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Abstract

The study of light propagating and scattering for various particles has always been
important in many practical applications, such as optical diagnostics for combustion,
monitoring of atmospheric pollution, analysis of the structure and pathological changes
of the biological cell, laser Doppler technology, and so on. This chapter discusses prop-
agation and scattering through particles. The description of the solution methods,
numerical results, and potential application of the light scattering by typical particles
is introduced. The generalized Lorenz-Mie theory (GLMT) for solving the problem of
Gaussian laser beam scattering by typical particles with regular shapes, including
spherical particles, spheroidal particles, and cylindrical particles, is described. The
numerical methods for the scattering of Gaussian laser beam by complex particles with
arbitrarily shape and structure, as well as random discrete particles are introduced. The
essential formulations of numerical methods are outlined, and the numerical results for
some complex particles are also presented.

Keywords: light scattering, small particles, Gaussian laser beam, generalized Loren-Mie
theory, numerical method

1. Introduction

The investigation of light propagation and scattering by various complex particles is of great

importance in a wide range of scientific fields, and it has lots of practical applications, such

as detection of atmospheric pollution, optical diagnostics for aerosols, remote sensing of

disasters [1–3]. Over the past few decades, some theories and numerical methods have been

developed to study the light wave propagation and scattering through various particles. For

the particles with special shape, such as spheres, spheroids, and cylinders, the generalized

Lorenz-Mie theory (GLMT) [4–15] can obtain an analytic solution in terms of a limited linear

system of equations using the method of separation of variables to solve the Helmholtz

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



equation in the corresponding coordinate system. For the complex particles of arbitrary shapes

and structure, some numerical methods, such as the discrete dipole approximation (DDA), the

method of moments (MOM), the finite element method (FEM), and the finite-difference time-

domain (FDTD), have been utilized. For random media composed of many discrete particles,

the T-matrix method, the sparse-matrix canonical-grid (SMCG) method, and the characteristic

basis function method (CBFM) can be applied to obtain simulation results.

This chapter discusses the light propagation and scattering through particles. Without loss of

generality, the incident light is assumed to be Gaussian laser beam, which can be reduced to

conventional plane wave. The detailed description of the solution methods, numerical results,

and potential application of the light scattering by systems of particles is introduced.

2. Light scattering by regular particles

2.1. Light scattering by a homogeneous sphere

The geometry of light scattering of a Gaussian beam by a homogeneous sphere is illustrated in

Figure 1. As shown in Figure 1, two Cartesian coordinatesOxyz andObuvw are used. TheOxyz

is attached to the particle whose center is located at O, and the Obuvw is attached to the shaped

beam. Due to the spherical symmetry of the homogeneous sphere, it is common to assume that

the axes Obu, Obv, and Obw are parallel to the axes Ox, Oy, and Oz, respectively. The shaped

beam is assumed to be propagating along the positive w-axis of the beam system, with its

electric field polarized along the u-axis. The time-dependent part of the electromagnetic fields

is exp ð−iωtÞ, which will be omitted throughout this section.

Within the framework of the GLMT, the electromagnetic field components of the illuminating

beam are described by partial wave expansions over a set of basic functions, e.g., vector

spherical wave functions in spherical coordinates, vector spheroidal wave functions in spheroi-

dal coordinates, and vector cylindrical wave functions in cylindrical coordinates. The expansion

coefficients or sub-coefficients are named as beam-shape coefficients (BSCs) are denoted as gmn,X

Figure 1. Geometry of the scattering of a Gaussian beam by a homogeneous sphere.
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(X is TE, transverse electric, or TM, transverse magnetic, with n from 1 to ∞, m from −n to n).

Considering the scattering of a spherical particle, the incident Gaussian beam can be expanded

in terms of vector spherical wave functions in the particle coordinate system Oxyz as

E
i ¼ E0 ∑

∞

n¼1
∑
n

m¼−n
Cnm igmn,TEm

ð1Þ
mnðkR,θ,ϕÞ þ gmn,TMn

ð1Þ
mnðkR,θ,ϕÞ

h i

(1)

H
i ¼ E0

k

ωμ
∑
∞

n¼1
∑
n

m¼−n
Cnm gmn,TEn

ð1Þ
mnðkR,θ,ϕÞ − igmn,TMm

ð1Þ
mnðkR,θ,ϕÞ

h i

(2)

where the superscript “i” indicates “incident”. The Cnm is a constant with explicit expression

Cnm ¼ ð−1Þðm−jmjÞ=2 ðn−mÞ!

