ and V be a normal vector field

on M, X be a vector field on M. Then, we decompose

~∇XV ¼ −AVXþ ∇
⊥

XV, (15)

where AVX and ∇
⊥

XV denote the tangential and the normal components of ∇⊥

XV, respectively.

We can easily see that AVX and ∇
⊥

XV are both differentiable vector fields on M and normal

bundle of M, respectively. Moreover, Eq. ð15Þ is also called Weingarten formula.

Proposition 1.2. Let M be a sub-manifold of a Riemannian manifold ð ~M, ~gÞ. Then

(a) AVX is bilinear in vector fields V and X. Hence, AVX at point p∈M depends only on vector

fields Vp and Xp.

(b) For any normal vector field V on M, we have

gðAVX,YÞ ¼ g
�

hðX,YÞ,V
�

: (16)

Proof: Let α and β be any two functions on M. Then, we have

~∇αXðβVÞ ¼ α~∇XðβVÞ

¼ αfXðβÞV þ β~∇XVg

−AβVαXþ ∇
⊥

αXβV ¼ αXðβÞV−αβAVXþ αβ∇⊥

XV: (17)

This implies that

AβVαX ¼ αβAVX (18)

and

∇
⊥

αXβV ¼ αXðβÞV þ αβ∇⊥

XV: (19)

Thus, AVX is bilinear in V and X. Additivity is trivial. On the other hand, since gis a Riemann-

ian metric,

X~gðY,VÞ ¼ 0, (20)

for any X,Y∈ΓðTMÞ and V∈ΓðT⊥MÞ.

Eq. (12) implies that

~gð~∇XY,VÞ þ ~gðY, ~∇XVÞ ¼ 0: (21)

By means of Eqs. (4) and (15), we obtain
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~g
�

hðX,YÞ,V
�

−gðAVX,YÞ ¼ 0: (22)

The proof is completed [3].

Let M be a sub-manifold of a Riemannian manifold ð ~M, ~gÞ, and h and AV denote the second

fundamental form and shape operator of M, respectively.

The covariant derivative of h and AV is, respectively, defined by

ð~∇XhÞðY,ZÞ ¼ ∇
⊥

XhðY,ZÞ−hð∇XY,ZÞ−hðY,∇XZÞ (23)

and

ð∇XAÞVY ¼ ∇XðAVYÞ−A∇
⊥

XV
Y−AV∇XY (24)

for any vector fields X,Y tangent toM and any vector field V normal toM. If ∇Xh ¼ 0 for all X,

then the second fundamental form of M is said to be parallel, which is equivalent to ∇XA ¼ 0.

By direct calculations, we get the relation

g
�

ð∇XhÞðY,ZÞ,V
�

¼ g
�

ð∇XAÞVY,Z
�

: (25)

Example 1.1. We consider the isometric immersion

φ : R
2 ! R

4, (26)

φðx1, x2Þ ¼ ðx1,
ffiffiffiffiffiffiffiffiffiffi

x21−1
q

, x2,
ffiffiffiffiffiffiffiffiffiffi

x22−1
q

Þ (27)

we note that M ¼ φðR2Þ⊂R4 is a two-dimensional sub-manifold of R4 and the tangent bundle

is spanned by the vectors

TM ¼ Sp e1 ¼
ffiffiffiffiffiffiffiffiffiffi

x21−1
q

, x1, 0, 0
� �

, e2 ¼ 0, 0,
ffiffiffiffiffiffiffiffiffiffi

x22−1
p

, x2

� �n o

and the normal vector fields

T⊥M ¼ sp w1 ¼ −x1,
ffiffiffiffiffiffiffiffiffiffi

x21−1
q

, 0, 0Þ,w2 ¼ ð0, 0, −x1,
ffiffiffiffiffiffiffiffiffiffi

x22−1
q

� �� �

: (28)

By ~∇, we denote the Levi-Civita connection of R4, the coefficients of connection, are given by

~∇e1e1 ¼
2x1

ffiffiffiffiffiffiffiffiffiffi

x21−1
q

2x21−1
e1−

1

2x21−1
w1, (29)

~∇e2e2 ¼
2x2

ffiffiffiffiffiffiffiffiffiffi

x22−1
p

2x22−1
e2−

1

2x22−1
w2 (30)
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and

∇e2e1 ¼ 0: (31)

