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Abstract

Opportunistic fungal infections are a major health problem being appointed by some 
studies as the fourth main cause of hospital-acquired infection in susceptible popula-
tions. The constantly growing incidences of these diseases are associated with the 
growing number of susceptible individuals, such as immunocompromised individuals 
(leukemia, AIDS, etc) and treatment-induced immunodeficiency (hematopoietic stem 
cell, solid organ transplant, anticancer therapy). Furthermore, other advances in medical 
care, patient’s long-term hospitalization and antimicrobial therapies have created sev-
eral vulnerable populations to fungal infections. Currently, antifungal drug therapies 
are several times inefficient, and the poor outcomes are linked to difficulties in the early 
diagnosis of fungal infections and drug resistance among fungal pathogens. In this con-
text, novel therapeutic approaches are welcome to stimulate efficiently the host immune 
response to eliminate the fungal pathogen. This chapter is intended to review advances 
in immunotherapy strategies for fungal infections.

Keywords: immunotherapy, vaccination, immune enhancement, fungal infections, 
antifungal

1. Introduction

Fungi are eukaryotic organisms ubiquitous in the environment, are considered the major 

decomposers in certain ecosystems, are essential to the survival of many organisms which 

they can be associated and are sources of food, several enzymes and drugs. There is an esti-

mate of the existence of more than 5 million of fungal species, of that around 70,000 were 

described [1]. However, only a few hundred of them can also cause disease in healthy and 

immunocompromised humans [2, 3]. It was accepted that fungi and other pathogenic micro-

organisms can cause disease all by themselves through four basic conditions, also known as 
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“virulence factors”: (i) tolerance to the host body temperature; (ii) ability to colonize and/

or invade the host; (iii) production of secreted components such as toxin and proteolytic 

enzymes associated with the processes of lysis and absorption of host tissue and (iv) evasion 

and/or resistance to the host immune system [2, 4].

Based on this germ theory, antimicrobial therapies options targeted these virulence factors 

and have focused on the development of pharmacological products designed to kill the 

pathogenic microorganisms and immunological interventions that overcame the deleterious 

effects of their virulence factors [5]. Interestingly, the Damage-Response Framework theory, 

which was first proposed in 1999, emphasizes that disease state is not unidirectional and that 
both the pathogenic microorganism and the host contribute to pathogenicity and virulence 

[6]. Additionally, recent studies on the human mycobiome, that is, the collection of fungi 

distributed across and within the body, show that despite being as low as ≤0.1% of the total 
microbiota, these microorganisms can participate and modify several physiological functions 

of the host, including the maintenance of microbiota community structure, metabolic func-

tions and in the development and function of the immune system [7].

Fungal infections contribute substantially to human morbidity and mortality, and despite 

the availability of several antifungal drugs, high rates of mortality associated with invasive 

fungal infections often exceed 50% [8]. In this context, in order to achieve a reduction in the 

global burden of fungal infections, is urgent the development of new safer and more effective 
antifungal drugs [9], as well as novel immunotherapeutic strategies that allow the restoration 

of the host immune system [10] and maintain or improve the favorable interactions between 

microbiota and host [11]. In this context, immunotherapy represents a therapeutic modality 

that attempts to augment host immune response and to control the established infection. In 
this chapter, we review the principles of antifungal immunotherapy.

2. Immunological aspects of fungal infections

The host defense mechanisms against fungi range from the protective mechanisms provided 

by skin, mucosa and innate immunity to sophisticated adaptive mechanisms (adaptive immu-

nity), which are specifically induced during the fungal infection/disease. The activation of the 
innate immunity is the first line of host antifungal defenses and is mediated by phagocytic 
cells (polymorphonuclear and mononuclear leukocytes and dendritic cells (DCs)), cellular 

receptors and several humoral factors that act by (i) direct destruction of the fungi through 

phagocytic process or secretion of microbicide compounds and/or (ii) initiation and subse-

quent direction of adaptive immune responses through the production of pro-inflammatory 
mediators (chemokines and cytokines), induction of co-stimulatory activity by phagocytic 

cells and uptake, processing and presentation of antigens [12, 13].

The components of the fungal cell wall are the first structures that interact with the host innate 
immune system, and the response to a fungal invasion is initiated through recognition of 

pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns 
(DAMPs) present during infection by pattern recognition receptors (PRRs). The PRRs are 
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present in the immune cells of the myeloid lineage (dendritic cells, macrophages, monocytes 

and neutrophils) and nonmyeloid (epithelial and endothelial cells) [12]. The binding of PRR 
with fungal PAMPs, such as polysaccharides (chitin, α and β-glucans, mannans) and fungal 
DNA, results in the activation of intracellular signaling pathways promoting phagocytosis, 

cytokine production, respiratory burst and cell maturation [14].

Several families of PRRs are related to the recognition of cell wall components of fungi through 
the use of distinct ligand recognition domains, including Toll-like receptors (TLR), C-type 

lectin receptors (CLR) and proteins of galectins family [12, 15]. The PRRs present in different 
phagocytic cells initiate intracellular events that promote the activation of the immune system 

and clearance of fungi, with the specific immune response generated depending on the cell 
type involved (monocytes, macrophages and neutrophils) [16]. Induction of innate immunity 

by means of PRR activation provides the basis for developing a subsequent adaptive immune 
response, and dendritic cells form the interface between the innate and adaptive immune 

system, since these cell lineages are able to acquire antigens in peripheral tissues, mature and 

migrate to lymphoid organs, where they provide appropriate signals to T lymphocytes [17].

