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Abstract

Typhoid infections have become an alarming concern with the increase of multidrug 
resistant strains of Salmonella serovars. The new pathogenic Gram-negative strains are 
resistant to most antibiotics such as chloramphenicol, ampicillin, trimethoprim, cipro-
floxacin and even co-trimoxazole and their derivatives thereby causing numerous out-
breaks in the Indian subcontinent, Southeast Asian and African countries. Conventional 
and modern methods of typing had been adopted to differentiate outbreak strains. 
However, identifying the most indispensable proteins from the complete set of proteins 
of the whole genome of Salmonella sp., comprising the Salmonella pathogenicity islands 
(SPI) responsible for virulence, has remained an ever challenging task. We have adopted 
a network-based method to figure out, albeit theoretically, the most significant proteins 
which might be involved in the resistance to antibiotics of the Salmonella sp. An under-
standing of the above will provide insight into conditions that are encountered by this 
pathogen during the course of infection, which will further contribute in identifying new 
targets for antimicrobial agents.

Keywords: Salmonella, Salmonella pathogenicity island, SicA, eigen vector centrality, 
k-core analysis

1. Introduction

Food-borne infections are quite common and widely distributed worldwide, though there 

can be several sources of such diseases. Human Salmonellosis or typhoid, causing systemic 

 infection of the human gastrointestinal tract and diarrhoea, is one such common disease 

caused by Salmonella enterica serovar Typhi. With a prevalence of probably 10 millions of 
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cases and hundreds of thousands of deaths every year [1], the disease has turned out to 

be a major cause for concern with the emergence of multidrug-resistant (MDR) Salmonella 

strains [2]. Such new strains are resistant to chloramphenicol, ampicillin, trimethoprim, cip-

rofloxacin and even co-trimoxazole and their derivatives, thereby causing numerous out-
breaks in the Indian subcontinent, Southeast Asian and African countries [3, 4]. Thus, newer 

drugs like cephalosporins and quinolone derivatives needed to be explored to combat the 
situation [5].

To deal with the threats of multidrug resistance, several health intervention strategies have 

been undertaken. However, the prospects for finding new antibiotics for several classes of 
Gram-negative pathogens are especially poor due to the blockades provided by their outer 

membrane to the entry of some existing antibiotics and expulsion of many of the remain-

der by their efflux pumps [6]. It has become imperative that the conventional strategies 

for dealing with such pathogens are less effective or even at times, ineffective completely, 
to emerge victorious against the strategies for the war waged out by them. In such cases, 

the complexities posed can be solved by adopting some non-conventional approaches of 
finding the drug targets for these pathogens. Proteins, being the functional unit of the cell 
of any living organism, have always been good targets for combating diseases. Diseases, 

on the other hand, serve as interesting examples of complex protein interactions among 
several other heterogeneous entities of and between organisms. However, understanding 

the complexity of such interacting protein partners, especially with respect to the combat 
against the pathogens, has always been elusive. Thus, analyses of the mosaic mesh or net-

work of interacting proteins, commonly known as protein interaction networks (PINs) can 

provide sufficient insight to reveal the indispensable virulent proteins for valuable drug 
targets [7].

Analyses of a PIN, to highlight important and/or indispensable proteins, can be as simple as 

centrality measurements with respect to the biological scenario. These can start by determin-

ing the number of interacting partners of a particular protein to identify its degree centrality 

(DC) which correlates with its biological importance. Thus, high-degree proteins (or hubs) 

are known to correspond to proteins that are essential [8]. As a protein can be affected locally 
while interacting with its other partners in the global network, other centrality measures are 

also given importance based on their relevance. Thus, we have discussed the importance of 

the measures like closeness centrality (CC), betweenness centrality (BC) and eigenvector centrality 

(EC) [8] parameters for PIN comprising the Salmonella pathogenicity islands (SPI) harbouring 

the specialized virulent proteins characterized by the type III secretion system (T3SS) among 
others. Till date, 17 such discrete sets have been reported for S. Typhi [9] along with the five 
SPI (1 till 5) characterized experimentally [10] among which SicA has been identified as the 
indispensable one in the phylogenetically closest neighbour, S. enterica serovar Typhimurium 

strain LT2 [11].

Again, extracting knowledge of the most indispensable virulence proteins from among the 
stipulated sets of SPI proteins could be quite insufficient. Thus, we have carried out  further 
analyses of the whole genome of S. Typhi CT18 encompassing the decomposition of the 

whole genome protein interactome to a core of highly interacting proteins through the k-core 
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 analysis approach [12]. We have performed cartographic analyses further to identify the func-

tional modules in the network [13] and predicted the indispensability of certain sets of pro-

teins, which have been shown to be sharing similar functional modules empirically important 

for drug targets.

