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Abstract

The clinical success of immune checkpoint blockers is a pivotal advancement for treat-
ing an increasing number of cancer types. However, immune checkpoint blockers still 
rarely induce complete remission and show little to no therapeutic efficacy in a signifi-
cant percentage of cancer patients. Efforts are now underway to identify biomarkers that 
accurately predict which patients benefit from immune checkpoint blockers. Moreover, 
adaptive immune resistance can develop in tumors during treatment with immune 
checkpoint blockers. These adaptive resistance mechanisms in tumors might be dis-
rupted by combining adjunctive immunotherapies, which could potentially improve the 
therapeutic efficacy of immune checkpoint blockers. This chapter discusses the mecha-
nism of action of cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1/
programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint blockers and biomarkers 
that might predict clinical responses to these drugs. Lastly, ongoing research on mecha-
nisms of tumor adaptive resistance could facilitate rationale design of adjunctive immu-
notherapies that can be synergistically combined with immune checkpoint blockers to 
more effectively treat cancer.
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1. Introduction

Immune checkpoints are inhibitory pathways that are critical for maintaining self-tolerance. 

Immune checkpoints also control the magnitude and duration of physiological immune 

responses in peripheral tissues in order to minimize collateral damage. Immune checkpoint 

receptors and their cognate ligands are naturally expressed on a variety of cell types, includ-

ing antigen-presenting cells, T cells, B cells, tumor cells, tumor stroma, and also normal tissue. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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A number of immune checkpoint pathways have been identified, including cytotoxic T lym-

phocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), programmed death ligand-1 (PD-

L1), T cell immunoglobulin and mucin domain 1 (TIM-1), T cell immunoglobulin and mucin 
domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and 
ITIM domains (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), carcinoembry-

onic antigen-related cell adhesion molecule 1 (CEACAM1), leukocyte-associated immuno-

globulin-like receptor 1 (LAIR-1), herpesvirus entry mediator (HVEM), B- and T-lymphocyte 
attenuator (BTLA), CD160, CD200, CD200 receptor, and adenosine 2A receptor (A2Ar). For 
brevity, this chapter will focus on CTLA-4 and PD-1/PD-L1, as clinical drugs targeting these 

pathways have been successfully developed to treat an increasing variety of human cancer 

types.

2. Main body

2.1. CTLA-4

CTLA-4 is the first immune checkpoint receptor to be clinically targeted. CTLA-4 is expressed 
mainly on the surface of activated T cells. While certain subsets of T regulatory cells con-

stitutively express CTLA-4, it is virtually undetectable on naïve, inactivated T cells. Upon 

activation, both CD4+ and CD8+ T cells upregulate CTLA-4 on the surface, reaching maximum 

level within 2–3 days. CD4+ T cells are reported to express more CTLA-4 mRNA and protein 

compared to CD8+ T cells, suggesting that CTLA-4 has a more significant regulatory effect on 
CD4+ T cells [1].

CTLA-4 downregulates T cell activation by sequestering CD80 and CD86 costimulatory mol-
ecules on antigen-presenting cells. This prevents CD80 and CD86 from delivering costimula-

tory activation signals to T cells through the CD28 receptor. CTLA-4 binds to CD80 and CD86 
with ~10 times higher affinity than CD28 [2]. CTLA-4 expressed on T cells can also remove 

CD80 and CD86 molecules from neighboring antigen-presenting cells through a process 
called trans-endocytosis [3]. CTLA-4 also prevents CD28 recruitment to the immunological 
synapse, further impairing T cell activation [4].

CTLA-4 knockout mice die within 2–3 weeks of age due to massive lymphoproliferation, 
resulting in destruction of vital organs [5]. This lethal phenotype is associated primarily with 

hyperactivated CD4+ T cells, which are skewed toward a T helper type-2 phenotype and have 
increased resistance to apoptosis. These hyperactivated CD4+ T cells abnormally infiltrate 
into peripheral tissues, resulting in organ failure. These observations led cancer immunology 

researchers to hypothesize that blockade of CTLA-4 signaling could potentially induce effec-

tive T cell-mediated immune responses against tumor tissue.

