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Abstract

In the traditional Kirsch solution of stress field induced by tunneling in rock mass, the
body force was not taken into consideration, and therefore the Kirsch solution is limited
to demonstrate stress redistribution of deep-buried tunnel. In order to consider the effect
of body force on the stress redistribution induced by tunneling, a new secondary stress
field solution for tunnel between shallow and deep tunnel (called subdeep tunnel) is
developed with elastic mechanics and complex function employed. The stress field from
theoretical solution is verified by numerical models, and the results showed good
agreements with each other. This solution can be the basic theory in the analysis of the
stress and field of subdeep tunnel, which have not been valuated through theoretical
study yet.

Keywords: subdeep tunnel, stress field, theoretical analysis, complex function, elastic
mechanics

1. Introduction

Tunnels are always classified as shallow and deep in tradition, and the classifying standard is

the buried depth of tunnel, also known as hq, which is the limit height that a pressure arch

would form in the surrounding rock, and hq is dependent on the quality of rock mass and

tunnel height (Xu et al., 2000). This classification standard is just an empirical approach and is

not based on mechanical behavior of rock mass. When tunneling in intact rock mass near the

ground surface, the rock mass have partial self-loading capacity which on the other hand is not

enough to reach stability for rock mass. And in the presented research, a new type of tunnel

classified as subdeep tunnel is described as: primary stress field of tunnel varies along the

depth while the redistribution of secondary stress field of tunnel does not reach the ground

surface or just have limited influence.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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distribution, and reproduction in any medium, provided the original work is properly cited.



In general, the tunnel support design follows two kinds of strategies based on the tunnel

classification of depth, and essentially, the support design strategy is a response to the stress

redistribution and rock failure modes. For shallow tunnel, the surround rock has a very limited

capacity to form a pressure arch and is very easy to collapse (Yang and Yang, 2008), and

therefore the support system are designed to bear the whole weight of loosen zone above the

tunnel (Peng and Liu, 2009; Terzaghi, 1943), and the loosen zone is determined by rock

properties and tunnel section shapes (Wang et al., 2014). However, in this design approach

self-loading capacity of surround rock is not considered in subdeep tunnel, especially in intact

rock mass, which would cause a significant waste of materials and always brings uneconomic

results. On the other hand, according to the definition of subdeep tunnel, pressure arch which

requires a significant burying depth cannot form and thus self-stability cannot be expected,

which makes researches on the pressure arch (Li, 2006; Poulsen, 2010; Sansone and Silva, 1998)

and support design not suitable for subdeep tunnel.

For a better understanding of mechanical behavior of surround rock for subdeep tunnel, which

is the basis for a reasonable support design, a theoretical solution of secondary stress field is

put forward with elastic mechanics and complex function adopted. And the derivation process

is described in detail as well as the results. The stress field including radial, tangential, and

shear stresses are described and discussed. For an intuitive comparison, a numerical model is

also built and the results from both theoretical and numerical models are presented, which is a

powerful verification for the theoretical solution. Besides, the reasonable depth of subdeep

tunnel is suggested by the theoretical results. And this solution for subdeep tunnel can be a

very useful theoretical basis for safe and economic tunneling.

2. Theoretical model and primary stresses for subdeep tunnel

2.1. Subdeep tunnel model

In the stress analysis of subdeep tunnel, the following assumptions are made:

• The rock mass is elastic, homogeneous, and intact;

• Only self-weight induced stress field exists in the tunnel site;

• The whole section of the tunnel is excavated in one step; and

• The tunnel is long enough and the model can be treated as planer strain.

As shown in Figure 1, a circular tunnel with a radius of a is excavated at depth of ht. The

vertical stress σz at the bottom boundary is caused by the self-weight of rock mass and

σz ¼ 0 at the ground surface; horizontal stress σx varies along z. And this stress field

model can be decomposed into two parts, one is the primary stress field as shown in

Figure 1(b), and the other is induced by stress-released at tunnel boundary, as shown in

Figure 1(c).

The primary stress field in Figure 1(b) can be described as follows according to Heim's

hypothesis (Fegert, 2013) and Gold Nick's hypothesis (Dessler, 1982):
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σz ¼ γðht−zÞ
σx ¼ k0σz ¼ k0γðht−zÞ
τxz ¼ 0

8

<

:

(1)

where z is the coordinate from tunnel center; k0 is the lateral stress coefficient; ht is the depth

from the tunnel center to ground; and k0 ¼
ν

1−ν.