2. Approach

2.1. Dataset collection

Proteins for 17 Salmonella pathogenicity islands (SPIs) were collected from an in silico study 

of SPI for S. enterica serovar Typhi strain CT18 [9]. The locus tag of all the proteins of SPI for 

S. Typhi CT18 was fed as queries to the STRING 10.0 biological meta-database [14] to get all 

the possible interactions of a particular protein (date and time of access: Jul 28 2016 13:07:15). 

Detailed protein links file under the accession number 220341 in STRING was used to collect 
all the interactions of the whole genome proteins of S. Typhi.

The number of proteins from the different genomic islands starting from SPI-1 till -13 and -15 
till -18 were 54, 43, 8, 7, 10, 55, 144, 12, 4, 23, 16, 4, 14, 9, 7, 2 and 97, respectively, with all the 

combined SPI amounting to a total of 502. The total number of protein interactions obtained 

from STRING v10 were 334, 339, 3, 21, 9, 192, 1193, 12, 6, 69, 19, 1, 19, 5, 3, 1, 343, for the 17 

SPI loci mentioned above and 2570 interactions for all of these combined together. The whole 

genome of S. Typhi had 1041274 interaction information arising out of 4529 unique proteins.

2.2. Interactome construction

All individual protein interaction data, with medium confidence values obtained by default 
from String 10.0, were imported into Cytoscape version 3.3.0 [15] to integrate and build the 

interactomes of network comprising SPI-1 till -13 and -15 till -18, individually and all these 17 

SPI collectively (AS). The interaction information, weighted by their strength as per STRING, 

of all the proteins of S. Typhi genome was imported into Gephi 0.9.1 [16] to construct and 

visualize the interactome of the whole genome. An interactome of proteins can be perceived 
as the protein interaction network (PIN) and can be represented as an undirected graph G = 

(V, E) consisting of a finite set of V vertices (or nodes) and E edges. An edge e = (u, v) connects 

two vertices (nodes) u and v. Each protein in the above PIN is represented as a vertex/node. 
The number of connections/interactions/associations/links a node has with other nodes com-

prises its degree d (v) [17].

2.3. Network analyses

2.3.1. SPI-PIN

All the interactomes of SPI-PIN have been viewed by Cytoscape version 3.3.0 in the form 

of graphs of aforementioned interconnected proteins. The networks were subsequently 

 analysed via the Cytoscape integrated java plugin CytoNCA [18] to compute values for the 

network centrality parameters namely EC, DC, CC and BC. Combined scores from different  
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parameters considered in STRING were taken as edge weights for computing CytoNCA 

scores. Top 20 proteins for each of the centrality measures were taken for drawing Venn dia-

grams to find common proteins from each measure.

2.3.2. WhoG-PIN

As few (21) nodes out of the whole genome were isolated from the major part of network, 

these were considered to have less impact on the overall topology and thus ignored. Further 

analyses were based on the large connected component (LCC) of network comprising 4508 

protein partners having 1041182 interactions. The analytical study has been done by using 

MATLAB version 7.11, a programming language developed by MathWorks [19].

For the primary understanding of the network, the distributions of network degree (k) 

were plotted by Complementary Cumulative Distribution Function (CCDF). To extract sig-

nificant information from the topology of the large and complex Whole Genome Protein 
Interaction Network (WhoG-PIN), knowledge of the role of each protein was derived 

from the cartographic representation of within-module degree z-score of the protein ver-

sus its participation coefficient as per the methodology described by Guimera et al. [20]. 

Participation of each protein reflected its positioning within own module and with respect 
to other modules, where modules were calculated based on Rosvall method [21]. To have 

an idea of the core group of the very specific proteins which might have variety of role 
to play in the whole genome context, a k-core analysis was performed following the net-
work decomposition (pruning) techniques to produce a sequence of subgraph of gradually 

increasing cohesion [12].

3. Features of the 17 SPIs

The virulence proteins of Salmonella are spread across the 17 Salmonella pathogenicity 

islands (SPIs) in S. Typhi as implied by Ong et al. [9]. Among these, five have been well 
characterized and reported to have SicA as the most indispensable one as identified com-

putationally by Lahiri et al. [11]. A detailed insight into these SPI proteins would reveal 

SPI-1 and -2 to encode the proteins of the type III secretion systems (T3SSs), while SPI-4 

encodes those of type I secretion system (T1SS) mediated by a giant non-fimbrial adhesin, 
which is co-regulated by the invasion genes encoded by the SPI-1 [22]. The sit gene cluster 

proteins of SPI-1 T3SS, encoding an iron uptake system, are involved in the invasion into 

the eukaryotic host non-phagocytic cells mediated by the delivery of effectors that directly 
engage host cell signalling pathways [10]. For the systemic phase of infection, proteins of 

the SPI-2 cluster are essential for the survival and replication in eukaryotic host cells [23], 

which are aided by the high-affinity magnesium uptake system encoded by mgtCB, har-

boured by SPI-3 [24]. The effector proteins of enteropathogenesis are harboured by SPI-5 
and are induced by distinct regulatory cues and targeted to different TTSS, namely, SopB, 
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secreted by SPI1 T3SS and PipB, translocated by SPI-2 T3SS to the Salmonella-containing 

vacuole and Salmonella-induced filaments.

