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Abstract

In 1987, Corana et al. published a simulated annealing (SA) algorithm. Soon thereafter in
1993, Goffe et al. coded the algorithm in FORTRAN and showed that SA could uncover
global optima missed by traditional optimization software when applied to statistical
modeling and estimation in economics (econometrics). This chapter shows how and
why SA can be used successfully to perform likelihood-based statistical inference on
models where likelihood is constrained by often very complicated functions defined on
a compact parameter space. These constraints arise because likelihood-based inference
involves comparing the maxima of constrained versus unconstrained statistical optimi-
zation models. The chapter begins with a review of the relevant literature on SA and
constrained optimization using penalty techniques. Next, a constrained optimization
problem based in maximum likelihood stress-strength modeling is introduced, and its
statistical and numerical properties are summarized. SA is then used to solve a sequence
of penalty-constrained optimization problems, and the results are used to construct a
confidence interval for the parameter of interest in the statistical model. The chapter
concludes with a brief summary of the results and some ways we were able to enhance
the performance of SA in this setting.
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1. SA and penalty-constrained optimization

Several chapters in this book consider the foundations and development of the simulated

annealing (SA) algorithm. In this chapter, we focus on just one version of the algorithm given

in Ref. [1] and one FORTRAN implementation of the algorithm presented in Ref. [2]. The

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



reasons for this are efficiency and familiarity. The algorithm in Ref. [1] is tight and effective and

the FORTRAN implementation in [2] is dependable, easily extensible and sufficiently fast that

it can be applied to both complicated small-scale problems and to very large Monte Carlo

studies such as the one in Ref. [3].

1.1. Background

The SA algorithm in Ref. [1] was developed as an approach to find the unconstrained global

optimum of functions with a potential multiplicity of optima, some of which may lie on the

boundaries of the function’s domain. The function being optimized need not be differentiable

or even continuous, but it must be bounded. As well, the domain of the function must be

compact. The search algorithm in Ref. [1] depends upon function evaluations. Derivatives

play no role. The reader is referred to the careful statement of the algorithm on pages 266–269

in Ref. [1]. Here we provide an overview of the algorithm and its implementation.

In a multivariate setting, the domain of the function is initially defined as a (perhaps very)

large hypercube. Random paths of individual choice variable values are searched at each stage.

The number of such searches is controlled by the user. The step sizes that partially define the

random paths are part of the algorithm and will in general be different for each choice variable

at each stage. The algorithm cycles through and individually changes (increases or decreases)

all choice variables. Each time a variable change leads to a “better” value of the function being

optimized, this point is accepted. Sometimes “worse” points are temporarily accepted. That is,

sometimes, the algorithm deliberately allows a search path at a stage to contain “worse”

points. By allowing the paths to meander through better and worse points in the domain, the

algorithm allows the domain to be searched for better optima that can only be reached by first

passing through the worse regions. In this way, the search process can escape from local

optima that are dominated by one or more global optima. This distinguishes SA from tradi-

tional hill-climbing algorithms that use the local properties of the function to move always in

better directions. Movements in worse directions are governed by a Metropolis decision. In a

sense, the Metropolis decision can be thought of as the algorithm giving permission to the

search process to move in a worse direction, depending upon the roll of a (weighted) die. As

the algorithm progresses through subsequent (“cooling”) stages, the chance that a worse point

will be permitted/accepted decreases. In addition, as the algorithm progresses, the effective

domain of the function (that part of the domain to which the search is effectively restricted) is

contracted. In part, the search evolves in a fashion consistent with the overall (global versus

local) topography of the surface of the function being optimized. Asymptotically, the algorithm

converges to a domain that contains the best optimum encountered and which has a user-

specified (small) volume. Convergence criteria and the number and length of searches at each

stage are determined by parameters set by the user.

