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Abstract

In this chapter, alternative views based on the structure have been presented in the spinel 
superconducting compounds, including the only oxide spinel superconductor, LiTi

2
O

4
, 

and non-oxide superconductors, CuIr
2
S

4
 and CuV

2
S

4
. Inspection of the atomic arrange-

ments, electronic structures and bonding interactions of spinel superconductor, LiTi
2
O

4
 

shows that LiTi
2
O

4
 can be interpreted as Li-doped TiO

2
, which is similar with doping Cu 

into TiSe
2
 to induce superconductivity. Different from LiTi

2
O

4
, the electronic structures 

of CuIr
2
S

4
 and CuV

2
S

4
 indicate a distinctive way to understand them in the structural 

viewpoint. The d6 electron configuration and the octahedral coordination of Ir in CuIr
2
S

4
 

can be analogous to the d6 in perovskites, which sometimes host a metal-insulator transi-
tion. However, the superconductivity in CuV

2
S

4
 may be induced from the suppression of 

charge density waves. This kind of structural views will help chemists understand physi-
cal phenomena obviously more straightforward, though not sufficient, as clearly shown 
by the competition between each other, such as superconductivity and other structural 
phase transition (CDWs), oxidation fluctuation or magnsetism.

Keywords: superconductivity, chemical bonding, crystal structural analysis

1. Introduction

Superconducting phenomenon incorporates the exact zero electrical resistance and expul-

sion of magnetic flux fields occurring in many solid state materials when cooling below 
a certain critical temperature [1]. The expulsion of the magnetic flux fields, known as 
Meissner effect, and zero electric resistance has tremendous applications in the fields of 
transportation, electricity, and so on [2]. The “ideal” superconducting materials poten-

tially could solve the most energy problems human being is facing. Back to the discovery 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of  superconductivity in mercury in 1911, a century has passed by. However, the mecha-

nisms of  superconductivity are still undergoing extraordinary scrutiny. The conventional 

pictures arising from the Bardeen-Cooper-Scrieffer (BCS) theory merge the electron-pho-

non coupling to generate a pairing mechanism between electrons with the opposite crystal 

momenta that induce a superconducting state [3,4]. Derived from the BCS theory, the quali-

tative correlation between the superconducting critical temperature (T
c
) and the density of 

states (DOS) at the Fermi level, N(E
F
), is kT

c
 = 1.13 ħ ω exp(−1/N(E

F
)V), where V is a merit 

of the electron-phonon interaction and ω is a characteristic phonon frequency, similar to 
the Debye frequency [5]. According to the expression, a large density of states at Fermi 

level N(E
F
) or electron-phonon interaction V or both leads to a higher T

c
 superconductor. 

Later, Eliashberg and McMillan extended the BCS theory and gave a better correspondence 
between experiment and prediction [6].

Until now, BCS theory is still in an even more dominant position to determine whether a 

superconductor will be classified as BCS-like or not. As more high temperature supercon-

ductors were discovered, more new “universal” mechanisms were sought for. However, 

neither BCS nor other exotic mechanisms established a relationship with the real chemi-

cal systems. Thus, the question appears whether the general statements of BCS theory can 

be associated with distinct chemical meanings, such as specific bonding situations, and 
whether the physical phenomenon of superconductivity can be interpreted from the view-

point of chemistry.

2. Electron counting rules in chemistry and superconductors

Empirical observations of the range of electron counts to specific structural compounds are 
widely used in chemistry to help determine and find out the empirical rules to stabilize 
the compounds with specific structural frameworks, such as Wades-Mingo polyhedral skel-
etal rules for boron cluster compounds [7], 14e- rules for DNA-like helix Chimney Ladders 

phases [8] and Hume-Rothery rules for multi-shelled clustering γ-brass phases [9, 10]. 

