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Resumo Esta tese centra-se na aplicação de sistemas de alarme ótimos a modelos

de séries temporais não lineares. As classes de modelos mais comuns na

análise de séries temporais de valores reais e de valores inteiros são descritas

com alguma profundidade. É abordada a construção de sistemas de alarme

ótimos e as suas aplicações são exploradas.

De entre os modelos com heterocedasticidade condicional é dada espe-

cial atenção ao modelo ARCH Fraccionalmente Integrável de Potência As-

simétrica, FIAPARCH(p, d, q), e é feita a implementação de um sistema de

alarme ótimo, considerando ambas as metodologias clássica e Bayesiana.

Tomando em consideração as características particulares do modelo

APARCH(p, q) na aplicação a séries de dados financeiros, é proposta

a introdução do seu homólogo para a modelação de séries temporais

de contagens: o modelo ARCH de valores INteiros e Potência As-

simétrica, INAPARCH(p, q). As propriedades probabilísticas do modelo

INAPARCH(1, 1) são extensivamente estudadas, é aplicado o método da

máxima verosimilhança (MV) condicional para a estimação dos parâmetros

do modelo e estudadas as propriedades assintóticas do estimador de MV

condicional. Na parte final do trabalho é feita a implementação de um

sistema de alarme ótimo ao modelo INAPARCH(1, 1) e apresenta-se uma

aplicação a séries de dados reais.





Keywords Asymmetric Volatility, Asymptotic Theory, Autocorrelation, Bayesian Infer-

ence, Ergodicity, Heteroscedasticity, Long Memory, Maximum Likelihood,

Observation-driven Models, Overdispersion, Optimal Alarm Systems, Non

Linear Time Series, Stationarity.

Abstract This thesis focuses on the application of optimal alarm systems to non linear

time series models. The most common classes of models in the analysis of

real-valued and integer-valued time series are described. The construction

of optimal alarm systems is covered and its applications explored.

Considering models with conditional heteroscedasticity, particular atten-

tion is given to the Fractionally Integrated Asymmetric Power ARCH,

FIAPARCH(p, d, q) model and an optimal alarm system is implemented, fol-

lowing both classical and Bayesian methodologies.

Taking into consideration the particular characteristics of the APARCH(p, q)

representation for financial time series, the introduction of a possible coun-

terpart for modelling time series of counts is proposed: the INteger-valued

Asymmetric Power ARCH, INAPARCH(p, q). The probabilistic properties

of the INAPARCH(1, 1) model are comprehensively studied, the conditional

maximum likelihood (ML) estimation method is applied and the asymptotic

properties of the conditional ML estimator are obtained. The final part of

the work consists on the implementation of an optimal alarm system to the

INAPARCH(1, 1) model. An application is presented to real data series.





. . . if a man riding in an open country should see afar off men and women dancing together,

and should not hear the music according to which they dance and tread out their measures,

he would think them to be fools and madmen,

because they appear in such various motions, and antic gestures and postures.

But if he come nearer,

so as to hear the musical notes, according to which they dance,

and observe the regularity of the exercise,

he will change his opinion of them, . . .

Thomas Manton, 1873
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Chapter 1

Introduction

This introductory chapter has three main sections: Objectives, Overview

and Organization of the Dissertation. In the first section we present the

objectives of the thesis and clearly state what was expected to achieve with

the work developed so far.

Overview section covers the fields of study and presents main subjects re-

lated to the contributions in this thesis. In the first part of this section some

non-linear models used in the analysis of financial time series are described.

Attention is given to the class of models with conditional heteroscedastic-

ity and their properties discussed. The Fractionally Integrated Asymmetric

Power ARCH, FIAPARCH(p, d, q) model is discussed in detail. The following

sub-section focuses on the implementation of alarm systems. The principles

for the construction of optimal alarm systems are stated and discussed and

their implementation described. Also, recent alternative approaches regard-

ing level-crossing prediction are presented in order to complement and widen

the discussion related to this field. The last part of the Overview section

is directed to the modelling and analysis of count data. This is an area of

growing interest as time series of counts have become available over the last

three decades, in a wide variety of contexts. Several model classes developed

1



2 1. Introduction

for the analysis of time series of counts are discussed.

The last section in this chapter, Organization of the Dissertation, provides

a brief description of the remaining chapters.

1.1 Objectives

A major theme in the analysis of a large variety of random phenomena con-

sists in detecting and warning the occurrence of a catastrophe or some other

event connected with an alarm mechanism. An interesting problem, which

has not been addressed until recently, is the development of optimal alarm

systems for financial time series. This thesis aims to give a contribution

towards this direction.

The construction of alarm systems is discussed and optimal alarm systems

are implemented for two particular models related to the analysis of financial

time series. The first model, considered in Chapter 2, is the Fractionally In-

tegrated Asymmetric Power ARCH, FIAPARCH(p, d, q) model. This model

considers a representation for the volatility that has many interesting prop-

erties, from which we would like to point out the ability to deal with asym-

metric responses of volatility to positive or negative shocks, and the ability

to fit from the data the power of the returns for which the dependence on

past returns is the strongest.

Asymmetric responses of the volatility for positive or negative shocks have

also been observed in time series of counts, and to our knowledge, there was

no model for count time series able to deal with this feature. Another goal

was set for this work as we proposed to provide an integer-valued counterpart

being able to accommodate asymmetric responses relative to the mean of the

process. In Chapter 3, a new model is therefore proposed, the INteger-valued
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Asymmetric Power ARCH or, in short, INAPARCH(p, q). The probabilistic

properties and asymptotic theory related to maximum likelihood estimation

are comprehensively studied for the INAPARCH(1, 1) particular case.

To complement the perspective on the application of alarm systems to non-

linear time series, the implementation of an optimal alarm system is put

through for the INAPARCH(1, 1) model in Chapter 3. The initial goal of

this thesis is also addressed in the applications to real data time series in

Chapter 2 and Chapter 3, which intend to illustrate the methodologies in-

volved and demonstrate the prediction capability of optimal alarm systems

in practice.
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1.2 Overview

The introductory chapter intends to allow the thesis to be consistent and self

contained. In order to pursue this goal, different areas involved in this work

will be addressed in this chapter, accordingly to the following steps, when-

ever possible. Each subsection will start with a description of the subject

and illustrative examples and applications. Then, most important defini-

tions will be presented. Different models, classes of models or methodologies

involved, will be presented roughly in the order in which they were first intro-

duced in the literature. With the exception of the Optimal Alarm Systems

subsection, both Financial Time Series Models and Time Series of Counts

subsections will finalize with a thorough description of the particular class

of models that relates more closely to the work developed in this thesis. Op-

timal Alarm Systems subsection will finalize with some recent developments

in the field, that, in our perspective, deserve particular attention as they

provide alternative perspectives and methodologies regarding the construc-

tion of alarm systems. Taking the risk of sounding a little naive, we will try

to reach the state of the art regarding theoretical findings and methodologies.

1.2.1 Financial Time Series Models

In this section we will discuss some models usually related to financial time

series. The analysis of financial time series has revealed some common fea-

tures, generally known as stylized facts, and we will look into this subject

with some detail in this section. In order to accommodate these common

features often exhibited by the data, several models have been proposed

over the last thirty years. In this section, an overview of these models will

be presented. We will start by introducing the general class of multiplica-

tive models and very briefly describe the stochastic volatility models. We

will then move on to the class of conditionally heteroscedastic models, start-
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ing with the ARCH model of Engle (1982). We will follow on to some of

the subsequent generalizations such as the GARCH, (Bollerslev, 1986), the

APARCH (Ding et al., 1993), the FIGARCH (Baillie et al., 1996) and the

FIAPARCH (Tse, 1998), to name the ones we consider the most important

for the work developed in this thesis.

Financial time series are continuous or discrete time processes and time

series analysis has always been directed towards the understanding of the

mechanism behind the data. One main motivation for the analysis is the

search for physical models that can explain, at least to some extent, the

empirically observed features of real data. It might seem strange that when

we mention financial time series and we include in this category so many

diverse time series such as series of foreign exchange rates, stock indices or

share prices, it should be possible to find any common properties. But, in

fact, financial time series share many common properties, particularly after

the following transformations. Let Pt denote the price of a financial asset - a

stock, an exchange rate or a market index - for t = 0, 1, 2, . . . (t in minutes,

hours, days, etc.)1. Define

Rt =
Pt − Pt−1

Pt−1
=

Pt
Pt−1

− 1,

as the simple net return of the asset. Then, the simple gross return is defined

as 1 +Rt and the log-return (or simply return), as shall be mentioned in

what follows, is

Xt = lnPt − lnPt−1 = ln

(
Pt
Pt−1

)
= ln

(
1 +

Pt − Pt−1

Pt−1

)
= ln(1 +Rt).

1The common properties mentioned above actually depend on the time scale chosen.

Depending on whether the time unit is a second, an hour, a day, a month or a year, qual-

itative differences are expected between time series and different models may be needed.

In what concerns the work of this thesis, the temporal unit may be an hour, a day or a

week without any prejudice to what is going to be exposed.
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By a Taylor series argument, the (Xt) time series is close to the simple net

return time series or relative returns
(
Pt−Pt−1

Pt−1

)
. Normally, relative returns

are very small and indistinguishable from the log-returns. Nevertheless, it is

preferable to work with the series of log-returns, (Xt), which are free of scale,

thus comparable among each other. Also, it is believed that the log-return

time series (Xt) can be modelled by a stationary stochastic process in the

strict or wide senses (Mikosch, 2003). Stationarity is a basic assumption in

time series analysis and it is generally assumed that the transformation given

above provides one realization of a stationary process.

The qualitative properties or stylized empirical facts usually observed in

series of asset returns are shortly described below following the works of

Mikosch (2003) and Cont (2001).

heavy tails : When analysing samples of returns one usually finds sample

means not significantly different from zero and sample variances of the

order of 10−4 or smaller. Sample distributions are roughly symmetric

in the center, sharply peaked around zero and with heavy tails on both

sides. The shape of a density plot reveals that the normal distribution

is not the most appropriate model. The tails of the returns seem to

point out to a distribution with power law tails, i.e., for large x and

some positive number α (the tail index, that is estimated to be more

than two and less than five, for most data sets studied), P (Xt > x) ∼

x−α. The Pareto distribution or the t-distribution with α degrees of

freedom, could model these heavy-tailed unconditional distributions

of the returns. Although the precise form of the tails seems difficult

to determine, the described behaviour seems to rule out distributions

such as the normal or the α-stable distributions with infinite variance,

as proposed by Mandelbrot (1963).

conditional heavy tails : Even after modelling the returns with a GARCH-
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type model the residual time series still exhibit heavy tails, however,

less heavy than in the unconditional distribution of returns.

absence of autocorrelations : The linear autocorrelations of the returns

are often insignificant, and rapidly decay to zero in a few minutes (for

a time lag, h, with h ≥ 15 minutes, all autocorrelations can be consid-

ered zero for all practical purposes).

In standard time series analysis the second-order structure of a sta-

tionary time series (Yt) is fundamental for parameter estimation, model

testing and prediction. The autocovariance function (ACVF), γY , and

the autocorrelation function (ACF), ρY , are particularly important in-

struments in the analysis of the second-order dependence structure.

For lag h ∈ Z, these functions are defined as

γY (h) = Cov[Yt, Yt+h] and ρY (h) = Corr[Yt, Yt+h].

In practice, however, ACVF and ACF have to be estimated. Standard

estimators are their sample counterparts, the sample ACVF, γn,Y , and

sample ACF, ρn,Y , which, for lag h ∈ Z, are defined by

γn,Y (h) =
1

n

n−|h|∑
t=1

(Yt − Y n)(Yt+h − Y n) and ρn,Y (h) =
γn,Y (h)

γn,Y (0)
.

where γn,Y (h) = ρn,Y (h) = 0 for |h| ≥ n and Y n stands for the sam-

ple mean. Provided that (Yt) is stationary, ergodic and Var[Yt] < ∞,

sample ACVF and sample ACF converge asymptotically to ACVF and

ACF, respectively.

Recall that the first stylized fact mentioned about log-returns was that

they evidence some heavy-tailed distribution. When the marginal dis-

tribution of a time series is very heavy-tailed, the rate of convergence

of sample ACFV and ACF to their theoretical counterparts can be
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extremely slow and sample ACVF and ACF may lead to some misin-

terpretations. Particularly, asymptotic confidence bands can be much

wider than the classical 1√
n
-bands, and even wider than the estimated

autocorrelations (for details, see Section 9 in Mikosch, 2003 and Davis

and Mikosch, 2001). Also, if very long time periods are sampled, on the

order of several months or years, the general assumption of stationarity

cannot be assumed, and, in that case, sample ACVF and sample ACF

should not be taken as estimators of their theoretical counterparts.

Assuming that sample ACF is a reasonable estimator of the ACF,

one common feature about series of asset returns is that the sample

ACF, ρn,X , is not significant for any lag, except perhaps for the first

(which is usually also small in absolute value) showing that the returns

are not serially correlated.

slow decay of autocorrelation in the absolute returns : On the other

hand, sample ACFs, ρn,|X|, of the absolute returns, |Xt|, and ρn,X2 , of

the squares of the returns, X2
t , are different from zero for a large num-

ber of lags and stay almost constant and positive for large lags, meaning

that these non-linear simple functions of the returns exhibit significant

positive autocorrelation or persistence. The sample ACF of absolute

returns, in particular, decays slowly as a function of time lag, roughly

as a power law with exponent in the interval [0.2, 0.4]. This features

are known, in this context, as long memory or long range dependence

of absolute returns or their squares.

volatility clustering or dependence in the tails : If we look at a plot

of pairwise exceedances of a high threshold (like, for instance, pairs of

|Xt| and |Xt+1| exceeding the same high sample percentile) it is easily

observable that these pairwise exceedances occur in clusters. Large
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and small values of asset returns occur in clusters and it is said that

there is dependence of extremal return values, or dependence in the

tails. As this feature is also known as volatility clustering it is

convenient to introduce now the notion of volatility. In econometrics,

it is the synonym to standard deviation, σ, and represents a measure

for the variation of price of a financial instrument over time. The

existence of dependence on the series of non-linear functions of asset

returns, like the absolute values, (|Xt|), or the squares, (X2
t ), of the

returns, points towards the modelling and prediction of the variability

or volatility of the process, instead of the process (Xt) itself. It can

then be said that there is correlation in volatility of returns but not in

the returns themselves. And this feature motivates the decomposition

of the returns as

Xt = |Xt|sign(Xt),

where the sequence (sign(Xt)) consists on independent identically dis-

tributed (i.i.d.) symmetric random variables. Taking into considera-

tion this decomposition, many models are of the form

Xt = σtZt,

where (Zt) is an i.i.d. symmetric sequence, and (σt) is the volatility

sequence, a stationary non-negative sequence whose dynamics should

match the empirically observed dependences. As the volatility, σt is

not observable, the observable quantities |Xt| and X2
t are sometimes

interpreted as estimators of σt and σ2
t , respectively. This somehow

explains the interest in computing correlations of absolute or square

returns and modelling their dependence.

When is it said that a common feature of asset returns is volatility

clustering, it means that high-volatility events tend to cluster in time,
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or, in other words, large price variations are more likely to be followed

by large price variations.

gain/loss asymmetry : Although the distribution of the returns is roughly

symmetric in the center, we can actually refer to some skewness, par-

ticularly in the series related to stock prices and stock index values, for

which large downwards movements are frequent and are not paired by

large upward movements. This means that downward movements are

faster than the upward ones, and this gain-loss asymmetry property

refers to the observation that, for stocks or indices, it takes typically

longer to gain 5% than to lose 5% (Siven and Lins, 2009). Exchange

rates do not usually show this asymmetry in distribution.

leverage effect : It has usually been found that the conditional volatility

of stocks responds asymmetrically to positive versus negative shocks:

volatility tends to rise higher in response to negative shocks as op-

posed to positive shocks, or, in a a few words, volatility increases when

the stock price falls. This behaviour of asset returns is known as the

leverage effect and it is observable that most measures of volatility are

negatively correlated with the returns of a particular asset.

aggregational Gaussianity : As the time scale or period over which re-

turns are calculated is increased, their distribution looks more and

more like a normal distribution: the peakedness around zero and the

heavy-tailedness turn into bell shapedness. Aggregated returns over pe-

riods of time such as a month or a year have an empirical distribution

whose estimated probability density resembles more a normal curve

than the distribution of hourly or daily returns. Although sometimes

in the literature it is stated that returns calculated over longer periods

of time have less heavy tails than those calculated over shorter peri-

ods of time (which is attributed to the aggregational Gaussianity) this



1.2 Overview 11

statement is false if the data comes from a distribution with a power

law tail. For large classes of strictly stationary time series (Xt) with

power law tails, the sums Xt + · · · + Xt+h have the same asymptotic

power law tails as Xt itself and, in particular, the same tail index. A

possible explanation for the resemblance with the normal distribution

is that, the larger the aggregational level, h, the closer the distribution

of the returns gets to the normal distribution, by virtue of the cen-

tral limit theorem (CLT). So, as the aggregational level increases, and

due to the CLT, the distribution of the returns tends to look like the

normal distribution.

intermittency : Asset returns display, at any time scale, a very high degree

of variability. This variability is usually quantified through the pres-

ence of irregular bursts in the time series of a wide variety of volatility

estimators.

volume/volatility correlation : Since 1970 there were several studies in-

dicating strong positive correlation between volume and volatility (e.g.

Karpoff, 1987; Gallant et al., 1992; Yin, 2010) and this was known as

the volume/volatility correlation stylized fact. However, recent con-

tributions by Giot et al. (2010), Amatyakul (2010) and Wang and

Huang (2012), challenged this stylized fact using the volatility decom-

position technique by Barndorff-Nielsen (2004) and Barndorff-Nielsen

and Shephard (2006). Using this technique (daily volatility can be de-

composed into a continuous component due to small price changes and

a jump component due to large price movements) these authors have

shown that only the continuous component of the volatility shows a

positive contemporal volume-volatility relation, while the jump com-

ponent shows negative correlation with the trading volume.

asymmetry in time scales : As already mentioned, common properties
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usually observed in time series of log-returns depend on the time scale

chosen. If the temporal unit is small, of the order of seconds or min-

utes, one speaks of fine scales, whereas, when the temporal unit is of

the order of weeks or months, it is said that the returns are coarse-

grained. Not only the properties are different, but also it is believed

that coarse-grained measures of volatility predict fine-scale volatility

better than the other way round. As explained by Gavrishchaka and

Ganguli (2003), if the heterogeneous market hypothesis2 is taken into

account, as seems to be proposed by some empirical studies with high-

frequency data (Dacorogna et al., 2001), traders with different time

horizons are interested in the volatility on different time grids and

short-term traders can react to clusters of coarse volatility, while the

level of fine volatility does not affect strategies of long-term traders.

After this long list of qualitative properties of asset returns one easily agrees

that the gain in generality doing these observations has necessarily to imply

a loss in precision. Anyway, this information is very important as it results

from several decades of analysis of different markets and instruments. As

is usually said, these properties represent the common denominator among

the properties observed in many different studies, in many different sets of

assets and markets. Also, due to its qualitative nature, these properties are

model-free, meaning that they do not result from any parametric hypothesis

about the return process, but, instead, should be viewed as the constraints

that any stochastic process should verify if one wants to reproduce with ac-

curacy the statistical properties of asset returns.

The existence of non-linear dependence structure, in the absolute or the
2The hypothesis of a homogeneous market assumes that all participants interpret news

and react to them in the same way. The hypothesis of a heterogeneous market assumes that

different market agents (ranging from intraday dealers or market makers to central banks

and large commercial organization) have different time horizons and dealing frequencies.
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square values of the returns, demands that the modelling of return data

should be done with some non-linear process. To clarify, non-linear process

means that the process cannot be represented through the equation

Xt =
+∞∑
i=−∞

ψiZt−i, t ∈ Z,

where (Zt) is white noise, i.e., a sequence of random variables (r.v’s) with

the same distribution, satisfying

• E[Zt] = µZ , and usually µZ = 0;

• Var[Zt] = σ2
Z ;

• γZ(h) = 0 for h > 0 and γZ(0) = σ2
Z ;

• ρZ(h) = 0 for h > 0 and ρ(0) = 1.

As the mean and the variance, µZ , and σ2
Z , respectively, do not depend on

t, and the autocovariance for two different time instants depends only on

the lag between them - and not on the position of the time instants on the

temporal axis - the white noise process is said to be covariance stationary or

second order stationary. Moreover, (ψi) is a sequence of real numbers satis-

fying some mild summability condition (as the variance of the linear process

is given by Var[Xt] = (
∑+∞

i=0 ψ
2
i )σ

2
Z , in order for it to be finite, the series∑+∞

i=0 ψ
2
i <∞).

An important class of processes that satisfy the definition of linear process

is the AutoRegressive Moving Average (ARMA) processes defined by

the recursion

Xt = α1Xt−1 + · · ·+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q. (1.1)

Making use of B, the backshift or lag operator, BXt = Xt−1, it follows
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that

Xt − α1BXt − · · · − αpBpXt = Zt + β1BZt + · · ·+ βqB
qZt

(1− α(B))Xt = (1 + β(B))Zt

φp(B)Xt = θq(B)Zt,

where one can define

φp(B) ≡ 1− α(B) = 1−
p∑
i=1

αiB
i, the autoregressive lag polynomial;

θq(B) ≡ 1 + β(B) = 1 +

q∑
j=1

βjB
j , the moving average lag polynomial.