The FORTRAN implementation in Ref. [2] is faithful to the algorithm in Ref. [1], but it does

include some features and suggestions that tend to help in deciding whether a global optimum

has been reached and, in the initial stages of optimization, the features allow the researcher to

search individual subsets of the domain of the function. The researcher can control the number
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of searches, the initial “temperature” of the model and the rate at which temperature

decreases. Uphill and rejected downhill moves are balanced by changes to the upper and

lower bounds on parameter changes. In Ref. [2], the suggestion is made that starting the SA

algorithm from a variety of randomly selected domain points may provide information about

whether a global optimum has been found. This is balanced, to some extent, by the realization

that the properties of SA that make it a global optimizer also tend to make it independent of

initial values of the choice variables. Any indication of sensitivity to starting values is, there-

fore, a strong suggestion that the SA user-determined parameters should be changed to

provide a more thorough search.

As with any mathematical tool, becoming adept at using SA to solve optimization problems

requires practice. FORTRAN code for the SA implementation in Ref. [2] is widely available.

This code, written in FORTRAN 77, is carefully documented and contains an example

problem that illustrates many of the features of SA. These features, such as convergence

criteria, cooling rate, lengths of search paths, and the like can be adjusted to study how the

implementation works. It is straightforward to code and solve new problems. The advice in

Ref. [2] and in the code is helpful in finding the set of search parameters that solves the

problem at hand.

Finally, Goffe et al. [2] address the issue of the speed of SA and recommend the ways that the

user can tune the implementation to run more quickly. The implementation was published in

1994, and since then multicore very fast processors with at least 64-bit single precision have

become the norm. At the same time, though, there are optimization problems that are now

being addressed at the limit of current technology.

1.2. Penalty-constrained optimization

The foregoing discussion has provided an overview of SA and how it can be applied to

optimize a function. We now turn to a discussion of how SA can be used to find the global

optimum of functions when there are constraints on the choice variables. Our principal con-

cern is how to find the optimum of the statistical functions when the choice variables must

satisfy an integral equality constraint. Our approach, however, is quite general and it can be

adapted to solve optimization problems subject to several inequality as well as equality

constraints that may or may not involve integrals. At this point, it is helpful to introduce some

notation.

Our choice variables are represented by the vector: θ. The objective function to be maximized

is given by: l(θ). As well, there is a constraint given by: R(θ) = ψ0. In the statistical problem

considered in the next section, we examine the unconstrained problem.

1.2.1. (Unconstrained problem) U: choose θ to maximize l(θ)

(Unconstrained Problem) U: Choose θ to maximize l(θ) is an important part of the analysis. It

is almost always the case in statistical settings that the unconstrained problem can be solved in

a straightforward manner using SA.
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1.2.2. (Constrained problem) C: choose θ to maximize l(θ) subject to R(θ) = ψ0

(Constrained Problem) C: Choose θ to maximize l(θ) subject to R(θ) = ψ0 can also be solved

using simulated annealing. Indeed, as we will see, SA is a very natural approach to solving

problem C.

Within a statistical setting, substitution and Lagrange multiplier techniques tend not to work

well when attempting to solve C. Typically, the objective function, l(θ), and the constraint, R

(θ) = ψ0 will not have properties that guarantee a straightforward solution to the optimization

problem. For example, the constraint can reasonably be expected to be a highly nonlinear

function of the choice variables, θ. In both the substitution and Lagrange approaches, it is

necessary at each iteration to solve the constraint equation to express one choice variable in

terms of all of the others. If one or more of the choice variables takes on an extreme value (very

large or very small) during the iteration process, then this can lead in turn to an extreme

constraint solution and such extreme values tend to perpetuate themselves through subse-

quent iterations. The traditional absence of some form of textbook concavity or convexity on

the objective function and/or the constraint function typically results in a failed optimization

attempt. Standard derivative-based optimizers often get lost when derivatives take extreme

values or when the Hessian of the function is indefinite. In part, this is due to their strong

dependence upon local properties of the function being optimized.

