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Abstract

Vortex lenses produce special wavefronts with zero-axial intensity, and helical phase
structure. The variations of the phase and amplitude of the vortex produce a circular
flow of energy that allows transmitting orbital angular momentum. This property is
especially in optical trapping, because due to the orbital angular momentum of light,
they have the ability to set the trapped particles into rotation. Vortex lenses engraved in
diffractive optical elements have been proposed in the last few years. These lenses can be
described mathematically as a two-dimensional (2D) function, which expressed in polar
coordinates are the product of two different separable one-dimensional (1D) functions:
One, depends only on the square of radial coordinate, and the other one depends
linearly on the azimuthal coordinate and includes the topological charge. The 1D func-
tion that depends on the radial coordinate is known as a zone plate. Here, vortex lenses,
constructed using different aperiodic zone plates, are reviewed. Their optical properties
are studied numerically by computing the intensity distribution along the optical axis
and the transverse diffraction patterns along the propagation direction. It is shown that
these elements are able to create a chain of optical traps with a tunable separation,
strength and transverse section.

Keywords: optical vortex, optical traps, diffractive optical elements (DOEs), fractal
zone plates, devil’s lenses, Thue-Morse sequence

1. Introduction

Vortex lenses (VLs) produce special wavefronts with zero-axial intensity, and helical structure

with undefined phase in the vortex centre. These structures, called optical vortices [1–3],

constitute an intriguing and growing area of research that combines fundamental theoretical

aspects and novel applied technologies. A fundamental property of vortices is the conservation

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of the topological charge which is defined as the 2π module of the total change of the phase

along a closed curve surrounding the vortex centre. The variations of the phase and amplitude

of the vortex produce a circular flow of energy that allows to carry orbital angular momentum

[4, 5]. This property is useful for several applications, such as in astrophysics [6, 7], transmis-

sion of information [8, 9], microscopy [10], laser engraving [11] and especially in optical traps

[12–16], because due to the orbital angular momentum of light, they have the ability to set the

trapped particles into rotation.

Several methods have been proposed to obtain optical vortices [3, 4, 17–20] being spiral phase

plates (i.e. lenses with a linear phase dependence on the azimuthal angle) and diffractive

optical elements (DOEs) probably the most frequent approach. In fact, due to its simplicity,

they can be employed in multiple applications. In particular, zone plates (ZPs) have found a

great number of new applications in the last few years [21]. A standard amplitude ZP consists

of a series of concentric circular rings of equal area, with alternating transmitting and absorb-

ing zones. This means that along the square of the radial coordinate, a ZP can be thought as a

periodic structure. The focusing effect is created by the constructive interference of waves

passing through this structure.

On the other hand, in recent years different non-periodic and quasi-periodic sequences [22]

have been also employed to design new types of ZPs with curious physical properties. Fractal

zone plates (FrZPs) [23, 24], Fibonacci zone plates (FiZPs) [25, 26], Thue-Morse zone plates

(TMZPs) [27] and some variations of these basic designs are representative examples [28–30].

FrZPs are characterized by its fractal structure along the square of the radial coordinate that

produce multiple foci along the optical axis which are defined by the self-similar Fourier

spectrum of the fractal pupil function [23]. These lenses produce a main focus surrounded by

numerous secondary foci, which together result in a compound focal volume. It has been

demonstrated that these self-similar foci produce reduction of the chromatic aberration under

wideband illumination and increase of depth of field [24].

FiZPs are bifocal ZPs with their foci located at certain axial positions given by the Fibonacci

numbers, being the ‘golden mean’, the ratio of the two focal distances [25]. As the name

indicates, these lenses are designed following an aperiodic structure generated by the

Fibonacci sequence. The focusing and imaging capabilities of Fibonacci lenses have been

experimentally demonstrated under monochromatic illumination [26]; however, these lenses

are affected by the same limitations of conventional ZPs when broadband illumination is

considered, since the twin foci are not self-similar.

TMZPs are based on the deterministic Thue-Morse sequence, which results in a combination of

the FrZP and FiZP. For this reason, this new family of aperiodic ZPs combines the advantages

of fractal ZPs (reduction of the chromatic aberration) and Fibonacci ZPs (bifocusing along the

optical axis) [27].

