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Abstract

This chapter is primarily concerned with the generation of inertia-gravity wave by
vortical flows (spontaneous emission) in shallow water system on an f-plane. Sound
waves are generated from vortical flows (aeroacoustics). There are many theoretical and
numerical works regarding this subject. A shallow water system is equivalent to a two-
dimensional adiabatic gas system, if the effect of Earth's rotation is negligibly small.
Then gravity waves are analogous to sound waves. While it is widely known that the
effect of the Earth's rotation suppresses inertia-gravity wave radiation, there are few
studies about spontaneous emission in rotating shallow water. Here, the generation of
inertia-gravity waves by unsteady vortical flows is investigated analytically and numer-
ically as an extension of aeroacoustics. A background of this subject is introduced briefly
and several recent works including new results are reviewed. Main findings are cyclone-
anticyclone asymmetry in spontaneous emission and a local maximum of intensity of
gravity waves emitted from anticyclones at intermediate value of the Coriolis parameter
f, which are caused by the source originating in the Coriolis acceleration. All different
experimental settings show the similar results, suggesting the robustness of these fea-
tures.

Keywords: geophysical fluid dynamics, inertia-gravity wave, spontaneous emission,
shallow water flows, aeroacoustics

1. Introduction

Sound waves are generated from vortical flows (aeroacoustics). After the pioneering work of

Lighthill [1], many theoretical and numerical works regarding this subject have been done.

There are several good review papers and text books, for example, see [2–5].

Inertia-gravity waves, in which buoyancy and Coriolis force provide the restoring force, are

important in the atmosphere and ocean, because they drive general circulation in the middle
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atmosphere [6] and contribute to the ocean energy budget [7, 8]. Traditionally, rotating shallow

water system has been used to study nonlinear interactions between vortex and wave [9]

because this system is the simplest system in which both vortical flows and inertia-gravity

waves can exist. One of the typical examples is the Rossby adjustment process [10, 11], in

which initial unbalanced state is assumed. Then inertia-gravity waves (hereafter inertia-grav-

ity waves are referred to gravity waves) are radiated from unbalanced state toward balanced

state. However, there are few works regarding the generation of gravity waves by unsteady

motions of nearly balanced vortical flows in rotating shallow water system.

Ford's pioneering work [12] has shown that gravity waves are radiated from unsteady vortical

flows. This type of gravity wave radiation is referred to as “spontaneous emission” [13], because

initial balanced flows radiate gravity waves spontaneously during the time evolution. Since a

shallow water system is equivalent to a two-dimensional adiabatic gas system if the effect of

Earth's rotation is negligibly small, gravity waves are analogous to sound waves. Using the

acoustic analogy of Lighthill [1], Ford [12, 13] introduced a source of gravity waves. For the

purpose of practical motivation, this new paradigm of spontaneous emission is intensively

investigated; for example, see [14] and references therein. Recently, the theory of generation

mechanism has been proposed [15, 16]. While it is pointed out that spontaneous emission in the

shallow water system is different from that in the continuous stratified system [17], fundamental

works from a viewpoint of geophysical fluid dynamics are nevertheless important [18].

As an extension of Ford's works [12, 13], several numerical works are performed in shallow

water system on an f-plane [19, 20] and a sphere [21]. While it is widely known that the effect of

the Earth's rotation suppresses inertia-gravity wave radiation, previous studies [20, 21] have

reported that the effect of the Earth's rotation intensify gravity wave radiation in some param-

eter space. In this chapter, recent results of the inertia-gravity wave radiation from nearly

balanced vortical flows as an extension of sound wave generation from vortical flows are

reviewed. Inertia-gravity wave radiation from various types of vortical flows, such as a

corotating vortex pair [22], elliptical vortex (Kirchhoff vortex) [23] and merging of (equal or

unequal) vortices [24, 25], are investigated in a wide range of parameter space. All these works

have reported that cyclone-anticyclone asymmetry in spontaneous emission and a local max-

imum of intensity of gravity waves emitted from anticyclones at intermediate value of the

Coriolis parameter f.

This chapter is organized as follows. In Section 2, the analytical derivation of the far fields of

gravity waves is introduced for the cases of a corotating point vortex pair and an almost

circular Kirchhoff vortex. The derived forms are verified quite well by the numerical simula-

tion (Section 3). In addition, the results of gravity wave radiation from the merging of (equal or

unequal) vortices are also introduced. Section 4 gives brief summary points and future issues.

2. Analytical estimate

In this section, the analytical derivation of the far fields of gravity waves from vortical flows is

introduced. The derived form includes the effect of Earth's rotation in the source term, which
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causes the cyclone-anticyclone asymmetry. Two examples of the corotating point vortex pair

and Kirchhoff vortex are shown. See Refs. [22] and [23] for details.