The adaptive immunity is generated by clonal selection of lymphocytes in response to spe-

cific microbial antigens, which can result in the development of immunological memory. The 
production of cytokines that occurs after the interaction of PRRs with fungal PAMPs drives in 
the differentiation of naïve T lymphocyte in different subtypes, such as T helper (Th) 1, Th2, 
Th17 and T regulatory (Treg). During the response process and after the immune activation,  

T cell subtypes express different pro- and anti-inflammatory chemokines and cytokines, 
which mediate different effector functions [18].

It is important to emphasize that a fine balance between pro- and anti-inflammatory signals 
is a prerequisite for successful control of infection. If on one hand, the early inflammation 
prevents or limits the fungal infection, on the other hand, the uncontrolled inflammatory 
response may eventually act in opposition to eradicate the disease [19]. Thus, a successful 

immune response against a fungal infection requires (i) resistance mechanisms, that is, abil-

ity to reduce pathogen burden through innate (e.g., dendritic cells) and adaptive (e.g., Th1, 

Th2, Th9, Th17 and Th22 cells) immunity and (ii) tolerance mechanisms, that is, ability to 
protect and/or limit the host from immune- or pathogen-induced damage (e.g., Treg cells and 

enzymes involved in tryptophan metabolism) [18, 20].

The consensus is that Th1 cellular responses are the main defense mechanism of the host 

against pathogenic fungi, whereas Th2 responses are associated with susceptibility to infec-

tions or allergic responses [21]. Th1 cells are predominantly related to protective immunity 

against fungi and effective antifungal vaccines [12]. Interferon-γ (IFN-γ) is the main cytokine 
produced by Th1 cells and is important for the stimulation of the antifungal activity of neu-

trophils [21]. Interleukin (IL)-4, IL-5 and IL-13 are cytokines produced during Th2 immune 

responses, promote an alternative route of macrophage activation, favor fungal infections and 

allergic responses associated with the fungus and may be related to disease recurrence [12].

Th17 responses are characterized by the production of IL-17, working in the host defense 

against certain extracellular bacteria and fungi [22], and are related to protective vaccine 

responses against experimental fungal infections [23]. However, Zelante et al. [24] described 
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that IL-23 and the Th17 pathway can also promote inflammation and impair antifungal 
resistance. Treg cells by IL-10 production have the function of moderating the inflamma-

tory response during infection to limit damage to the host cells and restore homeostasis [25]. 

However, this response may limit the effectiveness of the protective immune response as a 
result of the reduction of pro-inflammatory activity generating persistence of the fungus in 
the tissue and can lead to immunosuppression [21].

3. Cell-based therapies

3.1. Granulocyte transfusion

Polymorphonuclear leukocytes are specialized cells found in the bloodstream that can 
directly attack microorganisms through phagocytosis, release of soluble antimicrobials and 
generation of neutrophil extracellular traps, playing an essential role in host defense against 

pathogenic bacteria and opportunistic fungal pathogens [26, 27]. Granulocyte transfusion 

is reserved for patients with prolonged neutropenia and life-threatening infections that are 

resistant to conventional treatment and is intended to improve the side effects of neutropenia 
and enhance repopulation of granulocytes [28–31].

Early studies of Strumia [32], Brecher et al. [33] and Freireich et al. [34] are among the pio-

neering research work to propose the infusion of neutrophilic granulocytes from donors as an 

option to enhance host defenses in patients with neutropenia. Pedersen et al. [35] reported that 

the combination of granulocyte transfusion with trimethoprim-sulfamethoxazole resulted in 

the successful treatment of a refractory Pneumocystis carinii pneumonia in an 11-year-old girl 

with chronic granulomatous disease. In a retrospective study, Bhatia et al. [36] evaluated the 

efficacy of granulocyte transfusion in 87 bone marrow transplant recipients during the first 
100 days following the transplantation. No clinical benefit of granulocyte transfusion among 
50 of these patients could be shown in the resolution of candidiasis or noncandidal infections. 

In a meta-analysis of 32 studies, Strauss [37] described that from 63 patients with invasive fun-

gal infections and receiving granulocyte transfusion, only 18 (29%) had successful outcomes.

Based on these and other contradictory results, for a period of time, it has been suggested that 

there is no strong evidence that granulocyte transfusion consistently brings benefits for the 
treatment of invasive fungal infections. However, the advances in the cytapheresis technology 

in the last decades optimize the allogeneic or autologous collection of several types of blood 

leucocytes to be used in transfusion therapies, which renewed the interest in granulocyte 

infusions [38–40].

Price et al. [41], in a phase I/II trial of neutrophil transfusions from donors stimulated with 

granulocyte colony-stimulating factor (G-CSF) and dexamethasone, demonstrated that four of 

the seven patients with candidemia cleared the infection and, in contrast, none of the patients 

with aspergillosis (n = 5) or fusariosis (n = 3) were able to clear the infection. Mousset et al. [42] 

in a prospective, nonrandomized study demonstrated a good clinical efficacy of granulocyte 
transfusions to prevent recurrence of severe fungal infections during hematopoietic stem cell 
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transplantation or intensive chemotherapy (23 episodes). However, in a randomized phase 

III study with 74 neutropenic patients, Seidel et al. [29] concluded that there was no effect on 
survival of 55 patients with invasive fungal infection up to day 100.

Several case series and case reports [31, 43–46] provide evidence for the safety and feasibil-

ity of granulocyte transfusions in patients with severe neutropenia and uncontrolled fungal 

infections. Thus, although the role of therapeutic granulocyte transfusions remains controver-

sial, future randomized controlled studies will clarify the use of the granulocyte transfusion 

as a life-saving treatment option [47].

3.2. Dendritic cell therapy

Dendritic cells (DCs) are the bridge between the innate and adaptive immune system by sens-

ing the fungal pathogen via their PRRs, phagocytizing fungal particles, processing and secret-
ing cytokines and chemokines into the environment and presenting antigens to Th cells to 

induce an adaptive immune response [48]. This remarkable functional plasticity of DCs has 

been explored for the development of fungal vaccines [49], whereas DCs transfected with 

yeast cells, yeast RNA or conidia (but not hyphae or hyphal RNA) induce a protective Th1 

response [50].