The 59 kb SPI-6 consists of a type VI secretion system (T6SS), the safABCD fimbrial gene clus-

ter, the invasin pagN, two pseudogenes as transposase remnants (STY0343 and STY0344), 

the fimbrial operon tcfABCD and the genes tinR and tioA [25–29]. The largest SPI identi-

fied till date is that of SPI-7 with 134 kb size [25, 30, 31] and 150 genes inserted between 

duplicated pheU tRNA sequences [30, 32] containing the Vi capsule biosynthesis genes [33], 

a type IVB pilus operon [34] and the SopE prophage (ST44) [35]. SPI-9 is a 16 kb locus con-

taining three genes encoding for a T1SS and one for a large protein [36]. SPI-10 is an island 

found next to the leuX tRNA gene at centisome 93. It is a 33 kb fragment [25] carrying a 

full P4-related prophage, termed ST46 [37–39]. ST46 harbours the prpZ cluster as cargo 

genes encoding eukaryotic-type Ser/Thr protein kinases and phosphatases involved in S. 

Typhi survival in macrophages [40]. SPI-11 is a 10 kb fragment in S. Typhi and includes 

phoP-activated genes pagD and pagC involved in intramacrophage survival [41, 42]. The 

6.3 kb SPI-12 contains the effector SspH2 [43] along with the three ORFs are pseudogenes 

(STY2466a, STY2468 and STY2469). SPI-13 was initially identified in serovar Gallinarum 
[44]. In S. Typhi, it is a 25-kb gene cluster found next to the pheV tRNA gene on centro-

some 67. The 8-kb portion of this island corresponds to SPI-8 whose virulence function is 

unknown, and it harbours two bacteriocin immunity proteins (STY3281 and STY3283) and 

four pseudogenes [25]. SPI-14 is absent in S. Typhi [36, 44]. SPI-15 in S. Typhi is a 6.5 kb 

island of five ORFs encoding hypothetical proteins [44]. SPI-16 is a 4.5 kb fragment inserted 

next to an argU tRNA site, and encodes five or seven Open reading frames (ORFs), four of 
which are pseudogenes, the three remaining ORFs show a high level of identity with P22 

phage genes involved in seroconversion [45]. SPI-17 is a 5-kb island encoding six ORFs 
inserted next to an argW tRNA site [45]. SPI-18 was recently identified in S. Typhi as a 2.3 

kb fragment harbouring only two ORFs: STY1498 (clyA) and STY1499 [46] of which the 

former encodes a 34 kDa pore-forming secreted cytolysin [46, 47].

4. The individual and the combined SPI-PINs

To focus upon the most indispensable proteins of the highly complex virulent phenotype as 
that of Salmonella, an integrated picture comprising the involvement of all the SPI and the 

connected associated proteins must be taken into account. Thus, with an ultimate goal to 

identify the indispensable virulent proteins for potential candidates of therapeutic targets, we 

have constructed the PINs or interactomes of the 17 individual SPI mentioned above, along 

with and a combined network of all of these SPI-PINs (AS). These were then analysed to iden-

tify the most important proteins among a group of highest number of interacting partners. 

This was done by utilizing the four important concepts of centrality applied to biological net-
works, namely eigenvector centrality (EC), degree centrality (DC), closeness centrality (CC) 

and betweenness centrality (BC) [48–50].
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Amongst the four centrality measures being mentioned above, DC is the most basic as it 

brings out the involvement of the protein in a large number of interactions in a network. 

However, in a biological scenario of Salmonella infection, having the primary stages as 

 attachment and invasion, the interactions of those proteins may not be in a sequential order 
so as to carry out a particular function as reflected through DC parametric analyses. In such 
cases, analyses of CC could be a good measure, which would reveal the close proximities of 
the proteins expected to communicate sequentially with other network proteins essential 
for a particular function. Again, a one-to-many type simultaneous interaction of a protein, 

rendering different functions, is imperative from the complexities of biological phenotype 
like virulence. Thus, the protein with a high proportion of interactions lying ‘in between’ 

and thereby connecting many other proteins in the network would be revealed through BC 

measures. This could have reflected to be quite an important protein, though it lacks the idea 
of connecting other important proteins in the network. EC measures the last concept and 

reflects the indispensable protein connecting other important proteins. A comparative pic-

ture of the parametric values of the top 20 rank holders in their descending order have been 

consolidated and put in a tabular form (Table 1). These rankers in either of the cases have the 

proteins reflected to be important.

