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Abstract

Scientists have been paying a special attention for the synthesis of one-dimensional (1D)
morphologies to attain new phenomena and novel physicochemical characteristics of
materials. Furthermore, 1D nanostructures exhibit long axial ratio, which has a great
influence on the physical and chemical properties of materials. It is worth mentioning
that electrospinning is one of the most common and efficient techniques used for the
preparation of 1D polymer composite nanofibers. Using electrospinning, nanofibers
were fabricated by electrostatic stretching of polymer viscous solution by applying a
high voltage. This chapter discusses the synthesis of metal oxide nanofibers such as tin
oxide (SnO2), zinc oxide (ZnO), titanium oxide (TiO2), and nickel oxide (NiO) using
electrospinning process of polymer solution containing metal precursors and followed
by annealing procedures to eliminate the polymer galleries, which were chosen as a
sacrificial template for the preparation of metal oxide nanofibers. SEM, XRD, and XPS
are equipped to characterize the electrospun metal oxide nanofibers and the results
settle the formation of homogeneously distributed metal oxide nanofibers.

Keywords: electrospinning, metal oxide, nanofibers, SEM, XRD, XPS

1. Introduction

In the last decades, electrospinning attracted a vast portion of attention from both research
and commercial points of view. Scientists paid great interest for electrospinning because of
its ability to yield fibers in the submicron scale that are very hard to attain by handling
standard mechanical fiber-spinning procedures [1–5]. Electrospinning is a technology that is
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broadly applied to fabricate polymer fibers with diameters ranging from 2 nm to several
micrometers  and  is  also  known  to  have  unique  properties  such  as  high  surface  area,
controlled porosity, and mechanical strength [6–9]. The pore structure and the diameters of
the produced fabrics and nanofibers can be controlled using this technique [10, 11]. Electro-
spun fibers have been successfully used in varied applications including protective clothing,
biomedical,  pharmaceutical,  security,  environmental  engineering,  chemical  sensors,  and
electrode materials [12–19].

Recently, electrospinning has been used in the research of natural and synthetic polymer
nanofibers [20] such as cellulose [21], polyurethanes [22], collagen [23] and hyaluronic acid
[24]. Electrospinning can be handled to obtain large quantities of fibers using two-layer
electrospinning scheme. This technique consists of a lower layer, which contains a ferromag-
netic suspension, and an upper layer, which contains the polymer solution, and the multiple
nozzles are arranged in lines or circles. One such example is the bubble electrospinning, which
is demonstrated and developed by many researchers [25, 26]. Dosunmu et al. reached high
production rates of fibers by using porous hollow tube to obtain multiple jets and by increasing
the tube length and the number of holes [27]. In addition, coelectrospinning of different
polymers has been reported to control the morphology and tailor the voids volume [28–30].

1.1. Electrospinning process

Electrospinning setup consists of a high voltage power supply, spinneret (like pipette tip), and
grounded collected plates (like metal screen) and is conducted at room temperature. Polymer
solution is charged by applying high voltage and then accelerated toward the collector, which
is of opposite polarity [31, 32]. The polymer must be dissolved first before using in electro-

Figure 1. Schematic diagram of vertical electrospinning apparatus.
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spinning and then introduced into the capillary tube. At critical voltage, the electrostatic forces
counteract the surface tension of the used polymer solution and an electrified jet is produced
and ejected from the tip of the Tylor cone and then the solvent will be evaporated and leaving
a polymer nanofiber [33, 34]. Currently, there are two standard sets of electrospinning: vertical
and horizontal. The vertical electrospinning is represented in Figure 1.

The diameters and morphology of electrospun nanofibers are measured by numerous
parameters, which are classified into solution, process, and ambient parameters. These factors
are demonstrated clearly in Figure 2.

Figure 2. Factors affecting on elctrospinning technique.
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2. Polymers favored in electrospinning technique

More than 200 polymers (natural, synthetic, and copolymers) were used in electrospinning
successfully depending on their applications [35].