Induction of an adoptive immunity to Aspergillus using DCs pulsed with live conidia or 

transfected with conidial RNA [51] or primed with CpG oligodeoxynucleotides and pulsed 

with Aspf16 antigens [52] triggers specific and protective Th1 response in murine models of 
hematopoietic stem cell transplantation (HSCT). DCs transduced with an adenovirus vector 

encoding the cDNA of IL-12 and pulsed with heat-inactivated Aspergillus fumigatus induce 

a protective response (lower fungal burdens and higher survival rate) against a model of 

invasive pulmonary aspergillosis [53]. Stimulation of Asp f16-specific T cell responses are 
more effective by using a protocol of antigen presented on DC followed by Epstein-Barr virus 
(EBV)-transformed B lymphoblastoid cell lines (BLCL) as antigen-presenting cells [54].

Protection against disseminated candidiasis in mice was observed with DCs pulsed with 
cell wall proteins expressed during infection, particularly those derived from fructose-

bisphosphate aldolase, which induced a robust antibody-dependent protective responses 

against Candida albicans [55]. Bone marrow-derived dendritic cells pulsed with an acapsular 

Cryptococcus gattii strongly induced cytokine-producing CD4 T cells and multinucleated giant 

cells, and these were associated with a protection against a Cryptococcus gattii model of pul-

monary cryptococcosis [56].

3.3. Adoptive T-cell transfer

Adoptive T cell transfer is an immunotherapy strategy used to treat cancer and chronic infec-

tions by intravenous injection of autologous T cells, which was, after isolated from the donor, 

stimulated in vitro with antigens or modified with a gene encoding a specific antigen receptor 
and expanded to a large quantity before infusion back into the patient [57]. Th1 lymphocyte 

responses confer significant protection against fungal infections [18], and the pivotal role of 
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CD4+ T cell has led to increasing interest and investigation of the use of adoptive transfer of 

CD4+ cells in the prophylaxis and treatment of invasive fungal infections [58].

Perruccio et al. [59] used heat-inactivated conidia of A. fumigatus to generate specific T-cell 
clones in vitro, which was infused soon after hematopoietic transplantation in 35 patients. 

High-frequency T-cell responses to pathogen within three weeks infusion were associated 

with control of Aspergillus antigenemia and infectious mortality. In contrast, spontaneous 

pathogen-specific T cells in 46 transplant recipient patients who did not receive adoptive ther-

apy occurred in low frequency as late as 9–12 months after transplantation and displayed a 
nonprotective, type-2 cytokine profile. However, commonly used immunosuppressants such 
as cyclosporine A, mycophenolic acid and methylprednisolone decreased the number of anti-

Aspergillus Th1 cells and the expression of CD154 by anti-Aspergillus Th1 cells, which may 

limit using this type of immunotherapy for organ transplant recipients [60].

Prolonged survival rates were observed in a model of mice invasive pulmonary aspergil-
losis after the adoptive transfer of splenic CD4+ T cells from mice previously sensitized with 

a crude culture filtrate antigens of A. fumigatus [61]. In BALB/c mice, the cell glucanase Crf1 

from A. fumigatus induces memory CD4+ Th1 and cross-protection against lethal infection 

with C. albicans [62]. In addition to Crf1, A. fumigatus proteins Gel1 and Pmp20 are described 
as strong inducers of Th1 responses in healthy individuals [63]. Tramsen et al. [64] reported a 

clinical scale generation of multi-specific antifungal T cells protocol based on the use of cellu-

lar fungal extracts of A. fumigatus, C. albicans and Rhizopus oryzae that allow the generation of 

numerous activated memory Th1 cells that respond to a broad spectrum of fungal pathogens. 

The data from these and similar studies [65, 66] support the development of adoptive T-cell 

transfer protocols for the therapy of multiple microbial pathogens as well as in prophylaxis/

vaccination protocols [67].

Despite the main role of CD4+ Th1 cells for host defense against pathogenic fungi, current find-

ings highlight the effector functions of CD8+ T cells against these pathogens [10, 68]. Adoptive 

transfer of Aspergillus f16 peptide-specific CD8+ T cells extended the overall survival time of 

A. fumigatus-infected immunocompromised mice [69], supporting alternative adoptive T-cell 

treatments for hosts with progressive depletion of CD4+ T lymphocytes and at high risk of 

invasive fungal infections.

3.4. B cell and natural killer cell treatment

B cells and natural killer (NK) cells are other cell lineages that have been evaluated for its anti-

microbial activity through adoptive transfer procedures. Hoyt et al. [70] demonstrated that 

adoptive transfer of B cells into mice lacking both lymphocytes and type I IFN receptor and 

with Pneumocystis murina lung infection maintained early hematopoietic progenitor activity 

during immune responses against the infection, thus promoting replenishment of depleted 

bone marrow cells in an IL-10- and IL-27-dependent manner mechanisms possibly by stimu-

lation of dendritic cells/macrophages.

NK cells are innate lymphocytes that exhibit both adaptive and innate features and that can 

be activated in the presence of infected cells, allogeneic cells or transformed cells, for acting 
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on antigen-specific recognition and mounting rapid effector responses such as rapid cytolytic 
and cytokine activity and antibody secretion [71] as well as in the immunological memory 

process [72]. Park et al. [73] described that the NK cells mediate their protective effect in the 
lungs of neutropenic mice with invasive aspergillosis by acting as the most important source 

of IFN-γ during the early stages of infection. Additionally, the transfer of activated NK cells 
from a wild-type host to both IFN-γ-deficient and wild-type recipients resulted in a more rapid 
clearance of A. fumigatus from the lungs. Bouzani et al. [74], similarly, concluded that NK cells 

mediate anti-Aspergillus activity through an alternative mechanism involving IFN-γ and tumor 
necrosis factor (TNF)-α secretion and not through degranulation of their cytotoxic proteins.