A pivotal laboratory study reported in 1996 by James Allison’s group showed that treatment 
of tumor-bearing mice with a CTLA-4-blocking antibody could effectively induce tumor 
regression [6]. Despite much subsequent investigation, the in vivo mechanism of action of 

CTLA-4 blockade immunotherapy has remained elusive. The prevailing hypothesis is that 

CTLA-4 blockade not only enhances T cell infiltration into tumors but also reduces the  
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relative presence of immunosuppressive T regulatory cells in tumor tissue [7]. This alteration 

in the ratio of effector T cells versus T regulatory cells in tumors tilts the immunological bal-
ance in favor of T cell-mediated destruction of tumor cells.

These studies led to pharmaceutical development of the first immune checkpoint blocker, 
ipilimumab (Yervoy®). Ipilimumab is a fully human monoclonal antibody that blocks the 

CTLA-4 receptor, thereby preventing its ability to sequester CD80 and CD86 costimulatory 
molecules. It was initially tested in melanoma, and demonstrated extended overall survival 

in patients versus a comparator melanoma peptide-based immunotherapy vaccine called 

gp100. In a randomized phase III clinical trial, melanoma patients receiving ipilimumab had 
a median overall survival of 10.4 months versus 6.4 months in those receiving only the gp100 
peptide vaccine (Hodi 2010). Objective response rates (measureable tumor regression) were 
10.9% in the ipilimumab group versus 1.5% in the gp100 vaccine group. The responses to ipili-
mumab were durable, with the 1-year and 2-year survival rate being 46 and 24%, respectively. 
By comparison, the 1-year and 2-year survival rate in patients receiving only the gp100 pep-

tide vaccine was only 25 and 14%, respectively [8]. These trial results led to US FDA approval 
of ipilimumab for melanoma in 2011.

2.2. PD-1

PD-1 is another major immune checkpoint receptor that regulates T cell activity against tumor 

tissue. PD-1 is a cell surface receptor originally identified in a murine T cell hybridoma under-

going programmed cell death [9]. PD-1 is absent on naïve inactivated immune cells but is 

significantly upregulated on activated T cells, B cells, natural killer cells and myeloid-derived 
cells [10]. In T cells, PD-1 expression is induced by T cell receptor signaling [11] and also by 

certain pro-inflammatory cytokines including interleukin-2, interleukin-7, interleukin-15, and 
interleukin-21 [12].

PD-1 signaling downregulates T cell activity primarily via interaction with its two natural 

ligands: Programmed Death Ligand-1 (PD-L1) and Programmed Death Ligand-2 (PD-L2). 
PD-L1 is expressed on a wide variety of cell types including hematopoietic cells, T cells, B 

cells, myeloid cells, and dendritic cells [10]. It is also expressed on a wide variety of periph-

eral tissues such as skeletal muscle, lung, heart, and placenta [10]. Notably, PD-L1 is also 

expressed on a wide variety of cancer cells and generally is associated with poorer patient 

prognosis [13]. PD-L2 expression is generally more restricted, being found primarily on den-

dritic cells, macrophages, and occasionally cancer cells [14]. PD-L2 binds to PD-1 with two- to 
sixfold higher relative affinity than PD-L1 [15]. However, PD-L2 is generally expressed at 
lower relative levels [16]. Thus, it is believed that PD-L1 is the predominant ligand for PD-1.

Signaling through the PD-1 receptor on T cells results in downstream inhibition of PI3K/AKT 
activation [17]. The net effect is downregulation of a number of effector functions includ-

ing cytokine secretion and cytolytic activity. PD-1 knockout mice have various autoimmune 

pathologies, including autoantibody-induced cardiomyopathy [18], arthritis and lupus-like 

disease [19], and diabetes [20]. In peripheral tissues, the immunosuppressive activity of PD-1 

is mediated primarily by interaction with PD-L1 [21]. PD-L1 expressed in tumor tissue also 

impairs host antitumor immune responses [22]. PD-L1 and/or PD-L2 in tumor tissue  facilitates 
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evasion from host immune responses via multiple mechanisms including induction of T cell 

anergy and exhaustion [23], promoting T cell apoptosis [24], and also by enhancing the expan-

sion and activity of immunosuppressive T regulatory cells [25]. Moreover, PD-1 can transmit 
an antiapoptotic signal to PD-L1-expressing tumor cells, which renders them resistant to lysis 

by cytotoxic T lymphocytes [26].

