
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322429249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 8

Distributions and Composite Models for Size-Type Data

Yves Dominicy and Corinne Sinner

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66443

Abstract

In the first part of this chapter, we present a sample of the best known and most used
classical size distributions with their main statistical properties. In the second part, we
introduce the concept of composite models and based on the size distributions of the
first part, we describe those which already exist in the literature. In the last part of this
chapter, we apply the described statistical size distributions and some of the composite
models to two real data examples and compare their goodness-of-fit.
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1. Introduction

In statistical modeling, the continuous aim is to look for the probability law, which best

describes the observations arising from a given field and which should represent the underly-

ing data-generating process. The obtained probability distributions should possess desirable

properties such as the flexibility of modeling different shapes and remain of a tractable form.

This research avenue was initiated in the nineteenth century by famous mathematicians as

Adolphe Quetelet, Sir Francis Galton, or Vilfredo Pareto, and since then it has never ceased.

Nowadays, it still remains among the highly treated topics in statistics as shown by the large

quantity of scientific papers recently published on the subject (see for instance the review

papers [1] and [2]). The actual appeal for this topic is easily explained by the availability of

large data sets in various scientific domains, making it essential and necessary to do further

research on this subject.

In this chapter, we concentrate on probability distributions that analyze size-type data. By size

distributions, we mean probability laws designed to model data that only take positive values.

Positive observations appear naturally in different fields: survival analysis [3, 4], environmen-

tal science [5], network traffic modeling [6], economics [7, 8], hydrology [9], and actuarial
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science [10]. Given the range of various domains of application, there exists a plethora of

different size distributions and it is still a very active research area [11, 12].

The structure of this chapter is as follows. In Section 2, we review the most used and well-

known size distributions, and state their main statistical properties. Section 3 introduces the

notion of composite models and gives a small review of the composite models in the literature,

based on the size distributions depicted in Section 2. In Section 4, we apply the described size

distributions of Section 2 and some of the composite models of Section 3 to two real data sets,

namely, an insurance data set and an Internet traffic data set. Finally, Section 5 concludes.

2. Review of size distributions

We describe here a sample of the best known and most used size distributions. We will state

their probability density function (p.d.f) and their cumulative density function (c.d.f), show

their moments and their quantile function, and give the estimators obtained via maximum

likelihood estimation. More specifically, we take a closer look at the lognormal, Pareto, gener-

alized Lomax, and generalized extreme value distributions.

2.1. The lognormal distribution

The English statistician Sir Francis Galton stated that in some situations it was preferable to

measure the location of a distribution with the geometric mean instead of the arithmetic mean

[13]. Indeed, laws of nature often behave in multiplicative ways; thus, the geometric mean

becomes more appropriate as a measure of central tendency than the arithmetic mean. As a

reply to Galton’s request, the Scottish physician Donald McAlister established in 1879 a theory

of the exponentiated (or multiplicative) normal distribution [14], this became to be known as

the lognormal distribution.

Let X be a positive random variable (r.v.) such that log X = D Y is normally distributed with

parameters μ ∈ R and σ > 0. The r.v. X then has a lognormal distribution, X ~LN(μ, σ2), with

probability density function (p.d.f.)

f ðx;μ, σ2Þ ¼ 1

x
ffiffiffiffiffiffi

2π
p

σ
e−

ðlogx−μÞ2
2σ2 , x > 0: (1)

The location parameter μ ∈ R and the scale parameter σ > 0 are characteristic for the r.v. logX.

However, by the exponential transformation, the geometric mean eμ becomes a scale parame-

ter, as depicted in Figure 1, and the multiplicative standard deviation eσ appears as shape

parameter impacting the skewness (see Figure 2).

If random variability enjoys multiplicative effects, as stated by Galton, then a lognormal

distribution must be the result. This establishes the basis of the multiplicative central limit

theorem, which asserts that the geometric means of nonlognormal random variables are

approximated by a lognormal distribution.
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The cumulative distribution function (c.d.f.) of the lognormal law is related to the c.d.f. of the

normal distribution:

Fðx;μ, σ2Þ ¼ Φ
logx−μ

σ

� �

, x > 0, (2)

where Φ(.) represents the c.d.f. of a standard normal distribution.

The moments of order r are conveniently expressed as EðXrÞ ¼ erμþ
r2σ2

2 : Hence, the mean is

given by EðXÞ ¼ eμþ
σ2

2 , and the variance by VðXÞ ¼ e2μþσ2ðeσ
2
− 1Þ: The lognormal is a unimodal

distribution and the unique mode is reached at xmode ¼ eμ−σ
2
: By comparing the mean and the

mode, we note that for a fixed μ, an increasing σ shifts the mode toward zero while the mean

Figure 1. Density plots of the lognormal distribution with varying location parameter μ and fixed scale parameter σ.

Figure 2. Density plots of the lognormal distribution with varying scale parameter σ and fixed location parameter μ.
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increases. The quantile function is defined as F−1ðyÞ ¼ eμþσΦ−1ðyÞ, for 0 < y < 1 and where Φ-1(.)

denotes the quantile function of a standard normal distribution.

Thanks to its relationship to the normal distribution, the likelihood function is given by

Lðx1,…, xnjμ, σ2Þ ¼ ∏
n

i¼1

1

xi

� �

1
ffiffiffiffiffiffi

2π
p

σ

� �n

e
−∑

n

i¼1

ðlogxi−μÞ2

2σ2
,

(3)

and hence the log-likelihood function can be expressed as

lðx1,…, xnjμ, σ2Þ ¼ − ∑
n

i¼1
log xi −

n

2
log 2π−n log σ− ∑

n

i¼1

ðlog xi − μÞ2
2σ2

: (4)

The maximum likelihood estimators for the mean and the scale are given by μ ̂ ¼ 1
n∑

n
i¼1log xi

and σ ̂2 ¼ 1
n∑

n
i¼1ðlog xi−μ̂Þ2, respectively.