There have been three clear trends observed across the topmost rankers of the SPI-PINs for 

the measures of DC, BC, CC and EC, respectively. In most of the cases, there is a unanimous 

decision for the top ranking protein showing its utmost importance nearing to indispensabil-

ity. SPI-PINs of these categories are -1, -3, -4, -5, -7, -8, -9, -10 to -13 and -15 to -17. The other 

categories have either three or two of the centrality measures conforming to the unanimosity 

of the top ranking proteins. SPI-2, -18 and the all SPI (AS-PIN) have BC differing in the top 
ranking position whereas SPI-6 and -10 have segregation of DC and EC against CC and BC 

for the top ranking positions. The common top ranking proteins across these 17 SPI and the 

AS has been reflected in Figure 1 with Venn diagrams.

It has been observed that with SPI-1, protein HilA is ranked highest. HilA is the central regu-

lator in SPI-1, which activates the sip operon that is responsible in encoding secreted pro-

teins, as well as the inv/spa and prg operons encoding components of the secretion apparatus 

[51, 52]. SPI-2 till -4 has all the secretion apparatus inner membrane proteins SsaG, FidL and 

STY4452 as the top rankers, respectively. Among the other top rankers, the inositol phosphate 

phosphatase, SopB, of SPI-5, an atypical fimbria chaperone protein SafB and ImpA-related 
N-family protein, STY0286, of SPI-6, the pilin protein, PilL, of SPI-7, bacteriocin immunity 

protein, STY3281, of SPI-8, a large repetitive protein with six Bacterial_Ig-like domains, t2643, 
of SPI-9, bacteriophage gene regulatory protein, STY4826, of SPI-10, cytolethal distending 

toxin protein, CdtB, of SPI-11, uronate isomerase, UxaC, of SPI-13 and the sensory histidine 
kinase protein, having role in motility and virulence, BarA, of SPI-18 are noteworthy.

With respect to the above analyses of the individual interactomes of the SPI, an idea about 

the importance of these proteins in their individual SPI and finally across all SPI could be 
obtained. However, for a drug to be effective, the indispensability issue of these proteins 
needs to be taken care of. Thus, a broader picture with respect to the whole genome proteins 

of S. Typhi is then delineated to address the concern.
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SPI Degree Betweenness Closeness Eigenvector

1 hilA,iacP,invA,invE,invF, 

invG,prgH,prgI,prgK,sicA,

sipA,sipB,sipC,sipD,spaL,

spaO,spaQ,spaR,spaS,sptP,

hilA,invA,invE,invF,invG,

prgH,prgI,prgJ,prgK,sicA,

sipA,sipB,sipC,sipD,sirC,

sitD,spaO,spaR,spaS,sptP,

hilA,invA,invE,invF,invG,

prgH,prgI,prgJ,prgK,sicA,

sipA,sipB,sipC,sipD,sirC,

spaL,spaO,spaR,spaS,sptP,

hilA,iacP,invA,invE,invF,

invG,prgH,prgK,sicA,sipA,

sipB,sipC,sipD,spaK,spaL,

spaO,spaQ,spaR,spaS,sptP,

2 ssaG, sscB, sscA,ssaJ,STY1710,

STY1709,ssaL,ssaN,ssaQ,ssaU,
ssaS,sseC,sseD,yscR,ssaD,ssaM,

ssaT,ssaH,ssaV,ssaI,

ssrA,ssaQ,ttrR,ttrC,STY1710,
STY1709,ssaG,sscB,sscA,ssaJ,

sseC,ssaD,sseD,ssrB,spiA,ssaL, 

ssaN,ssaU,STY1730,ssaH,

ssaG,sscB,sscA,ssaJ,ssaQ,ssaN,

STY1710,STY1709,ssaL,ssaU,
ssaS,yscR,sseC,ssaD,sseD,ssaM,

ssaT,ssrA,ssaH,ssaV,

ssaG,ssaJ,sscB,ssaL,sscA,ssaN,ssaS,ssaU,STY1710,STY
1709,ssaQ,yscR,ssaV,ssaT,sseD,

ssaM,ssaH,sseC,ssaD,ssaI,

3 fidL,STY4039,slsA,rmbA,mgtC,mgtB, fidL,STY4039,slsA,rmbA,mgtC,mgtB, fidL,STY4039,slsA,rmbA,mgtC,mgtB, fidL,STY4039,slsA,rmbA,
mgtC,mgtB,