ðn−jmjÞ!
in−1

2nþ 1

nðnþ 1Þ
: (3)

The m
ðjÞ
mn ¼ m

ðjÞ
emn þ im

ðjÞ
omn and n

ðjÞ
mn ¼ n

ðjÞ
emn þ in

ðjÞ
omn are the vector spherical wave functions with

detailed expressions

m
ðjÞ
emn

m
ðjÞ
omn

" #

¼ mπm
n ð cosθÞ z

ðjÞ
n ðkRÞ

− sinmϕ

cosmϕ

" #

eθ − zðjÞn ðkRÞτmn ð cosθÞ
cosmϕ

sinmϕ

" #

eϕ (4)

n
ðjÞ
emn

n
ðjÞ
omn

2

4

3

5 ¼ z
ðjÞ
n ðkRÞnðnþ 1ÞPm

n ð cosθÞ
cosmϕ

sinmϕ

" #

eR þ
d kRz

ðjÞ
n ðkRÞ

h i

dðkRÞ
τmn ð cosθÞ

cosmϕ

sinmϕ

" #

eθ

8

<

:

þ
d½kRz

ðjÞ
n ðkRÞ�

dðkRÞ
mπm

n ð cosθÞ
− sinmϕ

cosmϕ

" #

eϕ

)

�
1

kR

(5)

the index corresponds to the spherical Bessel functions of the first, second, third, or fourth kind

(j ¼ 1, 2, 3, 4). The angular functions πm
n ðcosθÞ and τmn ðcosθÞ are defined as

πm
n ðcosθÞ ¼

Pm
n ðcosθÞ

sinθ
, τmn ðcosθÞ ¼

d

dθ
Pm
n ðcosθÞ: (6)

The electric component of the internal field and the scattered field can be expanded in terms of

vector spherical wave functions in the particle coordinate system Oxyz, respectively, as

E
int ¼ E0 ∑

∞

n¼1
∑
n

m¼−n
fmnm

ð1Þ
mnðkR,θ,ϕÞ þ gmnn

ð1Þ
mnðkR,θ,ϕÞ

h i

(7)

E
sca ¼ E0 ∑

∞

n¼1
∑
n

m¼−n
amnm

ð3Þ
mnðkR,θ,ϕÞ þ bmnn

ð3Þ
mnðkR,θ,ϕÞ

h i

: (8)
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To solve the scattering problem, light scattering, the scattering coefficients amn and bmn are then

determined by applying the tangential continuity of the electric and magnetic fields at the

surface of the sphere

amn ¼ an � g
m
n,TM, bmn ¼ bn � g

m
n,TM (9)

where an, bn are the classical scattering coefficients of the Lorenz-Mie theory as

an ¼
ψnðxÞψ

′

nðMxÞ−Mψ′

nðxÞψnðMxÞ

ξð1Þn ðxÞψ′

nðMxÞ−Mξ′ð1Þ

n ðxÞψnðMxÞ
(10)

bn ¼
MψnðxÞψ

′

nðMxÞ−ψnðMxÞψ′

nðxÞ

Mξð1Þn ðxÞψ′

nðMxÞ−ξ′ð1Þ

n ðxÞψnðMxÞ
(11)

where M ¼ k=k0. Once the obtained scattering coefficients are determined, the far-zone

scattered field Εsca
f ar can be obtained, and the differential scattering cross section (DSCS) of

particles can be calculated by

σðθ,ϕÞ ¼ lim
r!∞

4πr2jΕsca
f ar=E0j

2: (12)

Figure 2 presents the normalized DSCS for the scattering of a Gaussian beam by a homoge-

neous spherical dielectric particle. The radius of the spherical particle is r ¼ 1:0λ, and the

Figure 2. DSCS for a homogeneous spherical dielectric particle illuminated by a Gaussian beam.
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refractive index of the particle ism ¼ 2:0. The beam center is located at the origin of the particle

system with beam waist radius of ω0 ¼ 2λ, and the angle set of the beam is α ¼ β ¼ γ ¼ 0o.

2.2. Light scattering by a spheroidal particle

Light scattering by a spheroid has been of great interest to many researchers in the past several

decades since it provides an appropriate model in many practical situations. For example,

during the atomization processes, the shape of fuel droplets departs from sphere to spheroid

when it impinges on the wall and breaks. Due to the inertial force, the raindrop also departs

from the spherical particle to the near-spheroidal one. A rigorous solution to the scattering

problem concerning a homogeneous spheroid illuminated by a plane wave was first derived

by Asano and Yamamoto [16]. It was extended later to the cases of shaped beam illumination

[17], a layered spheroid [18], and a spheroid with an embedded source [19]. Nevertheless, only

parallel incident of the shaped beam, including on-axis and off-axis Gaussian beam scattered

by a spheroid was studied, that is to say, the propagation direction of the incident beam is

assumed to be parallel to the symmetry axis of the spheroid. An extension of shaped beam

scattering with arbitrary incidence was developed within the framework of GLMT by Han

et al. [20–22] and Xu et al. [23, 24].