The penalty function approach provides an alternative way of dealing with the constraint,

which does not require exact satisfaction of the constraint equation at each “iteration.” In fact,

the constraint equation only holds asymptotically. To clarify this, we begin by introducing the

penalty function PL:

PL θ;ψ0

� �

¼ l θð Þ−k R θð Þ−ψ0

� �2
, k > 0: (1)

This is the penalty function associated with the constrained optimization problem C intro-

duced above. In this case, k is a positive parameter controlled by the researcher.

In a recent paper, Byrne [4] studied how the penalty functions like PL could be used to solve

constrained optimization problems such as C. The following three conditions are introduced:

1. θ is chosen from a compact set.

2. The functions l(θ) and R(θ) are continuous.

3. Let θ�
k be the vector that corresponds to the global maximum of PL in Eq. (1) when the

parameter multiplying the squared term is k. We assume that each element in the sequence

θ�
k , k ¼ 1, 2,…

� 	

exists.

Then, based on these conditions, it is proved in Ref. [4] that the sequence θ�
k , k ¼ 1, 2,…

� 	

converges to the θ* that solves problem C.

This result is extremely important for applying simulated annealing to solve constrained

optimization problems. First, SA chooses candidate optimizers from a compact set. Second,

continuity of the penalty function PL is more than what is required for SA to reach a global

Computational Optimization in Engineering - Paradigms and Applications72



optimum. The complicating point is that the result in Ref. [4] is expressed in terms of the limit

of a sequence of SA optimizations. But, in our experience, this is not a complication of

considerable practical importance. In the first place, even for large values of k, SA is not helped

by starting the iterations for the (k + 1)st solution at the optimal values from the kth solution. In

practice, given that SA searches (“cools”) sufficiently slowly and follows long enough paths in

the domain, it tends to find the global solution of the (k + 1) problem regardless of the starting

values it is given. Second, there is a practical issue of how much accuracy can be expected. The

SA algorithm terminates when successive improvements in the value of the objective function

are all less that a user-specified threshold. This means that the contribution of the term k[R

(θ) − ψ0]
2 must also be small in absolute value. In all of the problems we have considered,

setting k = 100, 000 is certainly enough to get a high-quality estimate of θ*. That is, it is

reasonable to truncate the sequence at this value of k.

In concluding this section, we reconsider the question: “Why does a penalty approach work

when the Lagrange approach fails?” In our experience, the Lagrange approach, which requires

solutions of an equation to a given level of accuracy, is prone to problems of numerical

accuracy and their propagation. Alternatively, the penalty approach never requires the con-

straint to be exactly satisfied. Instead, it increasingly discourages large squared deviations of

the constraint function R(θ) from its constraint value ψ0 as k increases. As a final point, when

conditions are satisfied for the Lagrange multiplier formally to exist, it can be obtained as the

limit of the partial derivative of the penalty function with respect to the parameter ψ0 as k

increases.

2. Modeling reliability using SA penalized likelihood

2.1. Background on reliability

We consider two variables X and Y. We refer to them respectively as Strength and Stress. For

example, Strength could refer to the “time before failure” of a component such as a digital

storage device. Alternatively, Stress might measure the total time that the device is used. From

the standpoint of a manufacturer, X and Y are both random variables with distributions that

can, in principle, be estimated from available breakdown and usage data. Reliability, R, is

defined as the probability that the component will withstand the stress it faces in use. In

particular,

R ¼ P Y < Xð Þ: (2)

A variety of distributions have been used for X and Y in the literature. The actual choice

depends upon the process being studied. It is standard and reasonable to suppose that X and

Y are independent.1

1

That is, the probability distribution of Y does not depend upon any realized value of X and vice versa. If dependence is

possible in a given setting, it is easily accommodated. Formally, (Eq. (2)) will continue to hold, but additional parameters,

associated with the interdependence, may appear in both the objective function and the constraint. In a formal sense, the

penalty approach is unchanged.
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In this section, we suppose that both X and Y are distributed as exponentiated exponential

distributions. Exponentiated exponential distributions, EE(α, β), have two parameters: α > 0

controls shape and β > 0 controls scale. Adopting the notation introduced in Ref. [5], the

cumulative distribution function is:

F x;α; β
� �

¼ 1−e−βx
� �α

, α > 0, β > 0, x > 0; (3)

As in Ref. [6], we assume that X is distributed as EE(α1, β1) and Y is distributed as EE(α2, β2).

