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Abstract

Central nervous system (CNS) tumors, although rare, represent a group of neoplasms 
that have a disproportionate morbidity and mortality. Despite advances in our under‐
standing of tumor pathogenesis coupled with improvements in therapeutic options, 
overall survival for primary brain tumors remains dismal. Although challenging, 
newer approaches such as brachytherapy, immunotherapy, and electric field generators 
are currently being evaluated in the clinical setting with promising results. The field 
of immunotherapy in neurooncology is still in its infancy, but several advances have 
already been made, including the development of tumor vaccines, utilization of immune 
checkpoint inhibitors, and activation of tumor dendritic cells to stimulate the host’s 
immune system. Recent advances in noninvasive electric fields have been applied to the 
treatment of glioblastoma multiforme (GBM) with encouraging clinical outcome. In this 
chapter, we will review the latest advances in the treatment of glioblastoma multiforme 
with a focus on immunotherapy.

Keywords: glioblastomas, immunotherapy, tumor vaccines, immune checkpoint 
inhibitors, tumor treating fields

1. Introduction

Central nervous system (CNS) tumors comprise a relatively small portion of cancers, but they 

are among the most aggressive tumors and result in significant morbidity and mortality. It is 
estimated that approximately 77,670 cases of primary CNS tumors are expected to be diag‐

nosed in the United States in 2016 [1]. Of these, roughly 40% will be malignant with the major‐

ity being glioblastoma multiforme (GBM). The median survival of newly diagnosed subjects 
with GBM is approximately 12–15 months [2]. Despite intense efforts into understanding 
disease mechanisms and advances in technology, overall survival has only improved by 
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3–6 months, and the 5‐year survival rate ranks sixth lowest among all cancers after pancreatic, 
liver, intrahepatic bile duct, lung, stomach, and esophageal [3, 4].

Traditional treatment approaches for brain tumors have relied upon a combination of surgical 
resection, radiation, and chemotherapy. Newer approaches such as brachytherapy, immuno‐

therapy, and electric field generators are currently being evaluated in the clinical setting. In 
this chapter, we review the latest advances in the treatment of GBM.

2. Gliomas

Gliomas are the most common primary malignant brain tumor, comprising more than 80% 

of all malignant brain neoplasms [5]. Gliomas can be further divided into astrocytomas, oli‐

godendrogliomas, ependymomas, and mixed gliomas (i.e., oligoastrocytomas). These tumors 
can be further characterized based on grading. Astrocytomas are graded from I through IV 

and are represented as follows: grade I—pilocytic, grade II—diffuse, grade III—anaplastic, 
and grade IV—glioblastoma multiforme (GBM). Although we historically call all grade IV 

astrocytomas GBM and subsequently treat these tumors with the same treatment protocols, 

growing evidence suggests that even within GBM, there may be distinct disease processes 

that require a more specific targeting approach. Recently, GBM was re‐classified into four 
subtypes based on unique molecular profiles and includes: classical, mesenchymal, proneu‐

ral, and neural [6]. Further analysis of these subtypes identified subjects with classical GBMs 
lived the longest compared to those subjects with other GBM subtypes [6]. This observation 
may partly explain some subjects with GBM having lengthened overall survival compared to 

other GBM subjects.

Subjects with CNS tumors may present with any generalized or focal symptoms including 

a headache, seizure, or a specific neurological deficit. However, one of the most common 
complaints for CNS tumor subjects is a headache with roughly 77% of subjects reporting a 

dull tension‐like headache [7]. Seizures are also very common in CNS tumor subjects with 

roughly 15–95% of subjects experiencing at least one seizure during the course of their dis‐

ease process [8]. Interestingly, seizures are more common in subjects aged 30–50 years and 
are frequently associated with tumors involving the frontal, temporal, frontotemporal, and 

frontoparietal lobes [9].