To deal with the shaped beam scattering of a spheroidal particle within the framework of

GLMT, the incident Gaussian beam is required to be expanded in terms of the vector spheroi-

dal wave functions in spheroidal coordinates, which can be achieved using the relationship

between the vector spherical wave functions and the spherical wave functions. The geometry

of shaped beam scattering by a prolate spheroid is illustrated in Figure 3. According to the

expansion of shaped beam in unrotated spherical coordinates in Eq. (1), we can rewrite it as

Einc ¼ E0 ∑
∞

n¼1
∑
n

m¼0
½gmn,TEm

rð1Þ
emnðkR,θ,ϕÞ þ g′

m
n,TEm

rð1Þ
omnðkR,θ,ϕÞ

þ ig′
m
n,TMn

rð1Þ
emnðkR,θ,ϕÞ þ igmn,TMn

rð1Þ
omnðkR,θ,ϕÞ�

(13)

where we have

Figure 3. Geometry of a prolate spheroid illuminated by a shaped beam.
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(14)

where δ0m is the Kronecker delta functions.

Considering the vector spheroidal wave functions in the spheroidal coordinates, whose

explicit expressions are the same as the ones used in Refs. [14, 25], the relationship between

the vector spherical wave functions and vector spheroidal wave functions is given as:

ðm,nÞ
rð1Þ

e
o
mn

ðkR,θ,ϕÞ ¼ ∑
l¼m,mþ1

0
∞ 2ðnþmÞ!

ð2nþ 1Þðn−mÞ!
�
il−n

Nml
dml
n−mðcÞðM,NÞ

rð1Þ

e
o
ml

ðc, ζ, η,ϕÞ: (15)

From Eq. (15), we can obtain the expansion of Gaussian beam in spheroidal coordinates.

Accordingly, the electric component of the internal field and the scattered field can be

expanded in terms of vector spheroidal wave functions. The unknown scattered coefficients

can be determined by applying the boundary conditions of continuity of the tangential elec-

tromagnetic fields over the surface of the particle. Thus, the solution of scattering for Gaussian

beam by a spheroidal particle can be obtained.

Figure 4. DSCS for incidence of a Gaussian beam on a dielectric spheroidal particle.
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For the purpose of demonstration, Figure 4 shows angular distributions of the DSCS for a

spheroid with a semimajor axis and a semiminor axis being a ¼ 2:0λ and b ¼ 1:0λ, respec-

tively, and refractive index m ¼ 1:55. The beam center is located at the origin of the particle

system with beam waist radius of ω0 ¼ 2λ, and the angle set of the beam is α ¼ β ¼ γ ¼ 0o.

2.3. Light scattering by a circular cylindrical particle

The geometry of shaped beam scattering by a circular cylinder is illustrated in Figure 5.

Similarly to a spheroidal particle, due to the lack of spherical symmetry, the arbitrary orienta-

tion is also compulsory in the case of GLMTs for cylinders. The expansion of the case of an

arbitrary-shaped beam propagating in an arbitrary direction, based on which an approach to

expand the shaped beam in terms of cylindrical vector wave functions natural to an infinite

cylinder of arbitrary orientation is given below.

The vector cylindrical wave functions in the cylindrical coordinates ðr,φ, zÞ are defined as

m
ðjÞ
nλðkr,φ, zÞ ¼ eihzeimφ½i

m

r
JmðλrÞir−

∂

∂r
JmðλrÞiϕ�

nnλðkr,φ, zÞ ¼ eikzzeimφ ih

k

∂

∂r
JmðλrÞir−

hm

kr
JmðλrÞiϕ þ

λ2

k
JmðλrÞiz

� �

(16)

where ðm
ðjÞ
nλ,n

ðjÞ
nλÞ ¼ ðm

ðjÞ
enλ,n

ðjÞ
enλÞ þ iðm

ðjÞ
onλ,n

ðjÞ
onλÞ are the cylindrical vector wave functions of the

first kind in the cylindrical coordinates ðr,φ, zÞ, and ðm
ðjÞ
enλ,n

ðjÞ
enλÞ, ðm

ðjÞ
onλ,n

ðjÞ
onλÞ are the same as

ðm
ðjÞ
enλ,n

ðjÞ
enλÞe

ihz, ðm
ðjÞ
onλ,n

ðjÞ
onλÞe

ihz in defined by Stratton. The subscript “e” refers to even φ depen-

dence while “o” refers to odd φ dependence, and we have λ2 þ h2 ¼ k2, h ¼ k cos ζ, λ ¼ k sin ζ.

