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Abstract

This  chapter  presents  a  novel  hardware  architecture  for  correlation-based  spike
detection and unsupervised clustering. The architecture is able to utilize the information
extracted from the results of spike clustering for efficient spike detection. The architec-
ture  supports  the  fast  computation  for  the  normalized  correlation  and  OSORT
operations. The normalized correlation is used for template matching for accurate spike
detection.  The OSORT algorithm is  adopted for  unsupervised classification  of  the
detected spikes. The mean of spikes of each cluster produced by the OSORT algorithm
is used as the templates for subsequent detection. The architecture adopts postnormal-
ization technique for reducing the area costs. Modified OSORT operations are also
proposed for facilitating unsupervised clustering by hardware. The proposed architec-
ture  is  implemented  by  field  programmable  gate  array  (FPGA)  for  performance
evaluation. In addition to attaining high detection and classification accuracy for spike
sorting, experimental results reveal that the proposed architecture is an efficient design
providing  low  area  cost  and  high  throughput  for  real-time  offline  spike  sorting
applications.

Keywords: spike sorting, spike detection, spike clustering, field programmable gate
array, brain machine interface

1. Introduction

There is an increasing demand in data-acquisition systems for neurophysiology to record
simultaneously from many channels over long time periods [1]. These experiments accumulate
large amounts of data, which would be processed by spike sorting systems [2] for analyzing the
activities of neurons. Atypical spike sorting system usually involves complicated spike detection
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and classification operations for separating spikes from background noise and clustering the
detected spikes. Large amount of spike-trains would impose heavy computation load for a
software spike sorting system, resulting in long processing time.

One approach to reduce the computation time is to implement a spike sorting system by
hardware. A number of spike sorting systems based on field programmable gate array (FPGA)
[3] have been proposed. In [4], a spike classification architecture using probabilistic neural
networks [5] is proposed. Although high speed-up over its software counterpart is observed,
the system does not provide spike detection. In addition, the architecture requires the user to
input the number of clusters. Therefore, it does not support a fully unsupervised hardware
classification. Similarly, the architecture proposed in [6] also focuses on the classification. The
generalized Hebbian algorithm (GHA) [7] is implemented by FPGA in this work for feature
extraction. The features produced by the architecture are then clustered by the k-means
algorithm. The architecture does not include the hardware implementation of the k-means
algorithm. In addition, the number of clusters still needs to be prespecified in the k-means
algorithm. The architecture in [8] is able to carry out the feature extraction and clustering in
hardware. In the architecture, the feature extraction and clustering are based on GHA and
fuzzy c-means [9] algorithm, respectively. Therefore, similar to the architecture in [6], fully
unsupervised classification is difficult for the architecture in [8] because the number of clusters
still needs to be known beforehand.

An alternative FPGA-based hardware architecture [10] is to adopt OSORT algorithm [11] for
spike-sorting. The OSORT algorithm is able to perform clustering without the prior knowledge
of the number of clusters. Unsupervised classification therefore can be carried out. The
architecture also includes a spike detection circuit based on the nonlinear energy operators
(NEOs) [12], which is an energy-based detection algorithm. Similar to other energy-based
algorithms [13, 14], the NEO algorithm is simple and effective. However, although the energy-
based algorithms can operate in conjunction with a number of automatic threshold algorithms
[12–14], proper selection of threshold values for these algorithms may still be difficult when
noise becomes large. Therefore, their performance may deteriorate rapidly as noise energy
increases.

The template-based spike detection algorithm may be suited for the detection of spikes from
the source sequences with high noise level. A matched filter [15, 16] is a typical technique
based on templates. To detect the presence of the templates, the filter correlates known
templates with the input spike trains. This operation can also be viewed as a likelihood ratio
detection (LRT) [17]. A drawback of the matched filter is that the templates are required.
Although the adaptive generation of templates is possible [18], only a single template is
produced for spike trains. However, because spike trains in general are formed from two or
more neurons, a single template may not be sufficient for the detection of all the spikes
generated by the neurons. The template-based algorithm presented by [19] has been found to
be effective for the detection of noisy spikes. It adopts the OSORT algorithm for automatic
template generation. Normalized correlation operations then carry out the spike detection
using the templates produced by the OSORT algorithm. Nevertheless, in the algorithm, both
the template generation and correlation computation have high computational complexities.
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The software implementation of the algorithm may not be suitable for fast analysis of spike
trains.