This fundamental understanding of the PD-1/PD-L1 axis in suppressing host antitumor 

immune responses led to development of the first clinical PD-1 blockers, nivolumab (Opdivo®) 

and pembrolizumab (Keytruda®). Both nivolumab and pembrolizumab are fully human mono-

clonal antibodies that block the PD-1 receptor, thereby preventing its ability to bind its natu-

ral ligands PD-L1 and PD-L2. In large phase I clinical trials, nivolumab and pembrolizumab 
each demonstrated durable clinical response rates with acceptable safety profiles in patients 
with advanced melanoma, non-small cell lung cancer, renal cell carcinoma or Hodgkin’s lym-

phoma [27–30]. Nivolumab and pembrolizumab are now both FDA approved for treating 
melanoma and non-small cell lung cancer. Nivolumab is additionally approved for treating 

renal cell carcinoma, Hodgkin’s lymphoma, and also for use in combination with the CTLA-4 
blocker, ipilimumab, for treating melanoma. Remarkably, in two separate melanoma clinical 

trials, the combination of nivolumab and ipilimumab induced objective responses in ~60% of 
patients, with complete responses seen in ~11.5–22% of patients [31–32].

Pembrolizumab and nivolumab (and a third investigational PD-1 blocker, pidilizumab) are 

now collectively continuing in 500+ clinical trials. Virtually all cancer types are now being 
targeted with PD-1/PD-L1 blockers in some capacity. Notably, there is a significant effort 
to test nivolumab or pembrolizumab with other adjunctive therapies to determine synergis-

tic combinatorial regimens. Conventional treatments like chemotherapy and radiation have 

shown in animal tumor models to potentially synergize with PD-1/PD-L1 blockers [33–35]. In 

addition, PD-1 blockers are now also being tested in combination with small molecule drugs 

(investigational and Food and Drug Administration (FDA) approved) and also experimental 
immunotherapies such as vaccines and chimeric antigen receptor T cells.

All clinical PD-1 blockers have the same mechanism of action. Slight variances in the pro-

tein structure among different PD-1 blockers could potentially confer differences in bind-

ing affinity for the PD-1 receptor and also differences in half-life (i.e. persistence in the 
body). The physiological significance and clinical effectiveness of such variances remain 
undetermined.

2.3. PD-L1

Expression of PD-L1 is found on diverse cell types, including normal and malignant tissue, 

antigen presenting cells, myeloid cells, B cells, and T cells. PD-L1 downregulates T cells via mul-

tiple mechanisms. PD-L1 expressed on various cells primarily interacts with PD-1 expressed 

on T cells, delivering an inhibitory signal that downregulates T cell activity. PD-L1 also binds 

to CD80 expressed on both antigen-presenting cells and activated T cells [36]. Interaction of 

PD-L1 with CD80 on antigen-presenting cells prevents CD80 from delivering costimulatory 
activating signals to T cells. When PD-L1 binds to CD80 expressed on activated T cells, an 
inhibitory signal is delivered to T cells. Currently, it is unknown exactly what  intracellular 
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signaling pathways are altered when PD-L1 binds to CD80 on T cells. Nonetheless, it is now 
generally understood that blocking PD-L1 results in enhanced T cell activation.

Atezolizumab (Tecentriq®) was the first PD-L1 blocker to enter clinical trials. Atezolizumab 
is a fully human monoclonal antibody that prevents PD-L1 from binding to PD-1 and CD80. 
It was initially tested in patients with PD-L1-positive metastatic bladder cancer [37]. Bladder 

cancer patients with PD-L1-negative tumors were subsequently included for treatment. 

Clinical response rates were ~15% of PD-L1-negative patients and ~25% of PD-L1-positive 
patients [37]. Because of the higher clinical activity of atezolizumab in PD-L1-positive blad-

der cancer, a companion diagnostic called the Ventana PD-L1 (SP142) assay is offered to 
provide tumor PD-L1 expression status of patients considering atezolizumab treatment. In 

2016, atezolizumab was FDA approved for urothelial carcinoma, the most common form of 
bladder cancer. Like nivolumab and pembrolizumab PD-1 blockers, atezolizumab is now 

continuing in clinical trials for a wide variety cancer types and also being tested in combina-

tion with conventional cancer treatments, small molecule drugs and other investigational 

immunotherapies. Alternative PD-L1 blockers, such as avelumab and durvalumab, are also 

now in clinical trials.