In this chapter, the combination of a vortex lens and ZPs, constructed using different aperiodic

sequences, in a single element is considered. Their optical properties are investigated numeri-

cally and experimentally. The focusing properties of different combinations of FZPs and vortex

lenses are studied by computing the intensity distribution along the optical axis and the
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transverse diffraction patterns along the propagation direction. The diffracted field of these

vortex lenses was obtained numerically within the Fresnel approximation.

We emphasize that these elements are able to create a chain of optical traps along the optical

axis with a tunable separation, strength and transverse section. We discuss the influence of the

topological charge on the irradiance propagation and also we investigate the variation of the

angular momentum provided by the doughnut-shaped foci.

An optical set-up was implemented to obtain experimental results in which the VLs were

registered in a spatial light modulator (SLM).

We have shown that our VLs are able to generate multiple-plane optical trappings with a

volumetric extension. In this sense, they are superior to conventional vortices, whose extension

is limited to the depth of focus of the beam.

2. Basic theory

The transmittance of a VL can be expressed as the product of two factors being the first one

associated to a given ZP, which has only a radial dependence, and the other one corresponding

to a vortex lens with a linear phase dependence on the azimuthal angle θ.

A ZP can be realized from a one-dimensional (1D) compact-supported periodic function

qðζÞ as shown in Figure 1, where ζ ¼ r

a

� �2
is the normalized square radial coordinate and a is

the external radius of the outermost ring. Therefore, in a binary ZP, every pair of opaque

and transparent zones conforms a period. The area of each period is constant over all

the ZPs.

In a similar way, the aperiodic zone plates that we consider from now on can be constructed by

replacing the periodic function qðζÞ by either the Cantor function, the Fibonacci sequence or

the Thue-Morse sequence. In fact, when designing VL, each of these sequences can be used to

Figure 1. Schematic representation of the geometrical construction of a ZP from a periodic binary function. (a) Variable ζ

mapped as function of r2. (b) Layout of zones on ZP lens.
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define the transmission generating function qðζÞwith compact support on the interval ζ∈½0; 1�.

This interval is partitioned in 2S sub-intervals of length dS ¼ 1
2S, and the transmittance value

tS, j, which takes at the jth sub-interval, is associated to the value of the element DS, j, being

tS, j ¼ 1 for the transparent zones and tS, j ¼ 0 for the opaque zones.

To study the focusing properties of VLs, we compute the irradiance provided by the transmit-

tance of each lens described in general terms as

tðζ,θ0Þ ¼ qðζÞexp½imθ0�, (1)

where the azimuthal dependence is characterized by the topological charge m

We consider monochromatic plane wave illumination of wavelength λ. Thus, within the

Fresnel approximation the irradiance function is given by

Iðu, v;θÞ ¼ u2

�

�

�

�

�

ð

1

0

ð

2π

0

tðζ,θ0Þexpð−i2πuζÞexp½i4πuvζ
1=2cosðθ−θ0Þ�dζdθ0

�

�

�

�

�

2

(2)

where u ¼ a2

2λz is the dimensionless reduced axial coordinate and v ¼ r
a is the normalized

transverse coordinate [23]. By using Eq. (1) and taking into account that

∫
2π

0

tðζ,θ0Þ exp ð−i2πuζÞ exp ½i4πuvζ1=2cosðθ−θ0Þ�dθ0

¼ 2πexp im θþ
π

2

� �h i

Jmð4πuvζ
1=2Þ

(3)

Equation 2 is reduced to

Iðu, vÞ ¼ 4π2u2

�

�

�

�

�

ð

1

0

qðζ,θ0Þexpð−i2πuζÞJmði4πuvζ
1=2Þdζ

�

�

�

�

�

2

(4)

JmðÞ being the Bessel function of the first kind of order m.