2.1. Basic equation

Basic equations are the shallow water equations on an f-plane, written as

∂uc
∂t

þ uc
∂uc
∂x

þ vc
∂uc
∂y

� f vc ¼ �g
∂h

∂x
, (1)

∂vc
∂t

þ uc
∂vc
∂x

þ vc
∂vc
∂y

þ f uc ¼ �g
∂h

∂y
, (2)

∂h

∂t
þ uc

∂h

∂x
þ vc

∂h

∂y
þ h

∂uc
∂x

þ
∂vc
∂y

� �

¼ 0, (3)

where u ¼ ðuc, vcÞ is the horizontal velocity vector, where uc and vc are the velocity compo-

nents in the x and y directions in the Cartesian coordinates, respectively. The total depth of the

fluid h ¼ ηþ h0, in which η is the surface displacement from the average depth of the fluid h0.

The Coriolis parameter and gravitational acceleration are f and g, respectively.

Eqs. (1)–(3) are the same as for vortex sound (aeroacoustics) if the effect of the Earth's rotation

is negligibly small. From Eqs. (1)–(3), Lighthill-Ford equation is obtained [1, 12]:

∂2

∂t2
þ f 2 � c20∇

2

� �

∂h

∂t
¼

∂2

∂xi∂xj
Tij, (4)

where x1 ¼ x, x2 ¼ y and the Einstein summation convention is used. Note that c0 ¼
ffiffiffiffiffiffiffi

gh0
p

and

∇
2 are the phase speed of the fastest gravity wave and the horizontal Laplacian, respectively.

Here, Tij is written as

Tij ¼
∂ðhuiujÞ

∂t
þ

f

2
ðEikhujuk þ EjkhuiukÞ þ

g

2

∂

∂t
ðh� h0Þ

2δij, (5)

where E12 ¼ �E21 ¼ 1, E11 ¼ E22 ¼ 0, u1 ¼ uc, u2 ¼ vc and δij is the Kronecker delta. Since the

left-hand side of Eq. (4) is the wave operator of a linear gravity wave, the right-hand side can

be regarded as the source of gravity waves under the assumption in the limit of small Froude

number [12, 13], Fr (where Fr ≡ U=c0 is the ratio of the flow velocity U to the phase speed of

gravity waves). Note that Fr corresponds to Mach number (the ratio of the flow velocity to the

phase speed of sound waves) in the field of aeroacoustics.

2.2. Source and far field

In the source Tij, the primary source of gravity waves for the nonrotating case is the first term

on the right-hand side of Eq. (5), which is associated with the vortical flows. Then, for the

relevant term on the right-hand side of Eq. (4), the following approximation holds
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∂2ðhuiujÞ

∂xi∂xj
≈ h0∇�ðω · uÞ þ h0∇2 1

2
u2

� �

, (6)

for nondivergent flow (∇�u ¼ 0 and h ≈ h0) under the assumption of Fr≪1 with compact

source of the vortical motion. The second term on the right-hand side of Eq. (6) can be

neglected, because this term is OðFr2Þ smaller than that from the first term for Fr≪1.

For the rotating case, on the other hand, the second term on the right-hand side of Eq. (5)

becomes also important for relatively larger f [20, 21]. Then, for the relevant term on the right-

hand side of Eq. (4), the following approximation holds

∂
2

∂xi∂xj

f

2
ðEikhujuk þ EjkhuiukÞ ¼

∂
2

∂xi∂xj
f hEikujuk ≈ � f h0∇�½k · ðω· uÞ�, (7)

for nondivergent flow (∇�u ¼ 0 and h ≈ h0). This is the source originating in the Coriolis

acceleration.

The Green's function of Eq. (4) in the two-dimensional domain incorporating time variation is

defined from the Klein-Gordon equation:

∇2 �
1

c20

∂
2

∂t2
� μ2

� �

G2ðx, t, x
0

, t0Þ ¼ �δðx� x
0

Þδðt� t0Þ, (8)

where μ ¼ f =c0. The form of Green's function is

G2ðx, t, x
0

, t0Þ ¼
c0
2π

cos
�

μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c20ðt� t0Þ2 � jx� x0 j2
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c20ðt� t0Þ2 � jx� x0 j2
q θs

�

c0ðt� t0Þ � jx� x
0

j
�

, (9)

where θs is the Heaviside function. Finally, by analogy with the derivation of the far field of

sound waves, the integral form of far field of gravity waves is formally expressed as

∂hðx, tÞ

∂t
¼

h0
c20
∭
∞

�∞

G2
∂

∂t0
∇�ðω ·uÞ � f∇�½k · ðω· uÞ�

� �

dx
0

dt
0

: (10)

2.3. Typical examples

To solve Eq. (10) analytically, two cases of a corotating point vortex pair and an almost circular

Kirchhoff vortex are introduced as examples. Figure 1 shows the schematics of these experi-

mental configurations.