NK cells, directly and indirectly (through IFN-γ), showed killing activity against A. fumigatus 

hyphae, but lack activity against infecting conidia [75]. Based on these observations, adoptive 

immunotherapy with NK cells represents a potential alternative to be used alone or in combi-

nation with other antifungal therapies, but should have limited role in prophylactic strategies 

against aspergillosis.

4. Cytokine therapy

Cytokines are intercellular regulatory polypeptides or glycoproteins that promote growth, 

differentiation and activation of normal cells and play an essential role on immunomodula-

tion and inflammatory processes. If on one hand, the determination of a patient cytokine pro-

file may indicate the status of the disease, on the other hand, the therapeutic administration 
of cytokines can result in a favorable immunomodulation for the treatment of autoimmune, 

neoplastic and infectious diseases [76].

4.1. Colony-stimulating factors (CSFs)

Granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating fac-

tor (M-CSF) and GM-CSF are used to accelerate myelopoiesis in neutropenic patients and 
as immune enhancing agents. G-CSF is widely used during chemotherapy neutropenia in 

clinical practice to prevent immune dysregulation and accelerated functional immune recov-

ery [77]. G-CSF not only increases neutrophil production but also significantly enhanced 
polymorphonuclear-mediated killing of A. fumigatus and Rhizopus arrhizus but not against  

C. albicans [78]. In a mice model of experimental disseminated candidiasis, the treatment with 

recombinant G-CSF (rG-CSF) leads to significantly reduced mortality. However, it is less 
effective in subacute or chronic disseminated candidiasis. Additionally, combination of rG-
CSF and fluconazole results in an additive effect on the reduction of fungal load in the organs 
[79]. Combination of G-CSF and caspofungin or caspofungin plus amphotericin B-intralipid 

reduced the fungal burden in organs, decreased the detection of serum galactomannan and 

increased survival rate up to 78.9% of infected mice with A. fumigatus [80]. Favorable clinical 

response was also observed in 15 of 18 patients with mucormycosis [81]. While G-CSF clearly 

reduces the neutropenic period of patients, more data about clinical outcomes in  fungal 

 infections are needed [82, 83].
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Human macrophage colony-stimulating factor (hM-CSF) slightly prolonged survival of lethal 
C. albicans infection in mice and enhanced the efficacy of amphotericin B by enhancing the 
growth-inhibitory activities of both macrophages and neutrophils against Candida [84]. In a 

neutropenic rabbit model of pulmonary aspergillosis, M-CSF administered prophylactically 
significantly increased survival and decreased pulmonary injury, probably through increased 
phagocytosis of A. fumigatus conidia by alveolar macrophages [85]. Recombinant human mac-

rophage colony-stimulating factor (rhM-CSF) associated with standard antifungal therapy, 
into a phase I/II trial, was administrated to 46 bone marrow transplant patients from day  

0 to 28 after determination of progressive fungal disease. Survival of these patients was higher 

(27% v 5%) when compared with 58 similar historical controls [86].

GM-CSF significantly enhanced both the killing by neutrophils and monocytes and the 
 collaboration of these cells with voriconazole for killing C. albicans [87]. GM-CSF blocks the 
in vivo immunosuppressive effects of dexamethasone on bronchoalveolar macrophages, kill-
ing of A. fumigatus conidia and suggests its use in patients at risk of pulmonary aspergillosis 

in the course of dexamethasone treatment [88]. Similarly, Quezada et al. [89] demonstrated 

that GM-CSF administered intranasally to immunosuppressed mice infected with pulmonary 
aspergillosis reduced the lung fungal burden compared to the control.

Wildbaum et al. [90] related a patient with chronic mucocutaneous candidiasis that quickly 

went to a complete clinical remission with improvement in his/her monocyte and neutrophil 

functions after intravenous GM-CSF treatment (leucomax, 800 mg twice a week). Safdar  
et al. [91] retrospectively assessed 66 patients in whom GM-CSF was given during antifungal 
therapy, for which more than half of partial or complete response was observed. Wan et al. 

[92], in a prospective multicenter randomized phase IV trial with 206 patients, showed that 

GM-CSG for prophylaxis of infection after allogeneic transplantation was more effective 
than G-CSF alone in decreasing 100-day cumulative-, transplantation- and infection-related 

mortalities. Further studies to assess the use and efficacy of CSFs in the treatment of invasive 
fungal infections are needed.

4.2. Pro-inflammatory cytokines

Several studies demonstrate that immunomodulation with a variety of cytokines can enhance 

the antifungal activity of neutrophils and monocytes/macrophages as well as upregulation of 

protective Th1 immune response [93, 94]. Of these, interferon-γ (IFN-γ) produced by T and 
NK cells is a key cytokine in both the innate and adaptive immune response against invasive 

fungal infections, for which there are randomized controlled clinical trials [95, 96].