The relationship between the vector spherical wave functions and the vector cylindrical wave

functions is defined as

Figure 5. Geometry of a circular cylinder illuminated by a shaped beam.
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m
rð1Þ
mn ðkR,θ,ϕÞ ¼ ∫π0 cmnðζÞm

ð1Þ
mλ þ amnðζÞn

ð1Þ
mλ

h i

eihz sin ζdζ

n
rð1Þ
mn ðkR,θ,ϕÞ ¼ ∫π0 cmnðζÞn

ð1Þ
mλ þ amnðζÞm

ð1Þ
mλ

h i

eihz sin ζdζ
(17)

where

cmnðζÞ ¼
im−nþ1

2k

dPm
n ð cos ζÞ

dð cos ζÞ
, amnðζÞ ¼

mk

λ2

im−n−1

2
Pm
n ð cos ζÞ (18)

Based on Eqs. (17) and (1), we can obtain the expansion of the incident shaped beam in terms

of the cylindrical vector wave functions in cylindrical coordinates as

Ei ¼ E0 ∑
∞

m¼−∞
∫π0 ½Im,TEðζÞmnλ þ Im,TMðζÞnnλ� sin ζdζ (19)

where Im,TEðζÞ and Im,TMðζÞ are the BSCs in cylindrical coordinates, with explicit expres-

sions

Im,TEðζÞ ¼ ∑
∞

n¼jmj

½igmn,TEcmnðζÞ þ gmn,TMamnðζÞ�:

Im,TMðζÞ ¼ ∑
∞

n¼jmj

½igmn,TEamnðζÞ þ gmn,TMcmnðζÞ�

(20)

Accordingly, the electric component of the internal field and the scattered field can be

expanded in terms of cylindrical vector wave functions. The unknown scattered coefficients

can be determined by applying the boundary conditions of continuity of the tangential elec-

tromagnetic fields over the surface of the particle. Thus, the solution of scattering for Gaussian

beam by a cylindrical particle can be obtained.

3. Light scattering by complex particles of arbitrary shapes and structure

3.1. Surface integral equation method

Many particles encountered in nature or produced in industrial processes, such as raindrops,

ice crystals, biological cells, dust grains, daily cosmetics, and aerosols in the atmosphere, not

only have irregular shapes but also have complex structures. The study of light scattering by

these complex particles is essential in a wide range of scientific fields with many practical

applications, including optical manipulation, particle detection and discrimination, design of

new optics devices, etc. Here, we introduce the surface integral equation method (SIEM)

[26–28] to simulate the light scattering by arbitrarily shaped particles with multiple internal

dielectric inclusions of arbitrary shape, which can be reduced to the case of arbitrarily shaped

homogeneous dielectric particles. For SIEM, the incident Gaussian beam can be described
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using the method of combing Davis-Barton fifth-order approximation [29] in combination with

rotation Euler angles [30].

Now, let us consider the problem of Gaussian beam scattering by an arbitrarily shaped

particle with multiple dielectric inclusions of arbitrary shape. As illustrated in Figure 6, let

Sh represent the surface of the host particle and Si represent the surface of the

ithði ¼ 1, 2,⋯,NÞ inclusion, with N being the total number of the internal inclusions. Let

εh,μ
h
and εi,μi

represent the permittivity and permeability of the host particle and the ith

dielectric inclusion, respectively. The surrounding medium is also considered to be free

space with parameters ε0 and μ0. Let Ω0,Ωi and Ωh, respectively, denote the free space

region, the region occupied by the ith internal inclusion and the region occupied by the

host particle except those occupied by all the inclusions. Introducing equivalent electro-

magnetic currents Jh, Μh on Sh and Ji, Μi on Siði ¼ 1, 2,⋯,NÞ. On the bases of the surface

equivalence principle, the fields in each region can be expressed in terms of the equivalent

electric and magnetic currents. Specifically, the scattered fields Esca

0 and Hsca

0 in the region

Ω0, due to the equivalent electromagnetic currents Jh and Μh on Sh, can be expressed as

Eqs. (21) and (22)

Figure 6. Configuration of an arbitrarily shaped particle with multiple internal inclusions of arbitrary shape.
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Esca

0 ¼ Z0L
Sh
0 ðJhÞ − K

Sh
0 ðMhÞ (21)