2.4. Predictive biomarkers for CTLA-4 and PD-1/PD-L1 blockers

CTLA-4 and PD-1/PD-L1 immune checkpoint blockers have proven to be pivotal advance-

ments in cancer treatment. However, a significant proportion of cancer patients still experi-
ence little to no clinical benefit from treatment. Even among responding patients, only a small 
minority achieve complete remission. Studies using clinical tumor specimens from patients 
treated with immune checkpoint blockers have revealed some potentially important differ-

ences between responders versus nonresponders.

During early clinical development of PD-1 blockers, it was hypothesized that differential 
expression levels of PD-L1 in tumor tissue would correlate with clinical responses. It was 

anticipated that PD-L1 expression in tumor tissue could therefore be a predictive biomarker 

to accurately identify patients likely to respond to PD-1 or PD-L1 blockers. However, a defini-
tive correlation has thus far not been established. Both PD-L1-positive and PD-L1-negative 

tumors can respond to PD-1 or PD-L1 blockers. Further confounding factors include vari-
ability of PD-L1 expression in different anatomical areas of tumor tissue. In addition, PD-L1 
expression in tumor tissue may be transient—appearing and disappearing due to treatments 

or other poorly understood influences. Lastly, assays measuring PD-L1 in tumors have yet 
to establish a clear threshold of expression that defines what is considered “PD-L1-positive.” 
For instance, the FDA-approved Ventana PD-L1 assay defines ≥5% PD-L1-positive cells in 
bladder cancer tissue to be associated with higher clinical response rates to atezolizumab 

[38]. However, alternative PD-L1 assays used in various other clinical trials of nivolumab or 

pembrolizumab have wide variability in PD-L1 expression analysis methodologies. Overall, 
it is generally agreed upon that low or absent PD-L1 expression in tumors is not sufficient to 
preclude a patient from treatment with PD-1/PD-L1 blockers [39].

Alternative predictive biomarkers for clinical response to PD-1/PD-L1 blockers are currently 

being explored. CD8+ T cell infiltration into tumors might be predictive of clinical response to 
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PD-1 blockers. Specifically, the density of pretreatment CD8+ T cells at both the tumor inva-

sive margin and tumor center may be correlated with clinical response to pembrolizumab. 

In serially biopsied tumors from melanoma patients undergoing pembrolizumab treatment, 

it was shown that responding patients generally had higher densities of CD8+/PD-1+ cells in 

close proximity to PD-L1-expressing tumor cells [40]. Furthermore, serial analysis of tumor 
biopsies showed that intratumoral CD8+/PD-1+ T cells actively proliferate during pembroli-

zumab treatment [40]. These data offer insights on a potential mechanism of PD-1 blockade 
efficacy, whereby presence of pretreatment CD8+ T cells in tumors is a prerequisite for clini-

cal response. However, like tumor PD-L1 expression assays, establishing a standard cut-off 
threshold value for CD8+ T cell levels in tumors that accurately predicts clinical response 

to PD-1/PD-L1 blockade will be challenging. Tumors of various tissue origins often contain 

infiltrating T cells that can vary greatly in absolute number, density, and also anatomical loca-

tion within the intratumoral space. Nonetheless, establishing a “scoring system” based on 
pretreatment CD8+ T cell infiltration warrants further investigation as a potential predictive 
biomarker.

Another intriguing biomarker with predictive potential may be intratumoral expression 

of indoleamine-2,3-dioxygenase (IDO). IDO is a tryptophan catabolizing enzyme that is 
occasionally expressed in various tumor types. Depletion of tryptophan within tumors by 

IDO may be a rate-limiting step for effective antitumor T cell activity. Studies in mela-

noma patients treated with ipilimumab suggest a correlation between pretreatment IDO 
expression and clinical response. In one study, intratumoral IDO was detected in 37.5% of 
responding melanoma patients and only 11.1% in nonresponders [41]. It remains to be seen 

if similar patterns are seen in other cancer types and also patients treated with PD-1/PD-L1 
blockers.