A point vortex pair with the same sign and strength corotates. For aeroacoustics, analytical [4]

and numerical [26] studies are performed in this configuration. Zeitlin [9] also derived an

analytical solution in nonrotating shallow water. A vortex pair with a circulation Γ positioned

at distance 2l corotates at an angular velocity Ω ¼ Γ=4πl2. The positions are
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x ¼ ðx1, x2Þ ¼ s ≡

�

s1ðtÞ, s2ðtÞ
�

¼ �l
�

cos ðΩtÞ, sin ðΩtÞ
�

: (11)

Then the vorticity ω and velocity u ¼ ðu1,u2Þ associated with the vortices are written as

ω ¼ Γk½δðx� sÞ þ δðxþ sÞ�, (12)

u ¼ �Ωk · s at x ¼ �s, (13)

where k is a unit vector in the z direction and δ is a delta function. Assuming that the

characteristic velocity scale U ¼ Ωl ≪ c0, then,

ω · u ¼ �ΓΩs½δðx� sÞ � δðxþ sÞ�: (14)

From Eq. (6) the source associated with vortical flows is equivalent to the two-dimensional

quadrupole

∇�ðω · uÞ ≈
∂
2

∂xi∂xj

�

SijδðxÞ
�

, (15)

where

Sij ¼ ΓΩl2
1þ 2 cos 2Ωt sin 2Ωt

sin 2Ωt 1� cos 2Ωt

� �

: (16)

Similarly, from Eq. (7) the source originating in the Coriolis acceleration is expressed as

�f∇�½k· ðω · uÞ� ≈ f
∂2

∂xi∂xj

�

EikSkjδðxÞ
�

: (17)

Figure 1. Schematics of experimental configurations for the cases of (a) a corotating point vortex pair and (b) an almost

circular Kirchhoff vortex.
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As for the case of the Kirchhoff vortex, the derivation is in the same line as a corotating point

vortex pair. The Kirchhoff vortex has a patch of constant vorticity,Ω, inside an ellipse and zero

vorticity outside. It is an exact solution of the two-dimensional, incompressible and inviscid

flow equations [27]. Howe [4] derived far field of sound waves from the Kirchhoff vortex

analytically. An almost circular Kirchhoff vortex with a small aspect ratio is the ellipse defined

by the polar equation for ε ≪ 1

r ¼ a 1þ ε cos 2θ�
Ωt

2

� �� �

, (18)

where the semimajor axis of the ellipse is a ¼ að1þ εÞ, the semiminor axis is b ¼ að1� εÞ. The

ellipse rotates at angular velocity Ω=4. The velocity within the core is

u ¼ ðu1,u2Þ ¼ �
1

2
Ωr sinθþ ε sin θ�

Ωt

2

� �

, � cosθþ ε cos θ�
Ωt

2

� �� �

: (19)

Then, to first order in ε, the source associated with vortex and the source originating in the

Coriolis acceleration are again expressed as Eqs. (15) and (17), respectively, where

Sij ¼
επΩ

2a4

8

�

cos ðΩt=2Þ sin ðΩt=2Þ
sin ðΩt=2Þ � cos ðΩt=2Þ

�

: (20)

After substituting Eqs. (15) and (17) in Eq. (10), the delta function can be integrated

∂hðx, tÞ

∂t
¼

h0
c20

∂2

∂xi∂xj
∫
∞

�∞

G2
∂

∂t0
ðSijÞ þ f EikSkj

� �

dt
0

: (21)

Recalling that the following approximation in the far field (r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

≫ 1),

∂2

∂xi∂xj
¼

δij

r
�
xixj

r3

� �

∂

∂r
þ
xixj

r2
∂2

∂r2
≈
xixj

r2
∂2

∂r2
, (22)

then it follows from Eq. (21):

∂hðx, tÞ

∂t
¼

h0
c20

∂2

∂r2
∫
∞

�∞

G2

xixj

r2
∂

∂t
0 ðSijÞ þ f EikSkj

� �

dt
0

¼

2ΓΩ2l2h0
c20

1�
f

2Ω

� �

∂2

∂r2
∫
∞

�∞

G2 sin ð2θ� 2Ωt0Þdt
0

, for a corotating vortex pair

επΩ
3a4h0

16c20
1�

2f

Ω

� �

∂2

∂r2
∫
∞

�∞

G2 sin 2θ�
Ωt0

2

� �

dt
0

, for the Kirchhoff vortex:

8

>

>

>

<

>

>

>

:

(23)

With the form of Green's function Eq. (9), Eq. (23) for a corotating vortex pair is written as
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∂hðx, tÞ
∂t

¼ 1−
f

2Ω

� �
ΓΩ2l2h0
πc0

∂2

∂r2
∫
t

−∞

sin ð2θ−2Ωt0Þ cos ðμ ffiffiffi
τ

p Þ
ffiffiffi
τ

p θs

�

c0ðt−t0Þ−r
�

dt′

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

, (24)

where τ ¼ c20ðt� t0Þ2 � r2. The integral in Eq. (24), labeled as B, can be calculated by changing

variables, t� t0 ¼ ðr=c0Þcoshϕ and
ffiffiffi
τ

p ¼ sinhϕ. By using the integral form of Hankel's func-

tion H0ðxÞ, B is expressed as

B ¼ 1

2c0
Re iπH

ð1Þ
0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ω

c0

� �2

� μ2

s0

@

1

A

2

4

3

5 sin ð2θ� 2ΩtÞ

�sgnðf ÞsgnðΩÞ 1

2c0
Im iπH

ð1Þ
0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ω

c0

� �2

� μ2

s0

@

1

A

2

4

3

5 cos ð2θ� 2ΩtÞ;