Hsca

0 ¼ K
Sh
0 ðJhÞ þ

1

Z0
L
Sh
0 ðMhÞ (22)

where the integral operators LS

0 and KS

0 are defined as

LS

0ðXÞ ¼ −ik0

ðð

S

Xðr′Þ þ
1

k
2
0

∇∇
′ � Xðr′Þ

" #

G0ðr, r
′ÞdS′ (23)

KS

0ðXÞ ¼ −

ðð

S

Xðr′Þ·G0ðr, r
′ÞdS′ (24)

in which the subscript “0” represents the medium in which the scattered fields are com-

puted and the superscript “S” represents the surface on which the integration is performed,

G0ðr, r
′Þ is the Green’s function in region Ω0. The fields in region Ωh are produced by the

equivalent electromagnetic currents −Jh, −Μh on Sh and Ji, Μi on Siði ¼ 1, 2,…,NÞ and can

be expressed as

Eh ¼ ZhL
Sh

h
ð−JhÞ−K

Sh

h
ð−MhÞ

h i

þ ∑
N

i¼1
ZhL

Si

h
ðJiÞ−K

Si

h
ðMiÞ

h i

(25)

Hh ¼ K
Sh

h
ð−J

h
Þ þ

1

Zh

L
Sh

h
ð−MhÞ

� �

þ ∑
N

i¼1
K

Si

h
ðJ

i
Þ þ

1

Zh

L
Si

h
ðMiÞ

� �

: (26)

Also based on the surface equivalence principle, the fields Ei and Hi in region

Ωiði ¼ 1, 2,⋯,NÞ can be expressed in terms of the equivalent electric and magnetic currents

−Ji and −Μi as

Ei ¼ ZiL
Si

i
ð−JiÞ−K

Si

i
ð−MiÞ (27)

Hi ¼ K
Si

i
ð−JiÞ þ

1

Zi

L
Si

i
ð−MiÞ (28)

where Zi ¼
ffiffiffiffiffiffiffiffiffiffiffi

μ
i
=εi

p

and the operators LS

i
and KS

i
are also defined similarly to LS

0 and KS

0 ,

provided that all the subscripts are changed from “0” to “i”.

By enforcing the continuity of the tangential electromagnetic fields across each surface, the

following integral equations may be established
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jZ0L
Sh
0 ðJhÞ−K

Sh
0 ðMhÞ þ ZhL

Sh
h ðJhÞ−K

Sh
h ðMhÞ

− ∑
N

i¼1
½ZhL

Si
h ðJiÞ−K

Si
h ðMiÞ� ¼ −Eincj tan ðShÞ

(29)

jKSh
0 ðJhÞ þ

1

Z0
LSh
0 ðMhÞ þ KSh

h ðJhÞ þ
1

Zh
LSh
h ðMhÞ

−∑
N

i¼1
K

Si
h ðJiÞ þ

1

Zh
L
Si
h ðMiÞ

� �

¼ −Hincj tan ðShÞ

(30)

jZhL
Sh
h ðJhÞ−K

Sh
h ðMhÞ−ZiL

Si
i ðJiÞ þK

Si
i ðMiÞ−ZhL

Si
h ðJiÞ

þK
Si
h ðMiÞ− ∑

N

j¼1, j≠i
½ZhL

Sj
h ðJjÞ−K

Sj
h ðMjÞ� ¼ 0j tan ðSiÞ

(31)

jKSh
h ðJhÞ þ

1

Zh
LSh
h ðMhÞ−K

Si
i ðJiÞ−

1

Zi
L
Si
i ðMiÞ−K

Si
h ðJiÞ

−
1

Zh
L
Si
h ðMiÞ− ∑

N

j¼1, j≠i
K

Sj
h ðJjÞ þ

1

Zh
L
Sj
h ðMjÞ

� �

¼ 0j tan ðSiÞ

(32)

where the subscripts “ tan ðSpÞ” and “ tan ðSiÞ” stand for tangential components of the fields on

Sh and Siði ¼ 1, 2,⋯,NÞ, respectively. Applying the method of moments (MOMs) with RWG

basis functions to the above established integral equations yields a linear system of equations

as follows:

ZJhJh ZJhMh
ZJhJ1 ⋯ ZJhJN ZJhM1

⋯ ZJhMN

ZMhJh ZMhMh
ZMhJ1 ⋯ ZMhJN ZMhM1

⋯ ZMhMN

ZJ1Jh ZJ1Mh
ZJ1J1 ⋯ ZJ1JN ZJ1M1

⋯ ZJ1MN
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;

: (33)

The resultant matrix Eq. (33) can also be solved iteratively by employing the multilevel fast

multipole algorithm (MLFMA). Once obtained the unknown equivalent electromagnetic cur-

rents, the far-zone scattered fields and DSCS can be calculated.