Genetic signatures of tumors are yet another parameter with potential for yielding predic-

tive biomarkers for clinical response to immune checkpoint blockers. Certain tumors, such 

as colorectal cancer, are highly refractory to treatment with PD-1 blockers. In early clinical 

trials of nivolumab, it was found that only 1 in 33 colorectal cancer patients responded to 

treatment [27–28]. Subsequently, it was hypothesized that the single responding colorectal 
cancer patient harbored a defect in DNA mismatch repair in tumor tissue, resulting in a 

significantly high load of somatic mutations [42]. Defects in tumor tissue mismatch repair 

can result in thousands of somatic mutations, providing a larger pool of neo-antigens for 

immune recognition. Immune checkpoint blockade therapy could therefore amplify the 

natural adaptive immune response to mutated neo-antigens. Hence, mutational load in 

pretreatment tumor tissue might be predictive of clinical response to immune checkpoint 

blockers. To test this hypothesis, a small clinical trial focusing primarily on colorectal cancer 

showed that patients with defects in tumor tissue mismatch repair harbored significantly 
higher loads of somatic mutations versus those with mismatch repair-proficient tumors. 
Upon treatment with pembrolizumab, higher response rates and longer survival times were 

seen in patients with mismatch repair defects versus those with proficient mismatch repair 
[42]. This pivotal study has catalyzed further investigation of tumor mutational profiles 
to determine if a correlation with clinical responses can be established in large studies of 

diverse cancer types.
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2.5. Adaptive immune resistance

Mechanisms of inherent and acquired resistance to immune checkpoint blockade are poorly 
understood. Clinical responses to CTLA-4 and PD-1/PD-L1 blockers are often durable, some-

times lasting years. However, complete regressions are still relatively rare and eventual dis-

ease relapse among responding patients is frequent. Recent studies have offered insights that 
immunological parameters of tumor tissue adapt in response to T cell-mediated attack induced 
by immune checkpoint blockers. Enhanced T cell activity within tumors involves local pro-

duction of inflammatory mediators, such as interferon (IFN)-γ, which is known to upregulate 
PD-L1 on peripheral tissues [43]. Upregulation of PD-L1 on various cell types within tumor 

tissue might result in heightened CD80-mediated inhibition of proximal effector T cells.

Furthermore, augmentation of effector T cell activity in tumor tissue via PD-1 blockade may 
subsequently induce compensatory upregulation of alternative immune checkpoint recep-

tors, TIM-3. TIM-3 is a receptor expressed primarily on IFN-γ-secreting CD4+ and CD8+ T cells 

[44]. TIM-3 is bound by multiple ligands, including galectin-9, CEACAM-1, and high-mobil-
ity group box 1 (HMGB-1). Signaling through TIM-3 in activated T cells triggers the release 
of human leukocyte antigen B-associated transcript 3 (BAT3) from the TIM-3 cytoplasmic 
domain. This results in defective production of IL-2, IFN-γ, and likely other pro-inflamma-

tory cytokines [44]. Although the TIM-3 signaling pathway has yet to be fully elucidated, it 
seems clear that TIM-3 affects T cell receptor downstream signaling via a mechanism distinct 
from PD-1 and CTLA-4.

TIM-3 appears to be co-expressed with PD-1 in tumor-infiltrating lymphocytes of cancer 
patients and is upregulated on T cells upon therapeutic PD-1 blockade [45]. This may pro-

vide a mechanism of immunological escape and a possible reason for incomplete clinical 

responses upon PD-1 blockade immunotherapy. It might also be a contributing factor toward 

acquired resistance to PD-1 blockade clinically, whereby patients initially respond to treat-

ment but eventually relapse despite continuous therapy. Preclinical studies in animal tumor 

models show that PD-1 blockade immunotherapy results in upregulation of TIM-3 on T cells. 
Co-blockade of both TIM3 and PD-1 can prevent resistance to PD-1 blockade immunotherapy 
[45]. As such, TIM-3 blocking antibodies are now in early phase clinical trials to evaluate their 
safety, tolerability, and dosing ranges. Figure 1 illustrates how PD-1/PD-L1 blockade may 

result in compensatory upregulation of TIM-3 and/or PD-L1 on T cells and tumor cells.

Downregulation of major histocompatibility (MHC) receptor expression in tumors might also 
contribute to acquired resistance to PD-1 blockers. Loss-of-function mutations in the MHC 
beta-2 microglobulin antigen-presenting protein have been noted in selected melanoma 
patients who initially responded to pembrolizumab therapy but subsequently relapsed [46]. 

Further studies in larger patient populations are necessary to confirm the association of MHC-
related mutations and acquired resistance to PD-1 blockers.