2.1. Natural polymers

Nowadays, polymer nanofibers are used in a wide variety of applications in various industries
and also in other arenas. Natural polymers are preferred over synthetic polymers in medical
and biological uses because of their low immunogenicity and better biocompatibility. Recent
researchers have reported the use of electrospinning process of natural polymers such as
gelatine, collagen, and silk fibroin [36–41]. It was mentioned that some natural polymers such
as collagen lose their properties after electrospinning using fluoro alcohols [42]. To resolve this
problem, highly volatile fluoro alcohol such as 2,2,2-trifluoroethanol is used during electro-
spinning of collagen [43]. Yang et al. [44] found that about 45% of collagen is lost during
electrospinning process. In addition, beads formation represents another challenge for the
preparation of natural polymer nanofibers. For instance, laminin I nanofibers are fabricated
with beads in the mesh structure and this may be related to the presence of the cross-linking
agent and these results are reported by Neal et al. [45].

2.2. Synthetic polymers

Synthetic polymers are favored over natural polymers in certain uses because synthetic
polymers can be tailored to develop the mechanical and degradation properties [46]. Certain
synthetic polymers can be used in biomedical applications with some limitations including
polylactide (PLA) [47] and polyglycolide (PGA) [48] to produce electrospun nanofibrous
scaffolds.

2.3. Copolymers

Copolymers appear as an attractive opportunity to obtain new structures with desirable
characteristics from electrospinning and also have better efficiency than that of homopolymers.
The mechanical, thermal, morphological, and biodegradability properties of polymers can be
tailored by using copolymers in electrospinning process. Incorporation of the hydrophilic
polymer of hydrophobic polyesters enhanced the cell affinity of this sort of polyesters.
Moreover, the stiffness of poly (ethylene-co-vinyl alcohol) (PEVA) is improved after the
addition of poly (glycolide) (PGA) [49]. Also, copolymerization of methyl methacrylate (MMA)
with methacrylic acid (MAA) improved the thermal stability of poly methyl methacrylate [50].
In addition to that, electrospun scaffolds produced from poly (p-dioxanone-co-L-lactide)-
block-poly (ethylene glycol) (PPDO/PLLA-B-PEG) have enhanced hydrophilicity and biode-
gradability due to the addition of PEG to PPDA-PLLA blends [51].

Electrospinning - Material, Techniques, and Biomedical Applications6



3. Metal oxide nanofibers

Metal oxide materials are critically important from both the academic and industrial point
of views. Scientists have been paying a special attention for the synthesis of one-dimension-
al (1D) morphologies to attain new phenomena and novel physicochemical characteristics of
materials.

3.1. Synthesis of crystalline metal oxide nanofibers and their applications

It is worth mentioning that electrospinning is the most common technique used for the
preparation of 1D polymer composite nanofibers [52, 43]. Furthermore, 1D nanostructures
exhibit long axial ratio, which has a great influence on the physical and chemical properties of
materials. Using electrospinning, nanofibers are fabricated by electrostatic stretching of a
viscous solution of polymer composites by applying a high voltage [3]. In the recent years,
scientists have focused on the fabrication of metal oxide nanofibers such as tin oxide (SnO2),
zinc oxide (ZnO), titanium oxide (TiO2), and nickel oxide (NiO) through the electrospinning
of polymer solution containing metal precursors and followed by annealing procedures [53–
57]. Depending on the thermal degradation of polymers, certain polymers such as polyvinyl
alcohol (PVA) and polyacrylonitrile are chosen as a sacrificial template for the fabrication of
metal oxide nanofibers. After the annealing process, the organic components will be degraded
and the metals will be oxidized by inorganic precursors giving nanofibers the desired metal
oxide.