Due to the relatively rapid natural progression of GBM, identification of prognostic factors is 
valuable in determining the most appropriate therapeutic approach for subjects. Traditional 
indicators used include subject's age, their Karnofsky performance score, tumor size and 

location, and finally grade of tumor. In addition to these indicators, tumor molecular fea‐

tures are now being incorporated into survival models for GBM subjects. Well‐ characterized 

molecular alterations include isocitrate dehydrogenase (IDH) mutation, 1p and 19q codele‐

tion, epidermal growth factor receptor variant III (EGFRvIII) rearrangement, and MGMT 
promoter methylation (Table 1). Point mutations in isocitrate dehydrogenase (IDH) 1 and 
2 have been associated with improved prognosis compared to patients with wild‐type 

IDH [10]. The combined loss of chromosomal arms 1p and 19q has been shown to occur in 
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 oligodendrogliomas and oligoastrocytomas [11], but it is associated with better response to 
chemotherapy and radiation therapy leading to prolonged progression‐free and overall sur‐

vival [12, 13]. Epidermal growth factor receptor (EGFR) is a cell surface receptor involved in 

cell  proliferation. A  common alteration of EGFR is a truncated version called EGFRvIII, which 

is constitutively active leading to increased cell proliferation and reduced apoptosis [14]. 

Overexpression of EGFRvIII is observed in 24–67% of GBM [15]. Since EGFRvIII is a unique 

surface receptor, strategies to target this epitope have been explored; additional details will 

be discussed in the tumor vaccine section. Finally, O6‐methylguanine methyltransferase 

(MGMT) is involved in the DNA repair pathway. Therefore, promoter methylation will lead 
to decreased protein levels and inability to repair the DNA. As such, promotor hypermeth‐

ylation of MGMT has been observed in 20–40% of GBM [16]. The results from clinical trials 
and cohort studies have demonstrated that MGMT promoter methylation status is associated 
with prolonged progression‐free and overall survival in patients with GBM treated with an 

alkylating chemotherapeutic agent [17–19].

3. Standard treatment regimen

The approach to GBM treatment has largely remained unchanged since 2005 with the publica‐

tion of the Stupp et al. [20]. In this study, Stupp et al. [20] showed that giving temozolomide 

(TMZ) concurrently with radiation therapy after debulking surgery and then again follow‐

ing radiation therapy improved median survival in patients with newly diagnosed GBM. 

Each component of the Stupp protocol is important in the management of GBM. Surgery 

plays an important role as it allows for cytoreduction and histological confirmation of diag‐

nosis. Achieving a gross total resection of >98% results in median survival of 12–15 months 
survival [21]. Approaches have been developed to aid surgeons in achieving a gross total 

resection while preserving baseline cognitive function. These include intraoperative MRI and 
neuronavigation, use of fluoride dye and imaging, and use of intraoperative brain mapping. 
Advances in imaging technology have allowed surgeons to incorporate functional MRI (fMRI) 

Molecular marker Description Prognostic role

IDH mutation Increases production of 2‐hydroxyglutarate 

also IDH1 mutation associated with CpG island 
methylator phenotype in gliomas

Favorable

1p/19q co‐deletion Currently unclear Favorable, better treatment response to 
chemotherapy and radiation therapy

EGFRvIII Ligand‐independent receptor activation leading 

to increased proliferation and reduced apoptosis

Reduced long‐term survival

MGMT hypermethylation Reduced DNA repair MGMT promoter methylation associated 
with prolonged progression‐free and 

overall survival with treatment of 

alkylating chemotherapeutic agents

Table 1. Molecular prognostic factors associated with gliomas.
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and Diffusion tensor imaging (DTI) images into neuronavigation systems in order to improve 
achieving maximum safe resection [22]. Radiation therapy is also important in treating GBM 

with an improvement in medial survival from 3–4 months to 9–12 months [20, 23]. Finally, 
as mentioned previously, TMZ, an alkylating agent, has shown to improve median survival 
[20]. Several chemotherapeutic agents targeting different cellular pathways have been studied 
with various results, including inhibitors of epidermal growth factor receptor (EGFR), vas‐