(25)

where the sign function sgnðxÞ is defined so that sgnð0Þ ¼ 1. H
ð1Þ
2 ðαxÞ ≈ �H

ð1Þ
0 ðαxÞ for αx ≫ 1

are also used for ðr=c0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω
2=4� f 2

q

≫ 1. Then the following approximation can be used

∂2B

∂r2
≈

Ω

2c0

� �2

� μ2

" #

B, (26)

because d2H
ð1Þ
0 ðαxÞ=dx2 ¼ α2=2

�

H
ð1Þ
2 ðαxÞ �H

ð1Þ
0 ðαxÞ

�

≈ � α2H
ð1Þ
0 ðαxÞ. Finally, the following

form for the far field of gravity waves is obtained for a corotating point vortex pair,

∂hðx, tÞ
∂t

¼ 2ΓΩ4l2h0
c40

1� f

2Ω

� �

1� f

2Ω

� �2
" #

Y0
r

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Ω2 � f 2
q� �

sin ð2θ� 2ΩtÞ
�

�sgnðf ÞsgnðΩÞJ0
r

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Ω2 � f 2
q� �

cos ð2θ� 2ΩtÞ
�

; (27)

where H
ð1Þ
0 ðαxÞ ¼ J0ðαxÞ þ iY0ðαxÞ is used, in which J0 and Y0 are the zeroth-order Bessel

functions of the first and second kind, respectively. The similar procedure from Eqs. (24) to

(27) can be applied for the Kirchhoff vortex, then

∂hðx, tÞ
∂t

¼ επΩ5a4h0
256c40

1� 2f

Ω

� �

1� 2f

Ω

� �2
" #

Y0
r

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω
2

4
� f 2

s0

@

1

A sin 2θ�Ω

2
t

� �
2

4

�sgn ðf Þ sgn ðΩÞ J0
r

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω
2

4
� f 2

s0

@

1

A cos 2θ�Ω

2
t

� ��

: (28)
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Eqs. (27) and (28) are applicable for both cyclone (Ω > 0) and anticyclone (Ω < 0) vortices

regardless of the signs of f. In the absence of the Earth's rotation for f ! 0, Eqs. (27) and (28)

correspond to the analytical form of the vortex sound [4, 26]. In contrast, there are several

important effects for finite f. First, spontaneous emission is suppressed for large f because of a

small value in the square root and second parentheses. Second, the source Eq. (7) originating in

the Coriolis acceleration acts oppositely to the gravity wave radiation caused by the second

term in the first parentheses. Meanwhile, the source Eq. (7) originating in the Coriolis acceler-

ation cancels out the source Eq. (6) associated with vortex, since the same signs of Ω and f for

cyclone. In contrast, those two sources magnify each other for anticyclone. Then, gravity waves

are intensely radiated from anticyclone. Simple explanations for the suppression of gravity

wave radiation at large f are reported [9]. Note also that it is possible to derive analytical

estimate in the case of evanescent gravity waves for Ω2=4 ≤ f 2 [22].

Examples of the far field of gravity waves (dΦ=dt, where Φ ≡ gh is the geopotential height)

from the corotating point vortex pair and Kirchhoff vortex are shown in Figure 2. Here, the

Rossby number (Ro ≡ Ul=f L) and Froude number (Fr ≡ Ul=
ffiffiffiffiffiffi

Φ0

p
) are defined by the typical

values, where the velocity Ul and the length L scales are chosen as the velocity and the length

of each vortex configuration. The values of Ω ¼ 0:1, Ul ¼ 0:5, l ¼ 1:0 and Φ0 ¼ 25=36 for the

corotating vortex pair and those of Ul ¼ 0:2, L ¼ a ¼ 1:0 and Φ0 ¼ 4=9 for the Kirchhoff vortex

are fixed to be consistent with those of numerical simulations. The value of Ω ¼ 0:449�
0:025ð0:95� bÞ for the Kirchhoff vortex is also chosen for different values of b in order to keep

Ul ¼ 0:2 as a constant value. The double spiral patterns for both cases clearly show the rotating

quadrupole features of the radiated gravity waves. The wave patterns depend on the vortical

flows and their parameter values, namely, Ω, Ro, Fr and the aspect ratio. Anticyclone radiates

gravity waves more intensely than cyclone at relatively large f (Figure 2a and b) and there is no

cyclone-anticyclone asymmetry in spontaneous emission for the nonrotating case of f ¼ 0

(Figure 2c).

The intensity of gravity waves for both cases of the corotating vortex pair, Ivp and the Kirchhoff

vortex, Ikv, are defined by

Figure 2. Snapshots of the far fields (r ≤ 100) of gravity waves (dΦ=dt, where Φ ≡ gh) radiated from the corotating point

vortex pair and Kirchhoff vortex: (a) cyclone, (b) anticyclone corotating vortex pair with Ro ¼ 10 ðf ¼ 1=10Þ and Fr ¼ 0:6

(gh0 ¼ 25=36) and (c) cyclone Kirchhoff vortex with Ro ¼ ∞ ðf ¼ 0Þ, b ¼ 0:8 (a ¼ 0:9, ε ¼ 1=9) and Fr ¼ 0:3 (gh0 ¼ 4=9).