3.1.1. Tin oxide (SnO2) nanofibers

Recently, high interest has been paid to one-dimensional tin oxide (SnO2) nanostructures. There
are various techniques designed for the synthesis of different structures of SnO2, such as
electrospinning, self-catalytic, thermal evaporation, and thermal oxidation techniques [58–62].
The metal oxide fibers are commonly employed in gas detection application. The gas-sensitive
characteristics of the prepared sensors are due to its high conductivity alterations when the
prepared sensors adsorb or desorb a very low loading of chemical compounds on its surface
[63–72]. High adsorption-desorption gas sensors in one-dimensional nanostructures were
developed using metal oxide nanofibers owing to its highly porous networks [73, 74]. The
morphological nature of the upper surface layer usually controls the molecular adsorption-
desorption process, the response, and the sensitivity of the sensors. Metal oxide nanofibers are
employed as a sensitive sheet instead of a thin film deposited by conventional processes such
as drop, spinning, and airbrush because of its large surface area and, consequently, a thin film
of metal oxide nanofibers enhances the sensitivity and the speed of the reaction.

Santos et al. [75] prepared SnO2 nanofibers by electrospinning process of PVA/SnCl4.5H2O
composite followed by annealing at 450°C to eliminate PVA matrix. The fabricated SnO2

electrospun nanofibers are designed as sensitive layers for resistive chemical sensors. The
produced fibers exhibit high sensitivity, reproducibility, and quick reaction in the recognition
of triacetone triperoxide (TATP) explosive precursors in the ppm scale. In addition, SnO2

hollow nanofibers were fabricated for a high and fast detecting ethanol (C2H5OH) using
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polyvinylpyrrolidone (PVP) as a template, which was removed by calcination at 600°C for 2 h
[76]. The produced SnO2 nanofibers have a large surface area of 26.43 m2g−1 and grain sizes of
about 20 nm. Another study by Choi et al. [77] concerns the preparation of Pd-doped SnO2

hollow nanofibers for methane (CH4), H2, carbon monoxide (CO), and C2H5OH detection. They
studied the effect of temperature and Pd-doping content on the detection for CH4, H2, CO,
and C2H5OH. They noticed a dramatic variance in the selectivity for these compounds between
undoped and Pd-doped SnO2 hollow nanofibers. The selective detection of C2H5OH was tested
with undoped and 0.08 wt% Pd-doped SnO2 hollow nanofibers. The study showed a significant
decline in C2H5OH detection in case of using 0.4 wt% Pd when the temperature is raised from
330 to 440°C, while the responses to CH4 and H2 were improved and, consequently, they
adjusted the selectivity of CH4 and H2 at 440°C with minimum interloping to C2H5OH. It was
worth studying the enhancement of Pr-doping on the gas sensing performance due to its
effective influence on the electronic and structural characteristics of materials. Li et al. [78]
discussed the fabrication of Pr-doped SnO2 hollow nanofibers for ethanol detection. They
subjected a solution of PVP, SnCl2.2H2O, and Pr(NO)3.6H2O for electrospinning. The prepared
nanofibers sample was then annealed at 600°C for 2 h. It was reported that 0.6 wt% Pr-doped
SnO2 nanofibers gave the highest sensitivity and response for ethanol at 300°C. This may be
related to the high surface area of the porous morphology and the increment in oxygen vacancy
leading to enhanced oxygen absorption. Furthermore, Du et al. [79] focused on the fabrication
of In2O3/SnO2 nanofibers for formaldehyde gas sensors using bipolar electrospinning setup of
double jets with opposite electric fields. Different sensors composition based on SnO2, In2O3,
and In2O3/SnO2 nanofibers were tested at 375°C with 0.5–50 ppm of formaldehyde gas. The
formaldehyde selectivity of In2O3/SnO2 nanofibers is higher than that of SnO2 and In2O3

nanofibers. The selectivity values for 0.5 and 50 ppm of formaldehyde were 2.2 and 18.9,
respectively. In2O3/SnO2 nanofibers have a good detection of formaldehyde in the interfere
gasses of methanol, ethanol, acetone, and ammonia. In addition, Tang et al. [80] synthesized
hollow hierarchical ZnO/SnO2 nanofibers composite for methanol sensing applications. A
solution of PVP, SnCl2.2H2O, and Zn(NO3)2.6H2O is used to prepare electrospun fibers, and
then subjected to annealing at 600°C for 3h. This study noted that the nanofibers of ZnO/
SnO2 with a molar ratio of 1:1 exhibited an interesting methanol detection response at 350°C
in the presence of interfering gasses.