Thus, we have hðe1, e1Þ ¼ −
1

2x2
1
−1
w1, hðe2, e2Þ ¼ −

1
2x2

2
−1
w2 and hðe2, e1Þ ¼ 0: The mean curvature

vector of M ¼ φðR2Þ is given by

H ¼ −

1

2
ðw1 þ w2Þ: (32)

Furthermore, by using Eq. (16), we obtain

gðAw1
e1, e1Þ ¼ g

�

hðe1, e1Þ,w1

�

¼ −

1

2x21−1
ðx21 þ x21−1Þ ¼ −1,

gðAw1
e2, e2Þ ¼ g

�

hðe2, e2Þ,w1

�

¼ −

1

2x22−1
gðw1,w2Þ ¼ 0,

gðAw1
e1, e2Þ ¼ 0,

(33)

and

gðAw2
e1, e1Þ ¼ g

�

hðe1, e1Þ,w2

�

¼ 0,

gðAw2
e1, e2Þ ¼ 0, gðAw2

e2, e2Þ ¼ 1:

(34)

Thus, we have

Aw1
¼

�

−1 0
0 0

�

and Aw2
¼

�

0 0
0 −1

�

: (35)

Now, let M be a sub-manifold of a Riemannian manifold ð ~M, gÞ, ~R and R be the Riemannian

curvature tensors of ~M andM, respectively. From then the Gauss andWeingarten formulas, we

have

~RðX,YÞZ ¼ ~∇X
~∇YZ−~∇Y

~∇XZ−~∇½X,Y�Z

¼ ~∇X

�

∇YZþ hðY,ZÞ
�

−
~∇Y

�

∇XZþ hðX,ZÞ
�

−∇½X,Y�Z−hð½X,Y�,ZÞ

¼ ~∇X∇YZþ ~∇XhðY,ZÞ−~∇Y∇XZ−~∇YhðX,ZÞ−∇½X,Y�Z−hð∇XY,ZÞ þ hð∇YX,ZÞ

¼ ∇X∇YZ−∇Y∇XZþ hðX,∇YZÞ−hð∇XZ,YÞ þ ∇
⊥

XhðY,ZÞ

−AhðY,ZÞX−∇
⊥

YhðX,ZÞ þ AhðX,ZÞY−∇½X,Y�Z−hð∇XY,ZÞ þ hð∇YX,ZÞ

¼ ∇X∇YZ−∇Y∇XZ−∇½X,Y�Zþ ∇
⊥

XhðY,ZÞ−hð∇XY,ZÞ

−hðY,∇XZÞ−∇
⊥

YhðX,ZÞ þ hð∇YX,ZÞ þ hð∇YZ,XÞ

þAhðX,ZÞY−AhðY,ZÞX

¼ RðX,YÞZþ ð∇XhÞðY,ZÞ−ð∇YhÞðX,ZÞ þ AhðX,ZÞY−AhðY,ZÞX (36)
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from which

~RðX,YÞZ ¼ RðX,YÞZþ AhðX,ZÞY−AhðY,ZÞXþ ð∇XhÞðY,ZÞ−ð∇YhÞðX,ZÞ, (37)

for any vector fields X,Y and Z tangent to M. For any vector field W tangent to M, Eq. (37)

gives the Gauss equation

g
�

~RðX,YÞZ,W
�

¼ g
�

RðX,YÞZ,W
�

þ g
�

hðY,WÞ, hðX,ZÞ
�

−g
�

hðY,ZÞ, hðX,WÞ
�

: (38)

On the other hand, the normal component of Eq. (37) is called equation of Codazzi, which is

given by

�

~RðX,YÞZ
�⊥

¼ ð∇XhÞðY,ZÞ−ð∇YhÞðX,ZÞ: (39)

If the Codazzi equation vanishes identically, then sub-manifold M is said to be curvature-

invariant sub-manifold [4].

In particular, if ~M is of constant curvature, ~RðX,YÞZ is tangent to M, that is, sub-manifold is

curvature-invariant. Whereas, in Kenmotsu space forms, and Sasakian space forms, this not

true.