cular endothelial growth factor (VEGFR), platelet‐derived growth factor receptor (PDGFR), 

protein kinase C (PKC), mammalian target of rapamycin (mTOR), RAF‐MEK‐ERK pathway, 
and integrins [24]. Of note, an anti‐VEGF monoclonal antibody, bevacizumab, which demon‐

strated improved progression‐free survival in two randomized phase 3 clinical trials, failed to 

improve overall survival [25, 26]. Therefore, advancing the realm of neurochemotherapeutic 
agents hinges on our understanding of disease mechanism and may benefit from a combined 
multimodality approach utilizing various targets and approaches.

4. Immunotherapy

The concept of immunotherapy for cancer treatment is based on stimulating the body's own 
immune system, predominately cytotoxic T lymphocytes (CTL), to target and eliminate 
tumor cells. This concept is based on the body's own defense mechanism to eliminate cells 
that have undergone malignant transformation in a process called immune surveillance [27]. 

Theoretically, if the host immune system is stimulated with expansion of sufficient numbers 
of tumor‐specific CTLs or non‐functioning T cells are rescued within the tumor microenviron‐

ment, cell‐mediated lysis of tumor cells could lead to tumor regression [28]. These concepts 
have been applied to several non‐CNS malignancies with promising results [29]. However, 
because the CNS was originally considered to be an immune‐privileged site, immunotherapy 

approaches for CNS malignancies were deemed futile. The notion of the CNS being immune‐
privileged stems from studies in which rat osteosarcoma cells injected intracranially grew 

significantly better than cells injected subcutaneously or intramuscularly [30]. Additional evi‐
dence has historically been that since there is an intact blood brain barrier (BBB), the CNS and 

specifically the brain are presumed to be immune privileged.

Despite this antiquated line of thinking, more recent observations indicate that the CNS is 

actually immunospecialized. This is based on the considerable interaction observed with the 
peripheral nervous system and the non‐parenchymal ventricles, meninges, and subarachnoid 

space [31]. For example, antigen presenting cells (APCs) are found in many areas of the brain, 

including leptomeninges, ventricles, and perivascular spaces [32, 33]. Additionally, recent evi‐

dence has emerged indicating that the CNS possesses a functional lymphatic system, which 

is located within the walls of dural sinuses and actually communicates with deep cervical 

lymph nodes [34–36]. This network is able to transport immune cells and macromolecules 
and serves as a mechanism for antigens to pass through the walls of cerebral arteries and 

be carried to the cervical lymph nodes through the Virchow‐Robin perivascular spaces [37]. 

Interestingly, dendritic cells (DC) have been shown to travel outside the brain and present 

antigens to T cells located in the cervical lymph nodes [38]. This presentation of CNS  antigens 
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primes T cells for homing and infiltration to the tumor parenchyma [30]. Inflammatory stim‐

uli, such as those induced by brain tumors, also increase CNS immunogenicity by provoking 

microglial activation and blood‐brain barrier (BBB) disruption [39]. BBB disruption occurs 

secondary to glioma cell invasion of the basement membrane. This disruption also enables 
immune cells to migrate past the BBB, which normally would be intact, preventing such 

migration. As our understanding of immune function expands in the CNS, the field of immu‐

notherapy as it pertains to CNS disease has emerged as a frontier player in the fight for CNS 
cancer. As a result, there are several immunotherapies currently being investigated in clinical 

trials with many producing promising results [30].

4.1. Tumor vaccines

The idea behind tumor vaccinations is to present tumor‐associated antigens (TAAs) to the 
host immune system in order to evoke a pro‐inflammatory antitumor response elicited by 
CD4+ and CD8+ T cells interacting with major histocompatibility complexes (MHC) I and 
MHC II, respectively [40]. Naturally, the success of tumor vaccinations and elegance of using 
this approach are that it is both tumor specific and subject specific, thereby, reducing inad‐

vertent toxic side effects [40, 41]. Although there is great specificity in using tumor vacci‐
nations, the challenge remains in optimizing the selection of targeted peptides since many 

TAAs are identified as “self” by the immune system [42]. Tumor vaccinations can be catego‐

rized according to their delivery method and includes peptide, dendritic cells (DCs), and heat 

shock protein (HSP).