2.2. Analysis of the stress to release at tunnel boundary

The stress in polar coordinates in Figure 1 can be converted from Eq. (1) in rectangular

coordinates as follows:

σr ¼ σx cos
2θþ σz sin

2θþ τxz sin 2θ ¼
σz þ σx

2
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cos 2θþ τxz sin 2θ
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>
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>

<

>

>

>

>

:

(2)

Where σr = radial stress, σθ= tangential stress, and τrθ= shear stress.

By submitting Eq. (1) into Eq. (2), the primary stress field can be expressed as:

σr ¼
1þ k0

2
γðht−zÞ−

1−k0
2

γðht−zÞ cos 2θ

σθ ¼
1þ k0

2
γðht−zÞ þ

1−k0
2
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τrθ ¼
1−k0
2

γðht−zÞ sin 2θ

8

>

>

>

>

>

<

>

>

>

>

>

:

(3)

where z ¼ r sinθ.

When r ¼ a, which means at the tunnel boundary:

σ0
ra
¼

1þ k0

2
γðht−a sinθÞ−

1−k0
2

γðht−a sinθÞ cos 2θ

σ0θa ¼
1þ k0

2
γðht−a sinθÞ þ

1−k0
2

γðht−a sinθÞ cos 2θ

τ0
rθa ¼

1−k0
2

γðht−a sinθÞ sin 2θ

8

>

>

>

>

>

<

>

>

>

>

>

:

(4)

Then, Eq. (4) is the stress to release in the following steps shown in Figure 1.

2.3. Complex function for elastic mechanics

With complex function, stress components in Figure 1 in polar coordinate can be expressed as

z :

σθ þ σr ¼ 4Reχ′
1ðzÞ

σθ−σr þ 2iτrθ ¼ 2½zχ″
1ðzÞ þ ψ′

1ðzÞ�e
2iλ

�

(5)

where Re is the real part of complex function, z is the conjugate expression of z, χ1ðzÞ and ψ1ðzÞ
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are complex potential function, χ
0

1ðzÞ and χ
00

1ðzÞ are the first and second derivatives of χ1ðzÞ,

respectively, and ψ
0

1ðzÞ is the first derivative of ψ1ðzÞ.

2.4. Stress release

Similar to the solving process of an infinite plate with a hole (Wang, 2008), as the stress field

approximates to zero, the solving process are described as follows:

1. Submitting Eq. (4) into the Fourier coefficient equations;

2. Through the obtained equations, solving the constant coefficients; and

3. As the problem has been assumed to be a planar strain work, which means k0 ¼
ν
1−ν ¼ ν

0
, the

following equations can be obtained based on steps (1) and (2):

χ′
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þ
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(6)

By submitting Eq. (6) into Eq. (5), the relation between stress components can be expressed

by:

σθ þ σr ¼ 2Re
ð1þ ν′Þγa2
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i
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where z, which is a complex valuable, can be expressed as:
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z
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(8)

By submitting Eq. (8) into the Eq. (7), a more simple relation between stress components are

obtained, and by decomposing the imaginary part in the obtained equations, the subsidiary

stress induced by the stress release process in Figure 1 is obtained. The obtained subsidiary

stress is based on the infinite plate assumption, and it is an approximate value. For a more

accurate solution, the subsidiary stress at ground surface should be released again, which is a

very complicated process. By solving the obtained subsidiary stress components with Eq. (3),

the stress field solution for subdeep tunnel can be expressed as:

σr ¼
1þ k0

2
γðht−r sinθÞ−
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2
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σθ ¼
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Figure 1. Mechanical model and decomposition of the secondary stress field of subdeep tunnel. (a) Secondary stress field.

(b) Primary stress field. (c) Stress released.
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3. Distribution of secondary stress field solution for subdeep tunnel

The secondary stress field of subdeep tunnel calculated from Eq. (9), and the v, and ht are set at

0.3 and 6a, respectively. The results are shown in Figure 2.

Figure 2. Second stress distribution in subdeep tunnels. (a) Distribution of σr. (b) Distribution of σθ. (c) Distribution of τrθ.
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Stress distribution along r different directions in polar coordinate are also illustrated in Figure 3

in a normalized form.

From Figures 2 and 3, the distributions of secondary stress field induced by tunneling for

subdeep tunnel are different from the deep-buried tunnels, which has the following character-

istics of its own:

1. The distribution of secondary subdeep tunnel just shows axial symmetry, not like the deep-

buried tunnel, whose stress field shows bidirectional symmetry. This difference is caused

by the variation of σz along z in the primary field.