3.2. Numerical results

First, we consider the reduced case of arbitrarily shaped homogeneous dielectric particles. To

illustrate the validity of the proposed method, the scattering of a focused Gaussian beam by a
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homogeneous spherical dielectric particle is considered. The radius of the spherical particle is

r ¼ 1:0λ, and the refractive index of the particle is m ¼ 2:0. The beam center is located at the

origin of the particle system with beam waist radius of ω0 ¼ 2λ, and the angle set of the beam

is α ¼ β ¼ γ ¼ 0o. Figure 7 shows the computed DSCS as a function of the scattering angle in

the E-plane. For comparison, the results obtained using the GLMTare given in the same figure.

Excellent agreements are observed between them.

To illustrate the validity of the proposed method for composite particles with inclusions, we

consider the scattering a Gaussian beam by a spheroidal particle with a spherical inclusion at

the center, as shown in Figure 8. The semimajor axis and the semiminor axis of the host

spheroid are a ¼ 2:0λ and b ¼ 1:0λ, respectively. The radius of the spherical inclusion is

ri ¼ 0:5λ. The host spheroid is characterized by refractive index m ¼ 2:0. For the case of

dielectric inclusion, the refractive index is m1 ¼ 1:414. The particle is illuminated by an on-axis

normally incident Gaussian beam with ω0 ¼ 2:0λ and x0 ¼ y0 ¼ z0 ¼ 0:0. The computed

DSCSs as a function of the scattering angle in the E-plane and the H-plane are shown in

Figure 9. For comparison, the result obtained using the analytical theory GLMT is given in

the same figure. Excellent agreements are observed between them.

Finally, the scattering of an obliquely incident Gaussian beam by a cubic particle containing 27

randomly distributed spherical inclusions is considered to illustrate the capabilities of the

proposed method. The center of the host cube is located at the origin of the particle system

and the side length of the cube is l ¼ 3:0λ. All the spherical inclusions are assumed to be

uniform, and the positions are generated using the Monte Carlo method described in Ref. [31]

with fractional volume f ¼ 6:0%, as shown in Figure 10. The host cube is characterized by

Figure 7. Comparison of the DSCS for a spherical dielectric particle obtained from the SIEM and the GLMT.
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Figure 8. Geometry of a spheroidal particle with a spherical inclusion at the center.

Figure 9. Comparison of the DSCSs for a spheroidal particle with a spherical inclusion at the center obtained from the

SIEM and that from the GLMT.
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refractive index m ¼ 1:2−i0:2. For the case of dielectric inclusion, the complex refractive index

is m ¼ 1:5−i0:1. The beam waist is centered at x0 ¼ y0 ¼ z0 ¼ 0:0 with a beam waist radius of

ω0 ¼ 2:0λ. The rotation Euler angles are α ¼ 0o, β ¼ 45o and γ ¼ 0o. Figure 11 presents the

simulated DSCSs as a function of the scattering angle in both the E-plane and the H-plane.

Figure 10. Illustration of a cubic particle containing 27 randomly distributed spherical inclusions.

Figure 11. The DSCSs for a cubic particle with 27 randomly distributed spherical inclusions.
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4. Light scattering by random discrete particles

Due to the wide range of possible applications in academic research and industry, the problem

of light scattering by random media composed of many discrete particles is a subject of broad

interest. Over the past few decades, some theories and numerical methods have been devel-

oped to study the light scattering by random discrete particles [32–48]. In this section, we

introduce a hybrid finite element-boundary integral-characteristic basis function method (FE-

BI-CBFM) to simulate the light scattering by random discrete particles [49]. In this hybrid

technique, the finite element method (FEM) is used to obtain the solution of the vector wave

equation inside each particle and the boundary integral equation (BIE) is applied on the

surfaces of all the particles as a global boundary condition. To reduce computational burdens,

the characteristic basis function method (CBFM) is introduced to solve the resultant FE-BI

matrix equation. The incident light is assumed to be Gaussian laser beam.