The electronic structure calculation and the bonding schemes allow us to determine a struc-

ture’s preferred electron count for most compounds, for example, take Hume-Rothery rules in 

complex clustering compounds. The stability ranges of complex intermetallic alloys (CMAs) 

are frequently identified by specific valence electron-to-atom (e/a) ratios, such as 1.617 e-/a 
for transition-metal-free γ-brass systems, which are generally called Hume-Rothery rules 
and validated by the presence of pseudogaps at the corresponding Fermi level in the cal-

culated electronic structures [10]. Moreover, a distinctive way to count electrons is applied 

for the transition-metal-rich systems, such as Chimney Ladders phases, endohedral gallides 

superconductors, and so on [11]. For example, Ga-cluster superconductor, ReGa
5
, containing 

11 bonding orbitals in the cluster would be fully occupied by 22e- (Re: 7e- from 5d and 6s 

orbitals + 5Ga: 3e- from 4s and 4p orbitals) and the Fermi level of ReGa
5
 should be located 

in a gap or pseudo gap in the DOS [11]. Briefly, small values of density of states, N(E
F
), are 

corresponding to the stable electronic structures in the reciprocal space and chemical com-

pounds in the real chemistry system [12]. As we mentioned in early section, N(E
F
) exists the 
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close relationship with the superconducting critical temperatures: the larger values of N(E
F
) 

in DOS, the higher T
c
 is likely to appear in the solid state materials. An empirical electron 

counting method, although this follows a different, less chemical-based electron counting 
process, was  generated by Matthias [13]. It states that the number of valence electrons in a 

superconductor has lost nothing of its fundamental importance to the value of T
c
. For the 

transition-metal-rich compounds with simple crystal structures, the maximum in T
c
 is seen to 

occur at approximately 4.7 and 6.5 valence electrons per atom [14]. The particular impressive 

example is the T
c
 dependence on the average number of valence electrons in A15 phases, for 

example, take Nb
3
Ge. The valence electron concentration is calculated as follows: (5 e-/Nb × 

3 Nb + 4 e-/Ge × 1 Ge)/4 = 4.75 e-/atom [15]. Similarly, 4.6 e-/atom work for (Zr/Hf)
5
Sb

2.5
Ru

0.5
 

[16, 17]. Therefore, to increase the T
c
 in superconductivity is at a high risk of destabiliz-

ing the compounds. From the chemistry viewpoints, BCS-like superconductors need to bal-

ance the structural stability and superconducting property and result in the limited T
c
 [18]. 

Circumventing the inherent conflict of structural stability and superconducting critical tem-

peratures in BCS-like superconductors would be analogous to the thermoelectric materials 

with a phonon glass with electron-crystal properties [19].

In the past several decades, several new classes of high temperature superconductors were 

discovered, whose critical temperatures are way above the ones of conventional supercon-

ductors [20–23]. These discoveries give physicists hope to keep looking for the new mecha-

nisms for superconductivity. Different from metallic superconductors, more chemistry terms 
can be applied for the high temperature superconductors, such as oxidation numbers, Zintl 
phases, valence-electron-precise systems, and so on [24, 25].

3. Inducing superconductivity by the suppression of charge density waves

In the semiconductor BaBiO
3
 compound, the bonding interaction can be described by the 

formula (Ba2+)(Bi4+)(O2-)
3
, Bi has the unusual oxidation state, +IV [26, 27]. At room tempera-

ture, it has the doubled perovskite unit cell and the structure distorted to monoclinic rather 

than being cubic. It contains two types of Bi atoms in different sized coordinated polyhedral, 
so the formula of BaBiO

3
 can be modified as (Ba2+)

2
(Bi3+)(Bi5+)(O2-)