The objective of this chapter is to present a novel FPGA-based hardware architecture for
efficient spike detection and clustering. The architecture supports both the normalized
correlation operations for spike detection and the OSORT operations for spike clustering.
Moreover, the clustering results produced by the OSORT algorithm are used as the templates
for spike detection. The architecture is the hardware implementation of the algorithm in [19].
It then has the advantages of accurate spike detection, fully unsupervised spike clustering, and
fast computation.

We have implemented a spike sorting system on a network-on-chip (NOC) platform for the
evaluation of the proposed architecture. The platform is based on FPGA. It consists of a soft-
core processor [20] and the proposed architecture. The proposed spike sorting architecture is
used as a hardware accelerator of the soft-core processor for spike sorting. The simulator
developed in [21] is adopted to generate extracellular recordings. In this paper, comparisons
with the existing software and hardware implementations are made. Experimental results
show that the proposed architecture attains a high speed-up over its software counterpart for
spike sorting. It also has a lower area cost over existing hardware architectures. Experimental
results reveal that the proposed architecture is an effective alternative for real-time spike
sorting with accurate detection and clustering.

2. The algorithm

Before presenting the hardware architectures for spike sorting, we first review the spike
detection and clustering algorithms adopted by this work. Detailed discussions of these
algorithms can be found in [19].

2.1. Normalized correlation

Consider a spike train X, where the mth sample of X is denoted by x[m]. Moreover, the mth
segment of the spike train X is denoted by xm = [x[m], x[m − 1], …, x[m − N + 1]]T, where N is
the length of the segment. Suppose the spike train is processed by a matched filter with
template t = [t[0], …, t[N − 1]]T. Let �� and � be the normalized version of xm and t, respectively.

That is,

 , .= =
x tx t
x t
m

m
m

(1)

The normalized output at m, denoted by, � � , is computed from
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This is the inner product of segment �� and template �, which indicates the normalized

correlation between these two vectors. The segment xm is detected as a spike when � �  is larger
than a prespecified threshold η. Let � ��, � be the squared distance between ��and �. It can be

shown that

( , ) 2 2 .= -x t x tTm md (3)

Because � ��, � ≥ 0,

1.£x tTm (4)

Our normalized correlation operations are based on �� and �. When ��� � ≥ �, then xmis detected

as a spike. From Eq. (4), it follows that

1£η (5)

The normalized correlation operations shown in Eq. (2) may have high computational
complexities. Although the template � can be computed beforehand, the computation of ��
still needs to be carried out online, involving the calculation of||xm||and �� = ����  . Note

that N multiplications, N−1 additions, and one squared root operation are required for the
computation of ||xm||. Moreover, N divisions are needed for ��. Finally, the inner product of��� � requires N multiplications and N−1 additions. In total, the basic implementation of the

normalized correlation operations requires 2N multiplications, (2N−2) additions, N divisions,
and 1 squared root operation. When the fast computation is an important concern, the
hardware implementation may then be desirable.

2.2. OSORT algorithm

The OSORT algorithm is an unsupervised template-based clustering algorithm for spike
sorting. It does not require feature extraction, and the number of clusters c is automatically
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determined by the algorithm. Define ��, � = 1,…, �, as the clusters of spikes generated by the

OSORT algorithm, where ti, i = 1, …, c, is the average value of the spikes belonging to ��.
Given a current detected spike s for clustering, in the OSORT algorithm, the squared dis-
tances di = d(s, ti) for i = 1, …, c are first computed. The minimum distance ��* is then iden-

tified, where �* = arg min� ��. We will assign s to ��* when ��* is less than a prespecified

threshold τ1. In this case, because ��* has a new member, its mean value ��* will also be

updated. Otherwise, a new cluster is created, where s is its only member. After the updat-
ing of ��*, the cluster merging process will be activated. The process involves the computa-

tion of the distance between ��* and tj, i* ≠ j. Two clusters ��*and ��*will be merged when� ��*, ��* < �2, where�* = arg min�, � ≠ �* � ��*, �� . Figure 1 summarizes the operations of the

OSORT algorithm.