Regarding reader’s convenience in further developments in this thesis, Ta-

ble 1.1 summarises some characteristics of the ARMA processes and their

subclasses, the Autoregressive processes of order p, AR(p) and the

Moving Average processes of order q, MA(q). For the theory behind

classical time series analysis and linear processes we refer to Murteira et al.

(1993) and Brockwell and Davis (1991).

Due to the dependence structure in the absolute or the square values of

the returns, linear models in the ARMA family do not seem appropriate to

model financial time series. Constrained by the need of modelling non-linear

dependency, most models for financial time series used in practice are given,

as mentioned before, in the multiplicative form

Xt = σtZt, t ∈ Z, (1.2)

where (Zt) forms an i.i.d. symmetric sequence with zero-mean and unit vari-

ance and (σt) is a stochastic process such that σt and Zt are independent for

fixed t. Normally, it is assumed that Zt ∼ N(0, 1), but a heavy-tailed dis-

tribution such as the t-distribution could also be considered. (σt) represents

the volatility process. Moreover, it is also assumed that Zt is independent of
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Table 1.1: General characteristics of ARMA processes.

AR(p) MA(q) ARMA(p, q)

Model in terms

of φp(B)Xt = Zt [θq(B)]−1Xt = Zt [θq(B)]−1φp(B)Xt = Zt

past values of Xt

Model in terms

of Xt = [φp(B)]−1Zt Xt = θq(B)Zt Xt = [φp(B)]−1θq(B)Zt

past values of Zt

Stationarity Zeros of φp(B) Always Zeros of φp(B)

conditions must lie outside stationary must lie outside

the unit circle the unit circle

Invertibility Always Zeros of θq(B) Zeros of θq(B)

conditions invertible must lie outside must lie outside

the unit circle the unit circle

ACF geometric decay cuts off at q geometric decay after q

the past values of the process (Xt−1, Xt−2, . . . ). There are two main factors

that motivate the choice of this simple multiplicative model, namely that

• in practice, the direction of price changes is well modelled by the sign of

Zt, whereas σt provides a good description of the order of magnitude of

this change. This representation expresses the belief that the direction

of price changes can not be modelled, only their magnitude;

• since σt and Zt are independent for fixed t, the squared volatility σ2
t

represents the conditional variance of Xt given σt. With this represen-

tation it is then possible to construct the correlation in the volatility

of the returns but not on the returns themselves, as is characteristic

in financial time series. The conditional variance, is allowed to change

over time and does not coincide with the unconditional variance of the

process. This way it is possible to have a stochastic process with a
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volatility factor whose dynamics can resemble the bursts in volatility

of asset returns and match the empirically observed dependences.

Assuming, for instance, that Zt ∼ N(0, 1) and that σt is a function of the past

values Xt−1, Xt−2, . . . and σt−1, σt−2, . . . , then, conditionally on the past, Xt

is normally distributed, i.e., Xt|Ft−1 ∼ N(0, σ2
t ) with Ft−1 = σ(Xs, σs s ≤

t− 1). The conditional mean and conditional variance are given by

E[Xt|Ft−1] = E[σtZt|Ft−1] = σt E[Zt|Ft−1] = σt · 0 = 0,

Var[Xt|Ft−1] = E[X2
t |Ft−1]− (E[Xt|Ft−1])2 = σ2

t E[Z2
t |Ft−1] = σ2

t · 1 = σ2
t .

Also, it is easy to show that, as long as E[σ2
t ] < +∞ and σt is a function

of past values of the process and the volatility itself, then the multiplicative

model (1.2) has ACF that is zero for all lags except zero. The lack of serial

correlation in many data series of asset returns is also captured by this gen-

eral class of multiplicative models.

This general class includes theAutoregressive Conditional Heteroscedas-

ticity (ARCH) family and also the Stochastic Volatility (SV) models.

As we will focus our attention on the former set, we will just briefly present

the SV models and some of their properties.

All the models in the ARCH family state that the conditional variance de-

pends on the past values of the returns. In the SV model, firstly proposed

by Taylor (1980, 1986), the volatility depends on its own past values but is

independent of the past values of the returns. As a multiplicative model,

the SV process is written as in (1.2) although, in contrast to the models

in the ARCH family, there is no feedback between the noise (Zt) and the

volatility process (σt), which is a strictly stationary process, independent of

the i.i.d. symmetric noise process (Zt). In this class of models there are two

independent sources of randomness and the mutual independence of (σt) and
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(Zt) enables the modelling of the dependency structure of the asset returns

only through the volatilities σt and the modelling of the heavy tails of the

distribution of Xt through the interplay between the tails of σt and Zt. Due

to this construction, the SV model can explain dependence and heavy tails

in a very flexible way and the stochastic volatility can actually be chosen in

such a way that the ACF of its absolute or squared values converges to zero

arbitrarily slow.

A very common specification for the SV model is as follows

Xt = σtZt,

σt = e
ht
2 ,

where (Zt) is a noise process with zero-mean and unit variance. Usually,

(σt) is given by a parametric model as a Gaussian ARMA process for ln(σt),

whose simplest form may be written as an AR(1)

ht = ω + α1ht−1 + εt, (1.3)

where (εt) is a stationary Gaussian sequence, εt ∼ N(0, σ2
ε ), independent of

Zt. For this simple formulation it follows that

• E[Xt] = E[σtZt] = E[σt] E[Zt] = 0;

• Var[Xt] = E[X2
t ] = E[σ2

tZ
2
t ] = E[σ2

t ] E[Z2
t ] = E[σ2

t ] and, supposing

εt ∼ N(0, σ2
ε ) and ht a stationary process, one gets µh = E[ht] = ω

1−α1

and σ2
h = Var[ht] = σ2

ε

1−α2
1
. Since ht is Normal, i.e., ht ∼ N( ω

1−α1
, σ2

ε

1−α2
1
),

then σ2
t is log-Normal and, finally, one has

Var[Xt] = E[X2
t ] = E[σ2

t ] = eµh+
σ2h
2 .

It is also easily shown that

E[X4
t ] = 3eµh+2σ2

h ,
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from which the kurtosis equals K = 3eσ
2
h > 3, synonym of heavy tails

for the distribution of Xt.

• γX(h) = 0 for h 6= 0 and Xt is not correlated, as expected (but not

independent as there is correlation in ln(X2
t )). Some SV models have

been modified in order that the autocorrelation function of ln(X2
t )

decays as slowly as pretended though keeping no serial correlation on

the Xt.

A general SV model is obtained by allowing an AR(p) or an ARMA(p, q) for

ht = 2 ln(σt), in (1.3).

Squaring Xt and then taking logarithms, (ln(X2
t ) = ht + 2 ln |Zt|), makes

it easy to see that the ARMA process ht = 2 ln(σt) = ln(X2
t )− 2 ln |Zt| gets

perturbed by the extra noise 2 ln |Zt|. Estimation becomes more complicated

since there is no explicit expression for the likelihood function. In spite of the

recent developments in the last years with quasi - maximum likelihood meth-

ods and simulation based methods, estimation procedures have been applied

in a much more straightforward manner for the models in the ARCH family,

making this family a very attractive choice when modelling volatility. This is

the reason we are now turning our attention to these models, their properties

and estimation procedures.

The first model in the ARCH family was proposed by Engle (1982), who

suggested the following representation for the volatility, σt, considering the

multiplicative model (1.2)

σ2
t = ω +

p∑
i=1

αiX
2
t−i, t ∈ Z, (1.4)

where ω > 0 and αi ≥ 0, for i = 1, . . . , p. This model is called the Au-

toRegressive Conditional Heteroscedasticity model of order p, or
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ARCH(p). Usually, (Zt) is an i.i.d. sequence with zero-mean and unit vari-

ance such as N(0, 1). Is is also common that Zt ∼ tn or other distribution

that better describes the heavy tails of the series of asset returns. The special

case p = 1 leads to the ARCH(1) model

Xt = σtZt,

σ2
t = ω + α1X

2
t−1. (1.5)

For this particular model it follows that

• Unconditional mean, E[Xt] = E[E[Xt|Ft−1]] = E[E[σtZt|Ft−1]] =

= E[E[
√
ω + α1X2

t−1Zt|Ft−1]]

= E[
√
ω + α1X2

t−1 E[Zt|Ft−1]] = E[
√
ω + α1X2

t−1 · 0]

= 0.

• Unconditional variance, Var[Xt] = E[(Xt − (E[Xt])
2] = E[X2

t ] =

= E[E[(σtZt)
2|Ft−1]]

= E[(ω + α1X
2
t−1) E[Z2

t |Ft−1]] = E[(ω + α1X
2
t−1) · 1]

= ω + α1 E[X2
t−1]

and if (Xt) is second-order stationary then E[X2
t−1] = E[X2

t ] = Var[Xt],

and it is possible to write

Var[Xt] =
ω

1− α1
.

If the ARCH(p) is to be considered, one will have

Var[Xt] =
ω

1−
∑p

i=1 αi
,

instead. Returning to the ARCH(1) case, as Var[Xt] > 0, it can be

concluded that 0 6 α1 < 1. Calculating E[X4
t ] and the kurtosis, K,

one obtains K = 3
1−α2

1

1−3α2
1
> 3, meaning that, if Xt is modelled by

an ARCH(1) model, it will have heavier tails than with the normal

distribution.
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• Autocovariance function, γX(h) =

= E[(Xt − E[Xt])(Xt+h − E[Xt+h])] = E[XtXt+h]

= E[E[XtXt+h|Ft+h−1]]

= E[Xt E[Xt+h|Ft+h−1]] = E[Xt E[
√
ω + α1X2

t+h−1Zt+h|Ft+h−1]]

= E[Xt

√
ω + α1X2

t+h−1 E[Zt+h|Ft+h−1]]

= E[Xt

√
ω + α1X2

t+h−1 · 0]

= 0.

The ACVF, γX , is zero for all lags except zero. (Xt) is a sequence

of non-correlated variables with mean zero and variance ω
1−α1

. Hence,

there is no serial correlation in (Xt), as expected.

The designation of autoregressive in the ARCH model comes from the fol-

lowing manipulations. Writing νt = X2
t − σ2

t = σ2
tZ

2
t − σ2

t = σ2
t (Z

2
t − 1) and

substituting in

X2
t − σ2

t = X2
t − (ω + α1X

2
t−1) = νt,

one finally gets

X2
t = ω + α1X

2
t−1 + νt, (1.6)

which is an AR(1) model in X2
t . If (Zt) is an i.i.d. sequence with zero-mean

and unit variance and (Xt) is second-order stationary, then (νt) constitutes a

white noise sequence with E[νt] = 0, Var[νt] = 2ω2(1+α1)
(1−α1)(1−3α2

1)
and γν(h) = 0,

for h > 0. From equation (1.6) it follows

γX2(h) = α1γX2(h− 1),

and, after successive substitutions,

ρX2(h) = αh1 ,

which is the ACF of an AR(1).



1.2 Overview 21

If we turn to the general ARCH(p) the equation equivalent to (1.6) is

X2
t = ω +

p∑
i=1

αiX
2
t−i + νt ⇔ X2

t −
p∑
i=1

αiX
2
t−i = ω + νt

⇔ (1−
p∑
i=1

αiB
i)X2

t = ω + νt

⇔ φ(B)X2
t = ω + νt, (1.7)

where B is the backshift operator. If (Zt) is an i.i.d. sequence with zero-mean

and unit variance and (Xt) is second-order stationary, then (νt) constitutes a

white noise sequence, and as for the ARCH(1) case there is a formal analogy

with an AR(p), (φp(B)Xt = Zt in Table 1.1). Nevertheless, the resem-

blance is only formal because there is a fundamental difference between the

the right-hand side of both autoregressive equations: in the true AR(p) sit-

uation, the right-hand side depends only on the well-known sequence (Zt),

which is a white noise sequence with well defined properties, and on the

AR(p) in X2
t , in (1.7), the right-hand side depends on νt which is also a

white noise sequence, if (Xt) is second-order stationary. Nevertheless, this

white noise sequence depends on Zt and also on Xt, establishing a compli-

cated dependency structure.

Estimation in ARCH(p) models is usually based on the conditional maxi-

mum likelihood (ML) method. The likelihood function is given by

L(x1, x2, . . . , xT |θ) =

= f(xT |Ft−1,θ)f(xT−1|Ft−2,θ) · · ·

. . . f(xm+1|Fm,θ)f(xm|Fm−1,θ) · · · f(x2|F1,θ)f(x1|θ)

= f(xT |Ft−1,θ)f(xT−1|Ft−2,θ) · · · f(xm+1|Fm,θ)f(x1, x2, . . . , xm|θ),

with θ := (ω, α1, . . . , αp), the vector of parameters to be estimated. The

conditional likelihood function, conditionally on the first m observations is



22 1. Introduction

L(xm+1, xm+2, . . . , xT |θ, x1, x2, . . . , xm) =

= f(xT |Ft−1,θ)f(xT−1|Ft−2,θ) · · · f(xm+1|Fm,θ)

=
T∏

t=m+1

f(xt|Ft−1,θ).

If the Zt are normally distributed then the distributions of Xt|Xt−1 are also

normal, i.e., Xt|Xt−1 ∼ N(0, σ2
t ) with σ2

t as in (1.4) for the ARCH(p) or

as in (1.5) for the particular ARCH(1) case. The conditional log-likelihood

function l(xm+1, . . . , xT |θ, x1, . . . , xm), takes the form

l(xm+1, xm+2, . . . , xT |θ, x1, x2, . . . , xm) =

= ln (L(xm+1, xm+2, . . . , xT |θ, x1, x2, . . . , xm))

= ln

(
T∏

t=m+1

f(xt|Ft−1,θ)

)

=
T∑

t=m+1

ln (f(xt|Ft−1,θ))

=
T∑

t=m+1

ln (f(xt|xt−1,θ))

=

T∑
t=m+1

ln

(
1√

2πσt
exp

(
− x2

t

2σ2
t

))
.

After some simple manipulations it follows

l(xm+1, xm+2, . . . , xT |θ, x1, x2, . . . , xm) =

=
T∑

t=m+1

(
ln(2π)−

1
2 + ln(σt)

−1 − x2
t

2σ2
t

)

=
T∑

t=m+1

−1

2
ln(2π)−

T∑
t=m+1

ln(σt)−
T∑

t=m+1

x2
t

2σ2
t

= −T −m
2

ln(2π)− 1

2

T∑
t=m+1

ln(σ2
t )−

1

2

T∑
t=m+1

x2
t

σ2
t

.
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As the first term is constant, one can finally write that the explicit form of

the conditional log-likelihood function for an ARCH(1), conditionally on the

first observation is

l(x2, . . . , xT |ω, α1, x1) ∝ −1

2

T∑
t=2

ln(ω + α1x
2
t−1)− 1

2

T∑
t=2

x2
t

ω + α1x2
t−1

. (1.8)

For an ARCH(p) the conditional log-likelihood function, conditionally on the

first p observations and with σ2
t given by (1.4) is

l(xp+1, . . . , xT |ω, α1, . . . , αp, x1, . . . , xp) ∝ −
1

2

T∑
t=p+1

ln(σ2
t )−

1

2

T∑
t=p+1

x2
t

σ2
t

.

(1.9)

If the innovations Zt are considered t-distributed then the log-likelihood can

still be written in an explicit form. In order to maximize the conditional

log-likelihood function some non-linear numerical optimization procedure is

needed. A common non-linear optimization method is the Newton-Raphson

method and several software packages already include estimation procedures

for many models in the ARCH family based on the maximum conditional

log-likelihood method.

ARCH(p) processes do not fit asset return series as desired unless the or-

der of the model is very high which is a particularly bad choice when sample

size is small. The formal resemblance between the ARCH(p) and an AR(p)

model, suggested a generalization, considering that in the linear case, an

ARMA(p, q) model can be a more parsimonious choice (in terms of number

of parameters to estimate) than a pure AR(p) or MA(q) model. Then, a gen-

eralized ARCH process similar in form to the ARMA representation, could

eventually describe volatility with less parameters then an ARCH(p) model.
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Bollerslev (1986) suggested a generalization of the ARCH(p) model leading

to the Generalized ARCH model of order (p, q), or GARCH(p, q):

σ2
t = ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , t ∈ Z (1.10)

with ω > 0 and αi ≥ 0, βj ≥ 0, for i = 1, . . . , p and j = 1, . . . , q. The

GARCH(1, 1) model is obtained by considering the special case p = 1 and

q = 1 in (1.10), i.e.,

Xt = σtZt,

σ2
t = ω + α1X

2
t−1 + β1σ

2
t−1.

For this particular model one has

• Unconditional mean, E[Xt] = E[E[Xt|Ft−1]] = E[E[σtZt|Ft−1]] =

= E[E[
√
ω + α1X2

t−1 + β1σ2
t−1Zt|Ft−1]]

= E[
√
ω + α1X2

t−1 + β1σ2
t−1 E[Zt|Ft−1]]

= E[
√
ω + α1X2

t−1 + β1σ2
t−1 · 0]

= 0.

• Unconditional variance, Var[Xt] = E[(Xt − (E[Xt])
2] = E[X2

t ]. If (Xt)

is second-order stationary,

Var[Xt] =
ω

1− (α1 + β1)
.

If the GARCH(p, q) is to be considered one will have

Var[Xt] =
ω

1−
∑m

i=1(αi + βi)
,

instead. For the GARCH(1, 1) case, the kurtosis, K, is given by K =

3(1−(α1+β1)2)
1−(α1+β1)2−2α2

1
> 3, meaning that, if Xt follows a GARCH(1, 1) model,

it will have heavier tails than with the normal distribution.
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• ACVF, E[(Xt − E[Xt])(Xt+h − E[Xt+h])] = E[XtXt+h] =

= E[E[XtXt+h|Ft+h−1]] = E[Xt E[Xt+h|Ft+h−1]]

= E[Xt E[
√
ω + α1X2

t−1 + β1σ2
t−1Zt+h|Ft+h−1]]

= E[Xt

√
ω + α1X2

t−1 + β1σ2
t−1 E[Zt+h|Ft+h−1]]

= E[Xtσt+h · 0]

= 0.

The ACVF, γX , is zero for all lags except zero. The GARCH(1,1) is

covariance stationary.

The ARMA structure is obtained considering again νt = X2
t − σ2

t and sub-

stituting σ2
t from (1.10)

νt = X2
t − ω −

p∑
i=1

αiX
2
t−i −

q∑
j=1

βjσ
2
t−j .

Reorganizing,

X2
t = ω +

p∑
i=1

αiX
2
t−i + νt +

q∑
j=1

βj(X
2
t−j − νt−j)⇔

X2
t −

p∑
i=1

αiX
2
t−i −

q∑
i=1

βjX
2
j−i = ω + νt −

q∑
j=1

βjνt−j ⇔

(
1−

p∑
i=1

αiB
i −

q∑
i=1

βjB
j

)
X2
t = ω +

1−
q∑
j=1

βjB
j

 νt ⇔

(1− α(B)− β(B))X2
t = ω + (1− β(B))νt.

And this is the ARMA(m, q) representation in X2
t of the GARCH(p, q).

Introducing m := max{p, q} and φ(B) representing the autoregressive lag

polynomial and θ(B) the moving average lag polynomial,

φ(B) ≡ 1− α(B)− β(B) = 1−
m∑
i=1

(αi + βi)B
i,

θ(B) ≡ 1− β(B) = 1−
q∑
j=0

βjB
j ,
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the formal similarity with an ARMA model can be evidenced by writing

φ(B)X2
t = ω + θ(B)νt. (1.11)

Estimation in GARCH(p, q) models is usually based on the conditional ML

method already described for the ARCH(p) case. If the innovations, Zt, are

considered normally distributed then the conditional log-likelihood function

for the GARCH(p, q) is

l(xm+1, . . . , xT |θ, x1, . . . , xp) ∝ −
1

2

T∑
t=m+1

ln(σ2
t )−

1

2

T∑
t=m+1

x2
t

σ2
t

, (1.12)

with σ2
t given by equation (1.10) and with θ := (ω, α1, . . . , αp, β1, . . . , βq)

the vector of parameters to be estimated.

The GARCH representation for the volatility is a very popular one and in-

deed there are many reasons for it. Firstly, even a GARCH(1,1) model (with

only three parameters to estimate) represents a very reasonable fit for many

different financial time series, as long as the financial data is not sampled

from a long period in time. For illustration see, for example, Mikosch and

Stărică (2000) where the authors showed that the residuals of a GARCH(1,1)

fitting behave like an i.i.d. sequence. Secondly, as mentioned above, esti-

mation in a GARCH process is a very straightforward procedure, follow-

ing the conditional ML method. Yet another reason for the popularity of

the GARCH representation of the volatility is the formal similarity with an

ARMA process, though, as was already mentioned for the ARCH(p) pro-

cesses, the noise sequence (νt), on the right-hand side of equation (1.11), is

not independent of Xt. In fact, as is frequently done in classical time series

analysis with linear models, we could try to iterate equation (1.11) in order

to obtain X2
t as an explicit expression of the noise sequence (νt). Station-

arity conditions could then be built if (νt) was an i.i.d. sequence. But, as

defined, νt = X2
t − σ2

t is dependent on the left-hand side of equation (1.11),
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meaning that this simple procedure cannot be applied when trying to find

stationarity conditions. Stationarity is not easy to derive in GARCH pro-

cesses and to understand some important results we need to introduce the

stochastic recurrence (or difference) equation (SRE), given by

Y t = AtY t−1 +Bt, t ∈ Z, (1.13)

where (At,Bt) are i.i.d. R2-valued random pairs, Y t−1 is independent of

(At,Bt) for every time instant t, the At’s are i.i.d. random d× d matrices,

and the Bt’s are i.i.d. d-dimensional vectors. The GARCH(1,1) process can

be rewritten as a two-dimensional SRE in the form (1.13) as follows

Y t =

X2
t

σ2
t

 , At =

α1Z
2
t β1Z

2
t

α1 β1

 , Bt =

ωZ2
t

ω

 .

