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Abstract

In this research, an innovative physicochemical strategy is presented to address the
problem of nejayote, from two perspectives: the first focusing on sanitation and reuse
of nejayote using waste from shrimp shells, thereby adding value to the recovered solids
of nejayote. Zeta potential measurements are a proactive electrochemical tool to define
the strategy to allow integral use of nejayote in the industry nixtamalization. The treated
water can be discharged from the municipal sewer system using a process of
coagulation-flocculation, with an optimal dose of 1250 mg/L chitosan at pH 5,
achieving removal of up to 80% of total suspended solids and turbidity. Moreover, zeta
potential measurements show that the anionic biopolyelectrolyte obtained from
nejayote has potential to be applied in the area of water treatment as a green chelating
agent.

Keywords: nejayote, nixtamalization, biopolyelectrolytes, zeta potential, coagulation-
flocculation

1. Introduction

Nixtamalized products such as maize tortillas originated in Mexico, are the main sources of
energy, protein, calcium and other important nutrients and are considered the national breads
and consumed with other fillings such as beans, meats, eggs and vegetables [1-3].

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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The ancient, laborious or traditional process (nixtamalization) to obtain tortillas is a process
widely used by indigenous people in Mexico (41%), the Southern United States, Central
America, Asia and parts of Europe, that consumes significant amounts of water, energy and
time [2]. Traditional maize is lime-cooked in clay pots over a fire, followed by steeping for 8-
16 h (generally overnight), the supernatant called maize wastewater or commonly known as
“nejayote”, derived from the Nahuatl word meaning “lime broth ashes” is discarded and then
the nixtamal is hand-washed. Nixtamal is ground into a fine masa with a stone grinder called
metate and then hand-molded, patted or pressed into disks, which are baked on both sides on
a hot griddle [4-10].

Nixtamalization causes a loss of about 5% by weight dry basis of corn; 3% is suspended and
the remaining 2% is dissolved. The suspended matter can be separated easily and inexpen-
sively by sedimentation and the dissolved substance should “precipitate” to separate solids
which is also done by sedimentation [2, 11-16].

A typical maize nixtamalization facility, processing 50 kg of maize everyday, uses over 75
L of water per day and generates nearly the equivalent amount of alkaline wastewater on
a daily basis [4]. The estimated monthly volume of nejayote generated in Mexico is about
1.2 m? [17].

Nejayote is considered an environmental pollutant because it is an alkaline wastewater,
with high chemical and biological oxygen demand [2, 9]. Due to the presence of lime in the
process, the pH of the wastewater is very high (12-14), with a high temperature between 40
and 70°C), containing suspended solids (corn husks and broken grains) and a very high
portion of dissolved material from the alkaline hydrolysis of corn components [14]. The
nejayote with these physicochemical characteristics is thrown, often without treatment, into
drainage systems and even directly to the soil and groundwater. Thus, alternatives for sani-
tation of nejayote and utilization are needed [14]. Among the solutions that have been re-
ported, they are from biological treatment processes [9], membrane filtration,
nixtamalization methods that minimize water use and the use of nejayote as a supplement
in animal feed [17].

In this research, an innovative physicochemical strategy is presented to address the problem
of nejayote from two perspectives: the first focused on remediation of nejayote and the second
is on water reuse using biopolyelectrolyte (BPE) from waste shrimp shells. With the use of
effluents generated by 20 tons of corn nixtamalized equivalent to one ton of corn or sorghum
protein is obtained [2, 16]. Another benefit, both economic and social, which could have nejayote
recovery is that wastewater could be recycled, either in nixtamalization industry itself or for
any other use. The second is based on the use of nejayote for obtaining anionic BPE (maize gum)
for treating wastewater from electroplating industry. In both cases, zeta potential (C) meas-
urements as electrochemical parameters were used to develop the process of sanitation and
water reuse and for the extraction and application of anionic BPE in the separation of heavy
metals.
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2. Experimental

It is shown in Figure 1 that zeta potential measurements were used to interconnect the
physicochemical characteristics of nejayote and chitosan flocculant capacity to achieve sanita-
tion and water reuse in nixtamalization industry. In the first stage, plots of C vs pH of ne-
jayote, chitosan and maize gum were constructed to determine the behavior of surface charge
and isoelectric point (IEP). Then the strategic dosage of chitosan was done in the process of
coagulation-flocculation of nejayote. The coagulation-flocculation window was constructed by
measuring the water-quality parameters of environmental interest (turbidity and total
suspended solids) and zeta potential. Moreover, zeta potential measurements were used to to
exploring the interaction capacity of maize gum obtained from nejayote with metal ions,
frequently contained in wastewater from the electroplating industry.