The lognormal distribution is widely used to describe natural phenomena. In finance, the

Black-Scholes model, which is a mathematical model containing derivative instruments,

assumes the underlying derivative price to have a lognormal distribution [15]. In economics,

income data are often modeled by a lognormal distribution [16], which can be easily explained

as follows: a very low percentage of earners have very low income. To gain averaged revenue

is frequent, whereas an elevated income is rare. In actuarial sciences, the law is assumed to fit

well some types of insurance losses [17, 18]. In 1931, the French economist and engineer Robert

Pierre Louis Gibrat stated that the firm size follows a lognormal distribution as its proportional

growth rate is independent of its absolute size. Other applications can be found in biology [19,

20] or in linguistics to model the number of words in a sentence [21].

2.2. The Pareto distribution

The Italian economist and engineer Vilfredo Pareto observed in 1896 that in many populations

the power law cx-α, for some constant c > 0 and some exponent α > 0, was an appropriate

approximation of the number of individuals with income exceeding a given threshold x0 (see

for instance [22, 23]). These power laws assume that small values of x are very frequent, while

large occurrences are extremely rare. Their form implies that all power laws with a particular

scaling exponent are equivalent up to constant factors since each is simply a scaled version of the

others. This produces the linear relationship when logarithms are taken of both f(x) and x, which

denotes the signature of power laws. Such distributions are known as Pareto-type distributions.

Thep.d.f. of a r.v.XhavingaPareto (type I) distributionwithparametersα > 0 and x0 > 0 is given by

f ðx;α, x0Þ ¼
α

x0

x0
x

� �αþ1

, x ≥ x0: (5)

The location parameter x0 represents the lower bound of the data set and the shape parameter

α is called the tail index or as well the Pareto index, and hence regulates the tail as can be seen

in Figure 3. Note that a decreasing value of α implies a heavier tail.
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The c.d.f. of the Pareto law is given by

Fðx;α, x0Þ ¼ 1−
x0
x

� �

α

, x ≥ x0: (6)

For α > r, the r-th moment of the Pareto distribution is given by EðXrÞ ¼
αxr

0

α−r : The mean and the

variance are then, respectively, EðXÞ ¼ αx0
α−1 for α > 1 and VðXÞ ¼

αx20
ðα−1Þ2ðα−2Þ

for α > 2. The quantile

function is expressed as F−1ðyÞ ¼ x0

ð1−yÞ
1
α

, for 0 < y < 1. Being an unimodal law, the Pareto

distribution reaches its peak at xmode = x0. As x0 represents the minimum value of x, its

estimation is straightforward: x0
̂ ¼ min

i¼1,…,n xi. The likelihood function is given by

Lðx1,…, xnjα, x0Þ ¼ α
nxnα0 ∏

n

i¼1

1

xi

� �

αþ1

and to estimate the parameter α, we maximize the following log-likelihood function

lðx1,…, xnjα, x0Þ ¼ n log αþ nα log x0−ðαþ 1Þ ∑
n

i¼1
log xi (7)

which yields the maximum likelihood estimator α ̂ ¼ n

∑
n

i¼1log
xi
x0
̂

. Let us note that the maximum

likelihood estimator of the tail index α corresponds to the popular Hill estimator [24], which is

an estimator for the extreme value index in the extreme value theory. For a review on the Hill

estimator, we refer the interested reader to reference [25]. Let us note that often the focus lies

more on the power law probability distribution, which is a distribution whose density has

approximately the form L(x)x-α, where α > 1 and L(x) is a slowly varying function. In many

situations, it is convenient to assume a lower bound x0 from which the law holds. Combining

those two cases yields the Pareto-type distributions, or as well known in extreme value theory

as distributions with regularly varying tails.

Figure 3. Density plots of the Pareto distribution with varying shape parameter α and fixed location parameter x0 = 1.
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A generalization of the Pareto law is the so-called generalized Pareto distribution, and it

regroups the Pareto type I, II, III, and IV distributions. The Pareto type IV contains the other

types as special cases and hence as well other size distributions belonging to the different types

as for instance the Lomax distributions [26]. This latter distribution belongs to the Pareto type

II, and its p.d.f. is given by

f ðx;α, kÞ ¼
α

k
1þ

x

k

� �

−ðαþ1Þ

, x > 0, (8)

with shape parameter α > 0 and scale parameter k > 0. It can be interpreted as a shifted Pareto

type I distribution.

A generalization of the Pareto type I distribution is the Stoppa distribution [27], which comes

from a power transformation of the Pareto c.d.f. and yields the following p.d.f.

f ðx;α, δ, x0Þ ¼ δαxα0x
−ðαþ1Þ 1−

x

x0

� �

−α� �δ−1

, x > x0, (9)

with shape parameters α > 0, δ > 0 and location parameter x0 > 0. If δ = 1, we get the Pareto type

I distribution. However, if the shape parameter δ > 1, the Stoppa distribution presents a heavier

tail than the classical Pareto law.

The Pareto distribution is often used to model fire losses in actuarial sciences [28, 29] as well as

in reinsurance to approximate large losses. Originally, it was used to describe the income

distribution and the allocation of wealth [22], but nowadays it is also used to model, for

instance, areas burnt in forest fires or the file sizes of Internet traffic data [30]. Note that, in

general, in empirical applications, the Pareto distribution does not fit for all the values but

rather is used to fit their upper tail, i.e., large values. Hence, in order to fit a distribution to all

the values, one often uses a composite model (see Section 3) which combines two distributions

where one of both is the Pareto law.

2.3. The generalized Lomax distribution

The generalized Lomax (GL) distribution, also known as the exponentiated Lomax distribu-

tion, was introduced by Abdul-Moniem and Abdel-Hameed in 2012 [31] by powering the c.d.f.

of the Lomax distribution to a positive real number.

The p.d.f. of a r.v. X following a generalized Lomax distribution with parameters a > 0, b > 0,

and k > 0 corresponds to

f ðx; a, b, kÞ ¼
ab

k
1þ

x

k

� �

−ðaþ1Þ

1− 1þ
x

k

� �

−a� �b−1

, x > 0: (10)

The shape parameter a regulates the heaviness of the tail, as can be seen in Figure 4 and the

shape parameter b controls the skewness (see Figure 5). The parameter k is a scale parameter as

depicted in Figure 6.
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The c.d.f. is expressed as

Fðx; a, b, kÞ ¼ 1− 1þ
x

k

� �−a� �b

, x > 0: (11)

The moments of order r are given by EðXrÞ ¼ bk
r∑r

i¼1

�

r

i

�

ð−1ÞiB 1− 1
a
ðr − iÞ, b

� �

, yielding

EðXÞ ¼ bkB 1− 1
a
, b

� �

−k for the mean and VðXÞ ¼ bk
2
B 1− 2

a
, b

� �

− b B 1− 1
a
,b

� �� �2
� �

for the

Figure 4. Density plots of the GL distribution with varying shape parameter a and fixed shape parameter b and scale

parameter k.