4 STY4452,STY4453,STY4458,

STY4459,STY4460,STY4456,

STY4457,

STY4452,STY4453,STY4458,

STY4459,STY4460,STY4456,

STY4457,

STY4452,STY4453,STY4458,

STY4459,STY4460,STY4456,

STY4457,

STY4452,STY4453,STY4458,STY4459,STY4460,

STY4456,

STY4457,

5 sopB,pipB,pipD,STY1124,

STY1125,sigE,sicA,pipA,

sopB,pipB,pipD,STY1124,

STY1125,sigE,sicA,pipA,

sopB,pipB,pipD,STY1124,

STY1125,sigE,sicA,pipA,

sopB,pipB,pipD,STY1124,

STY1125,sigE,sicA,pipA,

6 STY0286,STY0287,STY0288,

STY0290,STY0291,STY0294,

STY0297,STY0302,STY0303,

STY0305,STY0313,STY0317,

STY0319,STY0320,STY0321,

STY0322,STY0323,STY0324,

t2582,t2597,

safB,safC,STY0286,STY0294,

STY0297,STY0302,STY0313,

STY0314,STY0316,STY0317,

STY0318,STY0319,STY0320,

STY0321,STY0324,STY0352,

tcfA,tcfC,tcfD,tinR,

safB,safC,STY0286,STY0287,

STY0288,STY0290,STY0291,

STY0294,STY0297,STY0302,

STY0303,STY0305,STY0317,

STY0319,STY0320,STY0321,

STY0323,STY0324,t2582,t2597,

STY0286,STY0287,STY0288,STY0290,STY0291,

STY0292,

STY0294,STY0297,STY0302,STY0303,STY0305,

STY0306,

STY0307,STY0319,STY0320,STY0321,STY0323,

STY0324,

t2582,t2597,

7 pilL,STY4521,STY4523,

STY4526,STY4528,STY4530,

STY4534,STY4562,STY4564,

STY4569,STY4571,STY4572,

STY4573,STY4575,STY4576,

STY4577,STY4579,STY4665,

STY4666,t4268,

pilL,pilV,STY4521,STY4523,

STY4526,STY4530,STY4561,

STY4586,STY4592,STY4618,

STY4622,STY4644,STY4645,

STY4658,STY4664,STY4666,

STY4676,STY4678,t4317,

tviD,

pilL,STY4521,STY4523,

STY4528,STY4530,STY4534,

STY4561,STY4562,STY4564,

STY4569,STY4571,STY4572,

STY4573,STY4575,STY4576,

STY4577,STY4586,STY4665,

STY4666,t4268,

pilL,STY4521,STY4523,

STY4528,STY4558,STY4559,STY4562,STY4563,

STY4564,

STY4568,STY4569,STY4571,STY4572,STY4573,

STY4575,

STY4576,STY4577,STY4579,STY4665,t4268,

8 STY3281,STY3277,STY3278,

STY3279,STY3283,STY3287,

STY3289,STY3288,STY3285,

STY3290,STY3291,

STY3281,STY3277,STY3278,

STY3279,STY3283,STY3287,

STY3289,STY3288,STY3285,

STY3290,STY3291,

STY3281,STY3277,STY3278,

STY3279,STY3283,STY3287,

STY3289,STY3288,STY3285,

STY3290,STY3291,

STY3281,STY3277,STY3278,STY3279, 

STY3283,STY3287,

STY3289,STY3288,STY3285,STY3290,STY3291,
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SPI Degree Betweenness Closeness Eigenvector