Next, we will define the curvature tensor R⊥ of the normal bundle of the sub-manifold M by

R⊥ðX,YÞV ¼ ∇
⊥

X∇
⊥

YV−∇
⊥

Y∇
⊥

XV−∇
⊥

½X,Y�V (40)

for any vector fields X,Y tangent to sub-manifoldM, and any vector field V normal toM. From

the Gauss and Weingarten formulas, we have

~RðX,YÞV ¼ ~∇X
~∇YV−~∇Y

~∇XV−~∇½X,Y�V

¼ ~∇Xð−AVY þ ∇
⊥

YVÞ−~∇Yð−AVXþ ∇
⊥

XVÞ þ AV ½X,Y�−∇
⊥

½X,Y�V

¼ −
~∇XAVY þ ~∇YAVXþ ~∇X∇

⊥

YV−
~∇Y∇

⊥

XV þ AV ½X,Y�−∇
⊥

½X,Y�V

¼ −∇XAVY−hðX,AVYÞ þ ∇YAVXþ hðY,AVXÞ

þ∇
⊥

X∇
⊥

YV−∇
⊥

Y∇
⊥

XV−A∇
⊥

Y
VXþ A

∇
⊥

XV
Y þ AV ½X,Y�−∇

⊥

½X,Y�V

¼ ∇
⊥

X∇
⊥

YV−∇
⊥

Y∇
⊥

XV−∇
⊥

½X,Y�V−A∇
⊥

Y
VXþ A

∇
⊥

XV
Y þ AV ½X,Y�

−∇XAVY þ ∇YAVX−hðX,AVYÞ þ hðY,AVXÞ

¼ R⊥ðX,YÞV þ hðAVX,YÞ−hðX,AVYÞ−ð∇XAÞVY þ ð∇YAÞVX: (41)

For any normal vector U to M, we obtain
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g
�

~R ðX,YÞV ,U
�

¼ g
�

R⊥ðX,YÞV,U
�

þ g
�

hðAVX,YÞ,U
�

−g
�

hðX,AVYÞ,U
�

¼ g
�

R⊥ðX,YÞV,U
�

þ gðAUY,AVXÞ−gðAVY,AUXÞ

¼ g
�

R⊥ðX,YÞV,U
�

þ gðAVAUY,XÞ−gðAUAVY,XÞ (42)

Since ½AU ,AV � ¼ AUAV−AVAU , Eq. (42) implies

g
�

~RðX,YÞV,U
�

¼ g
�

R⊥ðX,YÞV ,U
�

þ gð½AU,AV �Y,XÞ: (43)

Eq. (43) is also called the Ricci equation.

If R⊥ ¼ 0, then the normal connection of M is said to be flat [2].

When
�

~RðX,YÞV
�⊥

¼ 0, the normal connection of the sub-manifold M is flat if and only if the

second fundamental formM is commutative, i.e. ½AU ,AV � ¼ 0 for all U,V. If the ambient space

~M is real space form, then
�

~RðX,YÞV
�⊥

¼ 0 and hence the normal connection ofM is flat if and

only if the second fundamental form is commutative. If ~RðX,YÞZ tangent to M, then equation

of codazzi Eq. (37) reduces to

ð∇XhÞðY,ZÞ ¼ ð∇YhÞðX,ZÞ (44)

which is equivalent to

ð∇XAÞVY ¼ ð∇YAÞVX: (45)

On the other hand, if the ambient space ~M is a space of constant curvature c, then we have

~RðX,YÞZ ¼ cfgðY,ZÞX−gðX,ZÞYg (46)

for any vector fields X,Y and Z on ~M.

Since ~RðX,YÞZ is tangent to M, the equation of Gauss and the equation of Ricci reduce to

g
�

RðX,YÞZ,W
�

¼ cfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

þg
�

hðY,ZÞ, hðX,WÞ
�

−g
�

hðY,WÞ, hðX,ZÞ
�

(47)

and

g
�

R⊥ðX,YÞV,U
�

¼ gð½AU,AV �X,YÞ, (48)

respectively.
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Proposition 1.3. A totally umbilical sub-manifold M in a real space form ~M of constant

curvature c is also of constant curvature.

Proof: Since M is a totally umbilical sub-manifold of ~M of constant curvature c, by using

Eqs. (14) and (46), we have

g
�

RðX,YÞZ,W
�

¼ cfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

þgðH,HÞfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

¼ fcþ gðH,HÞgfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg: (49)

This shows that the sub-manifold M is of constant curvature cþ ‖H2
‖ for n > 2. If n ¼ 2,

‖H‖ ¼ constant follows from the equation of Codazzi [3].

This proves the proposition.