Figure 5. Density plots of the GL distribution with varying shape parameter b and fixed shape parameter a and scale

parameter k.
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variance. The inverse c.d.f. is given by F−1ðyÞ ¼ k 1 − y
1
b

� �−1a
−1

� �

, for 0 < y < 1, and the unique

mode is reached at xmode ¼ k abþ1
aþ1

� �1
a

−1

� �

:

The likelihood function is given by

Lðx1,…, xnja, b, kÞ ¼
ab

k

!n

∏
n

i¼1

1þ
xi
k

� �−ðaþ1Þ

∏
n

i¼1

1 − 1þ
xi
k

� �−a� �b−1
 

(12)

and hence the following log-likelihood function is obtained

lðx1,…, xnja, b, kÞ ¼ n log
b

k
−ðaþ 1Þ ∑

n

i¼1
log
�

1þ
xi
k

�

þ ðb−1Þ ∑
n

i¼1
log 1− 1þ

xi
k

� �−a� �

: (13)

The calculated score functions are expressed by

∂lðx1,…, xnja, b, kÞ

∂a
¼

n

a
− ∑

n

i¼1
logð1þ

xi
k
Þ − aðb − 1Þ ∑

n

i¼1

ð1þ xi
k Þ

−a logð1þ xi
k Þ

1−ð1þ xi
k Þ

−a ,

∂lðx1,…, xnja, b, kÞ

∂b
¼

n

b
þ ∑

n

i¼1
log 1− 1þ

xi
k

� �−a� �

, (14)

and

∂lðx1,…, xnja, b, kÞ

∂k
¼ −

n

k
þ
aþ 1

k2
∑
n

i¼1

xi
1þ xi

k

−
aðb−1Þ

k2
∑
n

i¼1

ð1þ xi
k Þ

−ðaþ1Þ xi

1−ð1þ xi
k Þ

−a , (15)

which have to be solved numerically by equating them to 0 in order to find the estimated

parameters.

Figure 6. Density plots of the GL distribution with varying scale parameter k and fixed shape parameters a and b.
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The Lomax distribution is used to model income data, wealth allocation, and actuarial claim

sizes [10]. The GL distribution is used to measure the breaking stress of carbon fibers [32], the

survival times of patients getting chemotherapy treatment [33], and the number of successive

failure of the air-conditioning system in airplanes [33].

2.4. The generalized extreme value distribution

The generalized extreme value (GEV) distribution is well known in extreme value theory as it

combines the Gumbel, Fréchet, and Weibull distributions, which are also known as type I, II,

and III extreme value distributions. The GEV distribution is the only possible limit distribution

of properly normalized maxima of a sequence of independent and identically distributed

random variables and this result arises from the central limit theorem of Fisher and Tippett

[34]. Therefore, the GEV distribution is also known as Fisher-Tippett distribution in extreme

value theory.

The GEV distribution has p.d.f.

f ðx;μ, σ, kÞ ¼
1

σ
1þ k

x − μ

σ

� �� �

−1−1k
e− 1þk

x−μ
σð Þð Þ

−
1
k

, (16)

if 1þ k
x−μ
σ
> 0, with location parameter μ ∈ R (see Figure 7), scale parameter σ > 0 (see

Figure 8), and shape parameter k ∈ R, which governs the shape and the heaviness of the tail

of the distribution, as can be seen in Figure 9.

Its c.d.f. is given by

Fðx;μ,σ, kÞ ¼ e− 1þk
x−μ
σð Þð Þ

−
1
k

, (17)

if 1þ k
x−μ
σ > 0. The mean is defined as EðXÞ ¼ μ− σ

k þ
σ
k Γð1 − kÞ and the variance as

VðXÞ ¼ σ2

k2

�

Γð1−2kÞ − Γð1−kÞ2
�

, both expressed in terms of the Gamma function. The quantile

Figure 7. Density plots of the GEV distribution with varying location parameter μ.
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function is given by F−1ðyÞ ¼ μþ kσ
�

ð−logyÞ−k−1
�

, for 0 < y < 1 and the unique mode is

reached at xmode ¼ μþ σ

k

�

ð1þ kÞ−k−1
�

: Depending on the value of the parameter k, the GEV

reduces to one of the following special cases: If k = 0, we obtain the Gumbel distribution, if k > 0,

we get the Fréchet distribution, and if k < 0, the Weibull distribution is obtained. The parameters

of the GEV distributions are estimated using the maximum likelihood approach.

We will now focus more closely on one of the three GEV distributions, namely, the Weibull

distribution, which got its name from the Swedish engineer and scientist Waloddi Weibull,

who analyzed it in detail in 1951. We take a look at this law as it is often used for size-type data

and it is considered as an alternative to the lognormal distribution for the construction of

composite models (see Section 3). The Weibull distribution belongs to power laws with an

exponential cut-off; this means it is a power lawmultiplied by an exponential function. In these

distributions, the exponential decay term overpowers the power law behavior for very large

values.

Figure 8. Density plots of the GEV distribution with varying scale parameter σ.

Figure 9. Density plots of the GEV distribution with varying shape parameter k.
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The p.d.f. of the Weibull distribution is given by

f ðx; σ, τÞ ¼
τ

σ

x

σ

� �τ−1
e−

x
σð Þ

τ

, x ≥ 0, (18)

with shape parameter τ > 0 governing the heaviness of the tail and scale parameter σ > 0.

The distribution has c.d.f.

Fðx; σ, τÞ ¼ 1 − e−
x
σð Þ

τ

, x ≥ 0: (19)

The quantile function is given by F−1ðyÞ ¼ σð−logð1 − yÞÞ
1
τ, for 0 < y < 1. The r-th moment is

given by EðXrÞ ¼ σ
r
Γ 1þ r

τ

� �

: Hence, the expectation and the variance are expressed as

EðXÞ ¼ σΓ 1þ 1
τ

� �

and VðXÞ ¼ σ
2
Γ 1þ 2

τ

� �

− Γ 1þ 1
τ

� �2
� �

, respectively. The Weibull distribution

is unimodal and for τ > 1 it reaches the mode at xmode ¼ σ
τ−1
τ

� �1
α and for τ = 1 the mode is

reached at 0.