9 t2643,STY2876,STY2877,

STY2878,

t2643,STY2876,STY2877,

STY2878,

t2643,STY2876,STY2877,

STY2878,

t2643,STY2876,STY2877,

STY2878,

10 STY4826,STY4832,STY4830,

STY4822,STY4852,STY4821,

STY4849,t4521,STY4834,

STY4828,STY4833,STY4829,

t2655,STY4851,STY4825,

STY4827,STY4823,sefC,sefB,

STY4832,sefC,STY4826,

STY4830,STY4843,STY4822,

STY4849,STY4852,sefB,

STY4821,t4521,STY4834,

STY4828,STY4851,STY4833,

STY4829,t2655,STY4825,

STY4827,STY4823,

STY4832,STY4826,STY4830,

STY4822,STY4821,STY4849,

STY4834,STY4828,STY4852,

t4521,sefC,STY4833,STY4829,

t2655,sefB,STY4851,STY4825,

STY4827,STY4823,STY4850,

STY4826,STY4830,STY4832,STY4822,STY4852,

STY4821,

STY4849,STY4834,t4521,

STY4828,STY4851,STY4825,STY4827,STY4823,

STY4833,

STY4829,t2655,STY4850,sefC,sefB,

11 cdtB,pagC,envE,STY1879,

STY1880,pagD,STY1889,

STY1890,STY1891,cspH,

msgA,STY1887,

cdtB,pagC,envE,STY1879,

STY1880,pagD,STY1889,

STY1890,STY1891,cspH,

msgA,TY1887,

cdtB,pagC,envE,STY1879, 

STY1880,pagD,STY1889,

STY1890,STY1891,cspH,

msgA,STY1887,

cdtB,pagC,envE,STY1879,

STY1880,pagD,STY1889,

STY1890,STY1891,cspH,

msgA,STY1887,

12 sspH2,STY2468, sspH2,STY2468, sspH2,STY2468, sspH2,STY2468,

13 uxaC,ordL,STY3296,STY3294,
STY3295,STY3298,STY3293,

uxuA,uxuB,exuT,STY3302,
STY3303,

uxaC,ordL,STY3296,STY3294,
STY3295,STY3298,STY3293,

uxuA,uxuB,exuT,STY3302,
STY3303,

uxaC,ordL,STY3296,STY3294,
STY3295,STY3298,STY3293,

uxuA,uxuB,exuT,STY3302,
STY3303,

uxaC,ordL,STY3296,
STY3294,STY3295,

STY3298,STY3293,uxuA,
uxuB,exuT,STY3302,
STY3303,

15 STY0605,gtrB,gtrA,STY3188,

STY3189,STY3192,STY3193,

STY0605,gtrB,gtrA,STY3188,

STY3189,STY3192,STY3193,

STY0605,gtrB,gtrA,STY3188,

STY3189,STY3192,STY3193,

STY0605,gtrB,gtrA,STY3188,STY3189,STY3192,

STY3193,

16 STY0605, gtrB, gtrA STY0605, gtrB, gtrA STY0605, gtrB, gtrA STY0605, gtrB, gtrA

17 gtrA2,STY2629, gtrA2,STY2629, gtrA2,STY2629, gtrA2,STY2629,

18 barA,cpxR,csrA,flag,flhA,flhB,
fliA,fliF,fliH,fliJ,fliP,fliQ,fliR,
fliZ,phoQ,rcsB,rcsC,rpoS,
STY1297,yojN,

acrR,baeR,barA,clpP,csrA,dnaK,

flag,fliA,hns,mgtA,mntH,
ompF,phoQ,rcsB,rcsC,rpoN,rpoS,soxS,
STY1297,STY1678,

barA,clpP,cpxR,csrA,dnaK,flag,
fliA,groL,hns,ompR,phoB,phoQ,
rcsB,rcsC,rpoN,rpoS,sirA,

STY1297,STY1678,yojN,

barA,flag,flhA,flhB,flhD,
fliA,fliF,fliH,fliI,fliJ,fliO,
fliP,fliQ,fliR,fliZ,rcsB,
rcsC,rpoS,STY1297,yojN,

All SPI pilL,STY4521,STY4523,

STY4526,STY4528,STY4530,

STY4534,STY4562,STY4564,

STY4569,STY4571,STY4572,

STY4573,STY4575,STY4576,

STY4577,STY4579,STY4665,

STY4666,t4268,

barA,pilL,pilV,rpoS,sicA,

STY4521,STY4523,STY4526,

STY4561,STY4586,STY4592,

STY4618,STY4622,STY4644,

STY4645,STY4658,STY4664,

STY4666,t4317,tviD,

pilL,STY4521,STY4523,

STY4528,STY4530,STY4534,

STY4561,STY4562,STY4564,

STY4569,STY4571,STY4572,

STY4573,STY4575,STY4576,

STY4577,STY4586,STY4665,

STY4666,t4268,

pilL,STY4521,STY4523,

STY4528,STY4558,STY4559,STY4562,STY4563,

STY4564,

STY4568,STY4569,STY4571,STY4572,STY4573,

STY4575,

STY4576,STY4577,STY4579,STY4665,t4268,

Table 1. Details of the 17 groups of SPI proteins involved in the network.
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5. Feature of the WhoG-PIN

It is imperative that the WhoG-PIN, built from the empirical and theoretical results of physi-

cal and functional interactions among proteins laid down in STRING, can be random like that 

Figure 1. Venn diagram representation for the top rankers of DC, CC, BC and EC parametric analyses of 17 SPI-PINs 

and AS-PIN.

Figure  2. (a) Protein-protein interaction network of the whole genome of Salmonella Typhi CT18 with inset (b)  showing 

degree distribution of the proteins from the large connected component.
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proposed by Erdos and Renyi [53] or a small-world type proposed by Watts and Strogatz [54]. 

The idea was to see if the connectivity distribution, P(k), of a node in a network getting con-

nected to k other nodes, decays exponentially for large values of k. It was observed that the 
WhoG-PIN roughly follows the power law and is free of a characteristic scale [55] with a tailed 

degree distribution (Figure 2).