Figure 1. The flowchart of OSORT operations.
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2.3. Normalized correlation and OSORT algorithm for spike sorting

By combining the normalized correlation with the OSORT algorithm, an effective spike sorting
system for both spike detection and classification can be realized. The system is a feedback
system capable of automatic template generation for spike detection and unsupervised
clustering for the classification. The block diagram of the system is revealed in Figure 2.

Figure 2. The block diagram of the spike detection/sorting system based on GLRT test, normalized correlator, and
OSORT algorithms.

Initially, the clusters and templates produced by the OSORT are not available. As a result, it
may be difficult to carry out the normalized correlation for spike detection. One way to solve
this problem is to use only the block energy for the detection of spikes. The detected spikes are
then clustered by the OSORT algorithm for the generation of initial templates.

After the templates become available, the spike detection is then based on the normalized

correlation ��� �. The input block is detected as a spike when any of the c normalized correlation

exceeds the threshold η. Because of the normalized correlation operations, the threshold value
is bounded as shown in Eq. (5). Note that the templates for spike detection will be updated
regularly so that the variations of input signals can be tracked to improve the spike detection
performance.

Field - Programmable Gate Array6



The hardware architecture for implementing the spike sorting system is depicted in Figure 3.
The architecture contains two modules and one controller. The first module of the architecture,
termed normalized correlator module, is responsible for the spike detection. It is capable of
performing both the GLRT and normalized correlation operations. The second module, termed
OSORT module, carries out the unsupervised OSORT spike sorting. The global controller
coordinates the operations of these two modules. The architecture and detailed operations of
the normalized correlator module and OSORT module are presented in the following two
sections.

Figure 3. The hardware architecture of the proposed spike sorting system.

3. Architecture of the normalized correlator module

The block diagram of the normalized correlator module is revealed in Figure 4. The module
supports the filtering, block energy computation, correlation computation, detection, and
buffering. The filtering operation is the preprocessing step for the spike detection. It reduces
the DC offset and noises. The objective of the block energy computation is to find ||xm||2,

which is then followed by correlation computation for calculating ��� �. The detection results

are then produced by the comparison operations. The detected spikes are stored in the switch
buffer, which can be accessed by the OSORT module for subsequent clustering operations.
Without loss of generality, the length of spike is set to be N = 64 for our discussion.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
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Figure 4. The block diagram of the normalized correlator module.

3.1. Filter unit and block energy computation unit

The filter unit is a hardware implementation of a band-pass Butterworth filter. The filter unit
contains multipliers, shift registers, and adders. The architecture is a simple realization of the
direct form I of IIR filters. To implement the block energy computation unit, we first note that
a basic approach may involve N multiplications for the energy computation, resulting in high-
area costs. The proposed approach is based on the fact that

2 2 2 2
1 .- é ù é ù= + - -ë û ë ûx xm m x m x m N (6)

Consequently, the calculation of ||xm||2 needs only two multiplications. This is because ||
xm − 1||2 (i.e., the block energy of the previous block) is already available. Figure 5 shows the
resulting design, which contains two multiplier, a single N-stage shift register, and two adders.
The goal of the shift register is to store the previous samples (i.e., x[k], k = m − 1,…, m − N) of
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x[m]. The shift register therefore is able to offer the sample x[m − N] for the calculation of
x2[m − N]. In addition, the shift register can be employed for the correlation computation.

Figure 5. Architecture of block energy computation unit.

3.2. Correlator unit

The goal of the unit is to carry out the normalized correlation ��� �. Note that the normalized

template � can be obtained offline from the OSORT circuit. Therefore, it is only necessary to
find �� online. One simple approach to compute �� is to divide each sample of xm by ||xm||.

Because the block xm contains N samples, N dividers are required. In the proposed architecture,

a novel postnormalization approach is employed, where the inner product ��� � is computed

first. Because ��� � is a scalar, we can then use only one divider to compute ��� � by dividing ��� �
by ||xm||.