The parameters of the Weibull distribution are estimated via the maximum likelihood

method. The corresponding likelihood and log-likelihood functions are given respectively by

Lðx1,…, xnjσ, τÞ ¼
τ
n

σn
∏
n

i¼1

xi
σ

� �τ−1
e
−∑

n

i¼1

xi
σð Þ

τ

, (20)

and

lðx1,…, xnjσ, τÞ ¼ n log τ − n τlog σþ ðτ−1Þ ∑
n

i¼1
logðxiÞ − ∑

n

i¼1

xi
σ

� �τ

: (21)

The maximum likelihood estimator for the scale parameter σ, given τ, is σ̂τ ¼ 1
n∑

n
i¼1x

τ

i and the

maximum likelihood estimator for the shape parameter τ is given by an implicit function

which has to be solved numerically: τ ̂−1 ¼
∑

n

i¼1x
τ

i
logðxiÞ

∑
n

i¼1x
τ

i

− 1
n∑

n
i¼1logðxiÞ:

In risk management, finance, and insurance, the risk measure “Value at Risk” is assessed by

considering the GEV distribution [35, 36]. They are as well used in hydrology [37, 38], telecom-

munications [39], and meteorology [40]. In material sciences, the Weibull is widely used thanks to

its flexibility [41]. Other examples include wind speed distributions [42], forecasting technological

change [43], the size of reinsurance claims [10], hydrology [9], and areas burnt in forest fires [44].

3. Composite models

Given the wealth of distinct size distributions, as can be seen from the small sample of size

distributions described in the previous section, the practitioner is often confronted to the

following question: Which size distribution shall he/she use in which situation? The variation
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in the shapes, size distributions can take, for instance between the Pareto distribution and the

lognormal distribution, renders the choice very complicated in practice.

For example, insurance companies face sometimes losses, which emerge from a combination

of moderate and large claims. In order to model those large losses, the Pareto distribution

seems to be the size distribution favored by practitioners. However, when losses consist of

smaller values with high frequencies and larger losses with low frequencies, the lognormal or

the Weibull distributions are preferred [45]. Nevertheless, no classical size distribution pro-

vides an acceptable fit for both small and large losses. On one hand, the Pareto fits well the tail,

but on the other hand, lognormal and Weibull distributions produce an overall good fit, but fit

badly the tail.

A solution to this dilemma comes from the composite parametric models introduced in 2005

by Cooray and Ananda [46]. The idea of the composite models is to join together two weighted

distributions at a given threshold value. In statistical terms, let X be a r.v. and denote by f1(.) the

p.d.f. of the first distribution and by f2(.) the p.d.f. of the second distribution. Let F1(.) and F2(.)

be the corresponding c.d.f., respectively. Scollnik [47] noticed that the p.d.f. of a composite

model can then be expressed as

f ðxÞ ¼
c f �1ðxÞ, −∞ < x ≤ θ

ð1 − cÞf �2ðxÞ,θ < x < ∞,

	

(22)

where c is a normalization constant in [0,1], θ represents the threshold value, f �1ðxÞ ¼
f 1ðxÞ
F1ðθÞ

for

-∞ < x ≤ θ, and f �2ðxÞ ¼
f 2ðxÞ

1−F2ðθÞ
for θ < x < ∞. In our setting, the considered composite models

piece together two different size distributions with different shapes and tail-weights at a

specific threshold. As size distributions are only for positive values, the p.d.f. of a composite

model is rewritten as

f ðxÞ ¼
c f �1ðxÞ, 0 < x ≤ θ

ð1−cÞf �2ðxÞ, θ < x < ∞,

	

(23)

where 0 ≤ c ≤ 1. The composite model can as well be interpreted as a two-component mixture

model with mixing weights c and (1 − c). Hence, it can be seen as a convex sum of two density

functions f(x) = c f1
*(x) + (1 − c) f2

*(x), as noted in [47].

As we have a threshold that cuts the composite model distribution into two, from a mathemat-

ical point of view, we need continuity and differentiability conditions at the threshold to yield

a smooth density function. In order to make f (x) continuous, the following condition f (θ-) = f

(θ+) is imposed and yields

c ¼
f 2ðθÞF1ðθÞ

f 2ðθÞF1ðθÞ þ f 1ðθÞ
�

1−F2ðθÞ
� : (24)

The differential condition at the threshold value is given by f '(θ-) = f '(θ+)and yields
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c ¼
f
0

2ðθÞF1ðθÞ

f
0

2ðθÞF1ðθÞ þ f
0

1ðθÞ
�

1−F2ðθÞ
� : (25)

If we combine the two results for the normalization constant c, we obtain the additional

restriction for θ, i.e.,
f 1ðθÞ
f 2ðθÞ

¼
f
0

1ðθÞ

f
0

2ðθÞ
. Let us remark that in reference [48] they use a mode-matching

procedure instead and state that it gives much simpler derivation of the model and allows for

an easier implementation with any distribution which has a mode that has a closed form

expression. Instead of having as threshold value θ, they use the modal value xm. Denote by

xm1 and xm2 the modes of the distributions used by the first and second components of the

composite model, then the mode-matching conditions are xm1 = xm2 and f*(xm1) = f*(xm2). The

latter implies the continuity condition, and the former equality allows dropping the labels 1

and 2, which yields the following condition

c ¼
f 2ðxmÞF1ðxmÞ

f 2ðxmÞF1ðxmÞ þ f 1ðxmÞ
�

1−F2ðxmÞ
� : (26)

Remark that the derivative at the mode is 0, hence the differentiability condition is satisfied.