On the other hand, for any orthonormal basis feag of normal space, we have

gðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞ ¼∑
a

g
�

hðY,ZÞ, ea

�

g
�

hðX,WÞ, ea

�h

−g
�

hðX,ZÞ, ea

�

g
�

hðY,WÞ, ea

�

�
¼∑

a

gðAeaY,ZÞgðAeaX,WÞ−gðAeaX,ZÞgðAeaY,WÞ (50)

Thus, Eq. (45) can be rewritten as

g
�

RðX,YÞZ,W
�

¼ cfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

þ∑
a

½gðAeaY,ZÞgðAeaX,WÞ−gðAeaX,ZÞgðAeaY,WÞ� (51)

By using Aea , we can construct a similar equation to Eq. (47) for Eq. (23).

Now, let S- be the Ricci tensor of M. Then, Eq. (47) gives us

SðX,YÞ ¼ cfngðX,YÞ−gðei,XÞgðei,YÞg (52)

þ∑
ea

½gðAeaei, eiÞgðAeaX,YÞ−gðAeaX, eiÞgðAeaei,YÞ�

¼ cðn−1ÞgðX,YÞ þ∑
ea

½TrðAeaÞgðAeaX,YÞ−gðAeaX,AeaYÞ�; (53)

where fe1, e2,…, eng are orthonormal basis of M.

Therefore, the scalar curvature r of sub-manifold M is given by

Sub-Manifolds of a Riemannian Manifold
http://dx.doi.org/10.5772/65948

55



r ¼ cnðn−1Þ∑
ea

Tr2ðAeaÞ−∑
ea

TrðAea Þ
2 (54)

∑
ea

TrðAeaÞ
2 is the square of the length of the second fundamental form of M, which is denoted

by jAea j
2. Thus, we also have

‖h2‖ ¼ ∑
n

i, j¼1

g
�

hðei, ejÞ, hðei, ejÞ
�

¼ ‖A2
‖: (55)

2. Distribution on a manifold

An m-dimensional distribution on a manifold ~M is a mapping D defined on ~M, which assignes

to each point p of ~M an m-dimensional linear subspace Dp of T ~M
ðpÞ. A vector field X on ~M

belongs to D if we have Xp∈Dp for each p∈ ~M. When this happens, we write X∈ΓðDÞ. The

distribution D is said to be differentiable if for any p∈ ~M, there exist m-differentiable linearly

independent vector fields Xj∈ΓðDÞ in a neighbordhood of p.

The distribution D is said to be involutive if for all vector fields X,Y∈ΓðDÞ we have

½X,Y�∈ΓðDÞ. A sub-manifold M of ~M is said to be an integral manifold of D if for every point

p∈M, Dp coincides with the tangent space to M at p. If there exists no integral manifold of D

which contains M, then M is called a maximal integral manifold or a leaf of D. The distribu-

tion D is said to be integrable if for every p∈ ~M, there exists an integral manifold of D

containing p [2].

Let ~∇ and distribution be a linear connection on ~M, respectively. The distribution D is said to

be parallel with respect to ~M, if we have

~∇XY∈ΓðDÞ for all X∈ΓðT ~MÞ and Y∈ΓðDÞ (56)

Now, let ð ~M, ~gÞ be Riemannian manifold and D be a distribution on ~M. We suppose ~M is

endowed with two complementary distribution D and D
⊥, i:e:, we have T ~M ¼ D⊕D

⊥.

Denoted by P and Q the projections of T ~M to D and D
⊥, respectively.

Theorem 2.1. All the linear connections with respect to which both distributions D and D
⊥ are

parallel, are given by

∇XY ¼ P∇
0

XPY þQ∇
0

XQY þ PSðX,PYÞ þQSðX,QYÞ (57)

for any X,Y∈ΓðT ~MÞ, where ∇
0

and S are, respectively, an arbitrary linear connection and

arbitrary tensor field of type ð1, 2Þ on ~M.

Proof: Suppose ∇
0

is an arbitrary linear connection on ~M. Then, any linear connection ∇ on ~M

is given by
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∇XY ¼ ∇
0

XY þ SðX,YÞ (58)

for any X,Y∈ΓðT ~MÞ. We can put

X ¼ PXþQX (59)

for any X∈ΓðT ~MÞ. Then, we have

∇XY ¼ ∇XðPY þQYÞ ¼ ∇XPY þ ∇XQY ¼ ∇
0

XPY þ SðX,PYÞ

þ∇
0

XQY þ SðX,QYÞ ¼ P∇
0

XPY þQ∇
0

XPY þ PSðX,PYÞ þQSðX,PYÞ

þP∇
0

XQY þQ∇
0

XQY þ PSðX,QYÞ þQSðX,QYÞ (60)

for any X,Y∈ΓðT ~MÞ.