6
. Now the complex struc-

tural distortion can be interpreted as the relocalization of two electrons at the Bi3+ ion with 

the “long pair” configuration [28]. Contradictory, the two Bi atoms show slightly different 
in the oxidation states (+3.9 versa +4.1) from the band structure calculation [29]. Another 

argument was arisen that the structural distortion, as well as the non-equivalent Bi atoms, 

caused by the charge density waves (CDWs) [30]. Suppression of the charge density waves 

in Bi oxides may induce the superconductivity. It is achieved by doping Pb4+, which has 

closed electron configuration and prefers a regularly coordinated environment to stabilize 
the structure. BaPb

x
Bi

1-x
O3-δ shows no CDWs but the superconducting transition when cool-

ing to 13 K [31]. Another way to stabilize the regular structure is increasing the Bi5+ ions, 

which also has the closed electron configuration. To obtain this, K was used to partially 
replace Ba and K

x
Ba

1-x
BiO

3
 in cubic perovskite structure shows the superconducting transi-

tion around 30 K [26].
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4. Superconductivity hosted in the specific structural frameworks

High temperature superconductivity in ThCr
2
Si

2
-type iron pnictides led to numerous investi-

gations in these compounds in the past decade [32]. However, the structure of ThCr
2
Si

2
-type 

materials hosting superconductivity could be traced back to the quaternary superconductors, 

LnNi
2
B

2
C (Ln = Ho, Er, Tm, Y and Lu) [33]. In LnNi

2
B

2
C, we could treat the B-C-B as a single 

chemical unit based on the short bonding distance and strong bonding interaction between 

B and C [34]. Therefore, the ionic formula of LnNi
2
B

2
C can be treated as Ln3+(Ni0)

2
(B

2
C)3- [34]. 

In the viewpoint of chemistry, the large N(E
F
) in LnNi

2
B

2
C was mainly arisen from the slight 

orbital distortion of B-C-B fragments. Moreover, the structure could be considered to repre-

sent the first member of a homologous series (LnC)
n
(Ni

2
B

2
), in which the LnC block adopts 

to a NaCl-type packing, which naturally drove us to investigate the (LnC)
2
(Ni

2
B

2
), written as 

(LnC)(NiB), in which the ionic formula could be written as Ln3+(Ni0)(BC)3- [33]. (BC)3- is iso-

electronic with CO, and the B-C interaction rapidly changes from bonding to antibonding in 

addition to the dispersionless band from Ln orbital below Fermi level in LnNiBC may be the 

important factor to kill the superconductivity [34].

However, the “exotic” quantum mechanism for superconductivity is undergoing an 

unclear status even though the phenomenon has been discovered for more than a century. 

Superconductivity is still unpredictable currently. Condensed matter physicists try to predict 
superconductors based on analyzing the superconductivity through “k-space” pictures based 

on Fermi surfaces and particles interactions, that is, electron-phonon coupling [35]. Thus, there 

are few predictive rules from physics aspect, one of which, perhaps the most widely used, is 

that in intermetallic compounds of a known superconducting structure type, one can count 

electrons and expect to find the best superconductivity or the highest critical temperature (T
c
) 

at ~4.7 or ~6.5 valence electrons per atom—Matthias rules mentioned above [14]. However, 

the chemists’ viewpoint is from real space such as chemical compositions and atomic struc-

tures, which play critical roles in superconductivity, rather than reciprocal space [11]. One of 

the chemical views to increase the occurrence of new superconducting materials is to posit 

that it carries out in structural families. The well-known examples are found in ThCr
2
Si

2
-type 

such as BaFe
2
As

2
 and LnNi

2
B

2
C systems and perovskites like bismuth oxides, which are fairly 

favored by superconductivity [32]. Laves phase compounds are previously well-investigated 

families for hosting superconductivity among alloys [36]. Here, we analyze the structural 

relationship between diamond framework and spinels from a molecular perspective, then 

apply this connection for interpretation and prediction of other possible new superconduc-

tors adopting to spinels and their derived structures.