Vortex Structures in Fluid Dynamic Problems40



Ivp ¼ ∫
2π

0

∂Φ

∂t

� �2

rdθ ≈
64π2

Ω
9l8

c30
1�

f

2Ω

� �2

1�
f

2Ω

� �2
" #3

2

, (29)

Ikv ≈
ε
2
π
2
Ω

9a8

16384c30
1�

2f

Ω

� �2

1�
2f

Ω

� �2
" #3

2

, (30)

to estimate the dependence on f of gravity waves from both cyclone and anticyclone. Here,

J0ðαxÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=παx
p

cos ðαx� π=4Þ and Y0ðαxÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=παx
p

sin ðαx� π=4Þ for αx ≫ 1 are used to

derive Eqs. (29) and (30). These values are the same at any r in the field. Figure 3 shows Ivp

(Eq. 29) and Ikv (Eq. 30) for three b cases (b ¼ 0:95, 0:9, and 0:8). For anticyclone vortex, a local

maximum appears at f =2Ω ¼ �0:4 (Ro ~ 12.5, f ~ 2/25) for the corotating point vortex pair and

2f =Ω ¼ �0:4 (Ro ~ 1, f ~ 1/10) for the Kirchhoff vortex. The cyclone-anticyclone asymmetry is

similar to both cases, though vortical flows are completely different. Note that Ro is different

among the vortices for the same value of f because the velocity and length scales depend on the

vortical configuration.

3. Numerical simulation

To verify the analytical solution, a numerical simulation with a newly developed spectral

method in an unbounded domain has been performed. The numerical results are in excellent

agreement with the analytical results of Eqs. (27) and (28) [22, 23]. Furthermore, additional

numerical simulations have been performed for the cases of merging of (equal or unequal)

vortices, in which analytical solution cannot be derived [24, 25]. In this section, the results of

numerical simulation as well as model settings are introduced.

Figure 3. Analytical estimates of the dependence on f of the intensity of gravity waves: (a) the corotating vortex pair, Ivp,

calculated from Eq. (29) and (b) the Kirchhoff vortex, Ikv , calculated from Eq. (30) with b ¼ 0:95 (a ¼ 0:975, ε ¼ 1=39; solid

line), b ¼ 0:9 (a ¼ 0:95, ε ¼ 1=19; broken line) and b ¼ 0:8 (a ¼ 0:9, ε ¼ 1=9; dotted line).
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3.1. Model settings

Shallow water equations on an f-plane in polar coordinates are used for the numerical simula-

tion. The equations of relative vorticity ζ, divergence δ and geopotential height Φ are

∂ζ

∂t
¼ �

1

r

∂ðrvζaÞ

∂r
�
1

r

∂ðuζaÞ

∂θ
, (31)

∂δ

∂t
¼

1

r

∂ðruζaÞ

∂r
�
1

r

∂ðvζaÞ

∂θ
� ∆ðEþ ΦÞ, (32)

∂Φ

∂t
¼ �

1

r

∂ðrvΦÞ

∂r
�
1

r

∂ðuΦÞ

∂θ
, (33)

where u and v are the velocities in the azimuthal (θ) and radial ðrÞ directions, respectively and

relative vorticity ζ ¼
1

r

∂ðruÞ

∂r
�
1

r

∂v

∂θ
¼ ∆ψ, (34)

divergence δ ¼
1

r

∂ðrvÞ

∂r
þ
1

r

∂u

∂θ
¼ ∆χ, (35)

Laplacian ∆ ¼
1

r

∂

∂r
r
∂

∂r

� �

þ
1

r2
∂2

∂θ2
, (36)

kinetic energy E ¼
1

2
ðu2 þ v2Þ, (37)

absolute vorticity ζa ¼ f þ ζ, (38)

where ψ and χ are the stream function and velocity potential, respectively.

Eqs. (31)–(33) are solved by a conformal mapping from a sphere Piðλ,φÞ with radius R to a

plane Qiðr;θÞ in the numerical simulation [28]. Figure 4 shows a schematic of this mapping.

With the aid of the following relation,

r ¼ 2Rtan
φ

2
þ
π

4

� �

; (39)

the transformation of the coordinates is expressed as

∂

∂r
¼

1� sinφ

2R
,
1

r

∂

∂θ
¼

1� sinφ

2R cosφ

∂

∂λ
: (40)

Then the phenomena on a two-dimensional unbounded plane can be calculated on a sphere

with an ordinary spectral method of spherical harmonics by this mapping. Since grid points

are arranged nonuniformly (many grid points are positioned in the near field of vortical flows,

while few are in the far field of gravity waves), this method enables us to simulate nonlinear

interactions between vortical flows and gravity waves with high accuracy [22–25].
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Additional advantage is that the term of the hyper viscosity, which is intended to dissipate

unresolved small scales numerically in the spectral model, acts as a sponge layer. By the

conformal mapping, the usual form of hyper viscosity can be written as

νð�1Þpþ1 4∆

ð1� sinφÞ2

 !p

P, (41)

where ν, p and P ¼ ðζ, δ,ΦÞ are the viscosity coefficient, order of viscosity and physical vari-

ables, respectively. Eq. (41) acts as a usual hyper viscosity in the near field of vortical flow for

small φ. On the other hand, the viscosity becomes large and acts as a sponge layer for large φ

in the far filed where waves are propagating. Eq. (41) is easy to code in the numerical

simulation because Laplacian operator on a sphere is simply calculated by spherical har-

monics.