The distributions D and D are both parallel with respect to ∇ if and only if we have

φð∇XPYÞ ¼ 0andPð∇XQYÞ ¼ 0: (61)

From Eqs. (58) and (61), it follows that D and D
⊥ are parallel with respect to ∇ if and only if

Q∇
0

XPY þQSðX,PYÞ ¼ 0 and P∇
0

XQY þ PSðX,QYÞ ¼ 0: (62)

Thus, Eqs. (58) and (62) give us Eq. (57).

Next, by means of the projections P and Q, we define a tensor field F of type ð1, 1Þ on ~M by

FX ¼ PX−QX (63)

for any X∈ΓðT ~MÞ. By a direct calculation, it follows that F2 ¼ I. Thus, we say that F defines an

almost product structure on ~M. The covariant derivative of F is defined by

ð∇XFÞY ¼ ∇XFY−F∇XY (64)

for all X,Y∈ΓðT ~MÞ. We say that the almost product structure F is parallel with respect to the

connection ∇, if we have∇XF ¼ 0. In this case, F is called the Riemannian product structure [2].

Theorem 2.2. Let ð ~M, ~gÞ be a Riemannian manifold and D, D⊥ be orthogonal distributions on

~M such that T ~M ¼ D⊕D
⊥
: Both distributions D and D

⊥ are parallel with respect to ∇ if and

only if F is a Riemannian product structure.

Proof: For any X,Y∈ΓðT ~MÞ, we can write

~∇YPX ¼ ~∇PYPXþ ~∇QYPX (65)

and
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~∇YX ¼ ~∇PYPXþ ~∇PYQXþ ~∇QYPXþ ~∇QYQX, (66)

from which

gð~∇QYPX,QZÞ ¼ QYgðPX,QZÞ−gð∇QYQZ,PXÞ ¼ 0−gð~∇QYQZ,PXÞ ¼ 0, (67)

that is, ∇QYPX∈ΓðDÞ and so P~∇QYPX ¼ ~∇QYPX,

Q~∇QYPX ¼ 0: (68)

In the same way, we obtain

gð~∇PYQX,PZÞ ¼ PYgðQX,PZÞ−gðQX, ~∇PYPZÞ ¼ 0, (69)

which implies that

P~∇PYQX ¼ 0 and Q~∇PYQX ¼ ~∇PYQX: (70)

From Eqs. (66), (68) and (70), it follows that

P~∇YX ¼ ~∇PYPXþ ~∇QYPX: (71)

By using Eqs. (64) and (71), we obtain

ð~∇YPÞX ¼ ~∇YPX−P~∇YX ¼ ~∇PYPXþ ~∇QYPX−~∇PYPX−~∇QYPX ¼ 0: (72)

In the same way, we can find ~∇Q ¼ 0. Thus, we obtain

~∇F ¼ ~∇ðP−QÞ ¼ 0: (73)

This proves our assertion [2].

Theorem 2.3. Both distributions D andD
⊥ are parallel with respect to Levi-Civita connection ∇

if and only if they are integrable and their leaves are totally geodesic in ~M.

Proof: Let us assume both distributions D and D
⊥ are parallel. Since ∇ is a torsion free linear

connection, we have

½X,Y� ¼ ∇XY−∇YX∈ΓðDÞ, for any X,Y∈ΓðDÞ (74)

and

½U,V� ¼ ∇UV−∇VU∈ΓðD⊥Þ, for any U,V∈ΓðD⊥Þ (75)

Thus, D and D
⊥ are integrable distributions. Now, let M be a leaf of D and denote by h the

second fundamental form of the immersion of M in ~M. Then by the Gauss formula, we have
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∇XY ¼ ∇
0

XY þ hðX,YÞ (76)

for any X,Y∈ΓðDÞ, where ∇
0

denote the Levi-Civita connection on M. Since D is parallel from

Eq. (76) we conclude h ¼ 0, that is, M is totally in ~M. In the same way, it follows that each leaf

of D⊥ is totally geodesic in ~M.