Figure 6 shows the architecture of the correlator unit for the case of two templates. The cir-
cuit consists of 2N multipliers, one squared root circuit, two accumulators, and one divider.
Moreover, there are two registers for storing the normalized templates �1 and �2. Recall that

the shift register in the block energy computation unit contains the samples of xm. Based on

xm and ��, � = 1, 2,the computation of each ��� ��, � = 1, 2, is carried out in parallel. Moreover,

the multiplication results are accumulated in a pipelined fashion. The accumulation results
are then scaled by a factor of 1/||xm||. Because the block energy computation unit provides

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
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||xm||2, only a squared root circuit and an inverse circuit are needed for the calculation of
1/||xm||, as shown in Figure 6.

Figure 6. Architecture of correlator unit.

3.3. Threshold unit

Although the operations of the unit can be easily accomplished by a simple comparison circuit,
the detection accuracy may be further improved by taking the detection results of the neigh-
boring blocks into consideration. Because the neighboring blocks are overlapping, they may
be similar. As a result, the normalized correlation values of the neighboring blocks may also
be similar. Therefore, it is likely that an occurrence of a single spike may result in the issues of
multiple hits.

To solve this problem, when the normalized correlation value of a block is above the threshold,
a hit is not immediately declared. The architecture will then examine the normalized
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correlation values of the previous blocks. A hit would actually be issued only if k out of K
preceding blocks have normalized correlation values above a threshold. In this way, the false
alarm rate (FAR) can be effectively lowered. Figure 7 shows the corresponding architecture,
which contains a K-stage shift register storing the comparison results of the K previous blocks.
Each stage of the shift register contains only a single-bit information, where 1 indicates that
the corresponding block has normalized correlation value above the threshold η, and 0
otherwise. Therefore, if the sum of all the K stages is larger or equal to k, then at least k
preceding blocks have normalized correlation value above the threshold. In this case, the
architecture issues a hit.

Figure 7. Architecture of threshold unit.

3.4. Switch buffer

The goal of switch buffer is to store the detected spikes for subsequent clustering operations.
As shown in Figure 8, there are two buffers (denoted as Buffer x and Buffer y) in the circuit.
When one of the buffers stores the detected spikes, the other provides the detected spikes to
the OSORT module for clustering operations. The switch controller in the circuit is responsible
for the determination of the buffer to store the detected spikes. The flowchart of the operations
of the switch controller is shown in Figure 9. From the flowchart, it can be observed that the
controller assigns the detected spikes to a buffer in accordance with the availability of that
buffer. A buffer is available when it has empty cells for storing new detected spikes, and is not
currently providing spikes to the OSORT module.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
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Figure 8. Architecture of switch buffer.

Figure 9. Flowchart of switch controller.
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4. The architecture of OSORT module

The OSORT module contains buffers, distance computation unit, mean updating unit,
comparator, and controller, as shown in Figure 10. The centroid and the size of each cluster
are stored in the buffers. The distance computation unit and mean updating unit are respon-
sible for squared distance computation and the updating of centroid of the clusters, respec-
tively. The control unit coordinates different components of the OSORT module for carrying
out the unsupervised clustering operations.

Figure 10. Architecture of OSORT module.

4.1. Buffers

There are three buffers in the OSORT module, which are denoted by Buffer 1, Buffer 2, and
Buffer 3, respectively. Buffer 1 holds an input spike detected by the correlators. Buffers 2 and
3 contain the mean value and size of each cluster, respectively. Buffer 1 is a simple N-stage shift
register, fetching or delivering one sample of the input spike at a time. As shown in Fig‐
ure 11, Buffer 2 contains QN-stage shift registers. Each shift register holds the mean value of
a cluster. Therefore, Q is the upper-bound of the number of clusters. Buffer 2 updates or
provides mean values of clusters one at a time. Because the mean value ti of a cluster �� is the

average value of the spikes mapping to that cluster, the mean value also contains N samples.
Accessing the mean value of the cluster is also carried out one sample at a time. Buffer 3 records
the size of each cluster. There are Q entries in the buffer. The ith entry contains the number of
spikes in the cluster ��.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
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Figure 11. Architecture of Buffer 2.