6. Decomposition of WhoG-PIN

In order to get an idea of the indispensable ones from the barrage of proteins involved in the 

individual SPI-PINs and AS, we have performed a k-core analysis for them. A k-core is a sub-

graph whose nodes have degree at least equal to k. Nodes which are part of k-core, but not in 

the k+1 core, is called, k-shell. This is able to classify the nodes (proteins, in our study) based 

on the variety of their interacting partners. Proteins, which belong to outer shell, have lower 

k value and thus reflect limited number of interacting partner proteins. Moreover, proteins, 
which belong to inner k-core/shell, are specific ones, highly interacting with each other and 
thus can be considered to be the most important ones. Decomposition of this core decomposes 

the network and thus makes this the innermost core.

After decomposition of the WhoG-PIN, we have obtained the inner core member proteins 

which are highly robust, central and thus highly interactive in nature [56]. We have arrived to 

the 154th core with a number of 2180 proteins (Figure 3; data not shown). An idea was to look 

in for the rank holder proteins of the AS-PIN obtained through the EC, DC, CC or BC measures. 

Interestingly, it was found that the top ranker PilL, across EC, DC and CC  measures, belong 

to the 111th core and not the 154th core. On the contrary, the top ranking BC protein, BarA, 

was in the 154th core along with the closely ranked PilV in the 150th core. The only other pro-

tein, amongst the unanimous top rankers of AS-PIN, STY4521 had a position of 145 in k-core 

measures. Very strikingly, two proteins of BC top rankers were also in the 154th innermost 

core along with BarA. These were the RNA polymerase sigma factor, RpoS and the chaperone 

protein, SicA. On a note of comparison among the top ranking proteins of EC and BC anal-

ysed for AS-PIN, proteins of the latter group had higher ranks in the whole genome context, 
with STY4586, STY4644 and STY4664 having the same 154th innermost core measures. On the 

contrary, those from the former ranking group (EC) mostly moved around the core numbers 

56–70. This reflected that proteins from the BC rankers were more important in their interaction 
with other proteins, forming a bridge amongst those and thereby rendering high betweenness.

In an earlier work by Lahiri et al., SicA was found to be in the group of innermost core of 

the interactome comprising the five most extensively worked out SPI of S. Typhimurium 

[11]. This core group had IacP, InvA, InvB, InvC, InvE, InvF, InvG, InvI, InvJ, OrgA, OrgB, 

OrgC, PrgH, PrgI, PrgJ, PrgK, SipA, SipB, SipC, SipD, SpaO, SpaQ, SpaS, SpiC, SptP, SsaJ, 

SseC, SseD and SseF as other members. Referring to the context of S. Typhi, IacP, InvE, invF, 

InvG, PrgK, SpaL (InvC in S.Typhimurium), SpaO, SpaS and SptP all shared the same inner-

most 154th core with a close contestant SsaJ in the 153rd core. Interestingly, all these proteins 

belong to the SPI-1 and SPI-2 group, which makes up the needle for injecting the virulence 

factors as delineated in the Figure 4 of Lahiri et al. All these take us to the juncture where we 
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Figure 3. Distribution of the k-shell sizes for the set of proteins from the WhoG-PIN of S. Typhi CT18.

Figure 4. Cartographic representation for classification of proteins from the WhoG-PIN of S. Typhi CT18 based on its 

role and region in network space.
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can foresee that the needle proteins are quite important virulence factors when it comes to 

search targets for drug. To top them all, SicA stands out as being one of the topmost rankers 

in BC measure of AS-PIN and in the innermost core of the WhoG-PIN. This is quite justified 
as SicA is a Salmonella type III secretion-associated invasin chaperone protein required for the 

stabilization of SipB and SipC to prevent their premature association which may lead to their 
targeting for degradation. Along with InvF, SicA is required for transcriptional activation of 

several virulence genes like sigDE (sopB, pipC), sipBCDA and sopE. [57].

7. Cartographic analyses of WhoG-PIN

For the purpose of classification of the proteins of S. Typhi CT18, based on their functional 

role and region in the network space, we have performed a cartographic analyses for the 

WhoG-PIN. As described earlier here, this is delineated by within module z-score of each 
node (protein) and its participation coefficient within and between other modules [20]. The 

within-module degree z-score measures how ‘well connected’ a node ‘i’ is to other nodes in 
the module, while the participation coefficient measures how the node ‘i’ is positioned in 
its own module and with respect to other modules. These measures are done based on the 

modules of the network, which are calculated by Rosval method [21]. The proteins are mainly 

divided into two major categories namely the hub nodes and the non-hub nodes.