3. Fractal vortex lenses

Two different results were independently obtained by combining spiral phase plates with FrZP

to produce a sequence of focused optical vortices along the propagation direction. In Ref. [31],

the spiral fractal zone plate is generated as a phase-only FrZP modulated by helical phase

structure. Another design of spiral phase plate based on a blazed FrZP, the devil’s lens [32], was

proposed to improve diffraction efficiency of a spiral FrZP. A devil’s lens has a characteristic

surface relief along the radial coordinate which is obtained using the devil’s staircase function

Vortex Dynamics and Optical Vortices260



[33]. It is because of its blazed profile that devil vortex lens has improved diffraction efficiency

with respect to the spiral fractal zone.

The focal volume generated by Fresnel vortex lenses (FrVLs) results in a chain of vortices that

could be used as versatile and very efficient optical tweezers because, in addition to rotating

the trapped particles with high refractive index, other particles with a lower refractive index

can be trapped in the vortex centre. The relative angular velocity of the particles at the different

traps can be changed with different topological charges; the distances between the links of the

chain can be modified with different values of S-parameter.

Following the same approach employed in Figure 1, an FrVL is mathematically obtained by

replacing the periodic sequence by a Cantor structure developed up to certain stage. Let us

consider, for example, the triadic regular Cantor sequence. The construction procedure is

shown in Figure 1a. In the first stage, S ¼ 1, the segment is divided into three parts, and the

middle one is removed. In the second stage, this slicing-and-removing process is repeated

in each one of the remaining two segments from the first stage. This process is repeated in

the following stages. In mathematical terms, the FrVL transmittance function, for a given

stage S, can be expressed by replacing the following generating function of the FrZP in

Eq. (1) [23]:

qðζ, S;NÞ ¼ ∏
S

i¼1
rect½ζ2−0:5�rect mod ζ

2−1þ
1

ð2N−1Þi
,

2

ð2N−1Þi

" #

ð2N−1Þi

2

( )

(5)

In which the transparent and opaque zones are replaced by pure phase zones differing in π for

the design wavelength. In this equation, the function modðx, yÞ gives the remainder on divi-

sion of x by y.

Typical results are shown in Figure 2b for a fractal vortex lens with topological charge m ¼ 2

and in Figure 2c for an FVL with topological chargem ¼ 3.

Figure 2. FVL construction: (a) Diagrams of the generation of binary function q(ζ) for an FZP for N = 2 and several values

of S . (b) FVL with m=2. (c) FVL with m=3. In this representation, open and filled segments correspond to phase values

differing in π of the generating radially binary function.

Fractal Light Vortices
http://dx.doi.org/10.5772/66343

261



By using expression (4), we have computed the irradiance provided by these FrVLs at trans-

verse planes along the optical axis. The result is shown in Figure 3.

As we mentioned, the diffraction efficiency of these FVLs can be improved by imposing a

blazed profile to the radial coordinate. This can be done by using the Cantor function, or

devil’s staircase, as a generating qðζÞ function [32, 34]. The focusing properties of these FVL

were experimentally analysed in [35]. It has been demonstrated that for multiple-plane optical

trappings, they can generate a light beam with axially distributed optical vortices. The trans-

verse patterns appearing along the propagation distance present several concatenated dough-

nut modes as represented in Figure 3.

Besides, the generation of multiple vortex distributions is of interest as demonstrated by the

new methods that have been recently proposed to generate different two-dimensional (2D)

and three-dimensional (3D) arrays of vortices. Different methods have been employed, such as

interferometric techniques using Michelson or Mach-Zehnder interferometers [36] and

Dammann gratings [37]. A simple method to obtain special arrays of vortices is possible by

means of a reconfigurable spatial light modulator (SLM). In fact, the use of an SLM allowed the

possibility to change in a simple way the characteristics of diffractive lenses, such as their focal

length or their topological charge. The implementation of compound 3D optical vortex struc-

tures by means of an array of DVLs was reported in [38] with numerical simulations and

experimental results.

4. Fibonacci vortex lenses

Fibonacci vortex lenses (FiVLs) are constructed using the Fibonacci sequence [22]. This

sequence has been also employed in the development of different photonic devices and appli-

cations [39], such as multilayers and gratings [40], cryptography [41] and photonic crystals

[42].