Note that σ2
t satisfies equation (1.13) with d = 1, Y t = σ2

t , At = α1Z
2
t−1+β1

and Bt = ω,

σ2
t = ω + α1X

2
t−1 + β1σ

2
t−1 = (α1Z

2
t−1 + β1)σ2

t−1 + ω.

SRE have been extensively studied and in what regards the existence of a

stationary solution for equation (1.13) one can mention the theory of Fursten-

berg and Kesten (1960) and Kesten (1973) to state that (1.13) has a station-

ary solution if E[ln+ ‖A‖)] <∞, E[ln+(|B|)] <∞ and if the top Lyapunov

exponent, γ, is negative

γ = inf{n−1 E[ln ‖A1 · · ·An‖], n ∈ N} < 0,

where ln+ x = ln(max{1, x}) and | · | is any norm in Rn with ‖A‖ the

corresponding operator norm. The GARCH(1,1) case was treated in Nelson

(1990) and Bougerol and Picard (1992) and for this particular case the top

Lyapunov exponent can be explicitly obtained, giving γ = E[ln(α1Z
2
1 +β1)].

Hence, it can be stated that there exists a unique strictly stationary solution

for the equation (1.13) if and only if ω > 0 and E[ln(α1Z
2
1 + β1)] < 0.



28 1. Introduction

Bougerol and Picard (1992) also treated the general GARCH(p, q) case and

concluded that equation (1.13) has a unique strictly stationary and ergodic

solution if and only if ω > 0 and γ < 0. In this general case γ has not an

explicit form, but it is known that a sufficient condition for γ < 0 is

p∑
i=1

αi +

q∑
j=1

βj < 1,

as long as the noise sequence (Zt) is an i.i.d. sequence with mean zero and

unit variance. It is also known that a necessary condition for γ < 0 is that∑q
j=1 βj < 1.

Ding et al. (1993) questioned the reason why should the volatility depend on

the squares of the past values of Xt and σt and proposed the Asymmetric

Power ARCH of order (p, q), APARCH(p, q) model defined as

σδt = ω +

p∑
i=1

αi(|Xt−i| − γiXt−i)
δ +

q∑
j=1

βjσ
δ
t−j , t ∈ Z, (1.14)

where ω > 0, αi ≥ 0, βj ≥ 0, δ ≥ 0 and −1 < γi < 1, for i = 1, . . . , p

and j = 1, . . . , q. The APARCH representation has some noteworthy advan-

tages, namely the power of the returns for which the predictable structure

in the volatility is the strongest can be determined by the data, and, also,

the model allows the detection of asymmetric responses of the volatility for

positive or negative shocks. If γi > 0 negative shocks have stronger impact

on volatility than positive shocks, as would be expected in the analysis of

financial time series, as it is believed that bad news have stronger impact on

volatility than good news. This is referred to as the leverage effect and, as

mentioned in the beginning of the section, reflects the fact that estimated

volatility tends to be negatively correlated with the returns. If γi < 0, the

reverse happens: positive shocks have stronger impact on volatility than neg-

ative shocks. Another advantage of this APARCH representation is that it

nests seven other models, as the authors stress out:
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1. Engle’s ARCH(p) model, (Engle, 1982), when δ = 2, γi = 0 for i =

1, . . . , p and βj = 0 for j = 1, . . . , q;

2. Bollerslev’s GARCH(p, q) model, (Bollerslev, 1986), when δ = 2 and

γi = 0 for i = 1, . . . , p;

3. Taylor/Schwert’s GARCH in standard deviation model, (Taylor, 1986,

and Schwert, 1990) when δ = 1 and γi = 0 for i = 1, . . . , p;

4. GJR model of Glosten et al. (1993), when δ = 2 and some subsequent

manipulations;

5. Zakoian’s TARCH model (Zakoian, 1994) when δ = 1 and βj = 0 for

j = 1, . . . , q;

6. Higgins and Bera’s NGARCH model (Higgins and Bera, 1992) when

γi = 0 for i = 1, . . . , p and βj = 0 for j = 1, . . . , q;

7. Geweke (1986) and Pantula (1986)’s log-ARCH model, which is the

limiting case of the APARCH model when δ → 0.

Baillie et al. (1996) proposed the FIGARCH(p, d, q) model in order to ac-

commodate long memory in volatility (accordingly to the most common def-

inition of long memory: autocovariance function, γX(h), decaying at the

hypergeometric rate h2d−1, with 0 < d < 1/2). When the autoregressive

lag polynomial φ(B) = 1− α(B)− β(B) in the ARMA(m, q) representation

of the GARCH(p, q) process, contains a unit root, the GARCH(p, q) pro-

cess is said to be integrated in variance (Engle and Bollerslev, 1986). The

Integrated GARCH(p, q) or IGARCH(p, q) class of models is given by

φ(B)(1−B)X2
t = ω + (1− β(B))νt.

For this class of models one has
∑p

i=1 αi +
∑q

j=1 βj = 1 and, consequently,

the uncondicional variance in undefined.
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The Fractionally Integrated GARCH(p, d, q), or FIGARCH(p, d, q)

class of models is simply obtained by allowing the differencing operator in

the above equation to take non-integer values

φ(B)(1−B)dX2
t = ω + (1− β(B))νt, (1.15)

with 1 − β(B) and φ(B) representing lag polynomials of orders q and p,

respectively, and the roots of both φ(z) = 0 and β(z) = 1 lying outside

the unit circle. d is the fractional differencing parameter and the fractional

differencing operator is most conveniently expressed by its Maclaurin series

expansion,

(1−B)d = 1−dB−d(1− d)

2!
B2−d(1− d)(2− d)

3!
B3−· · · =

∞∑
k=0

d
k

 (−1)kBk,

(1.16)

where 0 < d < 1/2. If 1 − β(B) is invertible, then the FIGARCH(p, d, q)

model can be expressed as an ARCH(∞)-process writing

φ(B)(1−B)dX2
t = ω + (1− β(B))(X2

t − σ2
t )⇔

(1− β(B))σ2
t = ω + (1− β(B))X2

t − φ(B)(1−B)dX2
t

σ2
t =

ω

1− β(B)
+ λ(B)X2

t ,

where λ(B) = 1− (1− β(B))−1φ(B)(1−B)d. For the FIGARCH(p, d, q)

model to be well-defined and the conditional variance positive almost surely

for all t, all the coefficients in the ARCH(∞) representation must be non-

negative. General conditions, however, are difficult to establish. For the

FIGARCH(1,d,1) model the infinite series coefficients can be obtained re-

cursively (please refer to the FIAPARCH(1,d,1) model in Chapter 2, Sec-

tion 2.1, for the explicit form of these recursions) and from this recursions it

was shown by Bollerslev and Mikkelsen (1996) that conditions

β − d ≤ φ ≤ 2− d
3

, d(φ− 1− d
2

) ≤ β(φ− β + d), (1.17)
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are sufficient to ensure non-negativity. In the GARCH(p, q) model that

is covariance stationary, shocks to the conditional variance dissipate ex-

ponentially, meaning that the effect of a shock on the forecast of the fu-

ture conditional variance tends to zero at a fast exponential rate. In the

IGARCH(p, q) model, shocks to the conditional variance persist indefinitely,

meaning that the shocks remain important for all horizon forecasts. In the

FIGARCH(p, d, q) model, the differencing parameter introduces a different

behaviour: the effect of a shock to the forecast of the future conditional

variance is expected to die out at a slow hyperbolic rate. This is the reason

why the FIGARCH(p, d, q) process is said to have long memory in volatility.

Tse (1998) modifies the FIGARCH(p, d, q) process to allow for asymme-

tries, thus originating the Fractionally Integrated Asymmetric Power

ARCH of order (p, d, q), FIAPARCH(p, d, q) process. Defining g(Xt) =

(|Xt| − γXt)
δ, with |γ| < 1 and δ ≥ 0, the FIAPARCH(p, d, q) model can be

written as

Xt = σtZt,

σδt =
ω

1− β(B)
+ λ(B)g(Xt), (1.18)

where

λ(B) = 1− (1− β(B))−1φ(B)(1−B)d =
∞∑
i=1

λiB
i, (λ(1) = 1), (1.19)

for every 0 < d < 1, with λi ≥ 0, for i ∈ N, and ω > 0, for the conditional

variance to be well defined, so that it is positive almost surely for all t. In

order to allow for long memory, the fractional differencing parameter, d, is

constrained to lie in the interval 0 < d < 1/2. Moreover, the polynomials

1−β(B) and φ(B) are assumed to have all their zeros lying outside the unit

circle. The fractional differencing operator (1−B)d is once again expressed

as (1.16).
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The FIAPARCH model nests two major classes of ARCH-type models: the

APARCH and the FIGARCH models. When d = 0 the process reduces to

the APARCH(p, q) model, whereas for γ = 0 and δ = 2 the process reduces

to the FIGARCH(p, d, q) model. The FIGARCH representation includes the

GARCH (when d = 0) and the IGARCH (when d = 1), with the implications

in terms of impact of a shock on the forecasts of future conditional variances,

as discussed above. Considering all the features involved in this specification,

Conrad et al. (2011) point out some advantages of the FIAPARCH(p, d, q)

class of models, namely

(a) it allows for an asymmetric response of volatility to positive and neg-

ative shocks, so being able to traduce the leverage effect;

(b) in this particular class of models it is the data that determines the

power of returns for which the predictable structure in the volatility

pattern is the strongest;

(c) the models are able to accommodate long memory in volatility, de-

pending on the differencing parameter d.

It is important to mention here that necessary and sufficient conditions for

the existence of a stationary solution of the APARCH(p, q) model can be

easily obtained from the results derived by Liu (2009). This author in-

troduced a family of GARCH processes, which can be regarded as a class

of non-parametric GARCH processes, which include as a special case the

APARCH(p, q) model. Liu (2009) obtained necessary and sufficient condi-

tion for the existence of a stationary solution of this new family of GARCH

processes. Furthermore, Liu (2009) also derived an explicit expression for

the stationary solution. In contrast, however, the statistical properties of

the general FIGARCH(p, d, q) process remain unestablished. Namely, sta-

tionarity is not a certainty as well as the source of long memory on volatility
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or even its existence are nowadays controversial. For the FIAPARCH pro-

cess, Tse (1998) also leaves these issues as open questions.

1.2.2 Optimal Alarm Systems

Recently, it has been recognized the potential of optimal alarm systems in

detecting and warning the occurrence of catastrophes, and the spectrum of

applications of optimal alarm systems is wide and yet to be explored. As ex-

amples of applications we can mention the prediction and warning for high

water levels at the Danish coast in the Baltic Sea, in Svenson and Holst

(1998), or the evaluation of the performance of a water-level predictor as

part of a flood warning system, in Beckman et al. (1990). In a different

context from that of optimal alarm systems, Guillou et al. (2010), proposed

an approach based on Extreme Value Theory (EVT) for the early detec-

tion of time clusters3 in weekly counts of Salmonella isolates, reported to

the national surveillance system in France. The method checks if each new

observation corresponds to an unusual or extremal event and the authors

propose its integration in public health surveillance agencies.

Timely public health intervention is fundamental and there are many sit-

uations in which surveillance is critical. For instance, atmospheric concen-

trations of air pollutants constitute real-valued time series that can be anal-

ysed under the perspective of up-crossings of some critical levels. Take as

examples the studies by Smith et al. (2000) (a combined analysis of daily

mortality data from Birmingham, Alabama with PM10 − particulate matter
3A time cluster is defined in Guillou et al. (2010), as a time interval in which the

number of observed events is significantly higher than the expected number of events in a

given geographic area. Also, by event it is meant any event of interest, generally related

to public health, such as cases of illness, admissions to hospitals, number of deaths, etc.
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of aerodynamic diameter 10µm or less − and meteorological variables such

as minimum and maximum daily temperature and humidity), or Tobías and

Scotto (2005) (ground ozone levels, collected in two measurement stations in

Barcelona, were analysed under another approach based on EVT, namely,

the Peak Over Threshold method; ozone levels higher than a certain thresh-

old can be health-hazards for human health and the analysis revealed that

the threshold value was exceeded many times in both stations). For further

references on the existent literature on the relation between air pollution

and mortality, see Koop and Tole (2004). In this paper the authors discuss

the importance of model uncertainty for accurate estimation of the health

effects of air pollution, and propose Bayesian model averaging procedures to

reduce the uncertainty and inaccuracy of the empirical estimates. They also

illustrate their method with a comprehensive data set for Toronto, Canada,

taking a certain measure of mortality as the dependent variable and twelve

explanatory variables (seven different pollutants and five different weather

variables) with all possible associations between them.

The impact of air pollution and other environmental factors on public health

is indeed a significant area of environmental economics that can benefit from

an accurate prediction of level-crossings. As an example of a potential ap-

plication of an optimal alarm system for count processes, we can refer the

extensive study by Katsouyanni et al. (2001) on the relationship between

mortality and air pollution: the daily number of deaths in 29 European

cities were analysed in relation to exposure and levels of PM10, black smoke,

sulphur dioxide, ozone and nitrogen dioxide, for periods ranging from 1990 to

1997. Other potential applications related to environmental economics are

suggested by the works of Touloumi et al. (2004) (short-term health effects

of air pollution, considering PM10 and nitrogen dioxide, were analysed in a

hierarchical modelling approach, using data from 30 cities across Europe),
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Braga et al. (2001) (counts of daily deaths, modelled through a generalized

additive Poisson regression model were related to temperature and relative

humidity; data was collected from 12 cities in the United States and several

covariates were considered, namely, season, day of the week and barometric

pressure), Campbell et al. (2001) (relation between atmospheric pressure and

sudden infant death syndrome, in Cook, Chicago) or Schwartz et al. (1997)

(association between daily measures of drinking water turbidity and both

emergency visits and hospital admissions for gastrointestinal illness at the

Children’s Hospital of Philadelphia).

Another area of potential application of optimal alarm systems is econo-

metrics and, in particular, risk management. The implementation of proba-

bilistic models for the assessment of market risks or credit risks is mandatory.

The paper by Thomas (2000) gives an overview of the history, objectives,

techniques and difficulties of credit scoring and behaviour scoring4. It also

points out how successful the area of forecasting financial risk has become

in the last thirty years and how credit scoring would profit even more if it

would be possible to change the procedure of estimating the probability of a

consumer defaulting to estimating the profit a consumer would bring to the

lending organisation. Another example of the implementation of probabilis-

tic models for the assessment, in this case, of market risks, is the forecasting

of daily stock volatility in Fuertes et al. (2009), and in all the references

therein. Unlike prices or volume, volatility is not directly observable. Nev-

ertheless, forecasting the conditional variance of stock market returns has

4Credit scoring relates to the techniques that help organizations decide whether or not

grant credit to new applications. Behaviour scoring is the set of tools that aid in the

decisions related to existing costumers. What kind of marketing to aim at any particular

client? Should the organization agree if the client wants to increase its credit limit? What

actions should the firm take if the client starts to fall behind his payments? These are

questions that the techniques involved in behaviour scoring aim to answer.
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implications in option pricing, portfolio management, Value-at-Risk, and fi-

nancial market regulation. Yet another socio-economical area that could

highly benefit from the perspective of an optimal alarm system is revenue

management. It is estimated that efficient revenue management can have

profit improvement around 3%-7% in airline, hotel and car rental industries.

It enables a company to maximize profit given the same number of units sold,

and, one of the core concepts behind it, is the reservation of a portion of ca-

pacity for higher value customers at a later date (later booking clients are

not as price sensitive as the lower value segment of early booking costumers).

Obviously, then, forecasting capability is a competitive advantage in revenue

management. Weatherford and Kimes (2003), used data from Choice Hotels

and Marriot Hotels to test several forecasting methods of arrival of guests.

Brännäs et al. (2002) modelled monthly guest nights in hotels through an

integer-valued moving average model. They presented empirical results for a

series of Norwegian guests in Swedish hotels and the results indicated strong

seasonal patterns in mean check-in and check-out probabilities. Shortly after,

Brännäs and Nordström (2004), presented an integer-valued autoregressive

model in which the capacity constraint was an integral part. The duration

of stay for the visitor and the occupancy probability are measures that can

be inferred from the model. The effects of price changes and of the exis-

tence of a large festival, on these measures, were empirically assessed with

the model. Later on, Brännäs and Nordström (2006), proposed extensions

to the basic autoregressive binomial model in which the capacity constraint

is an integral part, in order to make it possible to evaluate the effects of

festivals and to account for time-variation in the parameters and the capac-

ity constraint. The empirical impact of festivals on tourist accommodation

was studied on daily accommodation time series for hotels and cottages in

Stockholm and Gothenburg from January 1993 to August 1999. The authors

found that festivals had a clear positive impact on tourism demand in both
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cities. Nevertheless, any of the models mentioned here is directly applicable

to calculate in advance the probability of, for instance, the tourism demand

being higher than the accommodation capacity.

Actually, except for the references of Svenson and Holst (1998) and Beckman

et al. (1990), mentioned early in this section, no other reference addresses

the problem of calculating in advance the probability of future up/down-

crossings, in the sense of event prediction. It is in this context that the

implementation of an (optimal) alarm system reveals to be useful. In what

follows, we will start by introducing simple definitions regarding alarm sys-

tems and give the historical perspective of the developments in this area. The

formalism used throughout this work will also be presented in this section,

following naturally after the references more related to it. Finally, aiming at

offering a broadening perspective on the wide field of applications of optimal

alarm systems, recent contributions on this area will be briefly discussed.

Some alternative approaches to the construction of alarm systems will also

be addressed.

An alarm system is an algorithm which, based on current information, pre-

dicts whether a level-crossing event is going to occur at a specified time in

the future. As to remind that level-crossings do sometimes have very drastic

consequences, the designation catastrophe is commonly used. Considering

level-crossing events, we can distinguish between one and two-sided cases

and also between an exceedance and an up-crossing event. An exceedance is

a one-dimensional level-crossing event, where some critical level or thresh-

old u is exceeded by a process at one single time point. An up-crossing is a

two-dimensional level-crossing event, involving two adjacent time points: the

process is below the critical threshold at the first time point and above the

threshold at the second time point. Both cases described refer to one-sided
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exceedances or up-crossings. The two-sided case involves a level-crossing

event that spans many time points, exceeding upper levels and fading below

lower levels, symmetric about the mean of the process, as defined in Martin

(2012). Only recently the two-sided case has been investigated, as will be

mentioned below. Throughout this work a catastrophe will be considered as

the up-crossing event

Ct,j = {Xt+j−1 ≤ u < Xt+j},

for some j ∈ N and some real u.

Conceptually, the simplest way, or naive way, of constructing an alarm sys-

tem is to predict Xt+h by a predictor say, X̂t+h, which is usually chosen so

that the mean square error is minimized, providing

X̂t+h = E[Xt+h|Xs,−∞ < s ≤ t].

An alarm is given every time the least squares predictor exceeds some critical

level, i.e., the event that X̂t+h up-crosses û foretells that Xt+h will up-cross

u, for some û < u (given that Var[X̂t+h] < Var[Xt+h] and the detection

probability is desired to be reasonably high). This value prediction alarm

system was defined in Lindgren (1985) as the ability to predict future pro-

cess values of a stationary linear Gaussian random process, in the sense of

least squares. It is very often designated as a naive alarm system. This

alarm system, however, does not have a good performance on the ability to

detect level-crossing events, locate them accurately in time and give as few

false alarms as possible. If the intent is to predict whether or not Xt+h will

exceed some critical threshold u for some h > 0, one can not only use the

single value X̂t+h for each particular h, but must also consider the predicted

change rate. In this event prediction based alarm system, the prediction

capability must be judged by the system’s ability to accurately predict a
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level-crossing event. An event prediction is constructed on a defined pre-

diction horizon and involves level-crossings of a given critical level by the

random process.

At each moment, the algorithm of the alarm system signals whether or not

a catastrophe is bound to happen h time steps ahead. An alarm is a false

alarm if, after an alarm signal, no catastrophe occurs at the specified time;

a catastrophe is said to be undetected if the catastrophe occurs without

the previous alarm signalling. The success of the alarm system is measured

by its false alarm rate and by its detection probability and the definition of

optimal alarm involves a compromise between these two characteristics. In

what follows, whenever we mention optimal alarm system, it is meant as

defined in Grage et al. (2010).

Definition 1.1. Optimal alarm system: An optimal alarm system for

a specified set of available data is defined as a system which, for a given

probability of detecting a catastrophe, has the highest probability of correct

alarm.

Following these considerations, Lindgren (1985) and de Maré (1980) set the

principles for the construction of optimal alarm systems. Establishing the

analogy between alarm systems and hypothesis testing, de Maré (1980), de-

veloped a general context optimal alarm system based on a likelihood-ratio

argument. The alarm problem can be thought of as a hypothesis test where

one has to choose whether to give an alarm or not. de Maré showed that

the Neyman-Pearson lemma gives a condition for this test to be optimal.