We do not, however, constrain the scale parameters, β1 and β2, to be equal. As a result, the

expression for reliability is:

R ¼ P Y < Xð Þ ¼

ð∞

0

α1β1 1−e−β1x
� �α1−1 e−β1x 1−e−β2x

� �α2 dx: (4)

There is no known closed-form solution for this integral. As noted in Ref. [7], introducing the

change of variables: z = β1x allows one to see that R is homogeneous of degree 0 in (β1, β2). The

contours of R are, therefore, all constant along a line in a parameter space defined by β2 = β1.

2.2. The unconstrained EE likelihood equation and it properties

Following Ref. [7], we let x = (x1, …, xn)′ and y = (y1, …, ym)′ denote the realizations of random

samples from EE(α1, β1) and EE(α2, β2), respectively. The log-likelihood function of the above

model can be written:

l α1; β1;α2; β2; x; y
� �

¼ nlogα1 þ nlogβ1 þ α1−1ð Þ∑
n

i¼1
log 1−e−β1xi

� �

−β1 ∑
n

i¼1
xi

þmlogα2 þmlogβ2 þ α2−1ð Þ∑
m

j¼1
log 1−e−β2yj

� �

−β2 ∑
m

j¼1
yj:

(5)

We denote the parameter vector as θ = (α1, α2, β1, β2)′.

The Appendix in Ref. [7] contains a derivation of the properties of l(θ) = l(α1, β1, α2, β2; x, y). In

particular, l(θ) is not a concave function of θ nor is it quasi- or pseudo-concave. There is a small

region around the point where the gradient of l(θ) vanishes and in that region, the Hessian

matrix is negative definite. Elsewhere in the parameter space, the determinant of the Hessian

matrix changes sign frequently. Thus, extreme care must be taken in trying to maximize l(θ),

using a derivative-based algorithm. We found that a variable-metric algorithm would work as

long as an approximate Hessian matrix, constrained to be negative definite, is used over a

restricted parameter space.

One example, which we consider in greater detail later in the paper, uses the following data

with sample sizes of 11 and 9: x= (2.1828, 0.5911, 1.0711, 0.9007, 1.7814, 1.3616, 0.8629, 0.2301,

1.5183, 0.8481, 1.0845) and y= (0.8874, 1.1482, 0.8227, 0.4086, 0.5596, 1.1978, 1.1324, 0.5625,

1.0679). Our SA program quickly and easily solved the associated unconstrained maximum

likelihood optimization problem.
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2.3. Constrained likelihood maximization

As will be discussed in the next section, inference for the “parameter” R(θ) in our reliability

model requires that the likelihood function l(θ) be maximized subject to the constraint R

(θ) = ψ0 for a range of values of the constraint parameter ψ0. These constrained optimization

problems are all solved using the penalty function approach introduced in Section 1.2 and

using the penalty function PL(θ, ψ0) given in Eq. (1). The functions l(θ) and R(θ) can be thought

of now as the unconstrained EE likelihood function and the reliability function, respectively.

3. Likelihood-based inference and penalty functions

In Eq. (5), we introduced the statistical log-likelihood function primarily as an example of a

function that needs to be maximized (with and without constraint) in a statistical setting. In

this section, we provide more details about likelihood functions and inference. Our brief

discussion is not intended as a complete explanation of the underlying statistical notions.