Figure 3. Normalized irradiance contours for the FVL in Figure 1: (a) m ¼ 2 and (b) m ¼ 3.
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The Fibonacci sequence is a set of ordered numbers, Fj ¼ {0; 1; 1; 2; 3; 5; 8; 13; 21;…}, that are

obtained following a simple rule: Starting with two elements (called seeds) F0 ¼ 0 and F1 ¼ 1,

the following numbers of the sequence are obtained as Fj þ 1 ¼ Fj þ Fj−1, ðj ¼ 0; 1; 2;…Þ. The

ratio of two consecutive elements of the Fibonacci sequence approaches asymptotically an

irrational number known as the golden mean: ϕ ¼ lim j!∞Fj=Fj−1 ¼ ð1þ √5Þ=2. Fibonacci

series and the golden mean have been ubiquitously observed in nature and on different

scientific areas [43, 44].

Based on the Fibonacci numbers, a binary Fibonacci sequence can also be generated with two

seed elements, S1 ¼ {A} and S0 ¼ {B}, as shown in Figure 4a. Then, the next order of sequence

is obtained simply as the concatenation of the two previous ones: Sjþ1 ¼ {SjSj−1} for j≥1.

Consequently, S2 ¼ fABg, S3 ¼ fABAg, S4 ¼ fABAABg,S5 ¼ {ABAABABA}, and so on. It

should be noted that the total number of elements of the order j sequence is Fjþ1 and that, for

each S, two consecutive ‘B’are separated by either one or two ‘A’. Each sequence can be used to

define the binary generating function for the radial phase distribution of the FiVL.

In our case, the function, ΦjðζÞ, is defined in the domain ½0; 1�, which is partitioned in Fjþ1 sub-

intervals of length d ¼ 1=Fjþ1. Therefore, the function ΦjðζÞ at the kth sub-interval is either 0 or

π if the value of the kth element of the Sj sequence, Sjk, is ‘A’ or ‘B’, respectively. Finally, after

performing the coordinate transformation, ζ ¼ r
a

� �2
, the radial part of the transmittance is

obtained as qðζÞ ¼ exp½iΦjðζÞ� as shown in Figure 1.

An FiVL is defined as a pure phase diffractive element whose phase distribution is given by

ΦFVLðζ,θ0Þ ¼ mod2π½ΦjðζÞ þmθ0�. Thus, it combines the azimuthal phase variation that char-

acterizes a vortex lens, with the radial phase distribution that is generated through the

Fibonacci sequence. Figure 4b and c shows the results for S ¼ 7 and S ¼ 8 for the topological

charge m ¼ 2.

Compared with a Fresnel zone plates (which, we recall, can be considered periodic struc-

tures along the square radial coordinate ζ), it can be verified that if both have the same

Figure 4. FiVL construction: (a) Diagrams of the generation of binary function qðζÞfor an FiZP and several values of S. (b)

FiVL withS ¼ 7 and m ¼ 2. (c) FiVL with S ¼ 8 and m ¼ 2. In this representation, open and filled segments correspond to

phase values differing in π of the generating radially binary function.
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number of elements, Fj, but the position of some zones with different phase has been

interchanged, the FiZP produces a focal splitting of the main focus of the Fresnel zone plate

along the axis. Thus, an FVL with m ¼ 0 can be understood as two Fresnel zone plates

interlaced [45].

The irradiances provided by the lenses are shown in Figure 4. The result is shown in Figure 5.

The integrals were computed using Eq. (4) applying Simpson’s rule with a step length 1/2000.

Note that FiVLs produce twin foci whose locations are coincident with the Fibonacci numbers.

In fact, for S8 FVLs, the first focus is located at u1 ¼ 13 ¼ Fj−1 and the other one at u2 ¼ 21 ¼ Fj:

Moreover, the ratio of the focal distances satisfies u2
u1 ≈ϕ. The diameter of these ‘twin’ vortices

provided by FiVLs is related by the golden mean [46], and the diameter of the rings increases

proportionally with the topological charge.

5. Thue-Morse vortex lens

The Thue-Morse sequence [22] is also a binary sequence in which each element is obtained

with the previous one by appending to it its Boolean complement. This sequence has been

applied in several branches of Physics, as, for example, in the context of photonic crystals [47],

quantum wells [48], metamaterials [49] and graphene superlattices [50].