Lindgren (1985) restated this condition, giving an explicit formulation of

the optimal alarm system in terms of the pair predicted value/predicted

growth rate, for a Gaussian stationary process. The optimal alarm system

is bound to give an alarm when the prediction exceeds a variable alarm level

that adjusts according to the expected growth rate of the process. The op-
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timal alarm condition is then, fundamentally, an alarm region (or decision

boundary) that is defined by the likelihood ratio between predicted value

and growth rate.

Crucial to the measurement of the success of the alarm system are the

operating characteristics, probability of correct alarm and probability

of detected catastrophe, introduced by Lindgren (1975b) and developed by

Beckman (1987). In Svensson et al. (1996) a comparison between a naive

alarm system (based only on the predictions of the process values) and an

optimal alarm system (that depends on the expected growth rate of the pro-

cess) was carried out. The operating characteristics mentioned before were

calculated and the optimal catastrophe predictor was found to perform much

better than the naive predictor. For stationary stochastic processes, Svens-

son et al. (1996), showed that the likelihood ratio criterion, as introduced

by de Maré, is equivalent to a conditional inequality that compares the con-

ditional probability of catastrophe with the level Pb, the border probability.

Formulated in these terms, the alarm region is parametrized in terms of pre-

dicted future process values (conditional probability of level-crossing) and

Pb. Pb turns out to be an extremely important parameter as it effectively

defines the interval spanned by the alarm region. Consequently, the border

probability is a key parameter in the control of the trade-off between the

number of false alarms and undetected events. A detailed analysis of the

border probability and it’s effect on the resulting operating characteristics

of the system must be carried out when designing, in practice, an optimal

alarm system. In Svenson and Holst (1998), the principles of optimal predic-

tion of level-crossings were applied to the sea levels of the Baltic sea. Other

basic results regarding optimal prediction of level-crossings were obtained by

Lindgren (1975a,b, 1980), Svensson (1998) and Svensson and Holst (1997).
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It is worth to mention that the alarm system introduced by Lindgren and

de Maré, ignores the sampling variation of the model parameters. General

practice in all of the above mentioned references involves carrying out the

calculations needed for the construction of the optimal alarm system consid-

ering that the parameters in the stationary process are known, and, then,

in appropriate time, replacing them by their proper estimates. The station-

arity assumption is required and the variation of the parameter estimates is

not considered when computing, for instance, the operating characteristics

of the alarm system. Giving heed to this issue, Amaral-Turkman and Turk-

man (1990) suggested the formulation of a Bayesian predictive approach. In

this work the authors have basically kept all the notions and principles of

Lindgren (1985) but replaced the probabilities by their predictive counter-

parts. Particular calculations were carried out for stationary autoregressive

processes of order 1, AR(1). The computational burden, however, was not

solved until the work by Antunes et al. (2003) where the operating charac-

teristics of the alarm system were numerically obtained. Further extensions

and generalizations were also proposed as the authors extended the appli-

cation of the optimal alarm systems to random walks and autoregressive

models of order p. Also, the authors introduced what they defined as on-

line alarm systems, where posterior probabilities are updated at each time

point, as opposed to off-line alarm systems, where the alarm systems are

constructed for unconditional events, which, by the assumption of station-

arity, are assumed to have the same probability over time. In practice, a

process is continuously observed in time and this information should be used

to update the probability of the events under consideration, in particular,

the probability of the up-crossing event. Following this on-line event predic-

tion perspective, the assumption of stationarity can be relaxed.

All the references cited before relate to real-valued stochastic processes. Ex-
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tending the areas of application of optimal alarm systems, Monteiro et al.

(2008) addressed the development of alarm systems for time series of counts

represented through integer-valued autoregressive models where the param-

eters are functions of covariates of interest and vary on time. The Doubly

Stochastic INteger-valued AutoRegressive process of order 1, DSINAR(1),

was considered and both classical and Bayesian methodologies were used in

the construction of the optimal alarm system. An empirical application was

done, considering the number of sunspots (areas of reduced surface tempera-

ture that appear visibly as dark-spots on the photosphere of the sun) on the

surface of the sun. Though the optimality conditions were met, the authors

reported a rather high number of false alarms, both in the simulation study

and in the working example, a similar result to the one found by Svenson

and Holst (1998) in the analysis of high water levels at the Danish coast in

the Baltic sea.

As the optimal alarm systems constructed is this work follow closely the

approaches of Antunes et al. (2003) and Monteiro et al. (2008), we will take

here the opportunity to present the theoretical fundamentals of the method,

concerning basic definitions and operating characteristics. The development

of an optimal alarm system for the continuous case, with application to the

FIAPARCH(1,d,1) model, will be done in Chapter 2. The development of

an optimal alarm system for the discrete case, with application to the IN-

APARCH(1,1) model will be done in Chapter 3. In order to maintain the

generality of the presentation, the details and particularities of the applica-

tions will be postponed until implementation is done and several questions

regarding methodology arise.

Let (Xt) be a discrete parameter stochastic process with parameter space

Θ ⊂ Rk, for some fixed k ∈ N. The time sequel {1, 2, . . . , t−1, t, t+1, . . . } is
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divided into three sections, {1, 2, . . . , t−q}, {t−q+1, . . . , t}, and {t+1, . . . },

namely, the past, the present and the future. For some q > 0, the sets

Dt = {X1, . . . , Xt−q}, X2 = {Xt−q+1, . . . , Xt} and X3 = {Xt+1, . . . } repre-

sent, respectively, the data or informative experience, the present experiment

and the future experiment, at time point t.

Definition 1.2. The event of interest, Ct,j, is defined as a catastrophe and

is any event in the σ-field generated by X3.

As already mentioned, throughout this work the catastrophe will be consid-

ered as the up-crossing event of the fixed level u, at time point t+ j,

Ct,j = {Xt+j−1 ≤ u < Xt+j},

for some j ∈ N and for some real u. In a particular application, the down-

crossing event of the fixed level u, at time point t+ j,

Ct,j = {Xt+j−1 ≥ u > Xt+j},

for some j ∈ N and for some real u, will be considered, instead.

Definition 1.3. Any event At,j in the σ-field generated by X2, predictor of

Ct,j, will be an event predictor or alarm.

It is said that an alarm is given at time t, for the catastrophe Ct,j , if the

observed value of X2 belongs to the predictor event or alarm region. In

addition, the alarm is said to be correct if the event At,j is followed by the

event Ct,j . Thus, the probability of correct alarm will be defined as the

probability of catastrophe conditional on the alarm being given. Conversely,

a false alarm is defined as the occurrence of At,j without Ct,j . If an alarm is

given when the catastrophe occurs, it is said that the catastrophe is detected

and the probability of detection will be defined as the probability of an alarm

being given conditional on the occurrence of the catastrophe.
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Definition 1.4. The alarm region At,j is said to have size αt,j if αt,j =

P (At,j |Dt).

Note that αt,j can be understood as the proportion of time spent in the

alarm state.

Definition 1.5. The alarm region At,j is optimal of size αt,j if

P (At,j |Ct,j , Dt) = sup
B∈σX2

P (B|Ct,j , Dt), (1.20)

where the supreme is taken over all sets B ∈ σX2 such that P (B|Dt) = αt,j.

The alarm region At,j is optimal, if it has the highest detection probability,

among all regions with the same alarm size. The optimality condition could

be defined in another way. We could define an alarm region to be optimal

if it satisfies Definition 1.1, i.e., if it has the highest probability of correct

alarm (or, it gives the least number of false alarms) for a given probability

of detection. However, as stated in Lemma 1, in Antunes et al. (2003), these

definitions lead to the same alarm region.

Definition 1.6. An optimal alarm system of size (αt,j) is a family of alarm

regions (At,j) in time, satisfying (1.20).

The following lemma is equivalent to Lemma 4.1. of Lindgren (1985) and

follows closely the notation of Antunes et al. (2003) and Monteiro et al.

(2008).

Lemma 1.7. Let p(x2|Dt) and p(x2|Ct,j , Dt) be the predictive density of X2

and the predictive density of X2 conditional on the event Ct,j, respectively.

Then, the alarm system (At,j) with alarm region given by

At,j =

{
x2 ∈ Rq :

p(x2|Ct,j , Dt)

p(x2|Dt)
≥ kt,j

}
,

or, equivalently,

At,j =

{
x2 ∈ Rq :

P (Ct,j |x2, Dt)

P (Ct,j |Dt)
≥ kt,j

}
,

for a fixed kt,j such that P (X2 ∈ At,j |Dt) = αt,j, is optimal of size αt,j.
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If (Xt) is an integer-valued process, simple adaptations of the previous lemma

are required. In the discrete case, p(x2|Dt) represents the predictive proba-

bility of X2 and p(x2|Ct,j , Dt), the predictive probability of X2 conditional

on the event Ct,j . In this case, x2 ∈ Nq0, also. This lemma ensures that

the alarm region defined above renders the highest detection probability.

Moreover, to enhance the fact that the optimal alarm system depends on

the choice of kt,j , it is important to stress that in view of the fact that

P (Ct,j |Dt) does not depend on x2, the alarm region can be rewritten in the

form

At,j = {x2 ∈ Rq : P (Ct,j |x2, Dt) ≥ k}, (1.21)

where k = kt,jP (Ct,j |Dt) is chosen in some optimal way to accommodate

conditions over the operating characteristics of the alarm system.

Definition 1.8. The following probabilities are called the operating charac-

teristics of an alarm system:

1. P (At,j |Dt) - Alarm size,

2. P (Ct,j |At,j , Dt) - Probability of correct alarm,

3. P (At,j |Ct,j , Dt) - Probability of detecting the event,

4. P (Ct,j |At,j , Dt) - Probability of false alarm,

5. P (At,j |Ct,j , Dt) - Probability of undetected event.

The choice of k will depend on a compromise between maximizing the prob-

abilities of correct alarm and of detecting the event. As it is not possible,

in general, to maximize both alarm characteristics simultaneously, some cri-

teria must be met in order that the alarm system achieves a satisfactory

behaviour. Several criteria have already been proposed in the literature. We

will address this issue and discuss some criteria already proposed, further

on, when dealing with the application of the alarm system to particular sit-

uations.
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To complement this section, we will now present some recent contribu-

tions regarding the construction of alarm systems. Different perspectives

and methodologies related to this field are given, as a reinforcement to the

original claim that the spectrum of applications of optimal alarm systems is

wide and yet to be explored.

It is known that neural network algorithms are often successfully used to

produce predictions of non-Gaussian time series, generally based on the min-

imization of a quadratic loss function. When one wants to predict whether

or not the time series will exceed a certain fixed level, as is the case in event

prediction, the mean square error is not very useful as a loss function. Sev-

eral modifications of the standard network algorithms have been proposed in

the literature to improve performance in warning for exceedance. Take, as

examples, the prediction of episodes of poor air quality in Nunnari (2006), or

the forecasting of ozone peaks and exceedance levels in Dutot et al. (2007);

see also Cawley et al. (2007) for a review of the existing methodologies re-

lated to artificial neural networks for estimating predictive uncertainty and

dealing with decision making processes. In Grage et al. (2010) the authors

investigated to what degree an artificial neural network can approximate an

optimal alarm system. The authors applied two neural network models to

Gaussian as well as non-Gaussian stochastic processes and compared their

behaviour with the behaviour of a naive and an optimal catastrophe pre-

dictor. In all cases, the network models were much better than the naive

predictor but not quite as good as the optimal predictor (which, as already

mentioned, for a Gaussian stationary process, can be explicitly specified in

terms of the predicted value of the process itself and of its derivative). Any-

way, the authors were able to show that a neural network can be trained to

approximate an optimal alarm system arbitrarily well.
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Another recent approach to level-crossing prediction was taken by Martin

(2010) who combined the use of Kalman filtering5 with the design of an opti-

mal alarm system for a zero-mean stationary linear dynamical system driven

by Gaussian noise, in state-space form. The author found a negligible loss in

accuracy by using approximations to the theoretical optimal predictor and

the major advantage of much less computational complexity. The negligibil-

ity of the loss in accuracy was demonstrated by comparing approximations

of the optimal level-crossing predictor to baseline methods: the approxima-

tions clearly outperformed the baseline methods. To our knowledge, and

to the exception of Kerr (1982) who evaluated tightened upper bounds on

the false alarm and correct detection probabilities in an optimized Kalman

filter-based failure detection algorithm, the level-crossing event considered

in Martin (2010), was the first reference of a two-sided level-crossing event.

Recall that two-sided level-crossing means spanning many time steps and

exceeding upper and lower levels, symmetric about the mean of the process.

A more detailed extreme value analysis was done in a subsequent paper by

Martin (2012). The author considered as the level-crossing event at least

one exceedance outside the threshold envelope [−L,L], within the specified

step-ahead prediction window. In the construction of the alarm system,

5The Kalman filter is a recursive filter that estimates the internal state of a linear dy-

namic system from a series of noisy measurements. A system’s state, represented by some

linear dynamical model can be inferred through measured data. Sensor noise, approxima-

tions in the equations and external factors not accounted for, introduce uncertainty about

the inferred values. The Kalman filter averages a prediction of a system’s state with a new

measurement using a weighted average based on the model’s covariance, a procedure that

results in a new state estimate lying between the predicted and the measured state, and

having a better estimated uncertainty than either the predicted or the measured state.

The designation of recursive filter comes from the fact that this process is repeated ev-

ery time step, with the new estimate and its covariance serving as information for the

prediction used in the following iteration.
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four different situations were considered: two baseline alternatives and two

different approximations to the optimal alarm system (namely the closed-

form and the root-finding approximations). For each of these situations, the

alarm region, the alarm probability and the true positive and false positive

rates (conditional probabilities that relate to the operating characteristics of

the alarm system) were obtained, in explicit form, whenever possible. An

extreme value analysis was carried out considering the limiting cases when

L→ 0 (small value level-crossing prediction) and L→∞ (large-value level-

crossing prediction). The author concluded that, given the assumed technical

conditions, level-crossings of a linear Gaussian process can be predicted with

the greatest accuracy for extremely high levels or very low measurement

noise (although intuitive, this last result was actually finally supported by

rigorous theoretical proof).

Recently, Das and Kratz (2010, 2012) developed an alarm system as a strat-

egy for capital allocation in insurance institutions. Although based on the

Cramér Lundberg model6, and different in principle from the construction

of an optimal alarm system, there are some similarities with it, in partic-

ular, in what concerns the alarm time being dependent on a critical value

of a conditional probability. An alarm is given at some time point, when

the conditional probability of ruin, given survival up to the alarm time, say

α, is high, in the absence of any intervention. Also, it is required that the

6The Cramér Lundberg model, or the classical compound-Poisson risk model, repre-

sents the theoretical foundation of ruin theory. It describes the risk of an insurance com-

pany experiencing two opposing cash flows: incoming premium collection and outgoing

claim settlement. A simple model for the risk, Vt, can be written as Vt = ut+ct−
∑Nt
i=1Xi,

where it is assumed that premiums arrive at constant rate c, and claims, Xi’s, arrive

according to a Poisson process with intensity λ and are i.i.d. non-negative random vari-

ables with distribution F and mean µ, forming a compound Poisson process. ut denotes

the capital function at time t. The ruin time of the risk process is formally defined as

T = inf{t > 0 : Vt < 0}, with T =∞ if there is no ruin.
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probability of non-ruin before the alarm, say β, is sufficiently high. In this

paper, then, the conditions for giving an alarm are constructed on two intu-

itive requirements or empirical properties of the alarm system: at the alarm

time, the probability of ruin in not so distant future, say d, is substantial if

no action is taken, and, the probability of the system getting ruined before

the alarm time is minimal. The time window d, the probabilities α and β

and the initial capital u constitute the parameters of the alarm time model.

An alarm system consisting of a sequence of alarms is defined as a natural

extension of the single alarm, and capital addition occurs whenever an alarm

is given. To test the effectiveness of this method, the authors compared the

survival probabilities of the proposed alarm system and of an alternative

system, with no alarms but with a higher initial capital (equivalent in total

to the capital added in the alarm case). The simulations revealed the better

performance of the alarm system in the long run, meaning, higher survival

probability over finite horizon.

Following the works of Cirillo et al. (2010) and Cirillo and Hüsler (2011) a

Bayesian non-parametric approach to catastrophe prediction was proposed

in Cirillo et al. (2013). This innovative approach uses urn processes, which

are a very large family of probabilistic models in which objects of real in-

terest are represented as coloured balls in one or more urns or boxes. The

probabilities of certain events are expressed in terms of sampling, replacing

and adding balls to the urns. The particular construction in Cirillo et al.

(2013), is part of the class of reinforced urn processes, RUP, introduced

in Muliere et al. (2000), as reinforced random walks on a state space of urns.

Using this models, several recent applications in level-crossing or catastrophe

prediction can be found in the literature. In the first above mentioned ref-

erence, Cirillo et al. (2010), presented a general recursive model constructed
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by the means of interacting Polya urns7, to model the dependence among

failures both within and between k groups of failing systems (systems whose

probability of failure is not negligible in a fixed time horizon). The examples

of failing systems range from financial portfolios and credit risk to electrical

and mechanical systems or even the world wide web itself. An application

is presented to credit risk modelling. Another example of the application

of RUP in risk modelling can be found in Amerio et al. (2004), where a

stochastic model for credit default for debt issuers belonging to the same

Moody’s rated class is proposed. In the second reference mentioned in this

paragraph, attention is given to systems that are subject to shock of random

magnitude, at random times. If the systems break down when some shock

overcomes a given resistance level, extreme shock models, as introduced in

Gut and Hüsler (1999), become appropriate to describe the situation. Cir-

illo and Hüsler (2011) proposed an alternative approach to extreme shock

models using reinforced urn processes, providing the predictive distribution

of system’s defaults under a Bayesian non-parametric perspective. Yet other

applications of RUP can be found in Bulla (2005), related to survival analy-

sis, or in Mezzetti et al. (2007), in determining the maximum tolerated dose

in clinical trials for new drug development. For a survey of processes with

reinforcement and other applications, see Pemantle (2007).

The urn-based alarm system proposed in Cirillo et al. (2013) can be con-

7Polya urn was introduced by Eggenberger and Pólya (1923) to model the diffusion of

infectious diseases and study self-reinforcing phenomena. In its simplest version, an urn

containing balls of two different colors is considered. Every time the urn is sampled, the

color of the chosen ball is registered and the ball is put back into the urn, together with

another ball of the same color. In this way, the more a given color has been sampled in

the past, the more likely it will be sampled in the future. The reinforcement scheme can

be generalized, for instance, introducing s balls of the same color, or considering a random

or time-varying reinforcement.
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stantly updated because of reinforcement, according to Bayesian paradigm.

Towards a better understanding of the capabilities of the construction pro-

posed, we are going to, very briefly, introduce the fundamentals of the urn-

based alarm system.

• V = N+
0 ×{0, 1, 2, . . . , L} is a state space, whose elements (n, l) repre-

sent levels of risk l, at time instant t. The level of risk L corresponds

to a catastrophe. v ∈ V represents a general state in V and (n, l)

represents a specific couple (n, l) ∈ V .

• Every state v ∈ V is endowed with a Polya urn U(v), i.e., a urn

that is sampled, with replacement and reinforcement: every time a

ball of a given colour is sampled, the ball is replaced and s(v) > 0

extra balls of the same color are added to the urn. Thanks to the

reinforcement mechanism the process is able to learn from the past, as

will be explained.

• Every urn U(v) is characterized by a set of 4 colours, C = (c1, c2, c3, c4)

and a reinforcement s(v). mv(c) represents the number of balls of

colour c in urn U(v). Notice that mv(c) may be equal to 0 for some c.

• The composition of each urn U(v), v ∈ V is given by the sum of all the

balls in the urn.

• There is a function d : V × C −→ V that represents a rule of motion,

one of the most important elements in this construction.

Fix an initial state (0, 0) and recursively define a reinforced random walk

(Xn) on V , starting in (0, 0), X0 = (0, 0). For all n ≥ 1, if Xn−1 = v ∈ V ,

a ball is sampled from U(v), its colour registered and the ball is returned

to the urn together with s(v) balls of the same colour. According to the

rule of motion d, an element of the state space will be attributed to Xn,

Xn = d(v, c). At this moment it is worth mentioning that the process (Xn),
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taking values on a finite-valued state space, can be viewed as the simplified

version of another underlying process (Yn), that may be characterized by

a much larger space of states. For instance, consider that the underlying

process (Yn) can take values on a scale that goes from 0 to +∞. As long as

it is possible to define only L+1 different regions of risk for the process (Yn),

it is possible to establish a direct correspondence between the region of (Yn)

and the value (Xn) assumes in the scale from 0, no risk, to L, catastrophe.

Of course, this data categorization implies loss of information, that should

be minimized the larger the number of risk categories and the smoother the

underlying process (Yn). Moving on, the rule of motion establishes which

level of risk will be occupied at the next time step, given the colour of the ball

sampled from urn U(v). Suppose we are in Xn−1 = (n, l) ∈ V and sample

a ball of colour c from U((n, l)). Then, Xn = d((n, l), c) will be something

like Xn = (n + 1, l′), where l′ is a new level of risk that is determined by

the sampled colour c (for instance, we can have, l′ = l if c = c1; l′ = l + 1

if c = c2; l′ = l − 1 if c = c3 and l′ = L if c = c4). Of course, as the

levels of risk are finite, from 0 to L, limiting conditions must be imposed on

urn composition to avoid nonsense situations: take the example given and

consider that Xn−1 = (n, 0), then, the urn U(n, 0) must have zero c3 balls,

as the risk level cannot decrease and no c3 ball can be sampled.