IFN-γ, in vitro, effectively primed neutrophils and mononuclear cells for enhanced fungal 
damage against A. fumigatus, Fusarium solani and C. albicans, as well as the stimulation of other 

cytokines [97]. In experimental animal models of fungal infections, IFN-γ had efficacy in a 
systemic cryptococcosis infection in mice, especially in combination with amphotericin B [98], 

and enhances host resistance against acute disseminated C. albicans in mice [99] and in murine 

invasive models of aspergillosis [100, 101]. However, inconsistent results were observed in a 

murine model of candidiasis when different strains of mice were used [102].
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In a phase II, double-blind, placebo-controlled study, Pappas et al. [96] evaluated the safety 

and antifungal activity of adjuvant therapy with recombinant IFN-γ in patients with AIDS 
and acute cryptococcal meningitis. The results suggested that recombinant IFN-γ induces a 
more rapid sterilization of the cerebrospinal fluid and better clinical outcome. Similar results 
were observed in a randomized controlled trial conducted by Jarvis et al. [95]. The addition of 

short course IFN-γ (100 or 200 µg) to conventional antifungal therapy significantly increased 
the rate of negative cerebrospinal fluid culture. Guidelines for management of cryptococcal 
disease suggest that the adjunctive immunological therapy with recombinant IFN-γ can be 
considered for refractory cases [103].

The adjunctive immunotherapy with recombinant IFN-γ partially restored cell-mediated immu-

nity and enhanced antifungal immunity in a prospective case series describing eight patients 

with invasive Candida or Aspergillus infections [104]. Other case reports have described the suc-

cessful treatment of invasive aspergillosis with the combination of IFN-γ and antifungal therapy 
[105–108]. Adjunctive therapy with interferon-γ, GM-CSF or G-CSF showed good functional 
outcome in a case of Scedosporium apiospermum otomastoiditis and in a case of Mucor sinusitis 

and orbital cellulitis refractories to treatment with conventional antifungals [109]. However, for 

invasive mold infections, more data and randomized controlled clinical trials are needed.

IFN-γ, in combination with antimicrobials drugs, is currently recommended in prophylaxis 
of patients with chronic granulomatous disease (CGD), a population for which invasive fila-

mentous fungal infections are a persistent problem [108, 110].

IL-12, IL-15 and TNF-α are other pro-inflammatory cytokines that have been assessed in pre-

clinical trials as candidate adjuvant since they also upregulate the antifungal Th1 response 

[94]. IL-12 plays an obligatory role for the development of a Th1 response to Candida [111] 

and Cryptococcus neoformans [112], enhances the antifungal capacity of monocytes against  

A. fumigatus in vitro and has also been explored in immunotherapeutic proposals for various 

animal models of cryptococcal infections [113]. IL-12 gene therapy enhanced the host response 

against experimental coccidioidomycosis [114] and accelerated the clearance of infection in a 

murine Pneumocystis pneumonia model [115]. However, the use of IL-12 as immune enhancer 

remains controversial because this cytokine may paradoxically increase the susceptibility of 

the host to fungal pathogens [116, 117].

IL-15 is involved in the innate immunity against fungal infections and, similarly like IL-12, 

enhances the antifungal activity of granulocyte or monocyte cells against C. albicans, A. fumig-

atus, Fusarium spp. and Scedosporium spp. [118–121]. Although IL-15 has been potential as 

a new therapeutic option against invasive fungal infections, more information from future 

preclinical and clinical trials is needed.

TNF-α is necessary for the development of effective immunity to fungal infections [94], 

enhancing the activity of granulocyte cells against A. fumigatus, C. albicans and Cryptococcus 

neoformans [93, 122–124]. In a murine invasive pulmonary aspergillosis model, antibody-

mediated neutralization of TNF-α increases mortality, whereas the intratracheal administra-

tion of a TNF-α agonist peptide improved survival [100]. Additionally, stimulatory/protective 

effect of TNF-α is also described against cryptococcal infections [113].
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4.3. Other cytokines

Several other cytokines have been shown to be involved in the immune process during 

fungal infections and may be targets for future immunotherapy proposals. Gresnigt et al. 

[125] described the biological relevance of IL-36 in a pathway involved in the induction of 

Th responses by A. fumigatus. Nlrp3, Asc and caspase-1 mediated Paracoccidioides brasilien-

sis-induced IL-18, and the activation of the inflammasome is associated with a strong Th1-
mediated immune response and, consequently, host antifungal defense against Paracoccidioides 

brasiliensis [126]. IL-7 is potent immunotherapeutic that acts at multiple levels to improve host 

immunity. In mice infected intravenously with C. albicans, the treatment with IL-7 weakened 

the infection and improved the host survival rates [127]. IL-18 contributes to host defense 

against Cryptococcus neoformans and Paracoccidioides brasiliensis [126, 128].

5. Antibody-based therapy

Antibodies or immunoglobulins are heterodimeric proteins composed of two heavy and two 

light chains, which are associated with the specific humoral immunity and primary defense 
against several infectious diseases [129–132]. The protective potential of antibodies produced 

during fungal infections can be accomplished by indirect and direct mechanisms and can vary 

depending on certain factors, such as the isotype, subisotype and title of antibodies and major 

histocompatibility complex background of the host [132, 133].

The interest in the potential benefit of antibody-based therapy for invasive fungal infections 
starts with Dromer et al. [134] describing that the intraperitoneal administration of a monoclo-

nal IgG1 anti-Cryptococcus neoformans antibody could be used as a passive serotherapy, partic-

ipating in the prevention or treatment of experimental cryptococcosis and with Gigliotti and 
Hughes [135] describing that the use of the monoclonal antibody (mAb) M5E312 was capable 
of hindering the development of an experimental murine Pneumocystis carinii infection.

Efungumab (Mycograb®) and the 18B7 (mAb) are two examples of antifungal mAbs evaluated 
in clinical trials. 18B7 mAb is a murine IgG1 that demonstrated acceptable safety in a phase 

I dose-escalation study in subjects with treated cryptococcal meningitis [136], but efficacy 
data for this therapy have not been generated. However, as reviewed by Larsen et al. [136], 

the administration of mAb against C. neoformans capsular polysaccharide to infected mice 

prolonged survival, reduced tissue burden, enhanced granuloma formation and enhanced 

antifungal activity of amphotericin B, fluconazole and flucytosine. These data support the 
continued investigation of this mAb.