5. Calculation details

5.1. Tight-binding, linear Muffin-Tin orbital-atomic spheres approximation 
(TB-LMTO-ASA)

Calculations of the electronic structures were performed by TB-LMTO-ASA using the Stuttgart 
code [37–39]. Exchange and correlation were treated by the local density  approximation 
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(LDA) [40]. In the ASA method, space is filled with overlapping Wigner-Seitz (WS) 
spheres [41]. The symmetry of the potential is considered spherical inside each WS sphere, 

and a combined correction is used to take into account the overlapping part, and the overlap 

of WS spheresis limited to no larger than 16%. The empty spheres are necessary, and the over-

lap between empty spheres is limited to no larger than 40%.The convergence criterion was set 

to 0.1 meV.A mesh of ~100 k points [42] in the irreducible edge of the first Brillouin zone was 
used to obtain all integrated values, including the density of states (DOS) and Crystal Orbital 

Hamiltonian Population (COHP) curves [43].

5.2. WIEN2k

The electronic structures (density of states and band structure) of intermetallics were calcu-

lated using the WIEN2k code with spin orbital coupling, which has the full-potential linear-

ized augmented plane wave method (FP-LAPW) with local orbitals implemented [44, 45]. 

For the treatment of the electron correlation within the generalized gradient approximation, 

the electron exchange-correlation potential was used with the parameterization by Perdew 

et al. (i.e. the PBE-GGA) [46]. For valence states, relativistic effects were included through a sca-

lar relativistic treatment, and core states were treated fully relativistic [47]. The structure used 

to calculate the band structure was based on the single crystal data. The conjugate gradient 

algorithm was applied, and the energy cutoff was 500 eV. Reciprocal space integrations were 
completed over a 9 × 9 × 9 Monkhorst-Pack k-points mesh with the linear tetrahedron method. 

With these settings, the calculated total energy converged to less than 0.1 meV per atom.

5.3. Materials projects

The electronic structures of partial hypothetical compounds were predicted and calculated 

using the Materials Projects, which have been treated in the electron correlation within the 

generalized gradient approximation. The structure used to calculate the band structure was 

based on the single crystal data. The conjugate gradient algorithm was applied, and the energy 

cutoff was 520 eV. Reciprocal space integrations were completed over a 104 Monkhorst-Pack 
k-points mesh with the linear tetrahedron method.

6. Hierarchical structural interpretation of existing superconductors 
with spinels

Spinels, generally formulated as A2+(B3+)
2
O

4
, crystallize in the cubic crystal system, with the 

oxide anions arranged in a cubic close-packed lattice and the cations A and B occupy the 
octahedral and tetrahedral sites in the lattice [48, 49]. An alternative tantalizing way to view 

the spinel structure is to treat spinels as void-filled cubic Laves phases, both of which exhibit 
some close relationships with the diamond structure. In the cubic Laves phase, MgCu

2
, the 

Mg atom sites (Wyckoff designation 8a) arrange precisely into a three-dimensional (3D) dia-

mond network. Within the voids, Cu atoms (Wyckoff designation 16d) form a 3D framework 

of vertex-sharing tetrahedra, as emphasized in Figure 1 (Left). Thus, the Mg and Cu sites 

become A and B, respectively, in spinels. Furthermore, in spinels, the O atoms on 32e (x, x, x) 

Structure-Property Correlations and Superconductivity in Spinels
http://dx.doi.org/10.5772/65943

125



sites forming isolated tetrahedral were inserted into the B
4
 tetrahedra and center around 8b 

(½, ½, ½) sites in Figure 1 (Right). The formation of the complete cubic unit cell from the cubic 

Laves phase to the spinels A
8
B

16
O

32
 is, therefore, shown in Figure 1.

6.1. Li-doped “TiO
2
”: superconductivity in spinel LiTi

2
O

4

Superconductivity in Li1−xTi
2+x

O
4
 was first reported in 1973, much earlier than the discov-

ery of high-T
c
 cuprate superconductors. The superconducting transition temperature (T

c
) 

of LiTi
2
O

4
 is around 11 K [50]. As the first oxide superconductor with a relatively high criti-

cal temperature, LiTi
2
O

4
 remains widely intriguing for scientists. The most frequent ques-

tions arose are why LiTi
2
O

4
 adopts to a unique structure type, which is different from other 

high temperature superconducting materials, such as perovskites or cuprates. However, 

Li-doped TiO
2
 and LiTi

2
O

4
 can be treated as the analogy between Cu-doped TiSe

2
 and 

Cu
0.08

TiSe
2
 in a certain way [51]. TiSe

2
 adopts to the trigonal-layered structure (1T) (S.G. 