Consider a finite sequence ψ = ((0, 0), . . . , (n, l)) of elements of the state

space V . Such sequence is said admissible for the process (Xn) if its el-

ements can effectively be visited by (Xn) in the order given by ψ. From

the probability P ((Xn) = ψ), calculated in Cirillo et al. (2013), the authors

concluded that the process (Xn) is partially interchangeable, in the sense

of Diaconis and Freedman (1980). If it is also recurrent, then, as shown by

Diaconis and Freedman (1980), it can be expressed as a mixture of Markov

Chains, and many properties from Markov Chain theory can be applied here.
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In this construction it is assumed that every time the process Xn reaches a

level of risk equal to L, i.e., a catastrophe happens, the process is reset to

(0, 0). Restarting the process after each catastrophe enables the past infor-

mation to be assessed trough the updated urns: at every cycle, if a state

v has already been visited in the past, the composition of the urn U(v)

has been changed through reinforcement and future forecasts are dependent

on this information. If a state w is, on the contrary, visited for the first

time, then the urn U(w) is unchanged and it only contains the prior infor-

mation related to its initial composition. Given the urn construction, the

probabilities associated with every feasible path, during a particular cycle,

clearly depend on the updates of the different urns thus far, according to

the Bayesian principle. Also, even the prior knowledge of the process under

investigation can be translated into the initial composition of the urns, when

the process is initialized for the first time: if no prior knowledge exists, all

urns can be initialized with exactly the same number of balls of the same

colour; if, on the contrary, it is known that the risk of catastrophe increases

over time, one can put more c4 balls in urn U((n, l)), as n grows. Increasing

or decreasing the reinforcement, will give a larger or smaller weight to past

data in computing the posterior distributions. The process is rather flexible,

and, according to the Bayesian paradigm, the model is constantly updated,

on the basis of the available information.

The authors presented an empirical application to the monthly number of

sunspots as collected from the Royal Observatory of Belgium, from January

1900 to December 1990. Three threshold values were chosen in order to de-

termine the levels of risk of the alarm system and a catastrophe was taken as

having a number of sunspots greater or equal to 180. Data until December

1974 was used as running-in for Bayesian learning and catastrophe predic-
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tion was performed on the period 1975 - 1900. At the beginning of the first

cycle, all urns started with the same composition, containing 45c1, 32c2, 22c3

and 1c4 balls (all urns had a total of 100 balls and the probability of instant

catastrophe is 1%). At every time point n (i.e., a particular month), it was

predicted the probability of having a catastrophe in n+k, with k = 1, k = 2

and k = 5, given an alarm threshold of 0.05 (meaning that an alarm is given

when the probability of catastrophe in n+k is equal or greater to 0.05). For

this alarm threshold, the probability of detection is about 80%, considering

shorter forecasting intervals, and reduces to only 40% when k = 5. To reduce

the number of false alarms, the alarm threshold was increased to 0.2. The

number of false alarms indeed decreased, thus increasing the probability of

the alarm being correct, but the probability of detection also decreased (to

60% when k = 1 or k = 2 and 20% when k = 5). This compromise be-

tween these two fundamental operating characteristics of the alarm system

was also found in several references mentioned earlier, namely, for instance,

in Monteiro et al. (2008). We will get back to this subject when analysing

our particular results that are also in agreement with this behaviour.

An interesting analysis yet in the paper by Cirillo et al. (2013), was the

acting on the reinforcement s(v) to try to enhance the predictive power of

the urn-based alarm system. Assuming s(v) = s and letting s vary in the

interval [0; 10], it was looked for the value of s that minimizes the number of

false alarms for k = 0.05, considering an alarm threshold of 0.05. The value

s = 2.2 was found as the only minimum in the interval chosen and the corre-

sponding operating characteristics were definitely improved: the number of

false alarms actually decreased and the detection probability increased for

the longer forecasting interval to around 60%.
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1.2.3 Time Series of Counts

Time series of counts arise in many contexts, often as counts of events or in-

dividuals in consecutive intervals or at consecutive points in time. In partic-

ular, time series of small non-negative observed counts have become available

in a wide variety of contexts over the last three decades, approximately. Sta-

tistical quality control, computer science, economics and finance, medicine

and epidemiology, and environmental sciences are just some of the fields from

which discrete time series emerged.

One of the most famous data sets in the field of time series of counts is

the United States polio incidence counts, consisting on monthly data from

January 1970 to December 1983. The counts range from 0 to 14 and have

a sample mean of 1.33 and variance of 3.5. The data set is constituted by

small non-negative counts exhibiting overdispersion (variance-mean ratio

being considerably greater than one). It was introduced in the literature

in the seminal work of Zeger (1988) and has been analysed in several other

works ever since, e.g., Davis et al. (1999), Fahrmeir and Tutz (2001), or

more recently Jung and Tremayne (2011), just to mention a few. In the

same paper by Davis et al. (1999), another time series of counts was con-

sidered: the daily number of asthma presentations from January 1, 1990

to December 31, 1993, at the Cambelltown hospital in Sydney, Australia.

This particular data series was meant to be part of a larger study relating

atmospheric pollution and the number of asthma cases presented at various

emergency departments in the South West of Sydney. Also in this context

of environmental factors and public health effects many other count time

series have emerged: just consider the examples already given in the optimal

alarm systems subsection. Yet another interesting example in this field is

the daily number of deaths in Évora district, Portugal, registered from 1980

to 1997, appearing in Gomes (2005), as an illustration of the model proposed
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by the author, the generalized DSINAR(1). As covariates, the author used

maximum and minimum daily temperatures registered in Évora district, in

the same time period.

Referring again to the previous subsection, other examples of count time se-

ries can be given, such as the monthly guest nights in hotels modelled through

an INteger-valued Moving Average (INMA) model in Brännäs et al. (2002),

or, through an INteger-valued AutoRegressive (INAR) model in Brännäs

and Nordström (2004) and in Brännäs and Nordström (2006). Other in-

teger time series arising in international tourism demand are given in the

Tourism Satellite Account (TSA) analysis for Sweeden, regarding the years

1992-1993, in the work of Nordström (1996), or in the forecasting of inter-

national tourism demand in Spain, in Garcia-Ferrer and Queralt (1997).

Time series of counts originating from economics, in particular, from the

financial area, include the discrete transaction price movements on financial

markets and the number of transactions in stocks. As examples of the first

case, we can mention, e.g. Liesenfeld et al. (2006) and Rydberg and Shep-

hard (2003). The dynamics of price movements were analysed considering

the transaction data of two shares traded at the New York Stock Exchange

(NYSE) over a period of one trading month, in the former paper, and the

transaction data for the IBM stock at NYSE in 1995, in the later one. As ex-

plained in Rydberg and Shephard (2003), the price movements are restricted

to take on integer multiples of a smallest non-zero price change, called a tick.

The tick size depends on the institutional setting and, when normed, price

movements can be thought of as being integers, explaining why transaction

price movements can be included in the literature of time series of counts.

In both studies, a model considering the decomposition of price movements

was considered; in the first case, only the direction of the price change and
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the size of the price change were addressed, while, in the second case a bi-

nary process on {0, 1} modelling activity (the price moves or not), was also

included. As examples of time series of counts of number of transactions in

stocks, the works by Quoreshi (2006) and Brännäs and Quoreshi (2010) can

be mentioned. Each transaction refers to a trade between a buyer and a seller

in a volume of stocks, for a given price. This kind of data is referred to as

tick-by-tick data. The counts are usually small and there are frequent zero

counts, even for frequently traded stocks if the counts are recorded in short

time intervals of, for instance, one minute length. Sometimes, aggregated

data over five minutes or one hour intervals are considered. For a discussion

on the relation between intradaily price dynamics and size of the observation

interval, see Chiang and Wang (2004). Quoreshi (2006) proposed a Bivariate

INteger-valued Moving Average (BINMA) model to the tick-by-tick data for

Ericsson B and Astrazeneca, collected for the period of November, 5 to De-

cember, 12, 2002, and aggregated into five minutes intervals. Brännäs and

Quoreshi (2010), modelled the number of transactions per minute in Erics-

son B, in the period 2-22 July, 2002. An INMA model was proposed.

In social sciences, time series of counts may arise, for instance, in the analysis

of series of claims for wage loss benefit. A well-known series is given by the

monthly counts of claimants collecting short-term disability benefits from

the Workers’ Compensation Board (WCB) of British Columbia, Canada.

This low count time series was introduced in Freeland (1998) and modelled

through the Poisson INAR(1) model. Further analysis was carried out in

Freeland and McCabe (2004), and, McCabe and Martin (2005) extended the

analysis by presenting a Bayesian methodology for producing coherent fore-

casts of low count time series. This methodology was tested, once again, in

the Canadian wage loss claims data. Time series of monthly counts of fatal

accidents, severe injury accidents, minor injury accidents and vehicle damage
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accidents were modelled by Johansson (1996), considering extended Poisson

and negative binomial count data models, in a paper investigating the effect

of lowered speed limit on the number of accidents on Swedish motorways. A

somewhat related example can be mentioned in the work of Pokropp et al.

(2006), where the number of children injured in traffic accidents in Germany

was analysed together with explanatory variables representing seasonal ef-

fects in what concerns periods of high or low traffic activities and weather

conditions.

Time series of event counts are also common in political science and other

social science applications. Political communication studies generally involve

an outcome that is a count variable, such as the number of stories printed

on a subject, or television stories devoted to a subject, in a given day or any

other time span. Brandt and Williams (2001) proposed a Poisson autore-

gressive model that makes assumptions to address all of the attributes of

time-dependent media count data. Fogarty and Monogan (2013) provided a

comprehensive review on this subject and applied the Poisson autoregressive

model to several count time series, previously reported and analysed, namely,

the Peake and Eshbaugh-Soha (2008)’s data on television news attention to

energy policy from 1969 to 1983; the Flemming et al. (1997) study of the

number of stories related to free speech and censorship (number of stories

on the subject listed in the Reader’s Guide); and, the Ura (2009)’s data on

USA Today ’s coverage of homosexuality (adjusted to monthly total number

of news stories about the topic).

Several examples of count time series arising in fields related to computer

sciences can be given. In Weiß (2008b), the time series of counts of number

of downloads of the program CWß TeXpert, a free TeX editor for Windows,

was analysed for the period between June 1, 2006 and February 28, 2007.
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Several models were estimated, considering either a negative binomial or a

generalized Poisson marginal distribution. Criteria that help select an ap-

propriate model were discussed. Another concrete example is provided in

Weiß (2007) with a computer pool of n machines which are either occupied

(state 1) or not (state 0). The number of machines occupied at time t (which

consists on the number of machines which have been occupied before and

remain occupied at time instant t plus the number of machines newly oc-

cupied) was modelled through the binomial AutoRegressive model of order

1, binomial AR(1). Besides this particular application, the author suggests

that the binomial AR(1) process, suitable for processes of counts with finite

range in N0, could also be applied to, e.g., hotel rooms in a certain hotel

being occupied at day t, clerks in a counter room serving a costumer, tele-

phones in a call center being occupied, and many other time series for which

a finite range of counts should be a constraint of the model.

Communications networks usually have thousands of network elements, such

as routers and switches. The monitoring and control of the network is based

on reported statistics by the network elements, which happens on a reg-

ular basis. Number of packets handled, number of packets dropped, and

numbers of processing errors of various types may be reported every minute

or second for every network element. Either if the error counts become to

high or the number of packets received becomes too low, there is suspicion

of network malfunctioning. Addressing this particular application in the

area of statistical process control, Lambert and Liu (2006), applied a control

chart methodology as an adaptive count thresholding procedure to monitor

streams of network counts, in real and simulated data. The methodology

herein was developed for counts from communication networks, but it could

be relevant for other kinds of counts, with unspecified cyclical patterns, or

trends, and missing data. A related example in the frontier between statis-
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tical process control and computer science is the approach to cyber attack

detection by Ye et al. (2001). As stressed by the authors, a computer and

network system must be protected to assure security goals such as avail-

ability, confidentiality, and integrity, by using a variety of techniques for

prevention, detection, isolation, assessment, reaction, and vulnerability test-

ing. In this paper, a multilevel, multiscale process model of a computer

and network system was developed to capture the security-related system

behaviour. The Exponentially Weighted Moving Average (EWMA) model

for univariate dynamic processes, was applied to measures such as the total

number of all method requests per unit time, and the total number of a

particular outcome per unit time.

Although originating from different fields, common features of time series

of counts are usually observed, namely, a rather pronounced dependence

structure (time series of counts are generally autocorrelated) and extra bino-

mial variation (or overdispersion, relative to the mean of the series). A wide

range of modelling approaches have been developed and many different mod-

els have been used in the analysis of count data, e.g., static regression mod-

els, including some generalizations such as Stochastic Autoregressive Mean

(SAM) models and Generalized Linear ARMA (GLARMA) models, autore-

gressive conditional mean models, and INteger-valued ARMA (INARMA)

models, just to name some well-known classes. The fact that (as mentioned

in Cameron and Trivedi (1998) and reinforced by Jung and Tremayne (2011),

more than a decade latter) still no dominant model has emerged, led us to the

decision of presenting a summary survey of the available models for discrete-

valued time series. Particular emphasis will be given to the class of models

related to the work presented in this dissertation. Though wide-ranging,

it will certainly not be exhaustive and many alternative classifications are

possible.
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The most popular classification scheme is due to Cox et al. (1981) and

Davis et al. (1999) who introduced two classes of models, observation-

driven and parameter-driven models, in order to deal with autocorrela-

tion and overdispersion in data. In the later class, serial correlation (and

overdispersion, if existent) is introduced via a latent dynamic process, or

intensity process, while, in the former case, it is assumed that the process

depends on its own past history (the conditional mean function of the ob-

served counts given past observations depends on lagged observations). The

difference between these two classes of models is better understood through

the state-space model representation. A state-space model for a time

series (Yt) ≡ (Yt : t ∈ Z) consists on two equations:

i. Observation equation

Yt = gtXt +Wt, t ∈ Z,

where gt is a constant, possibly dependent on t, andWt is a white noise

sequence with variance σ2
W .

ii. State equation

Xt+1 = ftXt + Vt, t ∈ Z,

where ft is a constant, possibly dependent on t, and Vt is a white noise

sequence with variance σ2
V , not correlated with Wt.

The observation equation remains the same for both the observation-driven

and parameter-driven models. The difference between them is in the state

equation which describes the latent, non-observable, intensity process. For

the parameter-driven models the observation process does not depend on its

past history; only depends on the accompanying intensity process that de-

fines the properties and structure of the observation process. For observation-

driven models data autocorrelation is implicit within the model formulation:



62 1. Introduction

the observation process is explained by the data itself (at time t, the obser-

vation process depends on the past history); overdispersion is introduced by

the state equation. Hence, if in the state equation there is a dependency on

the past values of the observable process, the data autocorrelation is implicit

in the model formulation and the model considered is an observation-driven

one.

Stationarity and ergodicity of the observable process (Yt) are established

by the intensity process. If the intensity process is stationary and ergodic

so is the observable process. For parameter-driven models these properties

are, in general, easy to derive since in many cases the intensity process is

Markovian not depending on (Yt). For observation-driven models, however,

the intensity process depends on the observable process (Yt) and the stability

behaviour (stationarity and ergodicity) is difficult to obtain.

A second classification scheme that is popular in the literature of General-

ized Linear Models (GLM) distinguishes between conditional models and

marginal models. The former class considers conditional distributions of

observed counts given lagged values and is conceptually equivalent to the

observation-driven class of models. In marginal models, the regression coef-

ficients are meant to describe the marginal response to changing covariates,

i.e., marginal distributions and associations between responses are modelled

separately from conditioning on covariates8.

As it is not possible to classify all models according to these schemes, the

8An illustrative example from the analysis of data from longitudinal studies, in Lee

and Nelder (2004), considers a marginal gender contrast that compares the mean among

men to that among women. If a conditional gender contrast was to be put forth, the

comparison should be done between the mean among men and the mean among women,

holding the same value of a random effect.
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classes of models will be presented roughly in the order they were first intro-

duced. Also, it is worth mentioning that some particular model specifications

can have different designations by different authors in the field. For instance,

the above mentioned stochastic autoregressive model, introduced by Zeger

(1988), is referred to as the SAM Model in Jung et al. (2006) and in Jung

and Tremayne (2011), but is denoted as a Serially Correlated Error Model

in the textbook of Cameron and Trivedi (1998), and included in the sec-

tion under the designation of Regression Models in the survey by McKenzie

(2003). Or, even in a particular class, the distinction between models can be

done in different ways: considering the class of INARMA models, that could

also be classified as Models based on Thinning, the distinction between the

models can be done according to the thinning operations involved, following

Weiß (2008a), or, as in McKenzie (2003), according to the model’s intended

marginal distribution.

For a comprehensive account on the developments in this field, or, in some

particular model class, refer to the following reviews. The monograph of

MacDonald and Zucchini (1997), which constitutes the first survey of the

different approaches thus far, the textbook of Cameron and Trivedi (1998)

and the review by McKenzie (2003), with strong emphasis on models based

on thinning operations, provide an excellent overview of the historical de-

velopments in the field. For a discussion of models within the framework

of GLM, consider the works of Fahrmeir and Tutz (2001) and Kedem and

Fokianos (2002). For recent developments involving the classes of INAR and

INMA processes, see the survey of thinning operations by Weiß (2008a).

For recent overviews of the last developments in the field, see Jung and

Tremayne (2006, 2011), Fokianos (2011) and Tjøstheim (2012). While Jung

and Tremayne (2006, 2011) consider different classes of models, ranging from

static regression models to integer autoregressive models (going through au-
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toregressive conditional mean models) and cover aspects of model specifica-

tion, parameter estimation and inference, the last two contributions focus

on Poisson regression models for count time series and on the issues of sta-

tionarity, ergodicity and asymptotic inference.

Based on the aforementioned comprehensive reviews, we are now able to

provide a brief summary of model classes developed for the analysis of time

series of counts.

For many years, a common approach to modelling discrete time series was to

consider a continuous modelling approach, what could be justified in virtue

of the CLT, in the case the count series were constituted by large numbers.

However, when one is facing a series of low counts, which happens quite often

as remarked in many of the aforementioned examples, the approximation by

continuous r.v’s is not valid and alternatives are mandatory.

1. Markov Chains and Higher-Order Markov Chains

Until the late 1970’s there were remarkably few models able to deal with

discrete time series and Markov chains represented the only general

class suitable. Markov models do present two major drawbacks in ap-

plications: tendency to be overparametrized and a limited correlation

structure. The works of Pegram (1980) and Raftery (1985a) deserve

particular attention as they represent attempts to simplify the struc-

ture of higher-order Markov chains, reparametrizing them in terms of

fewer parameters. Consider a kth order Markov chain over a finite set

of states denoted by {1, 2, . . . ,m} and denote the transition proba-

bilities by {p(s0|s1, s2, . . . , sk)}. This model may require as many as

(m − 1)mk parameters. Raftery (1985a) introduced a class of mod-

els that later designated by Mixture Transition Distribution (MTD)
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models, proposing that

p(s0|s1, s2, . . . , sk) =
k∑
i=1

λiq(s0|si),

where
∑k

i=1 λi = 1 and {q(j|i) : j = 1, 2, . . . ,m} is a probability

distribution for each value of i = 1, 2, . . . ,m. This model has only

m(m− 1) + (k− 1) parameters and is more suitable for systems which

tend to revert to previously occupied states. Each unit increase in the

order of dependence requires only one more parameter. MTD models

can be used as models for discrete time series with particular marginal

distributions and Raftery (1985b) already introduced the particular

binomial and Poisson versions.

2. Markov Regression Models

Zeger and Qaqish (1988) proposed a quasi-likelihood approach to re-

gression with time series of data. As serial observations are unlikely to

be independent they proposed Markov models in which the expected

response at a given time depends not only on the associated covariates,

but also on past outcomes. The authors refer to this observation-driven

models as Markov regression models.

3. Hidden Markov Models

A hidden Markov model (Yt) is a particular kind of dependent mixture,

accordingly to MacDonald and Zucchini (1997), who described in detail

this kind of models in their book. Suppose Y (t) and S(t) represent

the histories from time 1 to time t. Then, the simplest model of this

kind can be summarized by

P (St|S(t−1)) = P (St|St−1), t = 2, 3, . . .

P (Yt|Y (t−1),S(t)) = P (Yt|St), t ∈ N.
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The model consists of two parts: firstly, an unobserved parameter

process (St) satisfying the Markov property, and secondly the state-

dependent process (Yt) such that when St is known, the distribution of

Yt depends only on the current state St and not on previous states or

observations. Note that hidden-Markov models are parameter-driven

models.

A particular example of this class is the Poisson-hidden Markov model

where it is assumed that (St) is an irreducible, homogeneous Markov

chain on a set of states {1, 2, . . . ,m} and that, conditional on S1 =

s1, S2 = s2, . . . , Sn = sn, Y1, Y2, . . . , Yn are independent r.v’s with

Poisson distribution and mean λst . Thus, the process (Yt) chooses

its current marginal distribution according to the state of the Markov

chain at time t, St. In this model there are m means and m(m − 1)

transition probabilities, adding up to a total of m2 parameters. This

model is able to accommodate overdispersion.