Although several TAAs specific to GBM have been described in the literature including HER‐2, 
gp100 [43], MAGE‐1 [43], ATIA [44], and AIM‐2 [45], peptide vaccination development using 
epidermal growth factor receptor variant III (EGFRvIII) has received the most attention [43]. 
First described by Heimberger et al. in 2003, the EGFRvIII vaccine, rindopepimut has been 
studied in several clinical trials with promising results [30, 46]. In a multicenter phase II trial, 

subjects with EGFRvIII‐expressing GBM that received rindopepimut had a median progres‐

sion‐free survival from time of histological diagnosis of 14.2 months and an overall survival 
of 26.0 months [47]. In another multicenter phase II clinical trial (ACT III), the median overall 
survival was 21.8 months, which further confirms the results from the aforementioned phase 
II trial [48].

While these results are encouraging, a recent phase III clinical trial (ACT IV) evaluating rindo‐

pepimut was discontinued on the recommendations of the independent Data Safety and 

Monitoring Board based on observations that the treatment arm and control arms of the study 

were performing on par with each other and unlikely to meet its primary overall survival end‐

point [49]. Another issue complicating the use of tumor peptide vaccinations is the notion that 

tumor recurrence post‐peptide vaccination leads to altered tumor protein expression, which 

makes treatment approaches for tumor recurrences more challenging. Specifically, Sampson 
et al. analyzed those patients who received rindopepimut and subsequently experienced a 

recurrence. They demonstrated that in those tumors that recurred, 82% demonstrated loss of 
EGFRvIII expression. These results suggest that the peptide vaccine is able to successfully tar‐

get EGFRvIII‐expressing tumor cells. At the same time, these results indicate that the peptide 
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vaccine preferentially led to the selection of EGFRvIII‐negative tumor cells, resulting in tumor 

regrowth [47]. Despite this obstacle, one proposed strategy to overcoming this tumor event is 

to target multiple TAAs in an attempt to overcome the inherent heterogeneity of GBMs [40].

Still another approach to generate tumor vaccines while addressing the limitations of using 

one antigen is the use of heat shock protein (HSP) peptide complexes. HSP vaccines are gener‐

ated from TAAs bound to HSP peptide complexes derived from GBM tissue. Two HSP pep‐

tide complexes that are currently being evaluated in clinical trials include HSP 70 and 96 [30]. 
In a phase II clinical trial, which evaluated a HSP peptide complex 96 vaccine, the authors 
demonstrated an increase in median overall survival of 42.6 weeks compared to historical 
controls [50]. Other HSPs, including HSP47, have been found to play a role in GBM pathogen‐

esis specifically glioma angiogenesis and may serve as additional therapeutic targets [51, 52].

Several dendritic cell (DC) vaccines are currently being evaluated in various stages of clini‐

cal trials [30]. The mechanism of action for the majority of dendritic cell vaccines involves 
extracting autologous DC from the subject. Then in vitro, the DCs are stimulated or pulsed 

with tumor peptides or tumor lysate and subsequently re‐introduced into the subject. The 
results of a phase I trial demonstrated a median progression‐free survival of 16.9 months and 
median overall survival of 38.4 months after administration of a multi‐epitope‐pulsed DC 
vaccine [53]. In another phase I trial, median overall survival was 31.4 months after treatment 
with pulsed DCs followed by adjuvant treatment with either imiquimod or poly‐ICLC [54]. 

In the latter study, the authors observed that subjects with GBMs with a mesenchymal gene 
expression profile were more susceptible to the DC treatment approach [54]. This observation 
underscores the importance of molecular characterization and developing a personal treat‐

ment approach.