3.1.2. Zinc oxide (ZnO) nanofibers

Another metal oxide of recent interest is ZnO, which is a chemically stable, nontoxic and
inexpensive compound that exhibits high binding energy of 60 mV at 30°C and a direct band
gap of 3.37 eV [81]. ZnO is industrially applied in a wide range of uses including chemical
sensors, ultraviolet light-emitting diodes, dye-sensitized solar cells, functional instruments,
piezoelectric materials, and transparent conductors [82–85]. The morphology, crystal structure,
quality, and dimensions of ZnO control its electronic characteristics for different applications
[86, 87].

The effective structures of 1D ZnO nanofibers have a small quantum restriction of charge
carriers and this measure the performance of nanoscale devices [88–91]. Recent articles

Electrospinning - Material, Techniques, and Biomedical Applications8



reported the synthesis of ZnO or ZnO-based nanofibers. Ding et al. [92] addressed the unique
characteristics of ZnO nanofibers such as high hydrophobicity, development of nanograins,
and electrical properties. The study reported the synthesis of super-hydrophobic ZnO
nanofibers through a simple combination of wet chemical and electrospinning techniques. The
produced ZnO nanofibers have been coated by fluoroalkyl silane (FAS) to obtain super-
hydrophobic ZnO nanofibers. Because of the FAS modification, the fibrous ZnO films were
transformed from super-hydrophilic (water contact angle (WCA) of 0°) to super-hydrophobic
(WCA of 165°). Electrospinning technique was designed to produce nanofibers with a smooth
surface which limits its use in some applications as the cohesion forces will be feeble, and thus
rough surface nanofibers are preferred. In this context, Barakat et al. [93] mentioned that the
electrospinning of colloidal solutions is useful for synthesizing rough surface ZnO nanofibers.
The fibers were produced by electrospinning a colloidal solution of PVA, zinc nanoparticles
(ZnNPs), and zinc acetate dehydrate (ZnAc) and then followed by calcination. Furthermore,
Zhang et al. [94] addressed the fabrication of a hollow ZnO nanofibers using a ZnNPs-free
solution. The study reported the preparation of ZnO hollow nanofibers with diameters of 120–
150 nm using an electrospinnable solution of PAN, PVP, and ZnAc composites, then followed
by calcination to remove the used polymers. They obtained core-shell structure from elctro-
spinning process where PAN was the core and PVP/ZnAc composite was the shell. ZnO hollow
nanofibers showed interesting results related to sensing characteristics against C2H5OH.
Another study by Kanjwal et al. [95] reported the preparation of rough ZnO hierarchical
nanofibers as a photocatalyst against methylene blue dehydrate. They electrospun a colloidal
solution consisting of ZnNPs, PVA, and ZnAc dehydrate and then followed by a calcination
step at 500°C. Moreover, electrospinning a mixture of high molecular weight PVP and ZnAc
in dimethylformamide (DMF) synthesized 1D polycrystalline ZnO nanofibers with porous
morphologies [96]. The study reported the effect of ZnAc loadings from 10 to 15 wt% after
calcination process from 350 to 650°C onto the produced nanofibers. The prepared ZnO
nanofibers were utilized for water treatment as a result of its photocatalytic performance.