P-31m) with charge density waves observed around 220 K, and with doping Cu, the super-

conductivity in Cu
x
TiSe

2
 appears and the charge density wave was suppressed. Similarly, 

for both rutile- and anatase-TiO
2
, Ti and O atoms form distorted Ti@O

6 
octahedra; thus, 

there exist empty voids in the structure shown in Figure 2a and b. Based on the electronic 

structures of TiO
2
in Figure 3a and b, both polymorphic TiO

2
 compounds are well-known 

n-type semiconductors with ~2eV gaps above Fermi levels [52]. Through doping with Li 

atom, which can be considered as the nearly free electron in solid state chemistry, the empty 

voids in TiO
2
 are occupied by the Li atoms, and the Fermi levels start lifting up and shifting 

to the peak in the DOS.

To confirm our assumptions, the electronic structures of LiTi
2
O

4
 are calculated using TB-LMTO-

ASA with Crystal Orbital Hamilton Population (COHP) codes. In Figure 4 (left), the DOS 

Figure 1. The structural relationship between the MgCu
2
-type, cubic Laves phase structure and the spinel-type, MgAl

2
O

4
. 

Left: MgCu
2
-type (Mg, green; Cu, purple); right: Spinel type MgAl

2
O

4
 (Mg, green; Al, purple and O, red).
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qualitative features obtained by this calculation state that are 2–6 eV below the Fermi level (E
F
) 

arise primarily from valence 4s and 3d orbitals from Ti and 2p orbitals from O, whereas the Li 

2s band is broadly distributed from −6 to −2 eV. The contribution of Li 2s electrons to the DOS 

curve, as shaded in Figure 4 in black, shows it just contributes one free electron to the system 

rather than making any change to the DOS features of TiO
2
 in the diamond-like framework. 

The integrated DOS till the broad band gap around 1 eV below Fermi level results in the same 

electron counts as TiO
2
. Comparing with the DOS of rutile- and anatase-TiO

2
 in Figure 3, 

the difference between LiTi
2
O

4
 and TiO

2
 is the up-lift 1 e- per formula of the Fermi level. The 

Fermi level for LiTi
2
O

4
 falls just above the topmost peak of the largely Ti 3d bands. Therefore, 

we employed Local Spin Density Approximation (LSDA) to see if a magnetic moment would 

spontaneously develop, but the converged result yielded zero magnetic moment. This result 

of the unstable electronic structure gives a strong indication of the occurrence of supercon-

ductivity. The “bond energy” term is evaluated by the crystal orbital Hamilton populations 

Figure 2. The structure and space group connections between two types of TiO
2
 and Li

x
TiO

2
. (a) The crystal structure 

of rutile-TiO
2
. The rutile-TiO2 adopts to the primitive tetragonal structure with space group P4

2
/mnm. Each Ti atom 

surrounded by 6 O atoms forms the octahedral coordination. (b) The schematic picture showing the possible phase 

transitions when doping Li into TiO
2
. (c) The space group and sub-space group relationship among TiO

2
 and LiTi

2
O

4
.
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(COHP) curves [53]. These curves illustrated in Figure 4 (Middle) show that the band gap 

around 1eV below Fermi level corresponds to the non-bonding for the compound, similar 

in rutile- and anatase-TiO
2
. Interestingly, there is no atomic interaction between Li and O or 

Li and Ti, which confirmed our claims discussed above—Li just acts as the electron-donator 

Figure 3. The band structures and density of states (DOS) of (a) anatase-TiO
2
 with ~2eV indirect band gap and (b) rutile-

TiO
2
 with ~2eV direct band gap (generated from Materials Projects).