The characteristic function q(ζ) corresponding to the Thue-Morse sequence is constructed

defining a seed D0 ¼ A from which the following elements in the sequence are obtained by

replacing A by AB and B by BA. In this way, D1 ¼ AB, D2 ¼ ABB, D3 ¼ BBABAAB,

D4 ¼ ABBABAABBAABABBA, and so on. Figure 6a shows the geometrical construction of

the TM sequence up to order S ¼ 4. When designing Thue-Morse vortex lens (TMVL), each Di

can be used to define the transmission function qðζÞ with compact support on the interval

ζ∈½0; 1�. This interval is divided in 2S sub-intervals of length dS ¼ 1=2S, where the transmit-

tance, tS, j, of the jth sub-interval is associated to the elementDS, j, as tS, j ¼ 1 whenDS, jis ‘A’, and

Figure 5. Normalized irradiance contours for the FVL in Figure 4: (a) FiVL S = 7 with m ¼ 2. (b) FiVL with S ¼ 8;m ¼ 2.
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tS, j ¼ 0 when DS, j is
0B0. Figure 1(b) shows the transmittance pupil function of a TMZP of order

S ¼ 6 and its equivalent periodic ZP. Note that like a conventional ZP the period of a TMZP is

pS ¼ 2dS, where the position of transparent/opaque zones has been interchanged. In mathe-

matical terms, the transmittance function, qðζÞ, can be written as

qðζÞ ¼ ∑
2S

j¼1
tS, jrect

ζ−ðj−0:5ÞdS
dS

� �

(6)

Figure 7 shows the axial irradiance provided by TMVLs of orders S ¼ 4 and S ¼ 5. Note that

the Thue-Morse ZP produces a symmetrical splitting of the first-order focus. This zero

irradiance in the middle is due to the destructive interference generated by the two conju-

gated parts of the lens. In this way, like FiVLs, TMVLs are bifocals, but they produce a

sequence of secondary foci around each main focus that have a fractal structure. In fact, it

has been shown that irradiance provided by these lenses with topological charge m ¼ 0 is

self-similar [51], that is, the irradiance distribution corresponding to a TMVL of order S is a

Figure 7. Normalized irradiance contours for the TMVL in Figure 7: (a) TMVL S ¼ 4 with m ¼ 2. (b) TMVL S ¼ 5 with

m ¼ 3.

Figure 6. TMVL construction: (a) Diagrams of the generation of binary function qðζÞ for TMVL and several values of S. (b)

TMVL S ¼ 4 with m ¼ 2. (c) TMVL S ¼ 5 with m ¼ 3. In this representation, open and filled segments correspond to

phase values differing in qðζÞ of the generating radially binary function.
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modulated version of the irradiance distribution corresponding to the previous stage, S−1,

magnified by a factor 2.

In Figure 7, we represent the axial irradiances provided by the TMVLs represented in Figure 6.

It can be seen that TMVLs produce a bifocal structure with fractal characteristic. It can also be

observed that the diameters of these ‘twin’ vortices provided are proportional to the topolog-

ical charge.

6. Experimental results

For the experimental study of the properties of FVLs, we implemented the experimental set-up

shown in Figure 8, where the aperiodic VLs were experimentally implemented in a program-

mable spatial light modulator. The static aberrations caused by the SLM display were charac-

terized with a Shack-Hartmann wavefront sensor, and then compensated as detailed

elsewhere [35]. The vortex-lens performance was studied computing the diffraction patterns

along different planes along the optical axis.

The proposed ZPs were recorded on a spatial light modulator (Holoeye PLUTO, eight-bit grey

level, pixel size 8 μm and resolution equal to 1920 × 1080 pixels), calibrated for a 2π phase shift

at λ = 633 nm operating in phase-only modulation mode. A linear phase grating was super-

posed to the diffractive lenses on the SLM to avoid the specular reflection and the pixelated

structure of the SLM. This linear phase was compensated by an appropriate tilt of the SLM. A

pin hole (PH) was used to filter high diffraction orders. A scaled image of the lens was

achieved at the L3 lens focal plane (exit pupil). A collimated He-Ne laser beam (λ = 633 nm)

was sent to the SLM and the diffracted field was registered with an eight-bit grey-level, charge-

coupled device (CCD) camera (EO-1312M 1/2” CCD Monochrome USB Camera, pixel pitch of

Figure 8. Experimental set-up for characterization and measuring vortices for FVLs.
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4.65 μm, 1280 × 1024 pixels) through a microscope objective (10× Zeiss Plan-Apochromat). The

microscope and the CCD were mounted on a translation stage (Thorlabs LTS 300, range: 300

mm and 5 μm precision). The computed and experimental irradiances produced by an S8 FiVL

with m ¼ 6 are shown in Figure 9.