Sanitation and Nejayote for
water reuse of separation of
nejayote heavy metals

Treated water
Anionic BPE

Byproducts

Zeta
potential

Figure 1. Using zeta potential measurements for nejayote sanitation and water reuse, and its use for obtaining a green
flocculant for the separation of heavy metals.

2.1. Materials

Commercial testing water-quality reagents from HACH® were used. Milli-Q grade water was
used in all the experiments. All other reagents were of analytical grade and were used without
further purification.

2.1.1. Wastewater sampling in the nixtamalization industry

Nejayote was provided by a local tortilla-making industry. The wastewater sampling protocol
was followed as recommended by Mexican sampling standard (NMX-AA-003-1980).

2.1.2. Chitosan extraction from waste shrimp shells

Chitosan is obtained from waste shrimp shells using the method proposed by the authors
Goycoolea et al. [15].
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2.1.3. Maize gum extraction of nejayote

Maize gum was obtained by fractional separation, using hexane, ethanol and hydrochloric
acid, isopropanol, acetone, methanol formed by the steps of desalmidonado, deproteinization,
delipidation, delignification which are proposed by the authors of [8, 18, 19].

2.2. Methods

2.2.1. Physicochemical characterization of nejayote

The main parameters of quality wastewater used in this research were performed following
the Mexican standard procedures to determine the biochemical oxygen demand (BOD:;),
chemical oxygen demand (COD), total nitrogen (TN), the solids content, total organic carbon
(TOC), total phosphorus (TP), and other parameter fields such as pH, electrical conductivity
(EC) and temperature were carried out based on the Hach methods.

2.2.2. Profiles of C = f(pH) of nejayote, maize gum and chitosan

The charge density, isoelectric point and chitosan-dosing strategy for treating nejayote
were determined in a C = f(pH) plot. The zeta potential measurement was performed us-
ing the SZ-100 of Horiba Scientific equipment based on studies by Ldépez-Maldonado et
al. [20, 21].

2.2.3. Nejayote treatability tests by coagulation-flocculation using chitosan

A sample of 20 mL of nejayote was taken in a vial and the pH was adjusted to 5. The
chitosan dosage tests were performed in 20-mL-vials. Progressive additions of 0.1 g/L chi-
tosan solution were done and after each one, the vials were shaken for 2 min at 250 rpm
and 5 min at 50 rpm and allowed to settle for 5 more min. Finally the supernatant to a
height of 2 cm from the vial was suctioned to determine the parameters of water quality
in the supernatant.

2.2.4. Evaluation of the capacity of polyelectrolyte maize gum for decontaminating wastewater

The anionic BPE obtained from nejayote is characterized by Fourier Transform Infra-Red
spectroscopy (FTIR), scanning electron microscopy (SEM) and measurements of zeta poten-
tial (C). FTIR spectra of maize gum were recorded using a Nicolet FT-IR spectrometer. The
samples of maize gum were analyzed by SEM and X-ray microanalysis. The analysis was
performed on SEM (ZEISS EVO-MA15), equipped with an EDS (energy dispersive spectro-
scopy) BRUKER detector microscope to observe the composition. The zeta potential measure-
ment was performed using the SZ-100 of Horiba Scientific equipment based on studies by
Lopez-Maldonado et al. [20]. This was developed with the maize gum dispersion in a 0.1%
solution, which took different levels of acidity and alkalinity in the range of 2-12 and injected
into a cell with electrode graphite.
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3. Results and discussion

3.1. Physicochemical characterization of nejayote

http://dx.doi.org/10.5772/66223

In this investigation the nejayote generated by a tortilla factory in Mexico was taken as the object

of study. A typical maize nixtamalization facility, processing 500 kg of maize every day, uses

over 750 L of water per day and generates nearly the equivalent amount of alkaline wastewater

on a daily basis. Figure 2 shows the stages of the nixtamalization process used for the manu-

facture of nixtamal mass and the generation of nejayote.

White corn .
Lime

(4 kg/dia)

(500 kg/dia)

washer/wringer Nixtamal

oy )
Ll Bl

A

paila cooker nixtamalization

T=70°C | > Restin if
B i g stage
t=1h 30 min \( ! (12 h) | Nejayote
urban dralnage

nixtamal mill

mass nixtamal

Figure 2. Diagram of the nixtamalization process and the point of generation nejayote.