The c.d.f. of a composite model of size distributions is given by

FðxÞ ¼
c
F1ðxÞ

F1ðθÞ
, 0 < x ≤ θ

cþ ð1 − cÞ
F2ðxÞ − F2ðθÞ

1 − F2ðθÞ
, θ < x < ∞:

8

>

>

<

>

>

:

(27)

The moments of the r-th order can be expressed using this formula Erðf Þ ¼ cErðf
�
1Þ

þð1 − cÞErðf
�
2Þ:

Statistical inference for composite models is done using the classical maximum likelihood (ML)

estimation approach. The ML estimation for composite models was first presented in [46] and

as well in [49]. In order to apply the ML approach, we have to know the integer value m such

that the unknown threshold parameter θ is in between the m-th and m + 1-th observation. If we

assume somehow that we know the value of the integer m, we would be able to write out

explicitly the likelihood function. However, unfortunately, we do not know the exact value of

m and as m changes, the ML estimation changes. Therefore, the following ML estimation

algorithm was proposed where we have s parameters ρi for i = 1,… , s. In a first step, for each

integer m = 1,… , n - 1 we estimate the parameters as solution of the following ML system

∂logL

∂ρi

¼ 0, i ¼ 1,…, s,

∂logL

∂θ
¼ 0:

8

>

>

<

>

>

:

(28)

If the inequality xm ≤ θ̂ ≤ xm+1 holds, then the ML estimators can be denoted as θ̂ and ρ̂ i for i = 1,

… , s. However, a second step is needed in case the first step does not provide any satisfying
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result meaning that we are either in one of the following two settings m = n or m = 0. This

implies that the use of f1 and f2 are recommended for the likelihood function, respectively. For

the ML procedure, one needs to check n − 1 intervals. Thus, the computing time strongly

depends on the magnitude of n. For large n this leads to a complex system of equations that

must be solved numerically.

In reference [50], the authors propose an alternative algorithm based on quantiles and a

moment matching approach. In a first step, let us denote by q1 and q3 the first and third

empirical quartiles of the data sample. We assume that q1 ≤ θ ≤ q3. Then we use the method of

moments to match the first s − 1 empirical moments with their theoretical counterparts, and we

add two more equations from matching two quartiles

c
F1ðq1Þ

F1ðθÞ
¼ 0:25,

cþ ð1 − cÞ
F2ðq3Þ−F2ðθÞ

1 − F2ðθÞ
¼ 0:75:

8

>

>

>

<

>

>

>

:

(29)

If no result is obtained, we move to a second step where we assume that the first and third

quartiles are smaller than the threshold θ, and proceed like in the first step except using now

the following two quartiles’ equations

c
F1ðq1Þ

F1ðθÞ
¼ 0:25,

c
F1ðq3Þ

F1ðθÞ
¼ 0:75:

8

>

>

>

>

<

>

>

>

>

:

(30)

If we still have no solution, we finally assume that the first and third quartiles are greater than

θ and proceed again in a similar fashion as in the first step with the two equations

cþ ð1 − cÞ
F2ðq1Þ − F2ðθÞ

1 − F2ðθÞ
¼ 0:25,

cþ ð1 − cÞ
F2ðq3Þ − F2ðθÞ

1 − F2ðθÞ
¼ 0:75:

8

>

>

>

<

>

>

>

:

(31)

Let us remark that those equations have to be solved numerically. Note that once we have a

solution from this quantile and moment matching procedure, we can use the ML approach

explained above to improve the result as now we have some a priori information on the

parameter θ and hence on the integer m.

In general, in the area of size distributions, composite models comprise a lognormal or Weibull

distribution up to a given threshold value and some form of the Pareto distribution thereafter.

The obtained models are close in shape to the lognormal or Weibull law but with a thicker tail

due to the Pareto distribution, see Figure 10 and Figure 11.
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This research area for size distributions was initiated by Cooray and Ananda in 2005 [46], who

proposed the composite lognormal-Pareto model. They suggested that this composite model

may be better suited for insurers when confronted to smaller losses with high frequencies as

well as for larger values with lower frequencies. The lognormal-Pareto composite model

introduced in reference [46] has been further enhanced by Scollnik [47]. In that paper, the

author noticed that the two-component composite model is very restrictive since it has fixed

and a priori known mixing weights. Hence, he improved the model by using unrestricted

mixing weights as coefficients in each component. In a similar way, the article [51] improves

the composite Weibull-Pareto model proposed by reference [52]. Those are the composite

models that will be described in more detail in the sequel. The papers [47] and [51] consider

beside the classical Pareto distribution as well the Pareto type II distribution, known also as the

Lomax distribution, as an alternative above the threshold value. In 2013, Teodorescu and

Vernic [50] replace the lognormal distribution by any arbitrary continuous distribution, and

they analyze in detail the composite Weibull-Pareto and the composite Gamma-Pareto models,

and use as well the Lomax distribution as an alternative to the Pareto distribution above the

Figure 10. Density plot of the composite lognormal-Pareto model with θ = 0.55 and α = 0.5.

Figure 11. Density plot of the composite Weibull-Pareto model with θ = 0.55 and τ = 1.42867.
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threshold point. The same authors suggested already the composite exponential-Pareto model

[50]. More recently, reference [48] proposes a composite model based on the Stoppa distribu-

tion [27], which is a generalization of the Pareto law. More precisely, they propose the lognor-

mal-Stoppa and Weibull-Stoppa composite models.

Let us now take a closer look at the composite lognormal-Pareto and Weibull-Pareto models.

Given the general formulas above we can write the density for the composite lognormal-

Pareto as

f ðxÞ ¼
c

1

x
ffiffiffi

2
p

πσ
e
−

ðlog x − μÞ2
2σ2

Φ
� logθ − μ

σ

�

, 0 < x ≤ θ

ð1 − cÞα
θ

�

θ

x

�αþ1

, θ < x < ∞,

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(32)

with 0 ≤ c ≤ 1 and Φ(.) denoting the c.d.f. of a standard normal distribution. In a similar way,

the p.d.f. for the composite Weibull-Pareto can be written as

f ðxÞ ¼
c

τ

σ

x

σ

� �τ−1

e
−

x

σ

� �τ

1 − e
−

θ

σ

� �α , 0 < x ≤ θ

ð1−cÞα
θ

θ

x

� �αþ1

, θ < x < ∞:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(33)

with 0 ≤ c ≤ 1.