A comparative study to compare the undoped and Ce-doped ZnO hollow nanofibers for
acetone detection was carried by Li et al. [97]. The used electrospinning solution consisted of
cerium nitrate, ZnAc, and PVP. The sample was then followed by calcination at 600°C for 1.5
h. The study declared that Ce-doped ZnO nanofibers are very sensitive to acetone at 260°C.
This is ascribed to the morphological and electronic modification in the presence of Ce-doping.
Moreover, Al-Ga co-doped ZnO nanofibers have attracted high interest because of its excellent
cost effectiveness, conductivity improvement, and mechanical flexibility enhancement. Park
and Han [98] reported the preparation and the characterization of Al-Ga co-doped ZnO
nanofibers by electrospinning a solution of zinc acetate dihydrate, aluminum nitrate nonahy-
drate, gallium nitrate hydrate, and PVA and then by annealing at 550°C. The study showed a
variation of the lattice parameter with the addition of Ga beyond 2 at.% Al-doping owing to
smaller gaps in the atomic size. Consequently, more Ga content can be added without extensive
strain. Al-Ga co-doped ZnO nanofibers with 2 at.% Al and 1 at.% Ga exhibit the highest
conductivity of 9.57 ×10−3 Scm−1. In addition, Ga incorporation to 2 at.% Al-ZnO nanofibers
developed the mobility and the degree of crystallinity.
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3.1.3. Titanium oxide (TiO2) nanofibers

Wu et al. [99] addressed the usage of TiO2 in many applications including solar, optoelectronic,
and catalytic devices. TiO2 exists in different morphologies such as rutile, anatases, brookite,
TiO2 B (bronze), and TiO2 R (ramsdellite). It is worth mentioning that the most chosen TiO2

crystal phase for lithium ion batteries is the anatase structure due to its high capacity and low-
cost production [100–102].

He et al. [103] reported the fabrication of 100–300 nm conductive TiO2 nanofibers using KOH
treatment. In this study, a mixture solution of PVP and titanium tetraisopropanolate was used
to produce nanofibers for supercapacitor electrode applications using electrospinning. The as-
prepared nanofibers exhibit high conductivity, high cycling stability, and high surface area
with a stable specific capacitance even after 10,000 cycles and it is enhanced from 0.02 Fg−1 to
28.94 Fg−1 at 50 mVs−1.

Another study discussed the influence of Ag incorporation to TiO2 nanofibers on H2S detecting
characteristics. Pristine and Ag nanoparticles/TiO2 (Ag/TiO2) nanofibers were fabricated by
Ma et al. [104]. H2S sensing measurements showed that Ag/TiO2 nanofibers have much higher
detection responses and sensitivity than that of pristine Ag/TiO2 nanofibers. It is found that
the implementation of AgNPs leads to phase conversion of TiO2 to rutile from anatase phase.

For the catalytic performance of TiO2 nanofibers, Hao et al. [105] reported that mesoporous
Au/TiO2 nanofibers were obtained by incorporating Au nanoparticles (AuNPs) to TiO2

nanofibers. The nanofibers were prepared via electrospinning a mixture solution of
Ti(OC4H9)4, HAuCl4, and PVP. The effect of AuNPs loading (2, 5, and 10 wt%) toward the
reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride was
reported. The results reported a decrease in the TOF value of the catalyst and an increase in
the reaction rate constant with increasing AuNPs loading and this decline may be attributed
to the small size and high surface area in case of 2 wt%, AuNPs. In addition, Tolba et al. [106]
discussed the synthesis of ZnO nanobranches attaching TiO2 nanofibers as nonprecious
electrocatalyst for ethanol oxidation. The study reported the use of a colloidal solution of
titanium isopropoxide, poly (vinyl acetate), and ZnNPs to produce electrospun fibers.
Produced nanofibers went through a calcination and hydrothermal treatment. The study
concluded that the concentration of ZnNPs has a distinct impact on the electrical conductivity
and the electrocatalytic performance of the final nanofibers. For instance, utilizing 0.1 g ZnNPs
in the electrospinnable solution produce active and stable nanofibers for ethanol oxidation in
alkaline medium. In addition, Li et al. [107] measured the photocatalytic H2-production activity
in water splitting of 1D mesoporous NiO/TiO2 composite nanofibers. The composite nanofibers
were fabricated by electrospinning process of colloidal solution of tetra-n-butyl titanate (TBT),
PVP, and Ni(NO3)2.6H2O, and then the samples were calcined in air at 500°C for 3 h. It was
reported that the H2-production activity of TiO2 nanofibers was developed at low NiO content
(0–0.5 wt%). In fact, at 0.25 wt% of NiO, the mesoporous composite nanofibers exhibit the
highest H2-production activity. This can be related to the behavior of NiO as an active cocata-
lyst, which hinders the recombination of photogenerated charge carriers and diminishes the
overpotential of H2 production.