Efungumab (Mycograb®) is a human genetically recombinant antibody that binds to the 
Candida heat-shock protein 90 (HSP90), preventing a conformational change needed for fun-

gal viability [137]. Mycograb® showed protective activity against several Candida species and 

synergized with antifungal drugs when evaluated in vitro and in preclinical studies [138–140]. 

In a clinical trial, the treatment with lipid-associated amphotericin B in combination with 

Mycograb® produced significant clinical improvement in outcome for patients with invasive 
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candidiasis [141] when compared with the lipid-associated amphotericin B monotherapy. 

However, due to production difficulties, safety and quality issues, the drug was refused to 
grant marketing authorization.

Another immunoglobulin-based strategy was the production of anti-idiotypic monoclonal 

antibodies [142]. These mAbs that specifically reacting with killer toxins (KT) from Pichia ano-

mala and Williopsis mrakii have broad antimicrobial spectrum and demonstrated in vitro simi-

lar activity to polymorphonuclear neutrophils against the hyphae and germinated conidia 

of A. fumigatus and in vivo protected immunocompromised mice with invasive aspergillosis 

from infection [143]. Similar results were observed against C. albicans in vitro and in vaginal 

and systemic murine models of candidiasis [144, 145].

Radioimmunotherapy uses the interactions between a fungal antigen and antibodies labeled 

with radionuclides to deliver cytocidal amounts of ionizing radiation to the specific target 
[146]. The advantages attributed to this immunotherapeutic method over standard antifungal 
therapy include: (a) it completely destroys the target cell by lethal radiation, delivers without 

the need of interaction with specific metabolism of the pathogen; (b) it is less subject to drug 
resistance mechanisms and does not suffer the drug-drug interactions that can be observed 
with some antifungals and others drugs; (c) it may permit single or a limited number of doses 

for the treatment of fungal diseases in contrast to weeks, months or years required to combat 

certain mycoses with antifungal drugs; (d) mAbs can be radiolabeled to bind antigens shared 

by many pathogenic fungi, such as heat-shock protein 60, β-(1,3)-glucan, ceramide and mela-

nin [146–148].

Protection against experimental Cryptococcus neoformans and Histoplasma capsulatum infec-

tions was described using the radioimmunotherapy, whose mechanisms include killing 

of microorganism cells by “direct hit” and “cross-fire” effects, promotion of apoptosis-like 
death, cooperation with macrophages and modulation of the inflammatory response [149, 

150]. The effects of this therapy on bystander mammalian cells demonstrated minimal effects 
on host cells [151]. Reviews conducted to discuss the efficacy, toxicity, radiation resistance, 
radiobiological mechanisms and comparison with standard antifungal treatments [152] and 

the possibility of developing “panantibodies” for a universal treatment of the fungal diseases 

[148] suggest that this immunotherapeutic modality is a promising alternative for the treat-

ment of invasive fungal infections.

Antibodies like anti-β-glucans demonstrated protection against A. fumigatus, C. albicans and 

Cryptococcus neoformans [153–155]. Similarly, anti-melanin antibodies inhibit the growth and 

protection against C. neoformans and Fonsecaea pedrosoi and potential cross-resistance against 

various other fungi [156, 157].

Although most studies evaluate the antibodies that neutralize or kill the fungal pathogens 

[132], is growing the interest in the development of antibodies that can modulate the immune 

system and bring benefits to the host. For instance, through different immunomodulatory 
processes, 3B4 antibody protected mice from C. albicans-induced death in passive immuni-

zation [158], an agonist antibody CD40 prolonged the survival time of mice infected with 

Cryptococcus neoformans [159], anti-CD25 treatment decreased disease severity in the pro-

gressive and regressive forms of paracoccidioidomycosis [160], anti-PD-1 and anti-PD-L1 
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mAbs improved survival in fungal sepsis by C. albicans [161] and anti-CD3 antibody rapidly 

reversed the pathologic immune response caused by Pneumocystis carinii in a murine model 

of pneumonia [162].

6. Antifungal vaccines

The evaluation of antifungal vaccines has a great interest, but their development is challeng-

ing [10]. Antifungal vaccines are becoming a need in clinical settings, principally of immu-

nocompromised and debilitated patients who are more prone to develop aggressive fungal 

infections. However, its use is limited by the weak immune response of these patients to 

respond vigorously to vaccination [163]. In this way, researchers made considerable progress 

in the last years, leading to more specific and well-characterized vaccines. Indeed, many anti-
fungal vaccine candidates had been reported, and some have undergone preclinical evalua-

tion and at least two are on the phase I clinical trials [164].

Studies on vaccination against fungal infections are conducted with whole-cell inactivated, 

live or attenuated fungi, cell wall subunits and the transfer of passive or adoptive immunity 
[165]. Usually, whole-cell inactivated vaccines are poorly immunogenic and have the disad-

vantage of having a complex chemical composition making it difficult to standardize [163]. In 

contrast, live virulence-attenuated vaccines are the best immunogens to achieve protection, 
but are unsafe in immunocompromised or otherwise debilitated patients, and even attenu-

ated microorganisms can sometime cause disease in this subset [165]. In this way, subunit 

vaccines could be the best choice with regard to standardization and safety, but it lacks the 

natural adjuvant properties of whole-cell or live vaccines and usually needed an adjuvant to 

increase immunogenicity [10]. In animal models, the use of adjuvants is not a problem, since 

various adjuvants, such as Freund and aluminum hydroxide among others, have been very 

useful, but in humans, there is a scarcity of good adjuvants suitable for use in clinical practice 

[165]. Several adjuvants have been tested in recent years like the use of liposomes, virosomes, 

fungal immunogenic moieties and other bioengineered preparations and have proven useful 

[165, 166].