By verifying the continuity and differentiability conditions at the threshold point θ, we obtain

for the composite lognormal-Pareto model:

c ¼
α
θ

�

θ
x

�αþ1
Φ
�

logθ−μ
σ

�

α
θ ðθxÞ

αþ1Φ
�

logθ−μ
σ

�

þ 1
θ
ffiffiffiffi

2π
p

σ
e
−
ðlogθ−μÞ2

2σ2

(34)

and

ασ ¼ logθ − μ

σ
: (35)

These conditions guarantee that the p.d.f. of the composite lognormal-Pareto is continuous and

smooth at the threshold value θ. The continuity and differentiability conditions at θ, for the

composite Weibull-Pareto, yield:
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c ¼
α
θ

θ
x

� �αþ1
ð1 − e

−
θ
σð Þ

τ

Þ

α
θ

θ
x

� �αþ1
ð1 − e

−
θ
σð Þ

τ

Þ þ τ
σ

θ
σ

� �τ−1
e
−

θ
σð Þ

τ (36)

and

θ

σ

� �τ

¼
α

τ
þ 1: (37)

These conditions guarantee the continuity and smoothness of the p.d.f. of the composite

Weibull-Pareto at the threshold point θ.

The c.d.f. of the composite lognormal-Pareto and Weibull-Pareto is given, respectively, by

FðxÞ ¼
c

Φ
log x − μ

σ

� �

Φ
logθ − μ

σ

� � , 0 < x ≤ θ

cþ ð1 − cÞ 1− θ
x

� �α� �

, θ < x < ∞:

8

>

>

>

>

>

<

>

>

>

>

>

:

(38)

and

FðxÞ ¼
c
1 − e

−
x

σð Þ
τ

1 − e
−

θ
σð Þ

τ , 0 < x ≤ θ

cþ ð1 − cÞ 1− θ
x

� �α� �

, θ < x < ∞:

8

>

<

>

:

(39)

Finally, the moments of order r of the composite lognormal-Pareto and Weibull-Pareto are

given by

EðXrÞ ¼ c
e
rμþr

2σ2

2

Φ
log θ − μ

σ

� �þ ð1 − cÞ
αθr

α − r
(40)

and

EðXrÞ ¼ c
σrΓ r

τ þ 1; θ
σ

� �τ� �

1 − e
−

θ
σð Þ

τ þ ð1 − cÞ
αθr

α − r
(41)

for τ > r, respectively.

To estimate the composite lognormal-Pareto and the composite Weibull-Pareto models, the

algorithms described above are used.
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4. Applications

In this section, we focus on two applications to real data sets, one from actuarial sciences,

dealing with fire losses and one on Internet traffic data. We will analyze these two data sets

with the size distributions seen in Section 2 and the two composite models, namely, the

lognormal-Pareto and the Weibull-Pareto, seen in Section 3. In order to compare the distribu-

tions, we used the following three criteria:

1. The maximum log-likelihood (MLL) value: the larger the value, the better the fit of the

distribution to the data set.

2. The Akaike information criterion (AIC):

AIC ¼ 2p−2MLL,

where p represents the number of parameters to estimate. This criterion represents a

measure of the relative quality of a distribution given a set of laws. The distribution with

the lowest AIC value is preferred.

3. The Bayesian information criterion (BIC):

BIC ¼ plogn−2MLL,

where n represents the length of the data set and p the number of parameters to estimate.

This criterion is used to choose a distribution among a finite set of laws. The distribution

with the lowest BIC is preferred.

The AIC and BIC give a trade-off between a reward for a good goodness-of-fit performance

and a penalty for an increasing number of parameters to estimate. The BIC tends to favor more

parsimonious models than does the AIC.

We carried out the calculations with Wolfram Mathematica 10. To calculate the MLL, AIC, and

BIC values for the size distributions of Section 2, we used the function NMaximize with

numerical maximization algorithm Random Search method enhanced with the option Interior-

Point. For the composite lognormal-Pareto and the composite Weibull-Pareto models, we used

the estimation algorithms described in Section 3.

4.1. Danish fire losses

In this example, we analyze a classical insurance data set. This is the set of Danish data on 2492

fire insurance losses in Danish Krone (DK) from the years 1980 to 1990 inclusive. The data set

can be found in the “SMPracticals” add-on package for R, available from the CRAN website

cran.r-project.org.

The comparison of the considered distributions using the three criteria explained above is

presented in Table 1. The estimated values for the fitted distributions are given in Table 2.
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Distribution p MLL AIC BIC

Lognormal 2 -4433.89 8871.78 8883.42

Pareto 2 –5675.09 11354.20 11365.80

GL 3 –3967.18 7940.36 7957.82

GEV 3 –3955.43 7916.86 7934.32

Lognormal-Pareto 2 –3877.84 7759.68 7771.32

Weibull-Pareto 2 –3959.78 7923.56 7935.20

Table 1. MLL, AIC, and BIC values for the Danish fire data set.

Distribution

Lognormal μ
_

= 0.671854 σ̂ = 0.732317

Pareto α̂ = 0.545817 x̂0 = 0.313404

GL α̂ = 2.01251 b̂ = 435198 k̂ = 0.00227572

GEV μ
_

= 1.42575 σ̂ = 0.712043 k̂ = 0.545094

Lognormal-Pareto α̂ = 1.43633 θ̂ = 1.38513

Weibull-Pareto τ̂ = 4.43613 θ̂ = 1.46597

Table 2. Estimated values for the fitted distributions for the Danish fire data set.

Figure 12. Histogram of the Danish fire data with the fitted density of the composite lognormal-Pareto model.
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With a MLL value of -3877.84 and only two parameters, yielding the values AIC = 7759.68 and

BIC = 7771.32, the lognormal-Pareto model provides a better fit than the other models for the

given data set. A visual conclusion of the fit can be seen in Figure 12.

As the data present a humped shape behavior for the lower values and tail behavior for the

upper values; this example justifies the use and the necessity of the composite lognormal-

Pareto model.

This data set has also been analyzed in reference [46] where the composite lognormal-Pareto

model was introduced and reference [51] applied as well the Weibull-Pareto model to this data

set. The results we obtain above coincide with their results.

4.2. Internet traffic data

In the second empirical illustration, we analyze Internet traffic data, which have already been

analyzed from a Bayesian point of view in references [53] and [54]. This data set consists of

3143 transferred bytes/second within consecutive seconds.