4.1. FE-BI-CBFM for random discrete particles

Now, let us consider the scattering of an arbitrarily incident focused Gaussian beam by

multiple discrete particles with a random distribution, as depicted in Figure 12. For simplicity,

the background region, which is considered to be free space, is denoted as Ω0, the region

Figure 12. Illustration of an arbitrarily incident Gaussian beam impinges on multiple discrete particles with a random

distribution.
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occupied by the ith particle is denoted as Ωiði ¼ 1, 2,…,MÞ, and the corresponding volume

and boundary surface are denoted as V i and Si, respectively. In accordance with the variational

principle [50], the solution to the field in region Ωi can be obtained by solving an equivalent

variational problem with the functional given by

FðEiÞ ¼
1

2

ððð

V i

1

μ
r

ð∇·EiÞ � ð∇·EiÞ−k
2
0εrEi � Ei

� �
dV

þ ik0Z0

ðð

Si

ðEi ·HiÞ � bnidS�

(34)

where n̂i denotes the outward unit vector normal to Si, εr, and μ
r
are the relative permittivity

and permeability of the particles. Using the FEM with Whitney vector basis functions defined

on tetrahedral elements [50], the functional F can be converted into a sparse matrix equation

K
II

i
K
IS

i
0

K
SI

i
K
SS

i
Bi

� � E
I

i

E
S

i

H
S

i

8
><

>:

9
>=

>;
¼

0
0

� �
(35)

where ½KII

i
�, ½KIS

i
�, ½KSI

i
� and ½KSS

i
� are contributed by the volume integral in Eq. (34), whereas ½Bi�

is contributed by the surface integral. Also, fEI

i
g is a vector containing the discrete electric

fields inside V i, and fES

i
g and fHS

i
g are the vectors containing the discrete electric and mag-

netic fields on Si, respectively.

Since Eq. (35) is independent of the excitation, we can remove the interior unknowns to derive

a matrix equation that only includes the unknowns on Si, as follows:

~K
SS

i

h i
E
S

i

� �
þ Bi½ � H

S

i

� �
¼ f0g (36)

where

~K
SS

i

h i
¼ K

SS

i

	 

− K

SI

i

	 

K
II

i

	 

−1

K
IS

i

	 

: (37)

For the convenience of description, we write the relation between E
S

i

� �
and H

S

i

� �
as

E
S

i

� �
¼ Si½ � H

S

i

� �
(38)

where

Si½ � ¼ −
~K
SS

i

h i
−1
½Bi�: (39)

It is worth to notice that the calculations of Eqs. (37) and (39) in each particle are independent

and can be completely parallelized. Furthermore, since the particles are uniform, the coefficient

matrices are the same for each particle. This implies that only one particle needs to be dealt
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with to obtain all the matrices ½Si�, ði ¼ 1, 2,…,MÞ. For simplicity, let ½S1� ¼ ½S2� ¼ ⋯½SM� ¼ ½S�.

As a result, the relation between the electric and magnetic fields on all the surfaces can be

written as

ES
1

ES
2

⋮

ES
M

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼

S

S

⋱

S

2

6664

3

7775

HS
1

HS
2

HS
M

8
>>><

>>>:

9
>>>=

>>>;
: (40)

To formulate the field in region Ω0, we introduce the equivalent electric and magnetic currents

Ji and Μi on Siði ¼ 1, 2,…,MÞ. By invoking Huygens’s principle, the scattered fields in region

Ω0, due to the equivalent currents Ji andΜi on Siði ¼ 1, 2,…,MÞ, can be represented as

Esca
0 ¼ ∑

M

i¼1
½Z0LiðJiÞ−KiðMiÞ� (41)

Hsca
0 ¼ ∑

M

i¼1

1

Z0
LiðMiÞ þKiðJiÞ

� �
: (42)

Enforcing boundary condition on Si yields an electric field integral equation (EFIE)

−bni ·Mi þ ∑
M

j¼1
½Z0LjðJjÞ−KjðMjÞ� ¼ −Einc

�����

�����
tan ðSiÞ

(43)

and a magnetic field integral equation (MFIE)

−Ji ·bni þ ∑
M

j¼1

1

Z0
LjðMjÞ þKjðJjÞ

� �
¼ −Hinc

�����

�����
tan ðSiÞ

(44)

where the subscript “ tan ðSiÞ” stands for tangential components of the fields on Si. To remove

the interior resonance, we employ the CFIE, which combines the EFIE and MFIE in the

following form

CFIEi ¼ EFIEi þ bni ·Z0MFIEi (45)

where the subscript i denotes the integral equation is established by enforcing boundary

condition on Si. Using the MOM with RWG vector basis functions, which are completely

compatible with the Whitney vector basis functions [50], the CFIE can be converted into a full

matrix equation
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: (46)
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The expressions of the elements for matrices ½Pij� and ½Qij� and vectors fbig, ði, j ¼ 1, 2,⋯,MÞ

can be found in Ref. [49]. Substituting Eq. (40) into Eq. (46), we obtain the final FE-BI matrix

equation
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(47)