2.6. Strategies to counteract adaptive resistance to immune checkpoint blockade

The mechanism of inherent and acquired/adaptive resistance to CTLA-4 and PD-1/PD-L1 

immune checkpoint blockers is not fully understood and could possibly vary between 
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 individual patients and different tumor types. However, research on predictive biomarkers 
and mechanisms of adaptive resistance to PD-1 blockers have yielded insight that might 

be extrapolated to rationally design combination immunotherapies that synergistically 

enhance the efficacy of immune checkpoint blockers. For instance, it is now generally under-

stood that PD-1 blockers augment T cell-mediated inflammation in tumor tissue. In turn, 
this can promote upregulation of PD-L1 on various cells in tumors, likely due to IFN-γ 
signaling [43]. Upregulation of PD-L1 expression in tumor tissue can promote enhanced 

CD80 signaling in T cells, which impairs T cell activity [36]. PD-1 blockade may also induce 

compensatory upregulation of alternative immune checkpoint receptors, such as TIM-3, on 
T cells within tumor tissue [45]. TIM-3 signaling results in downregulation of T cell activ-

ity. Next-generation immunotherapeutic regimens might combine PD-1 blockers such as 

Figure  1. PD-1/PD-L1 blockade promotes T cell-mediated inflammation in tumors. In turn, this can trigger upregulation 
of PD-L1 on various cells within tumor tissue. This can also trigger compensatory upregulation of TIM-3 on effector T 
cells. Upregulation of PD-L1 and TIM-3, even during continuous treatment with PD-1 blockers, can impair T cell activity 
and result in clinical resistance.
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nivolumab/pembrolizumab with PD-L1 blockers like atezolizumab, to counteract PD-L1 

upregulation induced by T cell-mediated inflammation in tumor tissue. Other rational com-

binations might include PD-1/PD-L1 blockers combined with investigational TIM-3 block-

ers, to counteract the effects of TIM-3 upregulation on activated T cells.

Another strategy to enhance the efficacy of immune checkpoint blockers might involve improv-

ing T cell trafficking to tumor tissue. The extent of T cell infiltration into tumor tissue may be a 
predictive biomarker and a prerequisite for efficacy of both CTLA-4 and PD-1/PD-L1 blockers. 
As such, therapies that promote T cell trafficking to tumors could potentially improve tumor 
sensitivity to immune checkpoint blockers. Studies of human melanoma tumors have identified 
a set of chemokines that are associated with enhanced recruitment of T cells toward tumor tis-

sue. These chemokines, including CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10, might have 
utility as clinical therapies to improve T cell trafficking to tumors [47]. However, such chemo-

kines or other T cell recruitment factors must be targeted specifically to tumor tissue in order to 
effectively recruit T cells. T cell recruitment factors might be coupled to antibodies that bind to 
tumor cell receptors, thus providing a vehicle for tumor targeting. In animal tumor studies, a T 

cell recruitment factor called LIGHT (also called tumor necrosis factor superfamily member 14) 
was fused to an anti-epidermal growth factor receptor (EGFR) antibody. This LIGHT-anti-EGFR 
fusion molecule was able to promote more extensive T cell infiltration into EGFR-expressing 
tumors. In turn, this prevented resistance to PD-L1 blockade immunotherapy [48]. Similar strat-
egies that target other T cell recruitment factors toward tumors might be feasible.

Our group at the Pacific Heart, Lung & Blood Institute (Los Angeles, CA) is conducting 
research on gene-modified human mesenchymal stem cells (MSCs) as a strategy to alter the 
tumor microenvironment and prevent resistance to immune checkpoint blockers. MSCs can be 
isolated and expanded from various adult tissues including bone marrow, fat, umbilical cord 

blood, and term placentas. MSCs are known to preferentially migrate to tumor tissue, making 
them potentially useful drug delivery vectors to alter the immunological microenvironment of 

tumors [49]. In animal tumor models, MSCs have been genetically modified in diverse ways to 
effectively treat tumors. These include modification to produce immunostimulatory cytokines 
(e.g. IFN-α, IFN-β, IL-12) and T cell trafficking molecules such as LIGHT [50–53].

Both autologous and allogeneic MSCs have been used extensively in clinical trials for treating 
severe inflammatory disorders and certain degenerative conditions, and generally have an 
acceptable safety profile [54]. Autologous gene-modified MSCs have recently entered clinical 
trials for cancer [55]. It remains to be seen if MSCs and other tumor-targeting systems can 
effectively deliver pro-inflammatory agents to tumor tissue and improve sensitivity to clinical 
immune checkpoint blockers.
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