Figure 4. Electronic structure of spinel LiTi
2
O

4
. Partial DOS curves, –COHP curves and band structure of “LiTi

2
O

4
” 

obtained from non-spin-polarization (LDA). (+ is bonding/ – is anti-bonding).
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to change the Fermi level as well as balance the charge, and empty sphere to fill the volume, 
rather than giving the impact on the electronic structure including changing the atomic inter-

actions. In –COHP, the Fermi level is located on the Ti-O anti-bonding and Ti-Ti bonding 

interactions, the sum of the anti-bonding and bonding effects is close to zero, which indicates 
the possibility of the stabilization of the compound. The strong Ti–O antibonding interactions 

at the Fermi level, contributing the unstable factors in the electronic structure is significant rel-
ative with the superconductivity in spinel LiTi

2
O

4
. Meanwhile, in the band structure of spinel 

LiTi
2
O

4
, the Fermi level locates on the saddle points around U and W points in the Brillouin 

zone, which is a strong evidence for the unstable electronic structure.The structural connec-

tion might also be noted from the links between the space groups in Figure 2. If we divided 

the unit cell of the spinel structure into two along ½(a + b) and ½(a - b), the cubic structure will 

become tetragonal, and space group will decrease from Fd-3m to I4
1
/amds. Furthermore, the 

distortion of a and b decreases the symmetry from tetragonal to orthorhombic and the space 

group will become Imma instead of I4
1
/amds. On the other side, Imma is also the direct sub-

group of P4
2
/mnm (rutile-TiO

2
). In summary, the structural transformation could be treated as 

the transition of a continuously doping Li process. When the amount of doped Li is small, the 

Li
x
TiO

2
 keeps in I4

1
/amds. As x increases, the orthorhombic structure appears. When x is close 

to 0.5, the spinel phase is more favored than other phases [54].

Since the discovery of the superconductivity in spinel LiTi
2
O

4
, much effort has been put 

into finding more spinel oxide superconductors. The studies of spinel oxide superconduc-

tors endeavored for the physics community for many years. The alternative view on the spi-

nel superconductor, LiTi
2
O

4
, could be considered as the electron-doping in transition metal 

dichalcogenides, similar with Cu-doped TiSe
2
. Li-doped anatase-TiO

2
 crystallizes in tetrago-

nal structure with the space group of I4
1
/amds. With doping more electrons into the system, 

the structural transitions happen from tetragonal to orthorhombic to cubic. The supercon-

ductivity was arisen when doping Li to ~1/2 per f.u. and the structure adopting to the cubic 
spinel. Similar structural transitions from tetragonal I4

1
/amd to Fd-3m occur in another spinel 

superconductor, CuIr
2
S

4
 [55].

6.2. Superconductivity in non-oxide spinel CuIr
2
S

4
 and CuV

2
S

4

CuIr
2
S

4
in the cubic structure with the space groupshows metallic properties at room tem-

perature [56]. As the temperature decreases, CuIr
2
S

4
 undergoes a transition from a metal to 

an insulator around 230 K, which is also associated with a structural change from cubic to 

tetragonal [57]. Interestingly, a pseudogap is situated just above in the calculated density of 

states (DOS). In Figure 5 (left), the DOS shows that ~6 eV range below the Fermi level (E
F
) 

arises from all of the valence Cu, Ir and S orbitals. The contribution of Cu 4s and 3d electrons 

to the DOS curve, as shaded in Figure 5 in black, states the filled-up d electrons are delocalized 

and hybridized with 5d electrons from Ir as well as 3p electrons from S, which is quite differ-

ent from LiTi
2
O

4
. To further confirm our assumptions, the bonding/anti-bonding interactions 

(–COHP) in CuIr
2
S

4
 are calculated. Unlike the –COHP in LiTi

2
O

4
, which was dominated by 

Ti-O and Ti-Ti interactions, Ir-S and Cu-S interactions play the most important roles in the 

structural stabilization and superconducting properties in CuIr
2
S

4
. The band gap in LiTi

2
O

4
 

corresponds to the non-bonding boundary in LiTi
2
O

4
; however, the 0–1 eV below the Fermi 
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level in CuIr
2
S

4
 is on the mixed status of Ir-S anti-bonding and Cu-S bonding interactions.