The above equation can be written in a more compact form as
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where Zij ¼ ½Pij�½S� þ ½Qij� are N ·N matrices, Ji ¼ fHS
i g and Vi ¼ fbigði, j ¼ 1, 2,⋯,MÞ are

column vectors of length N, with N being the number of unknowns for magnetic field on

the surface of each particle. The solution to Eq. (51) can be obtained by the CBFM described

in Ref. [47]. It is based on the use of a set of high-level basis functions, called the character-

istic basis functions (CBFs) that are constructed according to the Foldy-Lax multiple scatter-

ing equations. These CBFs are comprised of primary CBFs arising from the self-interactions

from within the particles, and secondary CBFs that account for the mutual coupling effects

from the rest of the particles. Based on the Foldy-Lax equations, the primary CBF for each

particle is constructed by exciting that particular particle with the incident field and ignor-

ing the scattered fields of all other particles. By replacing the incident field with the

scattered fields, the first secondary CBF for a given particle can be constructed. This is

because the primary CBFs induced on all particles except from itself. In this way, additional

secondary CBFs can be constructed similarly. A significant reduction in the number of

unknowns is realized due to the use of these basis functions, which gives a substantial size

reduction in the resultant matrix. Consequently, it enables us to handle the reduced matrix

using a direct solver instead of iteration method. Furthermore, the computational burden

can be significantly relieved since this method only requires the solution of small-size

matrix equations associated with isolated particles. The detailed description of CBFM can

be found in Ref. [49].

4.2. Numerical results and discussion

In what follows, some numerical results are presented. First, we consider the scattering of

Gaussian beam by 125 randomly distributed conducting spherical particles with a radius of
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r ¼ 0:25λ, as shown in Figure 12. The particle positions are generated randomly in a cubic box

with which the fractional volume is 10%. The incident Gaussian beam center is centered at

x0 ¼ y0 ¼ z0 ¼ 0:0, and the angle set of the beam is α ¼ β ¼ γ ¼ 0o. Results of DSCS are

displayed in Figure 13 as a function of the scattering angle in the E-plane. As can be seen from

the figure, the DSCS for Gaussian beams is smaller than that for a plane wave. In addition, for

a Gaussian beam incidence with a relatively large waist radius of ω0 ¼ 20λ, the results are in

excellent agreement with the results in the case of plane wave illumination.

We then consider the multiple scattering of an obliquely incident Gaussian beam by 512

randomly distributed inhomogeneous spherical particles with which the fractional volume is

10%. Each primary particle consists of a conducting sphere with radius r ¼ 0:1λ covered by a

dielectric coating with a thickness t ¼ 0:1λ. The complex refractive index of the coating layer is

m ¼ 1:6−i0:2. The beam waist is centered at ðx0, y0, z0Þ ¼ ð−1:0, −1:0, −1:0Þλ with a beam waist

radius of ω0 ¼ 2:5λ, and the rotation Euler angles are specified as α ¼ 45, β ¼ 45 and γ ¼ 0.

Figure 14 presents the simulated DSCSs as a function of the scattering angle.

Finally, we use the present numerical method to simulate the multiple scattering of Gaussian

beam by 1000 randomly distributed homogeneous dielectric spherical particles with which the

fractional volume is 10%. The radius and the refractive index of the primary particles are

assumed as r ¼ 50 nm and m ¼ 1:6−i0:6, respectively. The wavelength of the incident Gaussian

beam is assumed to be λ ¼ 532 nm. The location of the beam waist center is x0 ¼ y0 ¼ z0 ¼ 0:0,

and the beam waist radius equals to ω0 ¼ 2:0λ. The Euler angles are α ¼ 45, β ¼ 45 and γ ¼ 0.

The DSCS is displayed in Figure 15. Furthermore, the DSCS of the ensembles of randomly

distributed particles for the independent scattering is also calculated. Specifically, an

Figure 13. DSCS for 125 randomly distributed conducting spherical particles.
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Figure 15. DSCS for 1000 randomly distributed homogeneous dielectric spherical particles.

Figure 14. DSCS for 512 randomly distributed inhomogeneous spherical particles.
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individual particle is assumed to scatter light without interactions with other particle in the

ensemble. The computed DSCS for the independent scattering is displayed in Figures 16 and

17. Comparisons between independent scattering and the multiple scattering are made. The

Figure 17. Comparison of the DSCS for the independent scattering and the multiple scattering: H-plane.

Figure 16. Comparison of the DSCS for the independent scattering and the multiple scattering: E-plane.
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results show that the interactions of the particles lead to a reduction in the scattering intensi-

ties, which are identical to the general idea of scattering theory.
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