Other distributions can be used instead of the Poisson. Also, other

designations are used for the general model, such as Markov-dependent

mixture, Markov-switching model, or Markov mixture model.

4. Discrete ARMA (DARMA) Models

Structurally based on the well-known ARMA processes, the Discrete

ARMA models, hereafter, DARMA models, were the first real attempt

at a class of general yet simple models for discrete time series. They

were introduced in a series of papers by Jacobs and Lewis (1978a,b,c)

and here we will only present the simplest case, representative of the

class.

The Discrete AutoRegressive model of order (1), DAR(1), is defined
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by the following recursion

Yt = VtYt−1 + (1− Vt)Zt,

where (Vt) are i.i.d. binary r.v’s with P (Vt = 1) = α and (Zt) forms

an i.i.d. sequence with distribution given by π. If Y0 is sampled from

π then (Yt) is a stationary process with marginal distribution π. In

this model, the current observation Yt is defined as a mixture of two

independent r.v’s; namely, it is either the last observation, Yt−1, with

probability α, or another independent r.v., Zt, sampled from the same

distribution. This is actually a very simple formulation and also a very

general one, since π can be any distribution. Naturally, when dealing

with the discrete case, the sample space for π must be a subset of the

integers.

All DARMA models are constructed as mixtures of i.i.d. r.v’s sharing

the distribution π. Consequently, all correlations are positive. In fact,

for the DAR(1) case defined above, the ACF of (Yt) is ρY (h) = αh, for

h ∈ N0, which matches the ACF of an AR(1). Although simple and

general, due to the nature of their construction these models represent

somewhat unusual processes with compromised practical applications:

notice that the recursion above implies that dependence in the model is

realized by runs of constant values in the sample path, and, the larger

the value of α, the longer the runs. For continuous r.v’s this behaviour

is extremely unlikely and, at least questionable in the discrete case.

For this reason, DARMA models fell out of favour as new approaches

to time series of counts were developed.

5. Generalized Linear Model (GLM) Framework

As some of the subsequent model specifications were developed in the

context of generalized linear models, we will very briefly present here
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the terminology and some fundamental concepts involved, following

Kedem and Fokianos (2002). Let (Yt) be a time series of interest, called

the response, and let Zt−1 = (Z(t−1)1 · · · Z(t−1)p)
′ be the correspond-

ing p-dimensional vector of past explanatory variables or covariates,

t = 1, 2, . . . , N . Zt will be referred to as the covariate process. Ft−1

is the σ-field generated by (Ys,Zs; s ≤ t − 1). Sometimes, it is also

convenient to think of Zt−1 as already including past values of the

response, Yt−1, Yt−2, . . . . Let µt = E[Yt|Ft−1], denote the conditional

expectation of the response given the past. A fundamental question is

how to relate µt to the covariates. In classical theory of linear models

it is assumed that the conditional expectation of the response given

the past of the process is a linear function of the covariates. When

data is not normal the linear relationship is compromised. When the

observations follow a distribution from an exponential family, gener-

alized linear models do provide an answer to this issue, including the

classical linear model under normality as a special case.

Time series following GLM are defined by the following assumptions,

regarding the random and systematic components:

i. Random Component

The conditional distribution of the response given the past belongs

to the exponential family of distributions in natural or canonical

form, i.e.,

f(yt, θt, φ|Ft−1) = exp

(
ytθt − b(θt)
αt(φ)

+ c(yt, φ)

)
, t = 1, . . . , N.

The parametric function αt(φ) is of the form φ
ωt

where φ is a

dispersion parameter and ωt is a known parameter designated by

weight or prior weight. The parameter θt is called the natural

parameter of the distribution.
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ii. Systematic Component

For t = 1, . . . , N , there is a monotone function g(·) such that

g(µt) = ηt =

p∑
i=1

βiZ(t−1)i = Z′t−1β.

The function g(·) is the link function of the model while ηt is

called the linear predictor of the model. The link function

g(µt) ≡ θt(µt) = ηt = Z′t−1β,

is called the canonical link function.

When dealing with observations of counts the distribution of choice is

the Poisson distribution. For a Poisson distribution with mean µt, the

conditional density may be written as

f(yt, θt, φ|Ft−1) = exp ((yt lnµt − µt)− ln yt!) , t = 1, . . . , N,

and E[Yt|Ft−1] = µt, b(θt) = µt = exp(θt), φ = 1, and, ωt = 1. The

canonical link function is

g(µt) ≡ θt(µt) = lnµt = ηt = Z′t−1β.

For the purpose of illustration, consider the simple example withZt−1 =

(1 Xt Yt−1)′, where Zt−1 already includes past values of the response,

Yt−1. Then

lnµt = β0 + β1Xt + β2Yt−1

with (Xt) representing some covariate process, or a possible trend or

seasonal component.

5.1 Static Regression Models

Static regression models represent a natural starting point for the

analysis of time series of counts, as much the same way as the

Poisson distribution is the natural candidate for the distribution
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of the response process. Moreover, to adequately capture the

dependence structure in data, sometimes is sufficient to use an

appropriate set of time-varying exogenous regressors, as stated in

Cameron and Trivedi (1998). This assumptions define the static

Poisson regression model. Conditional on the available informa-

tion on the covariates up to time t, i.e., conditional on Zt−1, the

observed counts, Yt, are assumed to follow a Poisson distribution

with time-varying parameter µt

Yt|Zt−1 ∼ Po(µt),

which is to say

f(yt, µt|Ft−1) =
exp(µt)µ

yt
t

yt!
, t = 1, . . . , N,

where Ft−1 denotes all the available information to the observer

up to time t (past values of the response series and past values of

the covariates). Following the general theory of GLM,

µt(β) = h(Z′t−1β) = exp(Z′t−1β), t = 1, . . . , N,

where β is a p-dimensional vector of unknown regression param-

eters and h(·) is the inverse link function. Consistent parame-

ter estimators for β are straightforwardly obtained by Maximum

Likelihood Estimation (MLE).

For this Poisson model the conditional expectation of the response

is equal to its conditional variance

E[Yt|Ft−1] = Var[Yt|Ft−1] = µt, t = 1, . . . , N.

Only the Poisson specification was mentioned here, but, in the

presence of overdispersion, an alternative specification is the Neg-

bin2 model of Cameron and Trivedi (1998). Static regression mod-
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els can cope with both positive and negative serial correlation in

data.

5.2 Stochastic Autoregressive Mean (SAM) Models

The benchmark model in the class of parameter-driven specifica-

tions is the dynamic regression model by Zeger (1988) who ex-

tended the static Poisson regression model by specifying a seri-

ally correlated multiplicative error term. Classified as a marginal

model in the GLM framework, this model extends the general

linear models by incorporating a latent autoregressive process in

the conditional mean function. This latent autoregressive process

evolves independently of the past observed counts and is able

to introduce autocorrelation and overdispersion into the model.

Such as with the static regression model, both positive and neg-

ative serial correlation can be modelled.

In the standard version of the model, conditional on the avail-

able information on the covariates up to time t, Zt−1, and on ξt,

a latent, non-negative stochastic process, the observed counts, Yt,

are assumed to follow a Poisson distribution with time-varying

parameter µt

Yt|Zt−1, ξt ∼ Po(µtξt),

where µt(β) = exp(Z′t−1β) and β is a p-dimensional vector

of unknown regression parameters. Additional assumptions con-

cerning λt = ln(ξt) are necessary, and a convenient specification

(e.g., Chan and Ledolter, 1995; Kuk and Cheng, 1997; Jung and

Liesenfeld, 2001) is the Gaussian first-order autoregressive form

λt = δλt−1 + νεt, where εt ∼ N(0, 1). To ensure stationarity of

λt it is assumed that |δ| < 1. Note that for δ = 0 and ν → 0 the

latent process ξt vanishes and a standard Poisson static regression



72 1. Introduction

model is obtained. For a complete description of the statistical

properties of the SAM model see Davis et al. (1999).

The main drawback with the class of SAM models is that their

efficient estimation is not straightforward because the dynamic

latent process leads to a likelihood function which depends on

high-dimensional integrals and is not available in closed form.

Non-standard likelihood-based estimation procedures are needed

and usually Monte Carlo (MC) simulation techniques are adopted.

5.3 Generalized Linear ARMA (GLARMA) Models

Another extension of the GLM framework is the GLARMA class

of models proposed by Davis et al. (1999, 2003, 2005) and Shep-

hard (1995). The GLM framework was extended to allow for serial

correlation as well as overdispersion in the data by specifying the

logarithm of the conditional mean process as a linear function of

previous counts. The GLARMA class therefore belongs to the

class of observation-driven models.

The general GLARMA(p, q) is defined by the following specifi-

cations

Yt|Ft−1 ∼ Po(µt), Wt := log(µt) = Z′t−1β + ωt,

where

ωt =

p∑
i=1

αi(ωt−i + et−i) +

q∑
i=1

βiet−i

and et = Yt−µt
µλt

, λ > 0 and et = ωt = 0 for t 6 0. Since the

conditional mean E[Yt|Ft−1] depends on the whole past, the pro-

cess (Yt) is not Markovian. However, the mean process log(µt)

is qth order Markov. Unless Z′t−1β is constant, log(µt) is not a

time-homogeneous process.
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Being an observation-driven model the stochastic properties of the

model are difficult to obtain: there are no explicit expressions for

the unconditional mean and unconditional variance and neither

the ACF nor the unconditional distribution are known. Neverthe-

less, as already mentioned, serial correlation and overdispersion

are able to be captured by the GLARMA representation. The

models can cope with both positive and negative serial correla-

tion and it is straightforward to include covariates. An additional

advantage of the GLARMA models is that their efficient estima-

tion by ML is easy to implement.

In Davis et al. (2003, 2005) a simpler version of the general GLARMA

model was extensively analysed. It was assumed that the mean

process log(µt) follows a linear model in the explanatory variables,

Z′t−1, with residuals having a moving average structure

Yt|Ft−1 ∼ Po(µt), Wt := log(µt) = Z′t−1β +

q∑
i=1

βiet−i,

where et = Yt−µt
µλt

, λ > 0. Considering q = 1 and Z′t−1β = β, the

mean process (or state process, in the state-space representation

for observation-driven models) reduces to

Wt = β + β1(Yt−1 − eWt−1)e−λWt−1 .

In this particular case, many desirable properties of the state pro-

cess (Wt) were obtained. Firstly, the model structure for Wt is

now Markovian with mean E[Wt] = E[E[Wt|Wt−1]] = β. Making

use of Markov chain theory and under the condition 0.5 6 λ 6 1,

Davis et al. (2003) demonstrated the existence of a stationary

solution for the (Wt) process. In the particular case λ = 1 the
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uniqueness of the stationary distribution was also demonstrated.

Also, making use of the fact that the process (Wt) satisfies Doe-

blin’s condition and is strongly aperiodic it was concluded that it

is uniformly ergodic (Meyn and Tweedie, 1994).

6. INteger-valued ARMA (INARMA) Models

The class of models introduced in this section was originally developed

having in mind the autocorrelation structure and other attractive prop-

erties of the ARMA models defined by the recursion in (1.1). Although

typical mathematical operations are well defined for counts in N0, re-

cursion (1.1) cannot be applied to the integer-valued case because mul-

tiplying an integer by a real number usually results in a non-integer

value. However, if the scalar multiplication is to be replaced by a dif-

ferent operation with similar properties, the discreteness of the counts

may be preserved. A general form of this class of models can be given

by

Yt = Rt(Yt−1, α) + Zt,

where α ∈ [0, 1] provides a measure of the relationship between previ-

ous counts Yt−1 and the current observation Yt, (Zt) is a i.i.d. integer-

valued innovation process independent of Rt, and Rt represents a con-

venient thinning operation9. Due to this construction this class of

models is also referred to asModels based on Thinning (e.g. McKenzie,

2003). This class of observation-driven models has received wide atten-

9The basic idea behind the probabilistic operation of thinning is that a count repre-

sents the random size of an imaginary population and the thinning operation randomly

deletes some of the members of this population, (Weiß, 2008a). As the size of the thinned

population is always integer-valued the thinning operation always leads to integer values.

Not to give the wrong impression, it is worth mentioning that with the development of

thinning operations, thinning does not necessarily mean shrinking: in the context of gen-

eralized thinning, by Latour (1998), the random operation of thinning can be interpreted

as a reproduction process.
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tion in recent years and theoretical models covering a wide range of pos-

sible correlation structures combined with equidispersed and overdis-

persed discrete marginal distributions are available in the literature.

As the focus of our work does not involve this particular class of pro-

cesses, we will briefly refer to a few key concepts and specifications.

The most popular thinning operation is the binomial thinning first

introduced by Steutel and Van Harn (1979) when adapting the notions

of self-decomposability and stability for integer-valued time series (the

authors succeeded in treating this concepts as special cases of infinite

divisibility and demonstrating that many important distributions e.g.

Poisson, negative binomial or generalized Poisson belong to the class

of Discrete Self-Decomposable (DSD) distributions).

Let Y be a discrete r.v. with support in N0 or any subset {0, 1, . . . , n}

and α ∈ [0, 1]. Define

α ◦ Y :=

Y∑
i=1

Bi (1.22)

where the Bi are i.i.d. Bernoulli-distributed r.v’s, Bi ∼ B(1, α), inde-

pendent of Y . Then it is said that α ◦ Y arises from Y by binomial

thinning and ◦ is the binomial thinning operator. The interpre-

tation of the binomial thinning operation can be done considering a

population of size Y at time t. If the same population is observed

again at, say t + 1, the population may have shrinked, because some

individuals may have died between times t and t+1. If the individuals

survive independently of each other and if the probability of surviving

in between t and t+1 is equal to α for all individuals, then the number

of survivors is given by α ◦ Y .

Conveniently replacing the scalar multiplication in the ARMA recur-
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sion (1.1) by binomial thinning leads to the family of INARMA models.

The cornerstone of the INARMA models, the INAR(1), was proposed

by McKenzie (1985) and extensively studied by e.g. Al-Osh and Alzaid

(1987), Alzaid and Al-Osh (1988), McKenzie (1988) and da Silva and

Oliveira (2004). Replacing the scalar multiplication in the classical

AR(1) model with the binomial thinning operator results in the recur-

sion

Yt =

Yt−1∑
i=1

Bi + Zt ≡ α ◦ Yt−1 + Zt, (1.23)

which defines the INAR(1) process for (Yt) when (Zt) is a i.i.d. in-

novation process with range N0, α ∈ [0, 1] and all thinning operations

are independent of each other and of (Zt). It should be clear that the

thinning operation is performed at each time t, i.e., it would be more

precise to write ◦t in the right-hand side of (1.23), instead. Never-

theless, an additional assumption of the INAR(1) process is that the

thinning operations at each time t and Zt are independent of (Ys)s<t.

In this model, and relating to the interpretation given above, Yt may

describe the number of individuals in the population at time t, in which

case α◦Yt−1 represents the number of survivors from time t−1 and Zt

represents the number of immigrants. A practical example is the work

by Brännäs et al. (2002), where the number of guest nights in hotels

was modelled following the INAR(1) formulation and considering Yt as

the number of costumers at time t, α ◦ Yt−1 the number of costumers

retained in the service from the last period, and Zt the number of new

costumers.

Al-Osh and Alzaid (1987) studied the INAR(1) in the case the in-

novations are Poisson-distributed, i.e. (Zt) is i.i.d. according to Po(λ)

with µZ = σ2
Z = λ. This turned out to be a necessary and sufficient

condition for the count process (Yt) to have marginal Poisson distri-
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bution according to Po( λ
1−α). The Poisson INAR(1) model was thus

introduced and the process was shown to be a stationary Markov pro-

cess. It is interesting to note here that the Poisson distribution seems

to play a similar role for the discrete AR(1) case to that of the normal

distribution for the real-valued AR(1) classical case. A drawback of

this particular specification is that the Poisson INAR(1) model is not

able to cope with overdispersion. Further properties of this model can

be found in Freeland (1998), Freeland and McCabe (2004) and Weiß

(2007).

All distributions that are DSD in the sense of Steutel and van Harn can

be marginal distributions for the stationary solution to equation (1.23).

Besides the Poisson distribution, many of the most usual distributions

on the non-negative integers are included, such as the geometric and the

negative binomial distributions; see McKenzie (1986, 1987) for further

discussion and other INAR(1) specifications with alternative marginals.

However, as explained in Weiß (2008a), the INAR(1) is best suited for

Poisson marginals, and, modifications of the concept of binomial thin-

ning or even alternative thinning operations should be considered if

one is interested, for instance, in dealing with overdispersion in data,

or, modeling a time series with a finite range of counts. Regarding

adaptations to the binomial thinning concept, though maintaining the

same structure, we would like to mention the following contributions

i. Brännäs and Hellström (2001) and Ristić et al. (2013) for intro-

ducing a dependency structure in the Bernoulli variables Bi in

equation (1.22);

ii. Latour (1998) by the definition of the generalized thinning oper-

ator as the random operation α ◦β Y :=
∑Y

i=1Bi, where the r.v’s

Bi are i.i.d and independent on Y but now allowed to have the
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full range N0, with mean α and variance β;

iii. Kim and Park (2008) for introducing the signed binomial thin-

ning operator in order to include negative integers in the range

of applications.

Other random operations besides binomial thinning are worth men-

tioning. In binomial thinning the α parameter is a real number. Joe

(1996), Zheng et al. (2007) and Gomes and Canto e Castro (2009) sug-

gested allowing the α to be random itself thus extending the previous

thinning concept. Zheng et al. (2007) used the random coefficient

thinning thus defined to generalize the INAR(1) and introduced the

RCINAR(1) model; Zheng et al. (2006) generalized the higher order

INAR(p) model, introducing the RCINAR(p). In these two references

Zheng and co-workers illustrated the performance of the models in

the analysis of the well-known polio data and in the analysis of a se-

ries of epileptic seizure counts. A different approach to generalize the

binomial thinning operator is due to Al-Osh and Aly (1992) and is

referred to as iterated thinning because it can be understood as two

nested thinning operations: a first usual binomial thinning operation

is applied and can be interpret as selecting a random number out of

Y individuals and, afterwards, each of the selected individuals experi-

ences a second random experiment, independently of the other selected

individuals. The last alternative to binomial thinning mentioned here

arises in relation to the following issue: if the standard INAR(1) model

is used to model a process with Generalized Poisson10. (GP) marginals,

the distribution of the corresponding innovations cannot be obtained

explicitly. However, using the quasi-binomial distribution11 to define

10For properties of the Generalized Poisson distribution see Consul (1989) and Amba-

gaspitiya and Balaskrishnan (1994)
11For properties of the quasi-binomial distribution refer to Consul and Mittal (1975)
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a generalized thinning operation, Alzaid and Al-Osh (1993) were able

to obtain a count process (Yt) with GP marginals. The thinning op-

eration thus introduced is designated by quasi-binomial thinning

and the AR(1)-like process related to it as the QINAR(1) (Alzaid and

Al-Osh, 1993).

Regarding this family of INARMA models it is left to say that other

specifications and higher order members have also been discussed in

the literature. The INAR(p) was proposed in, at least, three different

formulations: Alzaid and Al-Osh (1990), Du and Li (1991) and Franke

and Subba Rao (1995). The INteger-valued Moving Average (INMA)

model of order 1 was introduced in McKenzie (1986) and that of order

q, INMA(q), was proposed and analysed in Al-Osh and Alzaid (1988)

and McKenzie (1988). Subsequent developments regarding estimation

were done by Brännäs and Hall (2001). An example of an empirical

application to the number of transactions in stocks can be found in

Quoreshi (2006), where a BINMA model is proposed. Ohter models

related to the INMA(q) were introduced by Aly and Bouzar (1994,

2005), Zhu and Joe (2003) and Neal and Subba Rao (2007). The gen-

eral class of INARMA(p, q) models was first addressed in McKenzie

(1986) and a full INARMA(p, q) model was put forth in Dion et al.

(1995).

7. Autoregressive Conditional Poisson (ACP) Models

In this work, focus is put on models in which the count variable is as-

sumed to be Poisson-distributed, conditioned on the past, or, in other

words, the conditional distribution of the count variable, given the

past, is assumed to be Poisson with time-varying mean λt, satisfying

some autoregressive mechanism. Models within this class consist on

and Shenton (1986).
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two processes: one observable process of counts and one accompanying

intensity process, usually not observable. They are observation-driven

processes.

The class of ACP models was first introduced by Heinen (2003). The

author defined this class of models by adapting the autoregressive con-

ditional duration model of Engle and Russell (1998) to the integer-

valued case, assuming a conditional Poisson distribution. Due to its

analogy to the conventional GARCH model, the ACP model has also

been referred to as the INGARCH model by Ferland et al. (2006).

An INteger-valued GARCH process of orders (p, q), INGARCH(p, q)

in short, is defined to be an integer-valued process (Yt) such that, con-

ditioned on the past experience, Yt is Poisson-distributed with mean

λt, and λt is obtained recursively from the past values of the observable

process (Yt) and (λt) itself,

Yt|Ft−1 ∼ Po(λt), λt = γ0 +

p∑
i=1

γiYt−i +

q∑
j=1

δjλt−j , t ∈ Z

with γ0 > 0, γi ≥ 0, and δj > 0. Ferland et al. (2006) showed that

if
∑p

i=1 γi +
∑q

j=1 δj < 1 then the process (Yt) is strictly stationary

with finite first- and second-order moments. Weiß (2009) derived the

variance and ACF for the INGARCH(p, q) models. The particular case

p = q = 1 was addressed by Ferland et al. (2006) who obtained the

following results.