Protective immunity triggered by vaccination depends on both T-cell responses, particu-

larly Th1 and/or Th17, and antibody responses which in turn are dependent on the kind of 

immunogens delivered to immune system [165]. A study conducted with a hyphal sonicate 

of A. fumigatus administered subcutaneously in corticosteroid immunosuppressed mice dem-

onstrated that it was capable of conferring protection against invasive pulmonary aspergil-

losis [167]. Several studies have been conducted using the culture hypha filtrate, sonicated 

or vortexed hypha and demonstrated some degree of protection [168–171]. PitiumVac®, a 
licensed immunotherapy to treat equine pythiosis in Brazil, is an example of the use of dis-

rupted hyphae, and its use reaches a cure rate of 70–80% [172, 173]. Despite the good curative 

properties of PitiumVac®, it does not present protective activity [174].

Various investigations have reported that heat-killed yeasts (HKY) of Saccharomyces cerevi-

siae given subcutaneously in mice are protective against fungi from five genera: Aspergillus, 
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Coccidioides, Cryptococcus, Candida and Rhizopus [175–179]. Analysis of the underlying immune 

responses associated with HKY-induced protection of the host suggested that HKY vaccina-

tion induces significant and specific Th1 response and antibodies to glucan and mannan [180]. 

The components of HKY responsible for the cross-protective response against these infections 

are not known, but several homologous proteins and key cell wall glycan components shared 

among fungi have been described [177, 181, 182]. These results in combination with studies 

that demonstrated the safety of yeast-based vaccines in humans are suggestive that a pan-

fungal yeast-based vaccine is possible [178, 183].

A recombinant live attenuated strain of Blastomyces dermatitidis null for the adhesion BAD1 

(identified as a virulence factor) given subcutaneously as a vaccine protects mice from a lethal 
blastomycosis infection, and a Th1 response was linked with vaccine-induced resistance 

[184]. A study about safety, toxicity and immunogenicity of this vaccine in dogs proved to 

be save, well tolerated and the cytokine profile observed belonging to Th1 response (INF-γ, 
TNF-α and GM-CSF) [185]. Subsequent study, with this same vaccine, demonstrated that a 

Th1 response is dispensable and that Th17 cells are sufficient for vaccine-induced protection 
against a lethal pulmonary blastomycosis in mice [23]. Indeed, other two different live attenu-

ated vaccines prepared with strains of Histoplasma capsulatum and Coccidiodes posodassi were 

tested and were found to protect mice from these endemic mycoses by a mechanism depen-

dent upon Th17 cells [23, 186]. Another experimental live attenuated vaccine has been tested 
against hematogenously disseminated candidiasis, and it is based on a genetically engineered 

C. albicans tet-NRG1. Under certain conditions, this strain remains in the yeast phase and is 

nonpathogenic when administered to mice as a vaccine and resulted in substantial protection 

from virulent strain [187].

7. Fungal antigens

Components from fungal cell are able to modulate the Th response, particularly the mol-

ecules from their cell wall components, notably carbohydrates and glycoproteins, which are 

related to the induction of a Th1 and/or Th17 responses [12, 188]. These carbohydrates include 

β-glucans (β-1,3-linked polymers of glucose with β-1,6 branches), chitin (homopolymer of 
N-acetylglucosamine) and mannans (mannose chains of varying lengths and configurations 
added to fungal proteins through N- or O-linkages) [16]. In addition, some fungal proteins 

appear to activate monocytes and can be used as adjuvants in specific immunotherapy.

Fungal β-glucans activity has been researched for over 50 years with the focus principally 
on the glucans from yeasts (S. cerevisiae) and mushrooms (Lentinan edodes, Schizophyllun com-

mune and Ganoderma lucidum) [189, 190]. Most of the fungal β-glucans markedly stimulate 
the immune system, and they are considered as biological response modifiers with pro-

nounced immunomodulating activity against infectious disease and cancer [191]. Different 
immunological pathways have been related to the biological activities of β-glucans, as well 
as improvement in phagocytosis and proliferative activities of professional phagocytes (i.e., 

granulocytes, monocytes, macrophages and dendritic cells), T and NK cells stimulation, and 
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activation of the alternative pathway of complement [192]. In mammals, β-glucans are recog-

nized by dectin-1 and complement receptor 3 (CR3), and its preparations derived from fungi 

have a record of safety in both preclinical and human trials [193, 194].

Torosantucci et al. [154] were the first to link the use of a β-glucan and the induction of pro-

tective antibodies against different fungal infections. In their study was used the algal glucan 
laminarin conjugated with the diphtheria toxoid CRM197 for mice immunization that showed 
the ability of this glycoconjugate vaccine to confer protection against both lethal infections 

of C. albicans and A. fumigatus. This ability of a nonfungal β-glucan to induce specific anti 
β-glucan antibodies against two different pathogenic fungi highlights the possibility of the 
development of a single vaccine protecting against different fungal infections [195, 196]. This 

β-glucan CRM197 conjugated vaccine is in preclinical phase of development for aspergillosis, 
candidiasis and cryptococcosis [197]. Recent works using highly purified particulate β-glucan 
from S. cerevisiae alone or conjugated with bovine serum albumin (BSA) demonstrated the 

pluripotent activity of this vaccine in protection against experimental aspergillosis and coc-

cidioidomycosis [198, 199]. Once β-glucans are highly conserved molecules, common to many 
fungi and that are able to induce protective antibodies, this implies that β-glucan would be 
an important vaccine component. Therefore, all these findings provide the basis for the future 
development of a pan-fungal conjugate vaccine [197].