3.2. Verification

As an initial state, a corotating Gaussian vortex pair is used to mimic a point vortices, which is

expressed as

ζ ¼ �A1exp �
ðx� x1Þ

2 þ ðy� y1Þ
2

2σ2

( )

� A2exp �
ðx� x2Þ

2 þ ðy� y2Þ
2

2σ2

( )

, (42)

where ðx, yÞ ¼ ðrcosθ, rsinθÞ. The values of A1, A2, σ, ðx1, y1Þ ¼ ðlcosθ1, lsinθ1Þ and

ðx2, y2Þ ¼
�

lcosðθ1 þ πÞ, lsinðθ1 þ πÞ
�

determine the amplitudes, radius and positions of the

vortices, respectively (see also Figure 1a). The values of A1 ¼ A2 ¼ 20, σ ¼ 0:05, l ¼ 0:5 and

Figure 4. Schematic of the mapping method from Piðλ,φÞ on sphere to Qiðr,θÞ on a plane.
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θ1 ¼ π=4 are fixed and then the maximum velocity Uvp ≈ 0:5 becomes a constant value. The

Rossby number Ro ≡ Uvp=f l and the Froude number Fr ≡ Uvp=
ffiffiffiffiffiffi

Φ0

p
are defined by the basic

state, where Φ0 = 25/36 determines the average depth. Then, Frð¼ 0:6Þ is fixed and Ro is

reciprocal of f. The field of Φ is set to be in gradient balance with ζ.

Similarly, elliptical Gaussian vortex positioned at the origin is used to mimic the Kirchhoff

vortex

ζ ¼ �Aexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaxÞ2 þ ðbyÞ2
q

lkv

0

@

1

A

n
8

>

<

>

:

9

>

=

>

;

, (43)

where A, a, b, n and lkv determines the amplitude, the length of semimajor axis and semiminor

axis, the steepness and the core area of elliptical vortex, respectively. The values of a ¼ 1:0,

n ¼ 10, and lkv ¼ 1:0 are fixed, then the semimajor axis of elliptical vortex is fixed to ∼1, while

b is swept to change the aspect ratio. Then, a and ε are determined by b solely (see also

Figure 1b). A ¼ 0:449� 0:025ð0:95� bÞ is also set to keep the maximum velocity Ukv ≈ 0:2 as

a constant value. The Rossby number Ro ≡ Ukv=f lkv and the Froude number Fr ≡ Ukv=
ffiffiffiffiffiffi

Φ0

p
are

defined by the basic state, where Φ0 = 4/9 determines the average depth. Again, Frð¼ 0:3Þ is
fixed and Ro is reciprocal of f. Note again that Ro is different among the vortices for the same

value of f because the velocity and length scales depend on the vortical configuration. The field

of Φ is set to be in gradient balance with ζ, too. Figure 5 shows examples of initial Gaussian

vortex pair with Ro ¼ 10 ðf ¼ 1=10Þ and Fr ¼ 0:6 and elliptical Gaussian vortex with

Ro ¼ 1 ðf ¼ 1=10Þ, Fr ¼ 0:3 and b ¼ 0:9 (a ¼ 0:95, ε ¼ 1=19). The vorticity ζ, velocity u in the θ

direction and geopotential height Φ are shown for the corotating vortex pair (along the section

of center of the vortices) and for the elliptical vortex (along the sections of semimajor axis and

semiminor axis of the vortex).

The number of grid points is set to be 2048 + 1024 in the θ and r directions, with the

truncation wavenumber of spherical harmonics T ¼ 682 and R ¼ 8. Then the grid interval in

the r direction (∆r) in the near field (r ≤ 2) is ∆r ≤ 0:0249 and the farthest grid points are

positioned at r ~ 13,632. The viscosity coefficient and order of viscosity are set to be ν ¼ 10�11

and p¼ 3, respectively. Fourth-order Runge-Kutta method is used for the time integration. For

the corotating vortex pair 8,000 total time steps are conducted to the end of time 200 with a

time interval ∆t ¼ 0:025, while for the elliptical vortex, 10,000 time steps are conducted with a

∆t ¼ 0:02.