Based on the MLL, the AIC, and BIC values represented in Table 3, we conclude that among

the considered laws, the lognormal distribution performs the best fit, closely followed by the

GL and the GEV distributions. The two considered composite models do not provide good fits

for this example. The estimated values for the fitted densities are given in Table 4.

Figure 13 provides a visual proof of the goodness-of-fit of the lognormal distribution.

Distribution p MLL AIC BIC

Lognormal 2 –39582.2 79168.4 79180.5

Pareto 2 –43031.7 86067.4 86079.5

GL 3 –39581.7 79169.4 79187.6

GEV 3 –39608.4 79222.8 79241.0

Lognormal-Pareto 2 –40098.4 80200.8 80212.9

Weibull-Pareto 2 –42823.9 85651.8 85663.9

Table 3. MLL, AIC, and BIC values for the Internet traffic data.

Distribution

Lognormal μ
_

= 11.6518 σ̂ = 0.62067

Pareto α̂ = 0.353628 x̂0 = 6795

GL α̂ = 13.6735 b̂ = 4.08831 k̂ = 808429

GEV μ
_

= 94465 σ̂ = 54467.5 k̂ = 0.204602

Lognormal-Pareto α̂ = 1.1.05077 θ̂ = 85064.5

Weibull-Pareto τ̂ = 1.12043 θ̂ = 79366.3

Table 4. Estimated values for the fitted distributions for the Internet traffic data.
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5. Conclusion

To sum up, we review in this chapter the notion of size distributions by presenting the best

known and most used ones. We further describe the general concept of composite models

based on size distributions and present in more details the composite lognormal-Pareto and

the composite Weibull-Pareto models. Besides providing their main statistical properties, we

illustrate the size distributions and composite models by applying them to two real application

examples to emphasize their use in practice. We compare the goodness-of-fit of the considered

distributions using as criteria the MLL, AIC, and BIC. For the first data set dealing with fire

losses we find that the composite lognormal-Pareto model performs the best, hinting at the

usefulness of composite models in this research area. However, for the second data set on

Internet traffic, the simple lognormal distribution outperforms the other size distributions and

composite models. This shows how delicate the choice is for a practitioner when confronted

with the question which distribution or model he/she should use on a given data set. The

composite models are already quite flexible, but given the different shapes a data set can take,

there is a quest for even more flexible distributions. In the literature, some families of distribu-

tions are proposed, which contain many of the classical size distributions and hence can model

very diverse behaviors. The most popular one is the generalized beta distribution presented in

reference [55], and very recently reference [56] introduces a new flexible distribution called the

interpolating family of size distributions. Those distributions are quite flexible as they enable

to model very distinct shapes and probably constitute the future avenue of research in the area

of size distributions.

Figure 13. Histogram of the Internet traffic data with the fitted lognormal density.

Distributions and Composite Models for Size-Type Data
http://dx.doi.org/10.5772/66443

179



Author details

Yves Dominicy1* and Corinne Sinner2*

*Address all correspondence to: yves.dominicy@ulb.ac.be and corinne.sinner@ulb.ac.be

1 Université libre de Bruxelles, SBSEM, ECARES, Brussels, Belgium

2 Université libre de Bruxelles, Département de Mathématique, Brussels, Belgium

References

[1] Jones M.C. On families of distributions with shape parameters. International Statistical

Review. 2015;83(2):175– 192.

[2] Ley C. Flexible modelling in statistics: past, present and future. Journal de la Société

Française de Statistique. 2015;156:76– 96.

[3] Lawless J. Statistical Models and Methods for Lifetime Data. Wiley Series in Probability

and Statistics. New York, USA: Wiley; 2003.

[4] Lee E., Wang J. Statistical Methods for Survival Data Analysis. Wiley Series in Probability

and Statistics. New York, USA: Wiley; 2003.

[5] Marchenko Y., Genton M. Multivariate log-skew-elliptical distributions with applications

to precipitation data. Environmetrics. 2010;21:318– 340.

[6] Mitzenmacher M. A brief history of generative models for power law and lognormal

distributions. Internet Mathematics. 2004;1(2):226– 251.

[7] Eeckhout J. Gibrat's law for (All) cities. American Economic Review. 2004;94:1429– 1451.

[8] Gabaix X. Power laws in economics: An introduction. Journal of Economic Perspectives.

2016;30:185– 206.

[9] Clarke R. Estimating trends in data from the Weibull and a generalized extreme value

distribution. Water Resources Research. 2002;38:25-1– 25-10.

[10] Kleiber C., Kotz S. Statistical Size Distributions in Economics and Actuarial Sciences.

New York: John Wiley & Sons; 2003.

[11] Asgharzadeh A., Nadarajah S., Sharafi F. Generalized inverse Lindley distribution with

application to Danish fire insurance data. Communications in Statistics: Theory and

Methods. Forthcoming.

[12] Ortega E.M.M., Lemonte A.J., Silva G.O., Cordeiro G.M. New flexible models generated

by gamma random variables for lifetime modeling. Journal of Applied Statistics. 2015;42

(10):2159– 2179.

Advances in Statistical Methodologies and Their Application to Real Problems180



[13] Aitchison J., Brown J.A.C. The Lognormal Distribution. Cambridge: University Press; 1957.

[14] McAlister D. The law of the geometric mean. Proceedings of the Royal Society of London.

1879;29:367– 376.

[15] Black F., Scholes M. The pricing of options and corporate liabilities. The Journal of

Political Economy. 1973;81(3):637– 654.

[16] Clementi F., Gallegati M. Power law tails in the Italian personal income distribution.

Physical A: Statistical Mechanics and Its Applications. 2005;350(2):427– 438.

[17] Burnecki K., Kukla G., Weron R. Property insurance loss distributions. Physical A: Statis-

tical Mechanics and Its Applications. 2000;287(1):269– 278.

[18] Burnecki K., Misiorek A., Cizek P., Härdle W.K. and Weron R. Loss distributions. In:

Statistical Tools for Finance and Insurance. Berlin, Heidelberg: Springer; 2005. pp. 289–

317.

[19] Koch A.L. The logarithm in biology I. Mechanisms generating the log-normal distribu-

tion exactly. Journal of Theoretical Biology. 1966;23:276– 290.