As shown in Table 1, the physicochemical characteristics of nejayote concerning the content of

organic matter determined by the parameters COD, TP, BOD; and TOC normed indicate that
najeyote exceeds the maximum permissible limits of NOM-002-SEMARNAT-1996. The nejayote
has a pH of 11.6 as already well known, is a wastewater alkaline by the use of lime in the

nixtamalization.

Parameter Nejayote Maximum permissible limit
Suspended Solids, SS (mL/L) 800-900 1°
Total Solids, TS (mg/L) 46,523.00 200°
Total Dissolved Solids, TDS (mg/L) 46,339.70 NI
Total Suspended Solids, TSS (mg/L) 2000.00 NI
Turbidity (FAU) 690-1500 NI
Alkalinity (mg/L CaCOs) 1020-1050 NI
Electric conductivity, EC (mS/cm) 4.29-6.42 NI
C (mV) -10.5 NI
Particle size of the dissolved part (nm) 100-600 NI
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Parameter Nejayote Maximum permissible limit
Temperature (°C) 30-39 40°
Color (Pt-Co) 5653-8580 NI

pH 11.61-12.1 5.5-10°
Chemical Oxygen Demand, COD (mg O,/L) 9800-28,450 NI
Total Organic Carbon, TOC (mg C/L) 7337-9836 NI
Inorganic Carbon, IC (mg/L) 23-28 NI
Total Carbon, TC (mg C/L) 7360-9864 NI
Biochemical Oxygen Demand, BOD; (mg O,/L) 2700 200°
Total Phosphorus, TP (mg P/L) 905-1321 30°
Total Nitrogen, TN (mg N/L) 303418 60°
Biodegradability (BODs/COD) 0.27 NI

NI= Not included in the standard.
INOM-001-SEMARNAT-1996.
"NOM-002-SEMARNAT-1996.

Table 1. Maize industry wastewater physicochemical composition.

For this research the measurement of other nonregulatory parameters was performed, and
they are key to evaluate the performance of coagulation-flocculation process and determine
the best operating conditions. C =-10 mV (pH = 12) and particle size of the dissolved part of
nejayote (100-600 nm), which indicates containing dispersed particles very stable. Considering
the surface charge of the nejayote colloids and particle size to be separated by coagulation-
flocculation, it requires the addition of a cationic BPE.

3.2. Profiles of C = f(pH) of nejayote and chitosan

The zeta potential is a parameter by electrochemical nature that allows to study and predict
the interactions occurring at the molecular level between the colloidal particles nejayote and
the different ionic species of the medium, also it indicates the degree of stability of dispersion
in an aqueous medium from the point electrically. The aim is to employ C measurements to
know and understand the behavior of the BPE type chitosan in this kind of wastewater
treatment (see Figure 3).

Surface charge of chitosan and nejayote colloids are pH-dependent and their behavior has great
influence on coagulation-flocculation performance [22]. In addition, { measurements are
required to characterize the colloidal system to understand repulsion and aggregation between
colloidal particles.

In Figure 4, chitosan shows an amphoteric behavior, in the region of pH = 2-5.5 has a positive
surface charge (C=51.1 mV) due to protonation of amine groups, at pH =610 its surface charge
remains neutral, this is due to the insolubilization phenomenon occuring at pH > IEP (pH =5-
6) of chitosan and increases their hydrophobicity.



Figure 3. Model of the electrical double layer and zeta potential concept adopted for sanitation of nejayote.
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Figure 4. Electrokinetic properties of nejayote and biopolyelectrolyte type chitosan.
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Moreover, the nejayote (C =0) has a negative surface charge throughout the pH range. From the
electrical viewpoint, at pH = 5, the interaction between oppositely charged species chitosan-
nejayote is ensured and therefore the strategic dosage cationic BPE was performed.

3.3. Nejayote treatability tests by coagulation-flocculation using chitosan

Dosing strategy for chitosan was determined by C of nejayote colloids and chitosan, and also
by observing critical pH value of the IEP. In this study, charged chitosan purpose is to reduce
the repulsion forces between particles by neutralizing the negatively charged molecules. In
general, the electroneutrality zone for chitosan-nejayote system is below pH = 6 (see Figure 4),
this has a practical application since higher charge density with less BPE concentration can be
achieved.