• If γ1 + δ1 < 1 then the process (Yt) is strictly stationary and

possesses moments of any order.

• The unconditional mean is given by

µ := E[Yt] =
γ0

1− (γ1 + δ1)
.
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• The unconditional variance is given by

σ2 := Var[Yt] = µ

(
1 +

γ2
1

1− (γ1 + δ1)2

)
.

Note that the result above implies that Var[Yt] > E[Yt] leading

to overdispersion. Moreover if the γ1 = 0 (which means that the

conditional mean does not depend on past values of the observ-

able process) then the variance equals the expected value and the

process is equidispersed.

• Finally, the autocovariance function of the INGARCH(1, 1) is

given by

γY (k) := Cov[Yt, Yt−k] = µ
γ1[1− δ1(γ1 + δ1)](γ1 + δ1)k−1

1− (γ1 + δ1)2
, k ∈ N.

This model was also analyzed by Fokianos et al. (2009) and Fokianos

and Tjøstheim (2012) under the designation of Poisson Autoregression.

Linear and non-linear models for λt were considered. For the linear

model case the representation considered is as follows

Yt|FY,λt−1 ∼ Po(λt), λt = d+ aλt−1 + bYt−1, t ∈ N,

where it is assumed that the parameters d, a, b are positive, and λ0

and Y0 are fixed. It is worth to mention that though this representa-

tion corresponds exactly to the INGARCH(1, 1) model, the approach

followed by Fokianos et al. (2009) is different in the sense that it is

shown that the linear model can be rephrased as follows

Yt = Nt(λt), λt = d+ aλt−1 + bYt−1, t ∈ N

with λ0 and Y0 fixed. For each time point t, the authors introduced

a Poisson process of unit intensity, Nt(·), so that Nt(λt) represents

the number of such events in the time interval [0, λt]. Following this

rephrasing a perturbation is introduced in order to demonstrate φ-

irreducibility and, as a consequence, geometric ergodicity follows.
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The non-linear case is considered a generalization of the previous sit-

uation in which the conditional mean E[Yt|FY,λt−1] = λt, is a non-linear

function of both the past values of λt and the past values of the observa-

tions, λt = f(λt−1) + b(Yt−1). Sufficient conditions to prove geometric

ergodicity were also derived by the authors.

It is important to stress the fact that the assumptions made in Fokianos

et al. (2009) that turned into sufficient conditions for geometric ergod-

icity could not be fulfilled for the non-linear model proposed in this

work. Hence, a different approach had to be adopted. To this extend,

we turned our attention to the work of Doukhan et al. (2012), Neumann

(2011), and Franke (2010). For completeness and reader’s convenience

some of the results obtained by the above authors are briefly summa-

rized below.

Neumann (2011) considered a class of observation-driven Poisson count

processes satisfying

Nt|FN,λt−1 ∼ Po(λt), λt = f(λt−1, Nt−1), t ∈ N,

for some function f : [0,+∞[×N0 → [0,+∞[, where

FN,λt−1 = σ(λ1, . . . , λt, N1, . . . , Nt)

is the σ-algebra generated by past and present values of count and

intensity processes (Nt) and (λt), respectively, at time t. It is assumed

that the function f satisfies the contractive condition

|f(λ, y)− f(λ′, y′)| ≤ k1|λ− λ′|+ k2|y − y′|, ∀λ, λ′ ≥ 0, ∀ y, y′ ∈ N0,

where k1 and k2 are non-negative constants such that k := k1 +k2 < 1.

Under the mentioned contractive condition it follows that the bivariate
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process (Nt, λt) has a unique stationary distribution. Supposing that

the bivariate chain (Nt, λt) is in its stationary regime and obeys the

contractive condition, the following is also true, namely

• The count process (Nt) is β-mixing or absolutely regular. Since

β-mixing implies strong-mixing it can be concluded that (Nt) is

ergodic.

• The intensities λt can be expressed as measurable functionals of

past values of the count variables.

• The bivariate process (Nt, λt) is ergodic.

Franke (2010) introduced a class of models for time series of counts

which include as special cases the INGARCH-type models and also the

log linear models for conditionally distributed data. Starting from a

sequence of independent Poisson processes (Nt(·), t ∈ Z), a Functional

INGARCH(p, q) or FINGARCH(p, q) process is defined as a process

satisfying the recursion

Yt = Nt(λt), λt = g(λt−1, . . . , λt−p, Yt−1, . . . , Yt−p), t ∈ Z,

for some measurable function g : [0,+∞[p×Nq0 → [0,+∞[. Assuming

that g is Lipschitz in each argument with Lipschitz constants summing

up to a constant less than 1, i.e.,

|g(λ, y)− g(λ′, y′)| ≤
p∑
i=1

ai|λi − λ′i|+
q∑
i=1

bi|y − y′|,

for λ, λ′ ∈ [0,+∞[p, ∀ y, y′ ∈ Nq0 with
∑p

i=1 ai +
∑q

j=1 bj =: L < 1, im-

portant results are established. Firstly, if g(λ, y) satisfies the Lipschitz

condition then there exists a strictly stationary FINGARCH(p, q) pro-

cess, (Yt), satisfying above definition and having a finite mean. Suppose

that (Yt) is a stationary FINGARCH(1, 1) process satisfying definition
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above for p = q = 1 and that g(λ, y) satisfies the Lipschitz condition

which in this case simplifies to

|g(λ, y)− g(λ′, y′)| ≤ a|λ− λ′|+ b|y − y′|, ∀λ, λ′ ≥ 0, ∀ y, y′ ∈ N0

with a ≡ a1, b ≡ b1, and L < 1. By these conditions it follows that

(Yt) is θ-weak dependent with geometrically decreasing coefficients for

some c > 0, with θt ≤ cLt.

For the general stationary FINGARCH(p, q), if g(λ, y) satisfies the

Lipschitz condition, then Franke (2010) showed that (Yt) is θ-weak de-

pendent with geometrically decreasing coefficients, for some c > 0, and

θt ≤ c(L
1

max(p,q) )t.

Doukhan et al. (2012) assumed that (Yt) is a count time series and

(λt) a sequence of mean processes, namely

Yt|Ft−1 ∼ Po(λt), λt = f(λt−1, . . . , Nt−1, . . . ), t ∈ Z,

where Ft represents the σ-algebra generated by (Ys, s ≤ t) and f is

some function defined on [0,+∞[∞×N∞0 → [0,+∞[. Note that this

formulation allows for models with any order. Following the notion

of τ -dependence as introduced by Dedecker and Prieur (2004) it is

assumed that for any vectors, say, x and x’ in RN∗
+ × NN∗

∗ with N∗ =

{1, 2, . . . }, there exists a sequence (αj : j ∈ N) of non-negative real

numbers such that

|f(x)− f(x′)| ≤
∞∑
l=1

αl‖xl − x′l‖.

If
∑∞

l=1 αl < 1 then it follows that there exists a τ -weakly dependent

strictly stationary process (Yt, λt) which has finite moments up to any

positive order and such that the decay of the coefficients τ(·) ensures
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the conditions needed for obtaining the asymptotic properties of the

maximum likelihood estimator.

1.3 Organization of the Dissertation

This thesis focuses on the application of optimal alarm systems to non-linear

time series models. Non-linear models related to financial time series are con-

sidered.

In Chapter 2 particular attention is given to the FIAPARCH(p, d, q) model

and an optimal alarm system is implemented, considering both classical and

Bayesian methodologies. The expressions for the alarm characteristics of

the alarm system are obtained and a simulation study is carried out in or-

der to illustrate the method. Regarding a better performance of the alarm

system, different criteria are analysed and a compromise between operat-

ing characteristics is achieved. Section 2.2 covers the estimation of the

FIAPARCH(1, d, 1) model by classical and Bayesian methodology. Last sec-

tion of Chapter 2 includes a real data application with the daily returns of

the São Paulo Stock Market, the IBOVESPA returns data set.

In Chapter 3 the class of Autoregressive Conditional Poisson models is ad-

dressed and a new model is proposed. As explained in Section 3.1, although

asymmetric responses of the volatility for positive or negative shocks have

also been observed in time series of counts, no model presented in the intro-

ductory section 1.2.3 is able to address this issue. The INteger-valued Asym-

metric Power ARCH, INAPARCH(p, q), is thus introduced in Section 3.2 as

an integer-valued counterpart of the APARCH representation for the volatil-

ity. With this thesis we also expect to contribute to the modelling of asym-
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metric overdispersion in time series of counts. The probabilistic properties

of the INAPARCH(1,1) model are extensively studied in Section 3.2. Pa-

rameter estimation and asymptotic theory regarding conditional maximum

likelihood estimation are developed in Section 3.3. A simulation study is

presented in Section 3.4 to test and illustrate the methodology.

Relating to the aforementioned goal of this thesis in what concerns the ap-

plication of optimal alarm systems to non-linear time series models, the

implementation of an alarm system to the INAPARCH model is also ad-

dressed. Expressions for the INAPARCH(1,1) particular case are obtained

in Section 3.5. Last section of Chapter 3 presents another real data applica-

tion of optimal alarm systems, now considering time series of counts. The

number of intra-day transactions in stocks is analysed in Section 3.6, for the

Glaxosmithkline and Astrazeneca data sets.



Chapter 2

Optimal Alarm Systems for

FIAPARCH Processes

This chapter is organized as follows: in Section 2.1, basic theoretical con-

cepts related to optimal alarm systems are presented and implemented for the

particular case of FIAPARCH processes. Expressions for the alarm charac-

teristics of the alarm system are given. Estimation of the FIAPARCH(1, d, 1)

model by classical and Bayesian methodology is covered in Section 2.2. In

Section 2.3, the results are illustrated through a simulation study. A real-

data example is given in Section 2.4, considering the IBOVESPA data set

containing the daily returns of the São Paulo Stock Market during the period

04/07/1994 to 02/10/2008.

2.1 Introduction

Let (Xt)t∈N be a discrete parameter stochastic process with parameter space

Θ ⊂ Rk, for some fixed k ∈ N. The time sequence {1, 2, . . . , t−1, t, t+1, . . . }

will be divided into three sections, {1, 2, . . . , t − q}, {t − q + 1, . . . , t}, and

{t+ 1, . . . }, namely, the past, the present and the future, such that for some

87
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q > 0 the following subsets will be defined

Data or informative experience: Dt = {X1, X2, . . . , Xt−q}

Present experiment: X2 = {Xt−q+1, . . . , Xt}

Future experiment: X3 = {Xt+1, . . . }

Any event of interest, Ct,j , in the σ-algebra generated by X3 is defined as

a catastrophe. In this work, the catastrophe shall be considered as the up-

crossing event of some fixed level u,

Ct,j = {Xt+j−1 6 u < Xt+j} for some j ∈ N. (2.1)

The alarm region of optimal size αt,j is given by

At,j =

{
x2 ∈ Rq :

P (Ct,j |x2, Dt)

P (Ct,j |Dt)
≥ kt,j

}

= {x2 ∈ Rq : P (Ct,j |x2, Dt) ≥ k}, (2.2)

where k = kt,jP (Ct,j |Dt).

In this chapter, the construction of an optimal alarm system will be car-

ried out for the FIAPARCH(p, d, q) model. As described in the introductory

chapter, it can be written as

Xt = σtZt,

σδt =
ω

1− β(B)
+
[
1− (1− β(B))−1φ(B)(1−B)d

]
g(Xt), (2.3)

where

g(Xt) = (|Xt| − γXt)
δ

with 0 < d < 1, ω > 0, |γ| < 1, and δ ≥ 0. All zeros of the polynomials

1−β(B) and φ(B) are assumed to lye outside the unit circle. If the fractional
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differencing parameter, d, lies in the interval 0 < d < 1/2, long memory in

volatility is expected to occur. The fractional differencing operator (1−B)d

is yet again expressed as (1.16).

The simplest version of the FIAPARCH(p, d, q) model, which appears to

be particularly useful in practice, occurs when both 1− β(B) and φ(B) are

polynomials of degree 1, β(B) = βB and φ(B) = φB with |β| < 1. This is

the FIAPARCH(1,d,1) model, and the volatility σt, takes the form

Xt = σtZt,

σδt =
ω

1− βB
+
[
1− (1− βB)−1φB(1−B)d

]
g(Xt).

Necessary and sufficient conditions for the non-negativity of the conditional

variance for the FIAPARCH(1,d,1) resemble the ones obtained by Conrad

and Haag (2006) for the FIGARCH(1,d,1), namely

• Case I: 0 < β < 1,

either λ1 ≥ 0 and φ ≤ 1−d
2

or for i > 2 with i−2−d
i−1 < φ ≤ i−1−d

i it holds that λi−1 ≥ 0.

• Case II: −1 < β < 0,

either λ1 ≥ 0, λ2 ≥ 0 and φ ≤ 1−d
2

(
β + 2−d

3

)
/
(
β + 1−d

2

)
or λi−1 ≥ 0, λi−2 ≥ 0 and i−3−d

i−2

(
β + i−2−d

i−1

)
/
(
β + i−3−d

i−2

)
< φ ≤

i−2−d
i−1

(
β + i−1−d

i

)
/
(
β + i−2−d

i−1

)
with i > 3.

As previously stated in Chapter 1, Section 1.2.1, in the FIGARCH(1,d,1)

model of Baillie et al. (1996) the conditional volatility has an infinite se-

ries representation in terms of X2
t . In the FIAPARCH(1,d,1) model, X2

t is

replaced by g(Xt), implying that the impact of a shock on the forecast of

future conditional variance should also decay at a slow hyperbolic rate, as in
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the FIGARCH(1, d, 1) case. Statistical properties such as stationarity and

ergodicity are still subject of discussion. Nevertheless, the coefficients λi in

λ(B) =
∑∞

i=1 λiB
i remain unaltered. The infinite series coefficients can be

obtained recursively as

λi =

 φ− β + d i = 1

βλi−1 + [ i−1−d
i − φ]δi−1 i ≥ 2

with δ1 = d and δi = δi−1
i−1−d
i for i ≥ 2. Usually, when estimating the

model parameters, a finite truncation at some particular lag is imposed.

Moving on to the construction of the alarm system, the first step consists on

the calculation of the probability of catastrophe conditional on Dt and x2,

i.e., P (Ct,j |x2, Dt,θ), and the probability of catastrophe conditional on Dt,

P (Ct,j |Dt,θ).

P (Ct,j |x2, Dt,θ) = P (Xt+j−1 6 u < Xt+j |x2, Dt,θ)

= P (Xt+j−1 6 u,Xt+j > u|x2, Dt,θ)

=

∫
Ct,j

∫
. . .

∫
f1dxt+1 . . . dxt+j−2dxt+j−1dxt+j

where

f1 ≡ fXt+1,...,Xt+j−2,Xt+j−1,Xt+j |x1,...,xt,θ(xt+1, . . . , xt+j−2, xt+j−1, xt+j)

and with the integration region, Ct,j , being the catastrophe region as in (2.1).

If Zt ∼ N(0, 1) then

P (Ct,j |x2, Dt,θ) =

∫ +∞

u

∫ u

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞

j∏
k=1

1√
2πσ2

t+k

exp

{
−
x2
t+k

2σ2
t+k

}

dxt+1 . . . dxt+j−2dxt+j−1dxt+j . (2.4)
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P (Ct,j |Dt,θ) = P (Xt+j−1 6 u < Xt+j |Dt,θ)

= P (Xt+j−1 6 u,Xt+j > u|Dt,θ)

=

∫
Ct,j

∫
. . .

∫
f2dxt−q+1 . . . dxt+j−2dxt+j−1dxt+j ,

where

f2 ≡ fXt−q+1,...,Xt+j−2,Xt+j−1,Xt+j |x1,...,xt−q ,θ(xt−q+1, . . . , xt+j−2, xt+j−1, xt+j).

Once again, considering the integration region Ct,j , the catastrophe region

in (2.1), and assuming Zt ∼ N(0, 1), then

P (Ct,j |Dt,θ) =

∫ +∞

u

∫ u

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞

q+j∏
k=1

1√
2πσ2

t−q+k
exp

{
−
x2
t−q+k

2σ2
t−q+k

}

dxt−q+1 . . . dxt+j−2dxt+j−1dxt+j .

After calculating these probabilities it is then possible to move on to the

operating characteristics of the alarm system.

1. Alarm size

Since X2 = {Xt−q+1, Xt−q+2, . . . , Xt−1, Xt}, the size of the alarm re-

gion is given by:

αt,j = P (At,j |Dt,θ)

=

∫
At,j

q∏
k=1

1√
2πσ2

t−q+k
exp

{
−
x2
t−q+k

2σ2
t−q+k

}
dxt−q+1 . . . dxt,

with At,j being the alarm region which depends on the value of kt,j

chosen.

2. Probability of correct alarm

P (Ct,j |At,j , Dt,θ) =
P (Ct,j ∩At,j |Dt,θ)

P (At,j |Dt,θ)
,
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where

P (Ct,j ∩At,j |Dt,θ) = P (Xt+j−1 ≤ u < Xt+j ∩X2 ∈ At,j |Dt,θ)

=

∫ +∞

u

∫ u

−∞

∫
At,j

q+j∏
k=1

1√
2πσ2

t−q+k
exp

{
−
x2
t−q+k

2σ2
t−q+k

}

dxt−q+1 . . . dxt+j−2dxt+j−1dxt+j .

Thus, P (Ct,j |At,j , Dt,θ) =

=

∫ +∞

u

∫ u

−∞

∫
At,j

q+j∏
k=1

1√
2πσ2

t−q+k
exp

{
−
x2
t−q+k

2σ2
t−q+k

}

dxt−q+1 . . . dxt+j−2dxt+j−1dxt+j ×

×

[∫
At,j

q∏
k=1

1√
2πσ2

t−q+k
exp

{
−
x2
t−q+k

2σ2
t−q+k

}
dxt−q+1 . . . dxt

]−1

.

3. Probability of detecting the event

P (At,j |Ct,j , Dt,θ) =
P (At,j

⋂
Ct,j |Dt,θ)

P (Ct,j |Dt,θ)

=
P (X2 ∈ At,j , Xt+j−1 6 u < Xt+j |Dt,θ)

P (Ct,j |Dt,θ)

Since the numerator in this expression is the same as the numerator

in the expression for the probability of correct alarm, and, given the
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probability of catastrophe, P (Ct,j |Dt,θ),

=

∫ +∞

u

∫ u

−∞

∫
At,j

q+j∏
k=1

1√
2πσ2

t−q+k
exp

{
−
x2
t−q+k

2σ2
t−q+k

}

dxt−q+1 . . . dxt+j−2dxt+j−1dxt+j ×

×

[∫ +∞

u

∫ u

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞

q+j∏
k=1

1√
2πσ2

t−q+k
exp

{
−
x2
t−q+k

2σ2
t−q+k

}

dxt−q+1 . . . dxt+j−2dxt+j−1dxt+j ]
−1 .

4. Probability of false alarm

P (Ct,j |At,j , Dt,θ) = 1− P (Ct,j |At,j , Dt,θ).

5. Probability of not detecting the event

P (At,j |Ct,j , Dt,θ) = 1− P (At,j |Ct,j , Dt,θ).

The application of the alarm system to the FIAPARCH(1, d, 1) model will

be carried out for the particular case q = 1 and j = 2 in Lemma 1.7. The

event of interest (i.e. the catastrophe) is defined as the up-crossing of some

fixed level u two steps ahead, that is

Ct,2 = {(xt+1, xt+2) ∈ R2 : xt+1 ≤ u < xt+2}. (2.5)

The alarm region of optimal size αt,2 is given by

At,2 =

{
xt ∈ R :

P (Ct,2|xt, Dt,θ)

P (Ct,2|Dt,θ)
≥ kt,2

}

= {xt ∈ R : P (Ct,2|xt, Dt,θ) ≥ k}, (2.6)
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where k = kt,2P (Ct,2|Dt,θ).

As already stated, the first step in the construction of the alarm system

consists on the calculation of the probability of catastrophe conditional on

Dt and xt, i.e. P (Ct,2|xt, Dt,θ) and P (Ct,2|Dt,θ) with θ = (ω, β, φ, γ, δ, d).

For this purpose, note that

P (Ct,2|xt, Dt,θ) = P (Xt+1 ≤ u < Xt+2|x1, . . . , xt,θ)

=

∫
Ct,2

fXt+1,Xt+2|x1,...,xt,θ(xt+1, xt+2)dxt+1dxt+2

with the integration region, Ct,2, being the catastrophe region as in (2.5). If

Zt ∼ N(0, 1) then

P (Ct,2|xt, Dt,θ) =

∫ +∞

u

∫ u

−∞

2∏
k=1

1√
2πσ2

t+k

exp

{
−
x2
t+k

2σ2
t+k

}
dxt+1dxt+2.

(2.7)

Moreover, P (Ct,2|Dt,θ) =

= P (Xt+1 ≤ u < Xt+2|x1, . . . , xt−1,θ)

=

∫
Ct,2

∫
fXt,Xt+1,Xt+2|x1,...,xt−1,θ(xt, xt+1, xt+2)dxtdxt+1dxt+2.