Rather, it is intended only to motivate some importance of constrained and unconstrained

optimization within statistics. Our discussion is rooted in the example of Eq. (5).

3.1. Background on likelihood models in statistics

Likelihood is akin to probability. The difference in the notions for our purposes is that likeli-

hood is measured in terms of the probability density governing the realizations of a continu-

ous random variable. Technically, the probability of any one outcome, say x0, of a continuous

random variable is 0. The value of the density, say h(x), evaluated at x0 and multiplied by dx,

that is, h(x0) dx, can be thought of as approximately the probability that there will be a

realization of the random variable X in a very small interval containing x0. It is common to

have situations where the realized (observed) values of a random variable X arise from a

process of random sampling where the outcomes are independent of each other yet are

governed by identical probability density functions, h(x). The likelihood of a given sample of

realized values is defined as the product of the densities corresponding to each of the outcomes

in the sample; so the likelihood of a given sample is, up to a scaling factor, a notion similar to

the probability of the sample. The likelihood of a sample of realizations of X and Y is, given our

assumptions, the product of the likelihoods of the X and the Y samples. For a variety of

reasons, it is often easier to work with a positive monotonic transformation of the sample

likelihood. In particular, we work with the log-likelihood of the sample. In Eq. (5), we are

given the log-likelihood of a sample where the densities come from possibly different

exponentiated exponential distributions.

The derivation of the log-likelihood associated with a sample of realizations is just the begin-

ning of the modeling process. Extensions include forecasting the next realization of a random

variable or perhaps finding an interval where one can be 95% confident that the next realiza-

tion of a function of the random variables will fall. For example, we could ask for a 95%

confidence interval of the measure of reliability in Eq. (4), incorporating the information in the
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sample given at the end of Section 2.2. These are questions of statistical inference. We answer

these questions by solving the optimization problems.

The likelihood function given in Eq. (5) can be combined with the sample of 11 realizations of

X and 9 realizations of Y given in Section 2.2. We can use the information in the data to

estimate the unknown vector of parameters: θ = (α1, α2, β1, β2). One set of estimates of the

parameters of the model is obtained by maximizing the likelihood function with the choice

variables being the parameters. These maximum likelihood parameter estimates can be

thought of as the parameter values that yield specific density functions that are most likely to

have generated the data. Of course, 20 observations are not enough to achieve certainty, so

there is a related theory about where the true (population) parameters lie in relation to their

estimates. Indeed, there are probability distributions associated with the maximum likelihood

parameter estimation process, and the parameter values that maximize the log-likelihood for a

given sample of data realizations are themselves just realizations. These probability distribu-

tions or their approximations allow us to estimate how close the parameter realizations are to

the true parameter values.

There is also a probability distribution for the maximized value of the log-likelihood function.

This allows us to ask questions such as the following: do I induce a “significant” change in the

maximized likelihood value when I constrain the parameter estimates (choice variables) to

satisfy an additional condition or set of conditions. This leads back to the constrained optimi-

zation problem C in Section 1.2, and the penalty function in Eq. (1).

In the subsection that follows, we present the process of inference for our reliability model. The

presentation is more technical.

3.2. Inference in the reliability model

Given l(θ) is the log likelihood function, we denote the unconstrained maximum likelihood

estimator bθ when l(θ) alone is maximized. As well, we define

j bθ
� �

¼ −
∂
2l θð Þ

∂θ∂θ′

����bθ
(6)

as the observed information matrix evaluated at bθ. Finally, we let bθψ be the constrained

maximum likelihood estimator of θ given by maximizing l(θ) subject to R(θ) = ψ. Formally,

bθψ can be obtained for any ψ in the range of R(θ) by maximizing l(θ) subject to the constraint R

(θ) = ψ using the penalty function approach within SA.

The aim next is to obtain inference concerning R = R(θ), where dim(R) = 1. Two widely used

likelihood-based methods for obtaining confidence interval for R are based on the asymptotic

distribution of the maximum likelihood estimator bθ and the (log) likelihood ratio statistic.