The Fermi level at anti-bonding interactions indicates the instability of electronic structure of 

CuIr
2
S

4
 and the possible occurrence of superconductivity. The integrated DOS of CuIr

2
S

4
 gives 

53e- per f.u., whereas the band gap just above Fermi level corresponds to 54e- per f.u., which 

can be expressed with the hypothetical compound “CuIr
2
S

4
(1e-)” according to the Zintl-

Klemm concept. The ionic formula of CuIr
2
S

4
 can be interpreted as Cu2+(Ir3+)

2
(S2-)

4
(1e-), the 

electron configuration of Ir3+ becomes 5d6. Or Cu+(Ir4+)(Ir3+)(S2-)
4
(1e-) with two kinds of electron 

configurations of Ir, 5d6 and 5d5. The coordinated environment of Ir3+ is octahedral (O
h
), thus, 

the d orbital will split into e
g
 and t

2g
.

It has been well known even in textbooks that molecular transition metal complexes have a 

gap between the e
g
 and t

2g
 type in d orbitals, which is determined by the α and π boning of 

the coordinated ligands. However, the band gap between the e
g
 and t

2g
 in d bands in certain 

solids is dependent on more complex orbital considerations. Take perovskite LaCoO
3
 for 

example, the band gap is very small, close to 0 eV, but the iso-electronic LaRhO
3
 has ~1.6 

eV band gap. Similarly, in CuIr
2
S

4
, the band gap between e

g
 and t

2g
 is so small that the 5d6 

and 5d5 configurations can coexist [58]. Moreover, at higher temperatures, a whole series of 

transformations take place triggered by thermal excitation of electrons from the valence to 

the conduction band. In CuIr
2
S

4
 compound, the two possible oxidation state fluctuations of 

Cu+/Cu2+ and Ir3+/Ir4+ could be related to superconductivity. The presence of a metal-insulator 

Figure 5. Electronic structure of spinel CuIr
2
S

4
. Partial DOS curves, –COHP curves and band structure of “CuIr

2
S

4
” 

obtained from non-spin-polarization (LDA). (+ is bonding/ – is anti-bonding, E
F
 for 53e– is set to zero).
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(M-I) transition on cooling or under pressure has been of particular interest in the heavy 

metal chalcogenide spinel systems to make superconductors. Based on the decreased lattice 
parameters, CuRh

2
S

4
 and CuRh

2
Se

4
 can be treated as the compressed and expanded format 

of CuIr
2
S

4
 [59].

Another representative non-oxide spinel superconductor is CuV
2
S

4
 [60]. Unlike CuIr

2
S

4
, the 

superconductivity in CuV
2
S

4
 is induced by suppressing the CDWs rather than the metal- 

insulator transition in CuIr
2
S

4
 [61]. Also, according to the Zintl-Klemm concept, the ionic 

formula of CuV
2
S

4
 can be written as Cu2+(V3+)(V3+)(S2-)

4
. From the electronic structural calcu-

lations of CuV
2
S

4
 in Figure 6, a ~0.3 eV band gap is located at 0.6 eV below the Fermi level. 