As can be understood from the name itself, a hub is a connection point of many nodes. The 

category of non-hub nodes can be assigned four different roles namely, R1 comprising ultra-
peripheral nodes, R2 of peripheral nodes, R3 of non-hub connector nodes and R4 having the 

non-hub kinless nodes. Likewise, the hub nodes can be assigned three different roles namely, 
R5 of provincial hubs, R6 of connector hubs and R7 of kinless hubs (Figure 4). The kinless 

hubs nodes are supposed to be important in terms of functionality, which has high connection 

within module as well as between modules. Accordingly, the ultra-peripheral nodes occupy 

the least connecting position in the network followed by the peripheral nodes. These nodes 

can be pruned easily without much affecting the whole network while decomposing it to 
reach the core (refer previous section for k-core). The non-hub connectors are expected to 
take part in only a small but fundamental set of interactions. This is just opposite to those of 

the provincial hubs class which have many within-module connections. The non-hub kin-

less nodes are those with links homogeneously distributed among all modules. The most 

conserved in terms of decomposition as well as evolution would be, however, those from the 

connector hubs with many links to most of the other modules. The system would try to retain 

these connections as essential ones for their very survival.

As can be perceived from the above classification of the connectors and the hubs, the proteins 
belonging to the R4, R6 and R7 role players are very crucial and can be regarded as potential 

drug targets. In the context of our WhoG-PIN, the only one R7 is a putative transposase, 
STY0115 and reminds of the Tn5 transposase, the enzyme that helps bacteria to share antibi-
otic resistance genes [58, 59]. This is closely followed by the plasmid transfer protein, TrhC 
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Protein name R Description of function

STY0115 7 Putative transposase

trhC 6 Plasmid transfer protein

gltB 6 Glutamate synthase (NADPH) large subunit

ptsG 6 PTS system glucose-specific transporter subunit IIBC

hemE 6 Uroporphyrinogen decarboxylase

nagE 6 PTS system N-acetylglucosamine-specific transporter subunit IIABC

STY3507 6 Aerobic respiration control sensor protein

t0287 6 PTS system sucrose-specific transporter subunit IIBC

treB 6 PTS system trehalose-specific transporter subunit IIBC

Cat 4 Chloramphenicol acetyltransferase

pspF 4 Phage shock protein operon transcriptional activator

STY4151 4 Acetyltransferase

STY4518 4 Acetyltransferase

STY4668 4 Hypothetical protein with Acetyltransf domain

STY4678 4 Integrase

STY4680 4 Integrase

STY0326 4 Hypothetical protein

STY3695 4 DNA-invertase

modB 4 Molybdenum transporter permease

STY4017 4 Putative transferase

modA 4 Periplasmic molybdenum-binding protein

sopE 4 Guanine nucleotide exchange factors

STY1020 4 Sequence-specific DNA binding

STY3193 4 Hypothetical protein

ugpB 4 Glycerol-3-phosphate-binding periplasmic protein

tviA 4 Flagellar regulator

hpaG 4 Isomerase/decarboxylase

STY4175 4 Hypothetical protein

ratA 4 CS54 island protein

livG 4 High-affinity branched-chain amino acid transport ATP-binding protein 
LivG

STY0352 4 Periplasmic protein

Table 2. Functions of the R4, R6 and R7 Proteins from the WhoG-PIN cartographic analysis.
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in R6 group. This could very well play a good target for drugs as plasmids are known to be 

powerhouse of the antibiotic resistance genes [60]. Uncoupling of phosphotransferase system 
could also be an effective way of getting targets for novel drugs as exemplified by PtsG, TreB, 
NagE and t0287 [61]. Inhibition of glutamate Synthase, GltB has already been utilized as tar-

get for Mycobacterium tuberculosis [62] as has been uroporphyrinogen decarboxylase, HemE, 
albeit in a different context [63]. Recently, bacterial GCN5-related N-acetyltransferases of the 

R4 group have been thought of as essential drug targets as well [64]. All the functions of R7, 

R6 and R4 are listed in Table 2.

8. Conclusion

This work schematically delineates a process of figuring out the most indispensable protein 
in a system of interacting proteins of S. Typhi. It deals with the computational framework of 

building of the theoretical networks comprising the 17 individual SPI-PINs along with the 

AS-PIN followed by the conventional parametric approach of identifying the most interacting 

protein connected to other important proteins in the concerned phenotype of virulence. This 

is reinforced by the analysis of disintegrating the WhoG-PIN to the innermost core of the pro-

teins, essential for virulence. All these lead to the identification of SicA to be the most indis-

pensable one amongst a group of other virulent proteins being benefitted through network 
centrality and decomposition analyses. A further investigation of the WhoG-PIN brought 

forth the proteins of important conserved class, potential enough to be the most important 

ones and thus indispensable among the barrage of other proteins of the whole genome of S. 

Typhi CT18.
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