Taking θ as the true population parameter vector, bθ−θ
� �′

var bθ
� �h i−1 bθ−θ

� �
is asymptotically

distributed as chi-square with degrees of freedom equal to dim(θ), and variance-covariance
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matrix cvar bθ
� �

≈j−1 bθ
� �

. Since R = R(θ) depends upon the entire vector of parameters, we

approximate its variance by applying the Delta method to bR ¼ R bθ
� �

and obtain:

cvar bR
� �

≈R′

θ
bθ

� �
cvar bθ

� �
Rθ

bθ
� �

(7)

where

Rθ
bθ

� �
¼ ∂R θð Þ

∂θ

����bθ
: (8)

Since dim bR
� �

¼ 1, we have

bR−R
ffiffiffiffiffiffiffi
cvar

p bR
� � (9)

asymptotically distributed as standard normal. An approximate (1 − α)100 % confidence

interval for R based on bθ is

bR−zα=2
ffiffiffiffiffiffiffi
cvar

p
bR

� �
, bR þ zα=2

ffiffiffiffiffiffiffi
cvar

p
bR

� �� �
(10)

where zα/2 is the (1 − α/2)100th percentile of the standard normal distribution. This is our first

confidence interval.

Alternatively, with regularity conditions stated in Refs. [8, 9], the log likelihood ratio statistic:

W ψð Þ ¼ 2 ℓ bθ
� �

−ℓ bθψ

� �h i
(11)

is asymptotically distributed as chi square with 1 degree of freedom. Therefore, an approxi-

mate (1 − α)100 % confidence interval of R based on the likelihood ratio statistic is:

ψ : W ψð Þ≤χ2
1,α

n o
: (12)

The set of all constrained values ψ in the domain of R that cannot be rejected at the (1 − α)100 %

as the true value R(θ) is defined in Eq. (10). These values form our second confidence interval.

It should be noted that both methods have rates of convergence O(n− 1/2). While the MLE-based

interval is often preferred because of simplicity in calculation, the log-likelihood ratio method

has the advantage that it is invariant to reparameterization and the MLE-based method is not.

The results presented in Ref. [10] suggest that, in terms of coverage, the confidence interval

based on the log-likelihood ratio statistic should be preferred to the MLE-based interval. In

particular, when 95% confidence intervals for both statistics are compared, the interval from

the log-likelihood ratio statistic is shorter and therefore more precise.
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The results are summarized in Table 1. We note that, consistent with Ref. [10], the χ2 interval is

indeed shorter than the MLE interval.

4. Conclusion

This chapter has considered how SA can play an important role as a global optimizer of

constrained likelihood-based statistical models. SA is naturally paired with the penalty func-

tion approach to constrained optimization. SA and the penalty approach both require compact

domains and bounded functions. Penalty functions must be continuous and, within a statisti-

cal setting, this almost always holds. SA supplies the global optimization property that guar-

antees that the penalty function approach converges to the global constrained optimum. Even

though our implementation of SA does not make use of derivatives, the converged penalty

function will often be differentiable and Lagrange multipliers, gradients, and Hessian matrices

can be calculated. The extension of these results to multiple constraints is computationally

straightforward.

In this chapter, we have motivated the pairing of SA and penalty functions in a statistical

setting. But the approach can be used to solve many other types of numerical constrained

optimization problems. Over time, we have accumulated a considerable amount of experience

solving constrained problems using SA and the penalty functions. One lesson stands out: SA is

a global optimizer and, for the most part, it should be independent of initial conditions such as

starting values of parameters (choice variables). If you find that you get a different optimum

after changing the starting values, then it is likely that neither solution is the true global

optimum. You can usually remedy this by increasing the initial temperature, slowing the rate

of cooling, and/or increasing the length and number of search paths.
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