Electrospinning - Material, Techniques, and Biomedical Applications10



In another research for solar cells, Zr is doped into TiO2 nanofibers to be utilized as photo-
anodes of dye-sensitized solar cells (DSCs) [108]. A solution of PVAc, titanium isopropoxy,
and zirconium n-propoxy was used to produce nanocomposite electrospun fibers. It was
mentioned that the conversion efficiency of DSCs improved after Zr addition. The group
tested the effect of Zr-doping amount (0.5, 1,1.5, and 2%) on TiO2 nanofibers formulations
for DSCs. The study reported that the photovoltaic efficiency reached 4.51% in case of 1%
Zr-doping, while the efficiency was achieved to 1.61% for cells based on pristine TiO2 nano-
fibers. This improvement can be attributed to the electrons transfer and dye loading. In
more details, the presence of Zr developed the band gap through decreasing the charge re-
combination rate and, consequently, increases the electrons transfer (3.217 eV for 1% Zr-
doped TiO2 nanofibers and 3.202 eV for pristine TiO2 nanofibers). Moreover, the dye loading
of pristine TiO2 nanofibers is found to be 0.52 ×10−7 molcm−2, which is much lower than that
of 1% Zr-doped TiO2 (1.36 ×10−7 molcm−2).

3.1.4. Nickel oxide (NiO) nanofibers

NiO nanofibers exhibit good chemical and thermal stability properties and can be prepared
easily using electrospinning. High interest in preparing 3D nickel oxide (NiO) nanofibers
technology to be applied in photovoltaic devices has been reported. This is because 3D NiO
surfaces exhibit high degree of porosity, which increases the mobility of charge carriers and
consequently enhances the efficiency of photovoltaic procedures [109]. Moreover, NiO has
been used in batteries and chemical sensors industry because of its attractive characteristics
and morphological properties [110, 111].

Macdonald et al. [112] prepared NiO nanofibers for cathode fabrication using electrospinning
process of PAN and Ni(AcAc)2. NiO nanofibers were deposited into fluorine-doped tin oxide
(FTO) to produce p-type nano photocathodes with a surface area of 0.8 cm2. To remove all
organic residues, the electrode was sintered for 30 min at 450°C. The NiO nanofibers diameters
were decreased to approximately 100 nm due to the calcination influence at 500°C and the
nanofibers became more rough and straw-like structure owing to the elimination of PAN
chains. Furthermore, Jian et al. [113] discussed the electrochemical performance of La-doped
NiO nanofibers as positive electrode structures. La-doped NiO nanofibers are produced by the
calcination procedure at 650°C for 3 h of electrospinning solution of Ni(CH3COO)2.4H2O,
La(NO3)3.6H2O and PVA. They designed asymmetric supercapacitor consisting of porous-
activated carbon as a negative electrode, as-prepared La-doped nanofibers as a positive
electrode, and 2M KOH aqueous solution as an electrolyte. It was seen that the perfect La/Ni
loading ratio in the positive electrode was 1.5%. In addition, La-doping was found to develop
the specific capacitance and the electrochemical stability. In more details, the specific capaci-
tance became 94.85 F g−1, which is 5.3 times better than the capacitors with undoped NiO
nanofibers. Also, the coulomb efficiency of more than 90% is retained even after 1000 cycles.