4.2. Distance computation unit and mean updating unit

Because buffers in the memory unit can be accessed one sample at a time, the circuits in the
distance computation unit and mean updating unit provide only sample-wise computations.
This is beneficial for reducing the area costs. There are two cases when the distance computa-
tion unit needs to be activated. In the first case, a new spike is arrived. To find the cluster for
the new spike, the squared distance computation is required. In the second case, it is desired
to merge two clusters. The squared distance calculation is needed for finding the closest
clusters. The distance computation unit takes the samples fetched from Buffer 1 and Buffer 2
as inputs. The unit finds the squared distance between the spikes stored in Buffer 1 and the
mean value of a cluster selected in Buffer 2. Upon the completion of the squared distance
computation, the comparison of the new squared distance with the current minimum distance
stored in a register of the unit is carried out. If the new squared distance is smaller than the
current minimum distance, then it becomes the new current minimum distance. The same
squared distance computation and comparison operations will be repeated for until all the
mean values in Buffer 2 are searched. This scheme is useful for finding the best matching mean
value stored in Buffer 2 to the spike stored in Buffer 1.

The mean updating unit is activated after a new spike is assigned to a cluster, or after two
clusters are merged. In these cases, the mean of the updated cluster needs to be computed.
Note that the clusters to be updated are determined by the distance computation unit. The
mean updating unit is only responsible for the computation of the new mean of the updated
clusters. The circuit takes waveforms stored in Buffer 1 and Buffer 2, and the cluster size stored
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in Buffer 3 as inputs. The updated mean is the weighted sum of the waveforms obtained from
Buffer 1 and Buffer 2, as shown in Figure 12. The weights are determined from the cluster sizes
from Buffer 3. The updated results are then stored back to Buffer 2 and Buffer 3.

Figure 12. Architecture of mean updating unit.

4.3. Control unit

The control unit activates components of the memory unit and cluster computation unit for
the unsupervised clustering. The states of the control unit are summarized in Table 1. In
addition to the tasks carried out by each state, the activated circuit components associated with
each state are also included in the table. Figure 13 shows the flowchart of the OSORT algorithm
in terms of the states defined in Table 1.

States Activated components Operations

State 1 Buffer 1

Distance computation unit

Fetch a new spike to Buffer 1

State 2 Buffers 1, 2 Find the best matching cluster to the spike in Buffer 1

State 3 Buffers 1, 2, 3 Creating a new cluster

State 4 Buffers 1, 2, 3

Mean updating unit

Update the mean and size of a cluster

State 5 Buffers 2, 3 Remove a cluster

Table 1. States of the control unit in OSORT module.
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Figure 13. The flowchart of the controller in the OSORT module.

The flowchart in Figure 13 is consistent with that shown in Figure 1. Although the combina‐
tions of the states shown in Table 1 are able to implement the OSORT algorithm, additional
modifications may still be desirable to facilitate the hardware implementation. One modifica‐
tion implemented in the controller is to handle the cases when the current number of clusters
reaches the upper limit Q, and the creation of new cluster is still desired. In this case, the least
recently updated cluster will be replaced by the new cluster. To carry out this modification, an
additional field is added to each entry of Buffer 3. The entry indicates the number of updates
in the past for the corresponding cluster. This modification can be viewed as an additional
function supported in State 3 in Table 1 for the creation of a new cluster.

5. Global controller and NOC

As depicted in Figure 3, the global controller in the proposed spike sorting system coordinates
the operations of the normalized correlator module and OSORT module. The major goal of
the global controller is to fetch detected spikes from the normalized correlator module and
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deliver them to the OSORT module. When a buffer in the switch buffer of the normalized
correlator module becomes full, the global controller starts to fetch the detected spikes one at
a time from the buffer to the OSORT module.

The fetching operations are repeated until all the spikes stored in the buffer are fetched. At this
time, the buffer becomes available again for storing the new detected spikes, as shown in
Figure 14. The proposed hardware spike sorting system is configured as a user component in
a NOC system, which is designed by the QSYS platform. In addition to the proposed system,
we see from Figure 15 that the NOC contains the NIOS II processor, a DMA controller, an on-
chip RAM, and a hardware timer.

Figure 14. The flowchart of the global controller.