In both configurations, the numerical simulations with several Ro for fixed Fr are performed

for cyclone and anticyclone vortex individually, starting from above initial state. Gravity

waves are spontaneously radiated from both cyclone and anticyclone vortical flows for large

enough Ro, while anticyclones rotate in the opposite direction to cyclones. Figure 6 shows line

plots of radiated gravity waves dΦ=dt against r from cyclone and anticyclone for both cases of

the corotating vortex pair and Kirchhoff vortex. The line plots in the θ ¼ π=4 section at t ¼ 200

are shown for the numerical simulation (broken lines), while appropriate times are chosen for

the analytical estimates (solid lines) to coincide with the numerical results. The amplitudes of
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gravity waves in the far field between the analytical and numerical results are almost the same

for all cases. While there is no cyclone–anticyclone asymmetry for the nonrotating case (f ¼ 0),

the anticyclones radiate gravity waves more intensely than cyclones for relatively small Ro

cases. Local maximum appears around 2f =Ω ∼ − 0.4 only for the cases of anticyclone, as

expected in Section 2.3. All cases with different Ro are remarkably good overlapped between

analytical estimates and numerical results, except for the elliptical vortex with for b ¼ 0:8.

The intensity of gravity waves for both cases calculated from Eqs. (29) and (30) in the numer-

ical simulation agree well with analytical estimates (not shown). The results indicate that the

analytical estimates give the far fields of gravity waves quite accurately and the newly devel-

oped numerical model is well verified. Furthermore, cyclone-anticyclone asymmetry and the

local maximum of gravity waves for anticyclone are also confirmed for both cases of the

corotating vortex pair and Kirchhoff-like elliptical vortex. Note that for the elliptical vortex

with for b ¼ 0:8, the aspect ratio increases gradually in the time evolution, more elongated

elliptical vortex with filaments appears. Then the amplitude of the source becomes larger than

that used in the analytical estimate. Significant deviation for the shape of vortex from the ideal

elliptical vortex causes the large discrepancy between the analytical and numerical results for

b ¼ 0:8 [23].

Figure 5. Initial corotating cyclone vortex pair (top panels) with Ro ¼ 10 ðf ¼ 1=10Þ and Fr ¼ 0:6 (Φ0 = 25/36) and elliptical

cyclone vortex (bottom panels) with Ro ¼ 1 ðf ¼ 1=10Þ, Fr ¼ 0:3 (Φ0 = 4/9) and b ¼ 0:9 (a ¼ 0:95, ε ¼ 1=19): ζ (a, d), u (b, e)

andΦ (c, f) are shown. In the top panels, solid lines indicate the values along the section of center of vortex. In bottompanels,

the solid lines indicate the values along the section of semi-major axis, while dotted lines indicate those of semi-minor axis.
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3.3. Extended experiments

As extended experiments, the results of the merging of (equal and unequal) vortices are

introduced here [24, 25]. As an initial state, a pair of corotating Gaussian vortices expressed

by Eq. (42) with different values of A1 ¼ 2:165, σ ¼ 0:16 is used. By defining asymmetric

parameter d ≡ A2=A1, d ¼ 1:0 is used for the symmetric vortex merger, while d < 1:0 is swept

for asymmetric vortex merger. The Rossby number Ro ≡ Uvm=f l and the Froude number

Fr ≡ Uvm=
ffiffiffiffiffiffi

Φ0

p
are defined by the basic state again, where Uvm ≈ 0:2 is the maximum velocity

(fixed). The average depth is set to Φ0 = 4/9 so that Fr ¼ 0:3 (fixed). Then, again, Ro is reciprocal

of f. The field of Φ is set to be in gradient balance with ζ. Figure 7 shows initial Gaussian vortex

(cyclone) with Ro ¼ 4 ðf ¼ 1=10Þ and Fr ¼ 0:3 for symmetric (d ¼ 1:0) and asymmetric merger

(d ¼ 0:7). The other experimental settings are the same as Subsection 3.2.

Starting from above initial state, vortices evolve with time. The time evolutions for cyclones

with Ro ¼ 4 and Fr ¼ 0:3 for the symmetric (d ¼ 1:0) and asymmetric merger (d ¼ 0:7) are

shown in Figure 8. Vortices merge in a similar way for both cases of equal vortices and unequal

vortices. Initially, vortices corotate with each other (t ≲ 45) and then merge into a single vortex

ð45 ≲ t ≲ 65). After merging, the vortex rotates with nutation from an elliptical shape to an

axisymmetric one (65 ≲ t). Spontaneous emission is observed at all three stages, while amplitude

Figure 6. The far filed ðr ≤ 100Þ of gravity waves ðdΦ=dtÞ for the corotating vortex pair (top panels) with Ro ¼ 10 and

Fr ¼ 0:6 and elliptical vortex (bottom panels) with Ro ¼ 1, Fr ¼ 0:3, and b ¼ 0:9. The analytical estimates Eqs. (27) and

(28) (solid lines) and the numerical results in the θ ¼ π=4 section at t ¼ 200 (broken lines) are shown for (a, c) cyclones and

(b, d) anticyclones.
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of gravity waves for the asymmetric merger is significantly smaller than that of the symmetric

merger. The wavelength of the gravity waves from the corotating vortices becomes shorter

gradually with time due to an increase of the rotation rate. Then it becomes almost constant after

merging into a single vortex.