As predicted by the theoretical analysis (Figure 9a), the axial localization of the focal rings

depends on the Fibonacci numbers Fj and Fj−1, and such focal distances satisfy the following

relationship: f 1f 2 ¼
Fj
Fj−1

≈Φ. The diameter of the rings also satisfies Δ1

Δ2
≈Φ:

Figure 9. Longitudinal irradiance of different planes produced by S ¼ 8 FiVL with m ¼ 6 (a) theoretical results, (b)

experimental results. (c and d) Transverse irradiance at the planes indicated by the arrows.
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7. Conclusions

A new family of fractal aperiodic VLs with interesting focusing and imaging capabilities has

been presented. The transverse patterns appearing along the propagation distance present

several concatenated doughnut modes. The ability of these VLs to produce multiple vortex

tweezers has been demonstrated. In fact, it was found that contrary to conventional spiral zone

plate, which produces a single vortex, each member of this family generates a delimited chain

of vortices that are axially distributed. The distances between the links of the chain depend on

the level S of the generating function and the radii of the doughnuts increase with the topo-

logical charge. Additionally, the multifocal nature of the lens, resulting from its fractal struc-

ture along the radial coordinate, could provide a high depth of field, especially with wideband

sources.

In the case of FrVL (i.e. Cantor and Devil’s VLs), the evolution of the axial irradiance replicates

the fractality of the pupil. The orbital angular momentum in each link on the chain also

depends on the topological charge but it is nearly independent of its axial location.

Our analysis demonstrated the possibility of simple design procedure arrays of VLs with any

desired range of topological charge. As each individual VL can be understood as a light gear

capable of driving microstructures around its circumference, applications involving particle

transfer and manipulation could be foreseen.

On the other hand, FiVLs and TMVLs are intrinsically bifocal vortex lenses. It was shown that

they produce twin optical vortices along the axial coordinate. The positions of both foci

depend on the two incommensurable periods of the Fibonacci sequence in which the lenses

are based. Moreover, the evolution of the irradiance along the propagation axis reproduces the

fractality of the lens [34]. The diameter of these chains of vortices is proportional to the

topological charge, and their ratio is close to the golden mean. The volumetric distribution of

the diffracted field generated by FiVLs was assessed experimentally using an SLM. An excel-

lent agreement was found between the experimental results and the theoretical predictions.

The peculiar focal volume obtained with DVLs could be exploited as versatile and efficient

optical tweezer, because it can also trap low-index particles in the zero-intensity axial zone of

the doughnut and at the same time can exert a torque on small objects having a high refraction

index. The distances between the links of the vortex chain can be modified with the level S of

the generating function and relative angular velocity of the particles at the trap depends on the

topological charge of the vortex.

Another potential application of these optical vortices arises in X-ray microscopy where its

azimuthal component can be used for detecting the phase component of objects with complex

index of refraction since it acts as a Hilbert phase filter. This feature is especially useful in the

case of biological specimens to provide enhanced contrast.

TMVL produces a couple of self-similar vortex located symmetrically one at each side of the

focus of the equivalent periodic VL. Therefore, under broadband illumination, a TMVL pro-

duces a pair of images with an extended depth of field and a strong reduction in the chromatic
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aberration. In this way, TMVLs combine the characteristics of FrVLs and FiVLs and could be

used in multiple applications including spectral domain optical coherence tomography (OCT)

and X-ray microscopy [35].

Finally, it should be mentioned that all the aperiodic VLs here presented admit fractional

topological charges that break down the symmetry of the foci and produce chains of aniso-

tropic vortex foci.
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