NiO nanofibers exhibit excellent catalytic behavior. Elzatahry [114] described the use of PAN
as a sacrificial template in the electrospinning method to fabricate NiO nanofibers to be
designed as an electrocatalyst in methanol oxidation process in alkaline medium. The study
reported the use of a solution of PAN and 50 wt% NiO to produce electrospun fibers. Uniform
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fibers with a diameter of 145–170 nm and low content of submicron and random nanofibers
were produced. Porous NiO nanofibers are obtained after the elimination of PAN at 400°C for
3.5 h.

For sensing applications, Choi et al. [115] studied the fabrication of p-type NiO nanofibers and
its activity for CO and NO2 detection as a function of the size of the nanograins. The electro-
spinning solution consisted of 8.3 wt% PVA and 4 wt% nickel II acetate tetrahydrate. The
produced nanofibers were subjected to calcination at 400–850°C to adjust the nanograins size.
It was found that nanograins’ size has a limited impact on the CO and NO2 detection in case
of p-type NiO nanofibers. On the other hand, the responses of n-type NiO nanofibers were
highly dependent on the nanograins’ size. Furthermore, Luo et al. [116] addressed the synthesis
of Li-doped NiO nanofibers for nonenzymatic glucose sensing. The group reported the use of
solution mixture of PVP, Ni(NO3)2.6H2O, and LiNO3 and another solution without LiNO3, then
calcined the product at 500°C for 3 h. It was noticed that the average diameter of the formed
Li-doped NiO nanofibers was 200 nm, while that of NiO nanofibers was 150 nm. The fabricated
Li-doped NiO nanofibers exhibit high surface area, high conductivity, and high electrocatalytic
performance through holes and defective sites, which develop the electrons transfer process.
In addition, SnO2/NiO composite nanofibers were used in humidity sensing applications [117].
The study reported the use of electrospinning solution of SnCl2.2H2O, NiCl2.6H2O, and PVP
and then annealed the produced fibers at 600°C for 3 h. It was noted that the high sensitivity
of SnO2/NiO nanofibers to humidity is ascribed to the active surface area that increases the
conduction in the presence of water vapor.

3.2. Morphological characterization of metal oxide nanofibers

Morphological measurements of metal oxide nanofibers including fibers orientation, fibers
distribution, and fibers diameters can be measured using many analytical instruments such as
scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron
spectroscopy (XPS).

3.2.1. Scanning electron microscope characterization (SEM)

Scanning electron microscope (SEM), field emission scanning electron microscope (FESEM),
transmission electron microscope (TEM), polarized light microscope, and atomic force
microscope (AFM) can be utilized to study the nanofibers’ diameters. It is worth mentioning
that the high-resolution capability offered by SEM makes it a conventional technique to analyze
nanofibers of which their structures are measured by their functionalities. The SEM is also used
to study the chemical composition and surface topology and morphology. The nanograph’s
resolution is controlled by the interaction between the electron probes with metal oxide
nanofibers. In more details, SEM measurements require conductive polymers and a small
sample for morphology study. SEM analysis is a quick method used to measure the fiber
diameters using a gold coating.

Figure 3 represents the SEM micrograph of electrospun ZnO nanofibers fabricated by Kanjwal
et al. [95]. Figures 3(A) and (B) confirms the formation of continuous and smooth nanofibers
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of ZnAc/PVA. Furthermore, the addition of Zn NPs did not affect the structure of the produced
nanofibers without any beads formation as clearly represented in Figures 3(C) and (D). It
should be also mentioned that the average diameters of the fabricated nanofibers are decreased
after calcination process at 500°C for 90 min and this significant decrease can be attributed to
the elimination of polymer matrix due to calcination at high temperatures. The shape of the
nanofibers is not influenced by the addition of Zn NPs in general but there is an influence on
the nanofibers’ surface. Moreover, the surface of the nanofibers was relatively smooth in the
case of Zn/Ac, while the addition of Zn NPs produced nanofibers with a rough surface.