Interestingly, as technologies advance, we now have the capability to develop computa‐

tional modeling to identify potential tumor antigens through next‐generation sequencing to 

identify mutations and peptide affinity algorithms to find peptides with high peptide‐MHC 
affinity [30, 55, 56]. This approach has been validated in preclinical studies using melanoma 
cell lines [55]. It is currently unclear whether this approach can have similar efficacy against 
CNS tumors.

4.2. Immune checkpoint molecules

Many clinical studies are focusing on how to rescue the function of immune cells against 

non‐immunogenic tumors and their immune suppressive microenvironments. It is well estab‐

lished that inhibitory receptors on T cells play a vital role in suppressing T cell‐mediated 
antitumor responses [30, 57]. These inhibitory receptors, referred to as immune checkpoints, 
serve to prevent inappropriate or prolonged activation of the host immune system. There 
are several immune checkpoint protein inhibitors that have been developed and are demon‐

strating promising antitumor responses clinically—CTLA‐4 and PD‐L1 [30]. CTLA‐4 has been 
shown to modulate T cell activation, thereby preventing unabated activation and prolifera‐

tion [58]. A humanized CTLA‐4 antibody, ipilimumab, has been FDA‐approved and shown to 
have promising results in treating metastatic melanoma with an approximately 10.9% overall 

response rate that remains durable [59]. In the setting of GBM, administration of ipilimumab 
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has been limited to small cohorts [30]. PD‐LI is modulated by the PI(3)K‐Akt‐mTOR pathway 
[60] and its function is to suppress the proliferation and function of CTLs and also promote 
regulatory T cells (Tregs) activity through the binding of programmed cell death—1 (PD‐1) 
[61]. PD‐L1 is also found on the surface of GBM tumor cells, and expression is correlated with 

tumor grade and prognosis [62, 63].

Not surprisingly, the most promising outcomes regarding immune checkpoint therapy have 

been achieved through dual CTLA‐4 and PD‐L1 blockade. In a recent randomized controlled 
trial, blocking both CTLA‐4 and PD‐L1 in patients with advanced untreated melanoma 
resulted in a median progression‐free survival of 11.5 months compared to CTLA‐4 mono‐

therapy with 2.9 months and PD‐L1 monotherapy with 6.9 months [64]. Additionally, other 
checkpoint molecules (e.g., LAG‐3 and TIM‐3) are currently being investigated in combina‐

tion with PD‐1 blockage in preclinical studies treating non‐CNS tumors [65, 66]. With success 

in non‐CNS tumor models, this strategy may also be effective in treating GBM and other 
CNS malignancies.

4.3. Human cytomegalovirus

Human cytomegalovirus (HCMV) was first reported to be associated with GBM in 2002 by 
Cobbs et al. [67]. Since that time, there has been much controversy surround this topic with a 

high degree of variability in the literature regarding the detection of HCMV in CNS tumors 
[67–92]. To help resolve some of this controversy, a consensus paper was published in 2012 
[93]. Despite this, a consensus paper stating the existence of HCMV in gliomas and their 
potential role in tumorigenesis, recent studies using next‐generation sequencing have not 

been able to identify any HCMV in CNS tumor tissue [73, 81, 85–87, 92, 93]. Furthermore, 
anti‐CMV therapy has been relatively unremarkable in the clinical setting with results being 
unclear and several clinical trials currently underway. For example, results from the Sweden 

(VIGAS) study, a randomized, double‐blinded, placebo‐controlled trial published in 2013, 

demonstrated trends but no significant differences in tumor volumes between the valganci‐
clovir (an anti‐CMV drug) and placebo groups at 3 and 6 months [94]. However, when the 
authors performed a retrospective analysis of the same cohort adding in additional patients 

taking valganciclovir for compassionate reasons, the rate of survival of treated patients at 

2 years was 62%, as compared with 18% of contemporary matched controls [95]. The conclu‐

sion as to whether HCMV is associated with GBM remains unclear and warrants additional 
studies to completely resolve this ongoing issue.