2. The tangential stress near the tunnel boundary shows significant concentration at the side

wall of the tunnel, to which close attention should be paid.

Figure 3. Stress distribution along r different directions. (a) Distribution of σ
r
along r. (b) Distribution of σθ along r. (c)

Distribution of τ
rθ along r.
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3. Figure 3 shows the variation of stress induced by tunneling along polar radius, and it is

quite clear that, the stresses are approximate to 0, which proves the simplification of zero

stress boundary to be reasonable and correct. Besides, subdeep tunnel can be determined as

tunnels buried at depth of more than 2.5 D (D is the diameter of tunnel), and less than the

depth of deep tunnel.

From the stress analysis, secondary stress field for subdeep tunnel is demonstrated and the

limit depth to distinguish shallow tunnel and subdeep tunnel is obtained, which can be the

guideline for tunnel support in a more reasonable, economic, and safer way.

4. Numerical solution and its comparison with theoretical results

To verify the theoretical solution, a numerical model is developed. The parameters for theoret-

ical and numerical simulation are shown in Table 1. And a numerical model is developed in

Flac3D as shown in Figure 4.

Theoretical solution of horizontal stresses (σxx) of surrounding rock in subdeep tunnel is

shown in Figure 5(a) in a rectangular coordinate system, and its numerical result is shown in

Figure 5(b).

Theoretical solution of vertical stresses (σzz) of surrounding rock in subdeep tunnel is shown in

Figure 6(a), and the numerical result is shown in Figure 6(b).

Theoretical solution of shear stresses (τxz) of surrounding rock in subdeep tunnel is shown in

Figure 7(a), and its numerical result is shown in Figure 7(b).

Contours of horizontal and vertical stress field from theoretical and numerical solution show

good agreement with each other as shown in Figures 5 and 6, which proves the theoretical

analysis reasonable and correct. On the other hand, shear stress from theoretical and numer-

ical solution shows difference to some extent. In Figure 7, shear stress, from numerical

solution, has a much smaller distribution area than that from numerical model, a probable

explanation is that, the media in theoretical model is elastic while that in numerical model is

elastic-plastic, and stress concentration near the tunnel boundary may redistribute after rock

failure, leading to a smoother distribution of shear stress in numerical model.

Parameters of theoretical solution Parameters of numerical simulation

Item Symbol Value Unit Item Symbol Value Unit

Tunnel’s radius a 3 m Tunnel’s radius a 3 m

Depth of tunnel center ht 6 a m Depth of tunnel d 15 m

Volume weight γ 2.10E+04 N/m3 Density ρ 2.10E+03 kg/m3

Elasticity modulus E 9.00E+07 Pa Bulk modulus K 7.50E+07 Pa

Poisson’s ratio ν 0.30 - Shear modulus G 3.46E+07 Pa

Table 1. Parameters for theoretical and numerical simulation.
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Figure 4. Numerical model of subdeep tunnels.

Figure 5. Theoretical and numerical solution of horizontal stress. (a) Theoretical solution. (b) Numerical solution.

Figure 6. Theoretical solutions and numerical value of vertical stress. (a) Theoretical solution. (b) Numerical solution.
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5. Conclusions

In thepresented research, the stress field for tunnel buriedatdepthbetweendeep tunnel andshallow

tunnel is analyzedwith elasticmechanics and complex function, and conclusions can be drawn as:

1. The subdeep tunnel is proposed and through theoretical analysis, and stress fields show

that essential difference exists between the mechanical behavior of deep tunnel and

subdeep tunnel, and the depth to distinguish shallow tunnel and subdeep tunnel is

suggested as 2.5 times of the tunnel diameter.

2. By numerical analysis, the theoretical solution is proved to be reasonable and with high

accuracy. And this theoretical solution can be a very good guideline for the support design

for subdeep tunnel with economy and safety.

3. This theoretical solution also has its limitations, and if used for deep tunnels, the vertical

stress in rock would be incorrect totally. Besides, this solution is not suitable for tunnels

buried in depth less than 2.5 D, which does not satisfy the boundary stress condition.

4. Through the comparison of theoretical analysis and numerical model, the theoretical results

are proved to be effective in the determination of subdeep tunnel, which can be very

helpful in the design of subtunnel support for economy and safety purpose.
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