Figure 3. Low and high magnification SEM images of the powder obtained after calcination of ZnAc/PVA nanofibers
mats (A and B), and Zn NPs/ZnAc/PVA (C and D) at 500°C for 90 min [95].

3.2.2. X-ray diffraction (XRD) characterization

XRD analysis is handled to study the crystal morphologies of various solids and metal fibers,
including the lattice constants and geometry, the orientation of the single crystal, crystallite
size, and crystal defects. The degree of crystallinity of the produced metal oxide nanofibers
can be calculated from X-ray diffraction (XRD), both wide angle and small angle (WAXS and
SAXS) and also from differential scanning calorimetry (DSC). A solid sample of metal oxide
nanofibers is irradiated with X-rays of fixed wavelength while the angle of the diffracted X-
ray beam is controlled as a function of the intensity of the diffracted beam. Moreover, each
lattice plane satisfies Bragg’s equation from which the values of the d-spacing between platelet
sheets can be determined. XRD analysis was achieved to measure the crystal structures of the
calcined ZnO nanofibers prepared by Kanjwal et al. [95] as described in Figure 4.
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Figure 4. XRD patterns of nanofibers after calcination of (A) Zn NPs-free and (B) the hydrothermal product [95].

XRD results, in this case, confirm the synthesis of ZnO nanofibers. A SPECTRUM A of the
annealed ZnO nanofibers confirms the formation of pure ZnO powder. It should be also noticed
that the XRD spectra are not influenced by the incorporation of Zn NPs. In addition, the
hydrothermal product has the same beaks as represented in spectra B.

3.2.3. X-ray photoelectron spectroscopy (XPS)

Another important characterization tool to investigate the surface chemistry of electrospun
metal oxide nanofibers is X-ray photoelectron spectroscopy (XPS). The surface chemical nature

Figure 5. XPS data of the hydrothermally fabricated ZnO nanofibers [95].
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of the metal oxide nanofibers can be estimated by its hydrophilicity which can be characterized
by using XPS. XPS is performed to support the obtained XRD results and to measure the
oxidation states and the changes in binding energies. The possible changes in binding energies
of the prepared ZnO nanofibers have been reported by Kanjwal et al. [95] as represented in
Figure 5. The peak of C 1s at 284 eV is related to the graphite tape employed in the sampling.
The Zn 2p region in ZnO sample consists of the main 2p3/2 and 2p1/2 spin-orbit components
with binding energies of 1020 and 1043 eV, respectively.

4. Conclusions

Electrospinning is an important technique for fabricating polymer and 1D metal oxide
nanofibers. The desired characteristics can be measured by nanofibers’ structure, which is
controlled by various parameters including electrospinning solution, process, and ambient
parameters. Selected polymers are critically used to prepare electrospun fibers’ templates for
this approach. The polymers used in this approach can be categorized into three classes
including natural, synthetic, and copolymers. Electrospinning technique represents a vital
promise with some borders for many applications such as small pore size and lack of cellular
infiltration, which can be enhanced through multilayering and using of polymers of altered
degradation grades. The technique has been adapted to produce many 1D metal oxide
nanostructures for different important applications. This chapter introduced the fabrication of
various metal oxide nanofibers which has attracted a significant attention because of their vital
applications in the recent years such as tin oxide, zinc oxide, titanium oxide, and nickel oxide.
Specific polymers were chosen as a sacrificial template to synthesize metal oxide nanofibers.
After the annealing process, the organic specimens will be decomposed and the metal oxide
nanofibers will be produced. Scanning electron microscope, X-ray diffraction, and X-ray
photoelectron spectroscopy are used to characterize electrospun metal oxide nanofibers. The
obtained data confirm the formation of homogeneously distributed metal oxide nanofibers.
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