The integrated DOS shows the gap responds to the 42e- (45e- for Fermi level). The band gap 

above Fermi level corresponds to 54e-, just as “CuIr
2
S

4
 (1e).” The band structure indicates the 

similarity betweenCuV
2
S

4
 (early transition metal, V) and LiTi

2
O

4
 (early transition metal, Ti) 

and the difference between CuV
2
S

4
 (early transition metal, V) and CuIr

2
S

4 
(late transition 

metal, Ir). By analogy with Jahn-Teller distortion ideas, the partially occupied bands are sub-

ject to the geometrical distortions related to a lowering of the total energy and usually termed 

as the instability of the Fermi surface (CDWs). A band gap may open at the Fermi level to 

create a semiconductor or insulator as the structure changes. From the chemistry viewpoint, 

the highest occupied conduction band is filled to make insulators. For example, in MoS
2
, the 

charge density waves were observed in the localized unit of S-Mo-S rather than a localized 

Figure 6. Electronic structure of spinel CuV
2
S

4
. Partial DOS curves,–COHP curves and band structure of “CuV

2
S

4
” 

obtained from non-spin-polarization (LDA). (+ is bonding/ – is anti-bonding, E
F
 for 45e– is set to zero).
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atom. A series of superconductors were reported by suppression of the charge density waves 

in MoS
2
, just like CuV

2
S

4
 [58].

Based on the above considerations, one of the most interesting areas from both chemical and 

physical points of view is identification of the factors that determines whether a particular 
solid is a conductor of electricity or a specific structure type is favored to hold the conduct-
ing properties and how well they do it. Furthermore, how external events such as pressure 

and temperature may affect a system to transit from one regime to the other. Are there any 
surprises associated with the transition between metal and insulator? Indeed, one of the con-

sequences of the discovery of this series of superconducting copper and bismuth oxides has 

been unraveling of the possible connection with the metal-insulator transition. But what are 

the rules associated with the generation of this state of affairs, and what are the factors which 
compete with them and which lead to the superconductivity and how can we use this to make 

new superconductors? Recently, the superconductivity was observed in the non-supercon-

ducting CuIr
2
Se

4
 spinel by partial substitution of Pt for Ir [62].

7. Concluding remarks

The understanding of superconductivity from the viewpoint of chemistry offers a relatively 
straightforward approach to the real space rather than thinking in reciprocal space from a 

physical viewpoint. This chemical thinking is obviously basic, though not sufficiently compre-

hensive, as clearly shown by the competition between superconductivity and other structural 

phase transition (CDWs), oxidation fluctuation or magnetism. In this work, the introduced 
ideas are coming from the chemistry and carried some way into physics,  alternatively, 

using chemical concepts to explain some physical phenomenon. A few questions arise about 

 chemical trivial materials, such as how to make an indirect band gap a direct one. Several 

empirical rules can be used for chemists to design new superconductors.

1. Matthias’ rule to make diamond-related α-Mn type new superconductors: α-Mn 
framework can be treated as defected 2 × 2 × 2 diamond structure shown in Xie’s yet 
unpublished work. The space group of α-Mn is I-43m, which is the direct subgroup of 

Fd-3m. Re-rich binary compounds are favored by α-Mn structure. By tuning the elec-

tron counts to 6.5e- per atom, α-Mn type Re-rich compounds are highly likely to be 
superconductors.

2. Searching for the new pyrochlore-type superconductors: In a brief discussion of the 

structural chemistry of both cubic Laves phase and Ni
2
In structures, it is suggested that 

spinels and pyrochlores structures show the similarities just like cubic Laves phases and 

Ni
2
In. Pyrochlores can be treated as the superlattice of spinels according to the connection 

in the lattice parameters. The superconductor, Cd
2
Re

2
O

7
, in the pyrochlore-type structure 

can be conducted the similar research to LiTi
2
O

4
. Moreover, more non-oxide pyrochlore 

compounds can be synthesized to examine the superconducting properties.

3. It is not straightforward to predict the metallic or insulating properties, even harder to 

predict the M-I transition including the accompanying superconductivity sometimes. 
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But many CDW instabilities are triggered by lowering the temperature and occur in a 

range of systems, which cover a wide range of chemical types, including metal oxides 

and sulfides and molecular metals. The surprise of superconductivity may be observed 
by suppressing the CDWs.
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