A series of numerical simulations at different values of Ro (0:5 ≤ Ro ≤ ∞) is performed. The time

evolutions of ∂Φ=∂t at several r values are shown in Figure 9 for both cyclones and anticy-

clones with Ro ¼ 4 and Fr ¼ 0:3 for the symmetric (d ¼ 1:0) and asymmetric merger (d ¼ 0:7).

While vortical flows evolve with time in a similar manner (not shown), gravity waves radiated

from them are considerably different between cyclones and anticyclones. At large Roð≥ 4Þ,

both cyclones and anticyclones radiate gravity waves in the three stages of vortical flows:

Figure 7. Initial Gaussian cyclone vortex pair with Ro ¼ 4 ðf ¼ 1=10Þ and Fr ¼ 0:3 for symmetric (d ¼ 1:0, solid line) and

asymmetric merger (d ¼ 0:7, dotted line): ζ (a), u (b) and Φ (c) are shown. One (weaker) vortex is shown (for unequal

vortices).

Figure 8. Snapshots of the time evolution of cyclones with Ro ¼ 4 ðf ¼ 1=10Þ and Fr ¼ 0:3 for symmetric merger (d ¼ 1:0,

top panels) and asymmetric merger (d ¼ 0:7, bottom panels): ζ for (a, e) t = 0, (b, f) t = 45, (c, g) t = 90 and ∂Φ=∂t for (d, h) t =

135 (d). ζ is shown in the near field (r ≤ 2), while ∂Φ=∂t is shown in the far field (r ≤ 50).
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corotating (t ≲ 45), merging (45 ≲ t ≲ 65) and after merging (65 ≲ t). At smaller Roð≤ 0:8Þ,

however, gravity waves from cyclones decrease significantly. There are almost no gravity

waves, except for the initial geostrophic adjustment. On the other hand, gravity waves from

Figure 9. Time evolutions of ∂Φ=∂t (colored lines multiplied by 104) from symmetric merger (top panels) and asymmetric

merger (bottom panels) wtih Ro ¼ 4 and Fr ¼ 0:3: (a, c) cyclone and (b, d) anticyclone. Black dotted lines indicate the

phase speed of the fastest gravity waves.

Figure 10. Dependence on f of the maximum value of the gravity wave flux averaged in the θ direction at r ¼ 45 for the

(a) symmetric merger and (b) asymmetric merger.
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anticyclones are radiated even when gravity waves from corotating vortices are hardly observed,

namely, spontaneous emission is observed after merging into a single vortex. Therefore, signifi-

cant cyclone-anticyclone asymmetry appears at small Ro.

In order to estimate the intensity of gravity waves quantitatively, a pseudo-energy flux is

derived and calculated as the gravity wave flux [12, 21]. This quantity is conserved when

gravity waves propagate into the far field. Figure 10 shows the maximum values of the gravity

wave flux averaged in the θ direction at r ¼ 45 for several Ro values (0:5 ≤ Ro ≤ ∞). Generally,

the maximum values are caused by gravity waves from the time of merging. Cyclone-anticy-

clone asymmetry is confirmed clearly. Anticyclones radiate gravity waves more intensely than

cyclones and they have a local maximum of gravity wave flux at f ~ 0.2 for both cases. See Refs.

[24] and [25] for details.

4. Concluding remarks

4.1. Summary points

1. Far field of inertia-gravity wave radiated from the corotating point vortex pair and

Kirchhoff vortex with nearly circular shape is derived analytically in the f-plane shallow

water system. Cyclone-anticyclone asymmetry in gravity waves from vortical flows and a

local maximum of intensity of gravity waves from anticyclones at an intermediate f

appear. This is caused by the effect of the Earth's rotation.

2. The derived analytical estimate is well verified for both cases of the corotating vortex pair

and Kirchhoff vortex with a small aspect ratio by the numerical simulation with a newly

developed spectral method in an unbounded domain.

3. The numerical experiments extend to the cases of symmetric and asymmetric vortex

merger, in which analytical estimate cannot be derived. In both cases, cyclone-anticyclone

asymmetry clearly appears and the local maximum at intermediate f exists only for

anticyclones.

4. Within all parameter values and vortical flows used in the present work, there is a

cyclone-anticyclone asymmetry at finite values of f. Gravity waves from anticyclones are

larger than those from cyclones and have a local maximum at intermediate f. The source

originating in the Coriolis acceleration has a key role in cyclone-anticyclone asymmetry in

spontaneous emission. This feature would be robust and ubiquitous in the rotating shal-

low water system.

4.2. Future issues

1. The derived analytical forms would give useful references for testing the accuracy of the

numerical model from a viewpoint of developing new numerical methods.

2. Cyclone-anticyclone asymmetry may be related with the change of the dominant balanced

state from quasi-geostrophic one to gradient wind one [29].
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3. There are additional effects which cause the discrepancy between analytical and numeri-

cal results, such as nutation of vortex, change of the rotation rate and filaments of the

vortex.

4. More comprehensible understanding of cyclone-anticyclone asymmetry in spontaneous

emission from general complicated vortical flows is needed not only in the rotating

shallow water system but also in the continuous stratified system.
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