Mannans, another carbohydrate from the fungal cell wall, have been implicated a long time 
ago with the host protective response against candidiasis [200]. Pioneering studies demon-

strated that a vaccine containing a liposome-encapsulated mannan from C. albicans was pro-

tective in disseminated candidiasis in mice and that the specific antibodies produced were at 
least partly responsible for the protection with a β-1,2-linked mannotriose being the active 
epitope [201, 202]. Liposomal encapsulation was required because the extract alone was 

poorly immunogenic, and in an attempt to improve this formulation, new studies were made 
by conjugating mannan extract to protein (BSA) [203, 204]. This same C. albicans mannan 

conjugated to BSA presented cross-protective activity against systemic murine aspergillosis 

[205]. A study with S. cerevisiae mannan demonstrated the change of a T-cell-independent 

response when the polysaccharide was administered alone for a T-cell-dependent response 

when it was conjugated to human serum albumin (HSA). This study was conducted in mice 

and showed the increase in specific IgG isotype antibodies, mainly Th1 associated (IgG
2a

 and 

IgG
2b

), making it a vaccine candidate for preventive immunomodulation treatment [206].  

A synthetic β-mannan trisaccharide conjugated to different peptides found in C. albicans cell 

wall proteins was demonstrated to induce protective immunity in mice against candidiasis 

[55]. A tricomponent conjugate vaccine that associated the β-mannan trisaccharide, tetanus 
toxoid and laminarin was capable to promote multiple immune pathways leading to DC acti-

vation, induction of Th17 response and a potent immunization [207].

Glucuronoxylomannan (GXM), the major capsular polysaccharide of Cryptococcus neoformans, 

exerts many immunoregulatory effects, and in humans, the development of anticapsular anti-
bodies is correlated with improved prognosis [208]. Conjugated vaccines of GXM-tetanus 
toxoid elicit protective antibodies in mice [209, 210], although deleterious antibodies can also 

be induced [211, 212]. This contradictory effect (protective v deleterious antibodies) can be 
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avoided using GXM epitopes that elicit only protective antibodies, and it was observed cou-

pling a derived GXM heptasaccharide to a protein carrier [212] and this vaccine is in phase 

I clinical trial [197]. The mimotope-based immunization can elicit an antibody response to a 

protective epitope on the native antigen [213]. The GXM peptide mimotope P13 conjugated 
to a protein carrier has demonstrated its effectiveness in prolonging survival of mice after a 
lethal challenge with C. neoformans, and the protection was associated with a reduction of 

serum levels of GXM and the production of antibodies to GXM [214–216].

Once carbohydrates are known to produce T-cell-independent immune responses with a 

poor-quality antibody response, the conjugation with immunogenic protein carriers is a strat-

egy to overcome this poor immunogenicity [217, 218]. Immunization with glycoconjugated 

vaccines elicit T cell help for B cells that produce IgG antibodies and can induce memory B-cell 

development and T-cell memory [219]. The main carrier proteins used in licensed conjugate 

vaccines are the enzymatically inactive and nontoxic variant of diphtheria toxin (CRM197), 
diphtheria toxoid (DT) and tetanus toxoid (TT) [220, 221].

On the other hand, protein antigens are highly immunogenic, elicit a strong T-cell response 

and are biochemically defined, which facilitate the large-scale production of recombinant pro-

teins [222]. Indeed, two vaccines based on recombinant proteins of C. albicans are under phase 

I clinical trials [165]. The first vaccine is based on a recombinant N-terminus of the candida 
adhesion, Als3p (rAls3p-N) with alum as adjuvant, and elicits Th1 and Th17 cells [223]. The 

target of this vaccine included systemic and mucosal candidiasis, and the study in human 

subjects has been performed by NovaDigm Therapeutics [224]. Data from safety and immu-

nogenicity have been posted on the web (www.novadigm.net). The second vaccine is based 

on the recombinant secretory aspartyl proteinase2, Sap2 [225] and appears to confer protec-

tion by Sap-neutralizing antibodies. This active vaccine, named PEV7, is targeted to prevent 
recurrent vulvovaginitis and is being developed by Pevion Biotech. Initial report about safety 
and immunogenicity profile of PEV7 in women is strongly encouraging (www.pevion.com).

Protein and glycoprotein from different pathogenic fungi have been studied, and particularly, 
heat-shock proteins (HSPs) represent an attractive candidate due to their association with 
both innate and adaptive immunity [226, 227]. Immunization with HSPs from Paracoccidioides 

brasiliensis has been shown to provide some degree of protection against experimental disease 

[228, 229]. Protective immune response has been also observed with native or recombinant 
(r) HSP60 from Histoplasma capsulatum, and rHSP60 reduced fungal burden and improved 
survival in experimental pulmonary histoplasmosis [230, 231]. Immunization with whole gly-

coprotein gp43 from P. brasiliensis demonstrated a dual response, inducing Th1 and Th2 cells, 

whereas the P10 (15-mer peptide derived from gp43) elicited Th1 response that protected 
mice from experimental paracoccidioidomycosis [232].

Summarizing all these studies with several pathogenic fungi has shown that antibodies 

against cell surface molecules could be implicated in the protective response to infection. The 

goal is to identify which molecules or epitopes are able to produce only protective antibod-

ies and not those isotypes that inhibit host defenses or exert a negative effect on immunity. 
Despite a growing medical need and all efforts made by researchers, there is still no approved 
vaccine against any fungal disease.
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8. Conclusion

Breakthroughs in our understanding of how homeostasis is established, maintained or dis-

rupted during fungal exposure and/or colonization should help to guide the development of 

new therapeutics that target specific inflammatory or metabolic end points. For example, lim-

iting inflammation—through PRR agonism or antagonism—to stimulate a protective immune 
response to fungi should pave the way for the rational design of novel immunomodulatory 

therapies.
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