Conversely, suppose D and D
⊥ be integrable and their leaves are totally geodesic in ~M. Then

by using Eq. (4), we have

∇XY∈ΓðDÞ for any X,Y∈ΓðDÞ (77)

and

∇UV∈ΓðD
⊥Þ for any U,V∈ΓðD⊥Þ: (78)

Since g is a Riemannian metric tensor, we obtain

gð∇UY,VÞ ¼ −gðY,∇UVÞ ¼ 0 (79)

and

gð∇XV,YÞ ¼ −gðV,∇XYÞ ¼ 0 (80)

for any X,Y∈ΓðDÞ and U,V∈ΓðD⊥Þ: Thus, both distributions D and D
⊥ are parallel on ~M.

3. Locally decomposable Riemannian manifolds

Let ð ~M, ~gÞ be n−dimensional Riemannian manifold and F be a tensor ð1, 1Þ−type on ~M such

that F2 ¼ I, F≠∓I.

If the Riemannian metric tensor ~g satisfying

~gðX,YÞ ¼ ~gðFX, FYÞ (81)

for any X,Y∈ΓðT ~MÞ then ~M is called almost Riemannian product manifold and F is said to be

almost Riemannian product structure. If F is parallel, that is, ð~∇XFÞY ¼ 0, then ~M is said to be

locally decomposable Riemannian manifold.

Now, let ~M be an almost Riemannian product manifold. We put

P ¼
1

2
ðI þ FÞ, Q ¼

1

2
ðI−FÞ: (82)

Then, we have
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PþQ ¼ I, P2 ¼ P, Q2 ¼ Q, PQ ¼ QP ¼ 0 and F ¼ P−Q: (83)

Thus, P and Q define two complementary distributions P and Q globally. Since F2 ¼ I, we

easily see that the eigenvalues of F are 1 and −1. An eigenvector corresponding to the eigen-

value 1 is in P and an eigenvector corresponding to −1 is in Q. If F has eigenvalue 1 of

multiplicity P and eigenvalue −1 of multiplicity q, then the dimension of P is p and that of Q is

q. Conversely, if there exist in ~M two globally complementary distributions P and Q of

dimension p and q, respectively. Then, we can define an almost Riemannian product structure

F on ~M by ~M by F ¼ P−Q [7].

Let ð ~M, ~g, FÞ be a locally decomposable Riemannian manifold and we denote the integral

manifolds of the distributions P and Q by Mp and Mq, respectively. Then we can write
~M ¼ MpXMq, ðp, q > 2Þ. Also, we denote the components of the Riemannian curvature R of ~M

by Rdcba, 1≤a, b, c, d≤n ¼ pþ q.

Now, we suppose that the two components are both of constant curvature λ and μ. Then, we have

Rdcba ¼ λfgdagcb−gcagdbg (84)

and

Rzyxw ¼ μfgzwgyx−gywgzxg: (85)

Then, the above equations may also be written in the form

Rkjih ¼
1

4
ðλþ μÞfðgkhgji−gjhgkiÞ þ ðFkhFji−FjhFkiÞg

þ
1

4
ðλ−μÞfðFkhgji−FjhgkiÞ þ ðgkhFji−gjhFkiÞg:

(86)

Conversely, suppose that the curvature tensor of a locally decomposable Riemannian manifold

has the form

Rkjih ¼ afðgkhgji−gjhgkiÞ þ ðFkhFji−FjhFkiÞg

þbfðFkhgji−FjhgkiÞ þ ðgkhFji−gjhFkiÞg:
(87)

Then, we have

Rcdba ¼ 2ðaþ bÞfgdagcb−gcagdbg (88)

and

Rzyxw ¼ 2ða−bÞfgzwgyx−gywgzxg: (89)

Let ~M be anm−dimensional almost Riemannian product manifold with the Riemannian structure

ðF, ~gÞ andM be an n−dimensional sub-manifold of ~M. For any vector fieldX tangent toM, we put
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FX ¼ f Xþ wX, (90)

where f X and wX denote the tangential and normal components of FX, with respect to M,

respectively. In the same way, for V∈ΓðT⊥MÞ, we also put

FV ¼ BV þ CV , (91)

where BV and CV denote the tangential and normal components of FV, respectively.