5. Advancing treatment products

In a concerted effort to combat CNS malignancies, the Brain Tumor Biotech Summit was cre‐

ated as a way to bring the private sector and researchers together to discuss and exchange 

novel ideas that would ultimately lead to advances in CNS malignancy therapy [96]. From 

this summit, several products were highlighted, all of which demonstrate promising results. 

ONC201/TIC10 is a small molecule drug that can cross the BBB [97] and effectively target 
the tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) pathway in both cancer 
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stem cells and tumor cells [96]. Preclinical studies in GBM and colorectal tumors have shown 

promising results with regression of tumors without adverse side effects [98, 99]. Several 
vaccines are currently being developed including the Prophage Series G‐100 and G‐200 vac‐

cines, which utilize the HSP complex 96 purified from tumor tissue [96], synthetic immune‐ 
stimulant multi‐peptide SL‐701 DC vaccine [96], and EGFRvIII vaccine [47, 48, 100, 101]. 

SL‐701 is derived from several unregulated factors in GBM, including IL‐13Ralpha2, EphA2, 

and surviving [96].

ANG1005 is an angiopep‐2‐paclitaxel chemotherapeutic agent conjugated to cellular recep‐

tor ligand, LRP‐1 [102, 103]. LRP‐1 is highly expressed on the surface of the BBB and allows 

for entry into the brain parenchyma since LRP‐1 is also highly expressed in GBM [103, 104]. 

Another cellular receptor ligand being investigated is HER2 receptor, which may be useful in 
targeting breast cancer brain metastases since HER2 receptor has been shown to be overex‐

pressed in roughly 25–30% of breast cancers [105, 106]. Toca 511 is a replicating amphotropic 
murine leukemia virus that preferentially infects malignant cells and delivers cytosine deami‐

nase (CD) protein. Inside malignant cells, the CD enzyme converts the antifungal drug 5‐FC 

(5‐fluorocytosine) to the anticancer drug 5‐FU (5‐fluorouracil) [107]. A new form of brachy‐

therapy seed has also been developed, 131Cs, which has a higher mean energy and a shorter 

half‐life, allowing for fewer radioactive seeds and reduced exposure to family members and 

medical staff [108].

The most recent FDA‐approved treatment for GBM is Novocure's Optune device, which uses 
a noninvasive tumor treating field generator that results in the slowing and ultimate reversal 
of tumor growth [109, 110]. The concept of the device is that it creates low intensity, alternating 
electric fields within the tumor site that act on the electrically charged cellular components, 
thereby preventing normal cellular functions such as mitosis, which ultimately leads to tumor 

cell death [109]. In a prospective, randomized, multi‐institutional control trial designed to 

compare the effectiveness and safety of newly diagnosed GBM subjects treated with Optune 
in combination with temozolomide (TMZ) (n = 210) to those treated with TMZ alone (n = 105), 
progression‐free survival in the treatment arm was 7.1 months compared to 4.0 months in 
the TMZ only group [111]. In addition, overall survival was 20.5 months in the Optune and 
TMZ group compared to 15.6 months in the TMZ only group [111]. The median follow‐up 
for the study was 38 months (range 18–60 months) [111]. The authors concluded that adding 
Optune to maintenance TMZ can significantly prolong progression‐free and overall survival 
in patients with newly diagnosed GBM [111].

6. Conclusion

GBM is a highly heterogeneous disease requiring a meticulous treatment approach. Despite 

advances in treatment options over the past decades, overall survival has remained rela‐

tively unchanged. As our understanding of GBM tumorigenesis increases, our treatment 

efforts have become more targeted. With tremendous strides in immunotherapy and bio‐

technology, the field of neurooncology holds promise for improving survival in those 
patients with CNS cancer. The notion of highly specific therapy with minimal side effects is 
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the  benchmark for all cancer therapies striving to accomplish. As we usher in this new era 

in treating CNS tumors, our approach to fighting CNS disease will change with the ultimate 
goal of improved survivorship.
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