The raw spike trains are stored in the on-chip RAM. The DMA controller is responsible for
delivering the spike trains to the proposed hardware system without the intervention of the
NIOS II processor. The DMA controller is able to halt the delivery of spike trains automatically
when both buffers in the switch buffer of the normalized correlator module are unavailable
and/or full. The hardware timer is used to measure the computation speed of the proposed
system. The NIOS II processor integrates different components in the NOC. It activates the
DMA controllers for the delivery of spike trains. After that, the processor collects the spike
sorting results from the OSORT modules of the proposed spike sorting system. The processor
is also able to read the information provided by the hardware timer for the measurement of
the computation speed of the proposed circuit.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
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Figure 15. The proposed NOC system for spike sorting.

6. Experimental results

This section presents some experimental results of the proposed architecture. The extracellular
recordings for the experiments are based on the simulator developed in [21], where the ground
truth about spiking activity can be accessed. Each spike has length 2.67 ms. The sampling rate
for the spike recording is 24,000 samples/s. Therefore, there are 64 samples (i.e., N = 64) in each
spike.

The performance of the proposed architecture for spike detection is first evaluated. The
performance evaluation is based on the true positive rate (TPR) and false alarm rate (FAR).
The TPR of a detection algorithm is defined as the number of true spikes detected by the
algorithm divided by the total number of true spikes. The FAR of a detection algorithm is the
number of silent segments, which are falsely detected as spikes by the algorithm, divided by
the total number of the segments detected by the algorithm. The TPR and FAR of various
detection algorithms are included in Table 2. In the experiments, the spike trains are from two
neurons. Therefore, there are two templates (i.e., c = 2) for the proposed normalized correlator.

Because the normalized correlation is effective for detecting real spikes and ignoring silent
segments, we can observe from Table 2 that the proposed architecture has superior perform-
ance over the other algorithms. We use the example shown in Figure 16 to further demonstrate
this fact. In the example, a noisy spike train with SNR = −3 dB is used for the spike detection.
Figure 16 reveals the normalized correlation values �� � , i = 1, 2, for the spike train. From
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Figure 16, we see that, because of large noise corruption, it is difficult to locate spikes even by
direct eye inspection. However, based on the normalized correlation values provided by the
proposed architecture, the location of true spikes can still be effectively identified.

SNR (dB) Normalized

correlator

Noncoherent energy

detector [17]

NEO

[12]

SWT

[22]

Matched

filter [16]

10 TPR   93.64% 91.37% 93.10% 94.82% 89.65%

FAR   0.40% 5.35% 3.57% 6.77% 2.80%

1 TPR   90.04% 88.03% 87.21% 92.43% 82.90%

FAR   0.92% 6.36% 22.49% 79.36% 3.02%

−3 TPR   82.71% 82.60% 80.53% 86.66% 80.31%

FAR   1.06% 9.52% 57.87% 82.43% 8.92%

Table 2. TPR and FAR values of various spike detection algorithms.

Figure 16. An example of the proposed normalized correlator for noisy spike detection with SNR = −3 dB for c = 2 tem-
plates.

Next we evaluate the area complexities. Because adders, multipliers, dividers, comparators,
and registers are the basic building blocks of the proposed architecture, the area complexities
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are separated into five types: the number of adders, multipliers, dividers, comparators, and
registers. Tables 3 and 4 show the area complexities of the normalized correlator and OSORT
modules, respectively. It can be observed from Table 3 that, in the normalized correlator
module, the correlator unit and switch buffer have larger area complexities. The number of
adders, multipliers, and registers grows with the block dimension N and the number of
templates c in the correlator unit. Let L be the capacity (i.e., the maximum number of spikes)
of each buffer in the switch buffer. The number of registers in the switch buffer therefore is
dependent on L and N, as shown in Table 3. The area complexities of the other types are of
O(1). Therefore, the proposed circuit has low consumption of dividers and comparators. From
Table 4, we observe that only the area complexities of the buffers in the OSORT module grow
with N. The other parts of the OSORT module have fixed area complexities.

Filter unit Block energy
computation

Correlator Thresholding unit Switch buffer Subtotal

Adders O(1) O(1) O(cN) O(1) 0 O(cN)

Multipliers O(1) O(1) O(cN) O(1) 0 O(cN)

Dividers 0 0 1 0 0 1

Comparators 0 0 0 O(1) 0 O(1)

Registers O(1) O(N) O(cN) O(1) O(LN) O(cN + LN)

Table 3. Area complexities of the normalized correlator module.