Then, we have

f 2 þ Bw ¼ I,Cwþ wf ¼ 0 (92)

and

f Bþ BC ¼ 0,wBþ C2 ¼ I: (93)

On the other hand, we can easily see that

gðX, f YÞ ¼ gð f X,YÞ (94)

and

gðX,YÞ ¼ gð f X, f YÞ þ gðwX,wYÞ (95)

for any X,Y∈ΓðTMÞ [6].

If wX ¼ 0 for all X∈ΓðTMÞ, then M is said to be invariant sub-manifold in ~M,

i:e:, FðTMðpÞÞ⊂TMðpÞ for each p∈M. In this case, f 2 ¼ I and gðf X, f YÞ ¼ gðX,YÞ: Thus, ðf , gÞ

defines an almost product Riemannian on M.

Conversely, ðf , gÞ is an almost product Riemannian structure on M, the w ¼ 0 and hence M is

an invariant sub-manifold in ~M.

Consequently, we can give the following theorem [7].

Theorem 3.1. Let M be a sub-manifold of an almost Riemannian product manifold ~M with

almost Riemannian product structure ðF, ~gÞ. The induced structure ðf , gÞ on M is an almost

Riemannian product structure if and only if M is an invariant sub-manifold of ~M.

Definition 3.1. Let M be a sub-manifold of an almost Riemannian product ~M with almost

product Riemannian structure ðF, ~gÞ. For each non-zero vector Xp∈TMðpÞ at p∈M, we denote

the slant angle between FXp and TMðpÞ by θðpÞ. Then M said to be slant sub-manifold if the

angle θðpÞ is constant, i:e:, it is independent of the choice of p∈M and Xp∈TMðpÞ [5].

Thus, invariant and anti-invariant immersions are slant immersions with slant angle θ ¼ 0 and

θ ¼ π

2, respectively. A proper slant immersion is neither invariant nor anti-invariant.
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Theorem 3.2. Let M be a sub-manifold of an almost Riemannian product manifold ~M with

almost product Riemannian structure ðF, ~gÞ.M is a slant sub-manifold if and only if there exists

a constant λ∈ð0, 1Þ, such tha

f 2 ¼ λI: (96)

Furthermore, if the slant angle is θ, then it satisfies λ ¼ cos2θ [9].

Definition 3.2. Let M be a sub-manifold of an almost Riemannian product manifold ~M with

almost Riemannian product structure ðF, ~gÞ. M is said to be semi-slant sub-manifold if there

exist distributions Dθ and D
T on M such that

(i) TM has the orthogonal direct decomposition TM ¼ D⊕D
T
:

(ii) The distribution D
θ is a slant distribution with slant angle θ:

(iii) The distribution D
T is an invariant distribution, :e:, FðDTÞ⊆D

T .

In a semi-slant sub-manifold, if θ ¼ π
2, then semi-slant sub-manifold is called semi-invariant

sub-manifold [8].

Example 3.1. Now, let us consider an immersed sub-manifold M in R7 given by the equations

x21 þ x22 ¼ x25 þ x26, x3 þ x4 ¼ 0: (97)

By direct calculations, it is easy to check that the tangent bundle of M is spanned by the

vectors

z1 ¼ cosθ
∂

∂x1
þ sinθ

∂

∂x2
þ cosβ

∂

∂x5
þ sinβ

∂

∂x6

z2 ¼ −usinθ
∂

∂x1
þ ucosθ

∂

∂x2
, z3 ¼

∂

∂x3
−

∂

∂x4
,

z4 ¼ −usinβ
∂

∂x5
þ ucosβ

∂

∂x6
, z5 ¼

∂

∂x7
,

(98)

where θ, β and u denote arbitrary parameters.

For the coordinate system of R7 ¼ fðx1, x2, x3, x4, x5, x6, x7Þjxi∈R, 1 ≤ i ≤ 7g, we define the

almost product Riemannian structure F as follows:

F
∂

∂xi

� �

¼
∂

∂xi
, F

∂

∂xj

� �

¼
∂

∂xj
, 1 ≤ i ≤ 3 and 4 ≤ j ≤ 7: (99)

Since Fz1 and Fz3 are orthogonal to M and Fz2,Fz4,Fz5 are tangent to M, we can choose a

D ¼ Spfz2, z4, z5g and D
⊥ ¼ Spfz1, z3g. Thus, M is a 5−dimensional semi-invariant sub-mani-

fold of R7 with usual almost Riemannian product structure ðF, < , >Þ:

Example 3.2. Let M be sub-manifold of R8 by given

ðuþ v, u−v, ucosα, usinα, uþ v, u−v, ucosβ, usinβÞ (100)
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where u, v and β are the arbitrary parameters. By direct calculations, we can easily see that the

tangent bundle of M is spanned by

e1 ¼
∂

∂x1
þ ∂

∂x2
þ cosα

∂

∂x3
þ sinα

∂

∂x4
þ ∂

∂x5
−

∂

∂x6
þ cosβ

∂

∂x7
þ sinβ

∂

∂x8

e2 ¼
∂

∂x1
−

∂

∂x2
þ ∂

∂x5
þ ∂

∂x6
, e3 ¼ −usin

∂

∂x3
þ ucosα

∂

∂x4
,

e4 ¼ −usinβ
∂

∂x7
þ ucosβ

∂

∂x8
:

(101)

For the almost Riemannian product structure F of R8 ¼ R
4xR4, FðTMÞ is spanned by vectors

Fe1 ¼
∂

∂x1
þ ∂

∂x2
þ cosα

∂

∂x3
þ sinα

∂

∂x4
−

∂

∂x5
þ ∂

∂x6
−cosβ

∂

∂x7
−sinβ

∂

∂x8
,

Fe2 ¼
∂

∂x1
−

∂

∂x2
−

∂

∂x5
−

∂

∂x6
, Fe3 ¼ e3 and Fe4 ¼ −e4:

(102)

Since Fe1 and Fe2 are orthogonal to M and Fe3 and Fe4 are tangent to M, we can choose

D
T ¼ Spfe3, e4g and D

⊥ ¼ Spfe1, e2g. Thus, M is a four-dimensional semi-invariant sub-mani-

fold of R8 ¼ R
4xR4 with usual Riemannian product structure F.

Definition 3.3. Let M be a sub-manifold of an almost Riemannian product manifold ~M with

almost Riemannian product structure ðF, ~gÞ.M is said to be pseudo-slant sub-manifold if there

exist distributions Dθ and D⊥ on M such that

i. The tangent bundle TM ¼ Dθ⊕D
⊥.

ii. The distribution Dθ is a slant distribution with slant angle θ.

iii. The distribution D
⊥ is an anti-invariant distribution, i:e:, FðD⊥Þ⊆T⊥M.

As a special case, if θ ¼ 0 and θ ¼ π
2, then pseudo-slant sub-manifold becomes semi-invariant

and anti-invariant sub-manifolds, respectively.

Example 3.3. Let M be a sub-manifold of R6 by the given equation

ð
ffiffiffi

3
p

u, v, vsinθ, vcosθ, scost, −scostÞ (103)

where u, v, s and t arbitrary parameters and θ is a constant.

We can check that the tangent bundle of M is spanned by the tangent vectors

e1 ¼
ffiffiffi

3
p ∂

∂x1
, e2 ¼

∂

∂y1
þ sinθ

∂

∂x2
þ cosθ

∂

∂y2
,

e3 ¼ cost
∂

∂x3
−cost

∂

∂y3
, e4 ¼ −ssint

∂

∂x3
þ ssint

∂

∂y3
:

(104)

For the almost product Riemannian structure F of R
6 whose coordinate systems

ðx1, y1, x2, y2, x3, y3Þ choosing
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F
∂

∂xi

� �

¼ ∂

∂yi
, 1 ≤ i ≤ 3,

F
∂

∂yj

 !

¼ ∂

∂xj
, 1 ≤ j ≤ 3,

(105)

Then, we have

Fe1 ¼
ffiffiffi

3
p ∂

∂y1
, Fe2 ¼ −

∂

∂x1
þ sinθ

∂

∂y2
−cosθ

∂

∂x2

Fe3 ¼ cost
∂

∂y3
þ cost

∂

∂x3
, Fe4 ¼ −ssint

∂

∂y3
−ssint

∂

∂x3
:

(106)

Thus, Dθ ¼ Spfe1, e2g is a slant distribution with slant angle α ¼ π

4. Since Fe3 and Fe4 are

orthogonal to M, D⊥ ¼ Spfe3, e4g is an anti-invariant distribution, that is, M is a 4-dimensional

proper pseudo-slant sub-manifold of R6 with its almost Riemannian product structure
ðF, < , >Þ:
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