Since the best wastewater clarification was at pH = 5.5 for chitosan, a turbidity-dosage profile
was performed near the same pH to determine the optimal quantity of chitosan needed to
tlocculate nejayote colloids.

250 1500 5000 ppm —

Optimal
Low dose  goge Overdose region
1750 y T T v T u T v T
L 4 16
1500 [ N -
L 4 12
1250 |-
) L 18
= 1000 - _
~— | ] 4 >
2 E
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) I m-u o ¥
5 500 l’
~ | s |,
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i \ [ 1 -8
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0 1000 2000 3000 4000 5000
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Figure 5. Turbidity and C of the supernatant in the coagulation-flocculation of nejayote at pH= 5 with chitosan: a) Ne-
jayote and b) Nejayote visual appearance treated with chitosan.

The coagulation-flocculation window of nejayote using chitosan at pH = 5 was constructed
based on the methodology reported by Lopez Maldonado et al. [23].
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Figure 5 shows the behavior of the zeta potential and turbidity with respect to the concentra-
tion of chitosan. In the region of low doses (250 and 750 mg/L), a decrease in turbidity (1590-
500 FAU) is achieved, and the variation of zeta potential { =-10 mV to more positive values
(C=-5.4mV) shows that the mechanism of destabilization of nejayote colloids occurs by charge
neutralization [24]. At a dose of 1250 mg/L chitosan, point of zero charge was reached and the
better quality of treated water (turbidity = 22 FAU, color = 315 Pt-Co, TSS = 12 mg/L) was
obtained. At higher concentration (>1250 mg/L) the best dose, the restabilization processes
occur due to excess chitosan adsorbed on the colloids of nejayote. In this region of overdose,
the addition of chitosan had an adverse effect on the quality of wastewater, increasing turbidity
and stability of the dispersed particles (C =15 mV and turbidity = 450 FAU).

The coagulation-flocculation window was obtained from 1000 to 1500 mg/L chitosan with
optimal dosage of 1250 mg/L chitosan, obtaining with this removal turbidity and suspended
solids of about 80% (see Figure 6). At this dose, the surface charges of nejayote colloids were
neutralized by chitosan molecules, resulting in a C value very close to zero.

Chitosan solution

(0.1 g/L)
i Chitosan
Coagulation-flocculation
NOM-002-SEMARNAT-1996
- Treated
: Chitosan
Nejayote (1250 mg/L) @ water

o - 348

Byproducts

Figure 6. Diagram of the engineering for the sanitation process of nejayote using chitosan.

3.4. Evaluation of the polyelectrolyte capacity of maize gum for decontaminating
wastewater

The behavior of zeta potential vs pH of anionic BPE obtained from nejayote is shown in
Figure 7, which has a high negative charge density (-35 mV) in the pH range 6-12, having the
isoelectric point close to pH = 2.

This negative surface charge is very interesting for the treatment of wastewater containing high
concentration of heavy metal. In the FTIR spectrum (see Figure 8) shows that the BPE has the
characteristic functional groups of a polysaccharide (3400 cm™ corresponding to stretching of
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the OH groups and 2900 cm™ corresponding to the CH, groups) which give the negative surface
charge and that can interact with oppositely charged species, such as heavy metal ions [25].

20 4
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-25

-30 4
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40 4

pH
Figure 7. Zeta potential vs pH profiles of anionic BPE.
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Figure 8. FT-IR spectrum of anionic BPE.
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Figure 9 shows the morphology of anionic BPE and analysis of chemical composition,
indicating that its content is primarily carbon, oxygen and calcium, because lime is used in the
nixtamalization.

ek
46.82
1.69
0.23
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0.19
0.09

0.21 |
0.0+

Figure 9. SEM micrograph and EDS spectrum of the anionic BPE: Inset Table shows the composition analysis.

keV

4. Conclusion

Zeta potential measurements are a proactive electrochemical tool to define the strategy of
chitosan dosage that allows sanitation and water reuse industry nixtamalization. The use of
chitosan allows the use and reuse of byproducts recovered from nejayote and it serves as a
source of protein for animal feed. The treated water can be discharged into the municipal sewer
system using an optimal dose of 1250 mg/L chitosan at pH =5, achieving removal of up to 80%
in the removal of total suspended solids and turbidity. This work evidenced the potential use
of nejayote as a raw material for obtaining anionic biopolyelectrolyte in the treatment of
wastewater with heavy metals of the electroplating industry.
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