[20] Limpert E., Stahel W.A., Abbt M. Log-normal distributions across the sciences: keys and

clues. BioScience. 2001;51(5):341– 352.

[21] Tufféry S. Data mining et statistique décisionnelle. Paris, France: Technip; 2012.

[22] Pareto V. Cours d'économie politique. Geneva: Droz; 1896.

[23] Arnold B.C. Pareto Distributions. Fairland, Maryland, USA: International Co-operative

Publishing House; 1983.

[24] Hill B.M. A simple general approach to inference about the tail of a distribution. Annals

of Statistics. 1975;3:1163– 1174.

[25] Dominicy Y., Ilmonen P., Veredas D. Multivariate Hill Estimators. International Statistical

Review. Forthcoming.

[26] Lomax K.S. Business failures: Another example of the analysis of failure data. Journal of

the American Statistical Association. 1954;49:847– 852.

[27] Stoppa G. Proprieta campionarie di un nuovo modello Pareto generalizzato. Atti XXXV

Riunione Scientica della Societa Italiana di Statistica, Padova: Cedam. 1990; pp. 137– 144.

[28] Benckert L.G., Sternberg I.An attempt to find an expression for thedistribution of fire damage

amount. Transactions of the 15th International Congress of Actuaries. 1957;2:288– 294.

[29] Andersson H. An analysis of the development of the fire losses in the north countries

after the Second World War. Astin Bulletin. 1971;6:25– 30.

[30] Reed W.J., Jorgensen M. The double Pareto-lognormal distribution–A new parametric

model for size distributions. Communications in Statistics: Theory and Methods. 2004;33

(8):1733– 1753.

Distributions and Composite Models for Size-Type Data
http://dx.doi.org/10.5772/66443

181



[31] Abdul-Moniem I.B., Abdel-Hameed H.F. On exponentiated Lomax distribution. Interna-

tional Journal of Mathematical Archive. 2012;3(5):2144– 2150.

[32] Shams T.M. The Kumaraswamy-generalized Lomax distribution. Middle-East Journal of

Scientific Research. 2013;17(5):641– 646.

[33] Tahir M.H., Hussain M.A., Cordeiro G.M., Hamedani G.G., Mansoor M., Zubair M. The

Gumbel-Lomax distribution: properties and applications. Journal of Statistical Theory

and Applications. 2016;15(1):61– 79.

[34] Fisher R.A., Tippett L.H.C. Limiting forms of the frequency distribution of the largest or

smallest member of a sample. Proceedings of the Cambridge Philosophical Society.

1928;24:180– 290.

[35] Embrechts P., Klü ppelberg C., Mikosch T. Modelling Extremal Events for Insurance and

Finance. Berlin: Springer-Verlag; 1997.

[36] Guégan D., Hassani B.K. A mathematical resurgence of risk management: An extreme

modeling of expert opinions. Frontiers in Finance and Economics. 2014;11(1):25– 45.

[37] Burke E.J., Perry R.H.J., Brown S.J. An extreme value analysis of UK drought and pro-

jections of change in the future. Journal of Hydrology. 2010;388:131– 143.

[38] Coles S. An Introduction to Statistical Modeling of Extreme Values. Berlin: Springer-

Verlag; 2001.

[39] Finkenstädt B., Rootzén H. Extreme Values in Finance, Telecommunications and the

Environment. London: Chapman & Hall/CRC; 2004.

[40] Jenkinson A.F. The frequency distribution of the annual maximum (or minimum) values

of meteorological elements. Quarterly Journal of the Royal Meteorological Society.

1955;81:158– 171.

[41] Lindquist E.S. Strength of materials and the Weibull distribution. Probabilistic Engineer-

ing Mechanics. 1994;9(3):191– 194.

[42] Manwell J.F., McGowan J.G., Rogers A.L. Wind Energy Explained: Theory, Design and

Application. New York, USA: Wiley; 2009.

[43] Sharif N., Islam N. The Weibull distribution as a general model for forecasting techno-

logical change. Technological Forecasting and Social Change. 1980;18(3):247– 256.

[44] Alvarado-Celestino E. Large forest fires: An analysis using extreme value theory and

robust statistics [thesis]. University of Washington, USA; 1992.

[45] Klugman S.A., Panjer H.H., Willmot G. Loss Models: From Data to Decisions. New York:

Wiley; 2008.

[46] Cooray K., Ananda M.M.A. Modeling actuarial data with composite lognormal-Pareto

model. Scandinavian Actuarial Journal. 2005;5:321– 334.

Advances in Statistical Methodologies and Their Application to Real Problems182



[47] Scollnik D.P.M. On composite lognormal-Pareto models. Scandinavian Actuarial Journal.

2007;1:20– 33.

[48] Calderin-Ojeda E., Kwok C.F. Modeling claims data with composite Stoppa models.

Scandinavian Actuarial Journal. Forthcoming.

[49] Teodorescu S., Vernic R. Some composite exponential-Pareto models for actuarial predic-

tion. Romanian Journal of Economic Forecasting. 2009;12(4):82– 100.

[50] Teodorescu S., Vernic R. On composite Pareto models. Mathematical Reports. 2013;15

(65):11– 29.

[51] Scollnik D.P.M., Sun C. Modeling with Weibull-Pareto models. North American Actuarial

Journal. 2012;16(2):260– 272.

[52] Ciumara R. An actuarial model based on composite Weibull-Pareto distribution. Mathe-

matical Reports. 2006;8(58):404– 414.

[53] Ramirez-Cobo P., Lillo R.E., Wilson S., Wiper M.P. Bayesian inference for double Pareto

lognormal queues. The Annals of Applied Statistics. 2010;4(3):1533– 1557.

[54] Rubio F.J., Steel M. Bayesian modelling of skewness and kurtosis with two-piece scale

and shape distributions. Electronic Journal of Statistics. 2015;9:1884– 1912.

[55] McDonald J., Xu Y. A generalization of the beta distribution with applications. Journal of

Econometrics. 1995;66:133– 152.

[56] Sinner C., Dominicy Y., Ley C., Trufin J., Weber P. An interpolating family of size distri-

butions. Forthcoming.

Distributions and Composite Models for Size-Type Data
http://dx.doi.org/10.5772/66443

183