Buffer Distance computation
unit

Mean
updating unit

Subtotal

Adders 0 O(1) O(1) O(1)

Multipliers 0 O(1) O(1) O(1)

Dividers 0 0 O(1) O(1)

Comparators 0 O(1) 0 O(1)

Registers O(cN) O(1) O(1) O(cN)

Table 4. Area complexities of the OSORT module.

The proposed architecture has been implemented by FPGA for performance measurement.
The target FPGA device for the hardware implementation is Altera STRATIX IV EP4SGX230.
The design platform for the experiments is the Altera QUARTUS II with QSYS. Table 5 shows
the hardware utilization of the proposed architecture. There are four different FPGA hardware
resources considered: adaptive look-up tables (ALUTs), dedicated logic registers, block
memory bits, and DSP blocks. The DSP blocks are dedicated to the implementations of adders,
multipliers, dividers, and comparators. The ALUTs, dedicated logic registers, and block
memory bits can be used for the implementation of registers, as well as adders, multipliers,
dividers, and comparators. It can be observed from Table 5 that the consumption of DSP blocks
of normalized correlator is higher than that of the OSORT module. This is because the
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normalized correlator requires more number of arithmetic operators. There are 182,400 ALUTs,
182,400 dedicated logic registers, 1288 DSP blocks, and 14,625,792 block memory bits in the
target FPGA device. It can be observed from Table 5 that only limited hardware resources are
consumed by the proposed circuit.

ALUTs Dedicated
logic registers

Block
memory bits

DSP blocks

Normalized correlator module 13,966 29,733 0 532

OSORT module 22,604 22,562 320 88

Total 39,355/182,400
(21.57%)

52,517/182,400
(28.79%)

320/14,625,792
(<0.1%)

642/1288
(49.84%)

Table 5. The utilization of FPGA resources of the proposed circuit. The switch buffer capacity for the measurement is
L = 40.

In addition to consuming low hardware resources, the proposed architecture is able to provide
high throughput. Table 6 reveals the throughput of the proposed architecture for various clock
rates and switch buffer size L. The throughput is defined as the number of spike samples which
can be processed by the proposed architecture per second. The unit of the throughput in the
table therefore is mega samples per second (Msamples/sec). It can be observed from Table 6
that the throughput grows with L and/or clock rate. In particular, when L = 32 and clock rate
is 100 MHz, the throughput is 25.04 Msamples/sec. The throughput of its software counterpart
running on Intel I7-930 processor at clock rate 2.8 GHz and 16 GB RAM is only 0.69 Msamples/
sec. The throughput of the proposed architecture therefore is 36 times higher than that of its
software counterpart.

Clock rate L = 20 L = 40 L = 80

50 MHz 9.22
Msamples/sec

10.25
Msamples/sec

13.31
Msamples/sec

75 MHz 13.00
Msamples/sec

15.34
Msamples/sec

20.00
Msamples/sec

100 MHz 17.80
Msamples/sec

20.25
Msamples/sec

25.04
Msamples/sec

Table 6. The throughput of the proposed circuit for various clock rates and switch buffer capacities L.

7. Concluding remarks

The proposed architecture has been found to be effective for real-time spike sorting. It features
high accuracy, low hardware resource consumption, and high throughput. The combination
of the normalized correlation and OSORT algorithm is beneficial for accurate spike detection
with high TPR and low FAR even for low SNR values. The postnormalization approach
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adopted by the normalized correlator circuit is also able to reduce the area costs for the
normalization operations. In addition, the switch buffer in the correlation circuit can effectively
coordinate the operations of spike detection and classification for achieving high throughput.
Experimental results reveal that the proposed architecture achieves TPR = 82.71% and FAR =
1.06% for SNR = −3 dB. The ALUT consumption is only 21.57% for the FPGA device STRUTIX
IV EP4SGX230. The throughput is 25.04 Msamples/sec for the clock rate 100 MHz. All these
facts demonstrate the effectiveness of the proposed architecture.
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