Again, by assuming Zt ∼ N(0, 1) it follows that

P (Ct,2|Dt,θ)=

∫ +∞

u

∫ u

−∞

∫ +∞

−∞

2∏
k=0

1√
2πσ2

t+k

exp

{
−
x2
t+k

2σ2
t+k

}
dxtdxt+1dxt+2.

(2.8)

Having calculated these probabilities it is then possible to determine the

alarm region and calculate the alarm characteristics of the alarm system.

1. Alarm size

αt,2 = P (At,2|Dt,θ)

=

∫
At,2

1√
2πσ2

t

exp

{
− x2

t

2σ2
t

}
dxt,
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with At,2 being the alarm region which depends on the value of kt,2

chosen.

2. Probability of correct alarm

P (Ct,2|At,2, Dt,θ) =
P (Ct,2 ∩At,2|Dt,θ)

P (At,2|Dt,θ)
,

where P (Ct,2 ∩At,2|Dt,θ) =

= P (Xt+1 ≤ u < Xt+2 ∩Xt ∈ At,2|Dt,θ)

=

∫ +∞

u

∫ u

−∞

∫
At,2

2∏
k=0

1√
2πσ2

t+k

exp

{
−
x2
t+k

2σ2
t+k

}
dxtdxt+1dxt+2.

Thus P (Ct,2|At,2, Dt,θ) =

=

∫ +∞
u

∫ u
−∞

∫
At,2

∏2
k=0

1√
2πσ2

t+k

exp

{
− x2t+k

2σ2
t+k

}
dxtdxt+1dxt+2∫

At,2
1√

2πσ2
t

exp
{
− x2t

2σ2
t

}
dxt

.

3. Probability of detecting the event

P (At,2|Ct,2, Dt,θ) =

=
P (At,2 ∩ Ct,2|Dt,θ)

P (Ct,2|Dt,θ)

=

∫ +∞
u

∫ u
−∞

∫
At,2

∏2
k=0

1√
2πσ2

t+k

exp

{
− x2t+k

2σ2
t+k

}
dxtdxt+1dxt+2∫ +∞

u

∫ u
−∞

∫ +∞
−∞

∏2
k=0

1√
2πσ2

t+k

exp

{
− x2t+k

2σ2
t+k

}
dxtdxt+1dxt+2

.

4. Probability of false alarm

P (Ct,2|At,2, Dt,θ) = 1− P (Ct,2|At,2, Dt,θ).

5. Probability of not detecting the event

P (At,2|Ct,2, Dt,θ) = 1− P (At,2|Ct,2, Dt,θ).
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2.2 Estimation procedures

In this section we consider the estimation of the operating characteristics

of the alarm system. From the classical framework the method consid-

ered is the well-known Quasi-Maximum Likelihood Estimation procedure

(QMLE) assuming conditional normality. The QMLE estimates are ob-

tained maximizing the conditional log-likelihood function with respect to

θ = (ω, β, φ, γ, δ, d), recurring to a routine available within the OxMetrics5

program. The robust standard errors by Bollerslev and Wooldridge (1992)

were also calculated. According to these authors this estimator is gener-

ally consistent, has a normal limiting distribution and provides asymptotic

standard errors that are valid under non-normality. Nevertheless, the au-

thors state that the QMLE estimator is not asymptotically efficient under

non-normality and care should be taken, since as Engle and González-Rivera

(1991) proved, GARCH estimates are consistent but asymptotically ineffi-

cient with the degree of inefficiency increasing with the degree of departure

from normality. The impact of violations in conditional normality, however,

remains unknown for the FIGARCH and FIAPARCH case. Baillie et al.

(1996) suggested that the FIGARCH estimates obtained via QMLE are con-

sistent and asymptotically normal1. Furthermore, they also demonstrated

the suitability of the QMLE procedure in the estimation of samples with

sizes of 1500 and 3000.

From the Bayesian perspective we need to start with a prior distribution

for the vector of parameters θ. Assuming independence between all the pa-

1In fact, the consistency and asymptotic normality of the QMLE estimator had been

formally established for the IGARCH(1,1) process. Baillie et al. (1996) followed a

dominance-type argument to extend this result to the FIGARCH(1, d, 0) case and re-

fer the need for a formal proof of consistency and asymptotic normality for the general

IGARCH(p, q) and FIAGARCH(p, d, q) cases.
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rameters involved, the prior distribution of θ, say h(θ), will be proportional

to

h(θ) ∝ I{ω>0}I{−1<β<1}I{φ>0}I{−1<γ<1}I{δ>0}I{0<d<1/2}.

The posterior distribution h(θ|Dt) is proportional to L(Dt|θ)h(θ),

h(θ|Dt) ∝ L(Dt|θ)h(θ)

∝
t−1∏
n=2

1√
2πσn

exp

{
− x2

n

2σ2
n

}
×

× I{ω>0}I{−1<β<1}I{φ>0}I{−1<γ<1}I{δ>0}I{0<d<1/2}.

Hence, the probability of catastrophe conditional on Dt and x2 = {xt}, takes

the form

P (Ct,2|xt, Dt) =

∫
Θ
P (Ct,2|xt, Dt,θ)h(θ|Dt)dθ (2.9)

with Θ being the parameter space. On the other hand, the probability of

catastrophe conditional on Dt, will be given by

P (Ct,2|Dt) =

∫
Θ
P (Ct,2|Dt,θ)h(θ|Dt)dθ, (2.10)

where P (Ct,2|xt, Dt,θ) and P (Ct,2|Dt,θ) are calculated through (2.7) and

(2.8), respectively. However, due to the complexity of expressions (2.7) and

(2.8), analytical calculations are not possible. Nonetheless, since by (2.9)

and (2.10)

P (Ct,2|xt, Dt) = Eθ|Dt [P (Ct,2|xt, Dt,θ)]

and

P (Ct,2|Dt) = Eθ|Dt [P (Ct,2|Dt,θ)],

their respective Monte Carlo approximations can be used, that is

P̂ (Ct,2|xt, Dt) =
1

m

m∑
i=1

P (Ct,2|xt, Dt,θi)

and

P̂ (Ct,2|Dt) =
1

m

m∑
i=1

P (Ct,2|Dt,θi),
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where the observations θi = (ωi, βi, φi, γi, δi, di) with i = 1, 2, . . . ,m consti-

tute a sample of the posterior distribution h(θ|Dt). A similar procedure is

applied to approximate the operating characteristics.

2.3 Simulation results

In this section we present a simulation study to illustrate the performance of

the alarm system constructed for the FIAPARCH(1, d, 1) model. We consid-

ered two sets of parameters, namely, θ1 = (0.40, 0.28, 0.10, 0.68, 1.27, 0.30)

and θ2 = (0.80, 0.52, 0.37, 0.76, 1.40, 0.20). The choice of the parameters in

θ1 is very similar to those appearing in the real-data example presented in

Section 2.4. Figure 2.1 below shows a simulated sample path for the partic-

ular choice of θ1.

Parameter estimates, θ̂1 and θ̂2, and their corresponding standard errors

were obtained for both samples, following the QMLE procedure of Boller-

slev and Wooldridge (1992). Robust standard errors are estimated from the

product A(θ̂i)
−1B(θ̂i)A(θ̂i)

−1, where A(θ̂i) and B(θ̂i) denote the Hessian

and the outer product of the gradients evaluated at θ̂i, i = 1, 2, respectively.

The OxMetrics5 program was used.

Moreover, Bayesian estimates of θ were also obtained for both samples. Since

the standard Gibbs methodology is difficult to implement to FIAPARCH

models partially due to the non-standard forms of the full conditional den-

sities, the Metropolis-Hastings algorithm was implemented in the software

Matlab. In addition, a multivariate t-distribution was used as the proponent

one. The sampler algorithm ran 100000 iterations including a burn-in period

of 40000 observations which are discarded for the posterior analysis, as sug-

gested by Vrontos et al. (2000). Furthermore, only every twentieth iteration

is stored in order to obtain an, approximately, independent and identically
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Figure 2.1: FIAPARCH(1, d, 1) process: simulated sample path with θ1 =

(0.40, 0.28, 0.10, 0.68, 1.27, 0.30).

distributed sample. The estimates were taken as the means of the posterior

distribution. The convergence of the Markov chain was analyzed through the

R criterion of Gelman and Rubin (1992), the Z-score test of Geweke (1992)

and by graphical methods.

Parameter estimates obtained with both classical and Bayesian procedures

are presented in Table 2.1, for both samples, with standard deviations given

in parenthesis.

The analysis of the alarm system is carried out at t = 2000, i.e., x2 = {x2000}.

The event of interest is the two step ahead catastrophe defined by the up-

crossing of the fixed level u, at time t + 2: C2000,2 = {(x2001, x2002) ∈ R2 :
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Table 2.1: Parameters and Estimates.

Sample 1 Sample 2

True QMLE Bayesian True QMLE Bayesian

Parameters Estimates Parameters Estimates

ω 0.40 0.3181 0.2876 0.80 0.5016 0.4244

(0.0737) (0.0669) (0.1605) (0.1299)

φ 0.10 0.2004 0.2253 0.37 0.4357 0.4200

(0.0919) (0.0900) (0.0872) (0.0596)

γ 0.68 0.6734 0.6743 0.76 0.5536 0.4953

(0.1050) (0.1210) (0.1384) (0.1345)

β 0.28 0.3936 0.4069 0.52 0.6449 0.6665

(0.1168) (0.1076) (0.0967) (0.0583)

δ 1.27 1.2164 1.3732 1.40 1.4641 1.5036

(0.2450) (0.2117) (0.2928) (0.2313)

d 0.30 0.3116 0.2978 0.20 0.3107 0.3542

(0.0636) (0.0580) (0.0715) (0.0750)

x2001 ≤ u < x2002}. In a first stage, two values of u were chosen, ac-

cordingly to the sample quantiles, namely the 90th percentile (Q0.90), and

the 95th percentile (Q0.95). The choice of these values is justified by the

fact that we are interested in relatively rare events. For both fixed levels

u, the probabilities P (Ct,2|xt, Dt,θ) and P (Ct,2|Dt,θ) were numerically ap-

proximated as described in the previous section. In order to compute the

optimal alarm region for each case, one has to obtain the region for sev-

eral values of k, according to expression (2.6) and then, for each value of

k, compute the operating characteristics of the alarm system, i.e., the size

of the region, αt,2, the probability of correct alarm, P (Ct,2|At,2, Dt,θ) and

the probability of detection, P (At,2|Ct,2, Dt,θ). For every fixed value of k

the region has to be obtained through a systematic search in a three dimen-

sional region for (xt, xt+1, xt+2). We considered a thin grid of values of xt in
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[−100, 100] and determined, for each value of xt, whether P (Ct,2|xt, Dt,θ)

exceeded k. This procedure was repeated for k ranging from P (Ct,2|Dt,θ)

to P (Ct,2|Dt,θ) + n× 0.005, with n ∈ R+, for Sample 1. For Sample 2 the

k step considered was 0.002 instead of 0.005. This procedure is repeated for

both the classical (using the true values of the parameters and their QMLE

estimates) and the Bayesian approach. Results are shown in Table 2.2 for

Sample 1 and in Table 2.3 for Sample 2. Just note that in Table 2.2 and

Table 2.3, P (Ct,2|At,2) and P (At,2|Ct,2) are also conditioned on the past and

should be written as P (Ct,2|At,2, Dt,θ) and P (At,2|Ct,2, Dt,θ), respectively.

However, due to the limited space available, the conditioning on Dt and θ

was omitted.

Table 2.2: Operating Characteristics for Sample 1, at time point t = 2000.

µ = Q0.95=3.136

True Parameters QMLE Bayesian Estimates

P (Ct,2|Dt) = 0.0328 P (Ct,2|Dt) = 0.0340 P (Ct,2|Dt) = 0.0236

k α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2)

0.0350 0.4789 0.0335 0.4903 0.5353 0.0346 0.5446 0.1904 0.0267 0.2155

0.0400 0.2998 0.0345 0.3155 0.3255 0.0355 0.3400 0.1902 0.0257 0.2074

0.0450 0.2072 0.0349 0.2209 0.2971 0.0359 0.3133 0.1211 0.0264 0.1354

0.0500 0.2067 0.0344 0.2173 0.2102 0.0363 0.2247 0.0718 0.0283 0.0862

0.0600 0.1377 0.0347 0.1458 0.1413 0.0360 0.1496 0.0397 0.0318 0.0535

0.0700 0.0864 0.0363 0.0957 0.0896 0.0373 0.0983 0.0203 0.0391 0.0337

0.0800 0.0509 0.0390 0.0605 0.0535 0.0398 0.0625 0.0097 0.0555 0.0227

0.0900 0.0282 0.0439 0.0377 0.0300 0.0454 0.0401 0.0042 0.0982 0.0177

0.1000 0.0146 0.0558 0.0248 0.0158 0.0563 0.0262 0.0017 0.2061 0.0151

µ=Q0.90=2.293

True Parameters QMLE Bayesian Estimates

P (Ct,2|Dt) = 0.0827 P (Ct,2|Dt) = 0.0844 P (Ct,2|Dt) = 0.0693

k α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2)

0.0850 0.5303 0.0832 0.5339 0.6042 0.0846 0.6055 0.1904 0.0722 0.1984

0.0900 0.3209 0.0837 0.3250 0.3490 0.0853 0.3528 0.1902 0.0719 0.1974

0.0950 0.2960 0.0844 0.3021 0.3033 0.0849 0.3050 0.1211 0.0717 0.1252

0.1000 0.2069 0.0843 0.2109 0.2117 0.0864 0.2167 0.1211 0.0713 0.1245

0.1100 0.1377 0.0852 0.1420 0.2101 0.0859 0.2137 0.0718 0.0730 0.0757

0.1200 0.0864 0.0862 0.0901 0.1413 0.0864 0.1446 0.0397 0.0773 0.0442

0.1300 0.0509 0.0887 0.0546 0.0535 0.0905 0.0573 0.0203 0.0825 0.0242

0.1400 0.0282 0.0888 0.0302 0.0535 0.0904 0.0572 0.0042 0.1123 0.0069

0.1500 0.0146 0.0965 0.0170 0.0158 0.1054 0.0197 0.0017 0.2474 0.0062
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Table 2.3: Operating Characteristics for Sample 2, at time point t = 2000.

µ = Q0.95=7.155

True Parameters QMLE Bayesian Estimates

P (Ct,2|Dt) = 0.0746 P (Ct,2|Dt) = 0.0893 P (Ct,2|Dt) = 0.0817

k α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2)

0.0900 0.0372 0.1386 0.0691 0.1830 0.0971 0.1989 0.0681 0.1126 0.0938

0.0920 0.0285 0.1592 0.0608 0.1508 0.1005 0.1697 0.0520 0.1229 0.0782

0.0940 0.0216 0.1870 0.0541 0.1226 0.1038 0.1425 0.0391 0.1362 0.0652

0.0960 0.0161 0.2293 0.0496 0.0777 0.1155 0.1005 0.0289 0.1638 0.0580

0.0980 0.0119 0.2825 0.0451 0.0606 0.1254 0.0851 0.0151 0.2347 0.0433

0.1000 0.0087 0.3712 0.0432 0.0466 0.1396 0.0728 0.0106 0.3094 0.0403

0.1020 0.0063 0.4785 0.0401 0.0353 0.1587 0.0627 0.0074 0.4080 0.0368

0.1040 0.0044 0.6359 0.0378 0.0264 0.1826 0.0539 0.0050 0.5759 0.0354

µ=Q0.90=5.432

True Parameters QMLE Bayesian Estimates

P (Ct,2|Dt) = 0.1267 P (Ct,2|Dt) = 0.1439 P (Ct,2|Dt) = 0.1353

k α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2) α2 P (Ct,2|At,2)P (At,2|Ct,2)

0.1440 0.0216 0.2321 0.0395 0.1508 0.1532 0.1605 0.0520 0.1736 0.0667

0.1460 0.0119 0.3284 0.0309 0.1226 0.1575 0.1341 0.0289 0.2110 0.0451

0.1480 0.0087 0.4083 0.0280 0.0777 0.1697 0.0916 0.0211 0.2378 0.0370

0.1500 0.0063 0.5163 0.0255 0.0606 0.1780 0.0749 0.0106 0.3403 0.0267

0.1520 0.0044 0.6781 0.0238 0.0353 0.2082 0.0511 0.0074 0.4435 0.0241

0.1540 0.0031 0.9331 0.0229 0.0264 0.2292 0.0420 0.0034 0.8073 0.0201

Results are very different for the two samples. For the first sample analysed

and considering the true values of the parameters, the probability of the

alarm being correct, does not exceed 5.6% in the u = Q0.95 case, or 9.7%

in the u = Q0.90 case. The probability of detection for this sample, ranges

from 2.4% to 49.0% for u = Q0.95, or from 1.7% to 53.4% for u = Q0.90.

The results obtained with the QML estimates do not differ considerably, in

particular in what concerns the probability of correct alarm. Regarding the

probability of detecting the event, we can say the alarm system behaves bet-

ter in this case since the detection probability reaches 54.5% for u = Q0.95

and 60.6% for u = Q0.90. Considering now the Bayesian approach, the prob-

ability of detection is the lowest obtained. It does not even reach 22%. On

the other hand, the estimation procedure involved in the Bayesian approach

seems to be able to produce higher probabilities of correct alarm, depending

on an accurate choice of k. The probability of correct alarm ranges from
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lower values than in the classical approach to more than the double of these

values, with increasing k, reaching 24.7% in the u = Q0.90 case. Further-

more, note that as the probability of correct alarm increases, the probability

of detecting the event decreases, as expected. This can be justified by the

fact that as k increases, the size of the alarm region decreases, which implies

that the number of alarms should decrease, so as the probability of detec-

tion, P (At,2|Ct,2, Dt,θ). However, as the number of alarms decreases, the

probability of false alarms also decreases and therefore the probability of the

alarm being correct, P (Ct,2|At,2, Dt,θ), increases.

In the second sample, results are quite different: although the general ten-

dencies of rising the probability of correct alarm and decreasing the detection

probability with the increase in k are followed, the ranges of variation are

different. While in the first sample, the widest ranges of variation were ob-

served for the detection probability, in the second sample, the widest ranges

of variation were obtained for the probability of the alarm being correct. For

instance, considering the true values of the parameters, the probability of

correct alarm reaches very high values: it ranges from 13.9% to 63.6% in the

µ = Q0.95 case and from 23.2% to 93.3% in the µ = Q0.90 case. Considering

QMLE, the probability of correct alarm only reaches 18.3% in the µ = Q0.95

case and 22.9% in the µ = Q0.90 case. Also with the Bayesian approach the

range of variation can be considered very large: from 11.3% to 57.6% in the

µ = Q0.95 case and from 17.4% to 80.7% in the µ = Q0.90 case. On the

other hand, quite small ranges of variation are observed for the detection

probability, which decreases from 6.9% to 3.8%, considering µ = Q0.95 and

from 4.0% to 2.3%, considering µ = Q0.90, in the situation were the true

values of the parameters are considered. The widest ranges of variation in

the detection probability are obtained when considering the QML estimates,

ranging from 19.9% to 5.4% in the µ = Q0.95 case, and ranging from 16.1%

to 4.2% in the µ = Q0.90 case. For the Bayesian estimates, the probability
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of detecting the event does not even reach 10%.

As already discussed, it is not possible, in general, to maximize both prob-

abilities, P (Ct,2|At,2, Dt,θ) and P (At,2|Ct,2, Dt,θ), simultaneously. Hence,

a compromise should be reached by the proper choice of k. In doing so,

several criteria have been already proposed. Svensson et al. (1996), for ex-

ample, suggested that k should be chosen so that the probability of correct

alarm and the probability of detecting the event are approximately equal,

P (Ct,2|At,2, Dt,θ) ' P (At,2|Ct,2, Dt,θ). On the other hand, Antunes et al.

(2003) suggested that k should be chosen so that the alarm size is about

twice the probability of having a catastrophe given the past values of the

process, P (Ct,2|Dt,θ) ' 1

2
P (At,2|Dt,θ), stating that in this situation the

system will be spending twice the time in the alarm state than in the catas-

trophe region. We analysed both criteria in this work and from hereafter,

the former criterion will be designated by Criterion 2 and the last by Cri-

terion 1. Also, from hereafter, we will consider only sample 1, simulated

with θ1 = (0.40, 0.28, 0.10, 0.68, 1.27, 0.30), as this choice of parameters is

very similar to the ones estimated from the real-data example presented in

Section 2.4.

In order to test the alarm system, three extra values of the series were sim-

ulated, (x2,x3) = (xt, xt+1, xt+2). This procedure was repeated 10000 times

with the same informative experience, Dt. With the alarm regions calculated

before for u = Q0.90 = 2.293 and for the two criteria already mentioned, we

observed, for each of the 10000 samples, whether an alarm was given or not

and whether a catastrophe occurred or not. Results are given in Table 2.4.

Criterion 1 tends to provide better estimates for the probability of correct

alarm and detection probability than Criterion 2. The probability of the
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Table 2.4: Results at time point t = 2000. Percentages in parenthesis.

Criterion Alarms Catastrophes

False Total Detected Total

True Parameters 1 1112 (0.8330) 1335 223 (0.2059) 1083

2 651 (0.8314) 783 132 (0.1273) 1037

QMLE Approach 1 1163 (0.8526) 1364 201 (0.1963) 1024

2 380 (0.8260) 460 80 (0.0771) 1037

Bayesian Approach 1 1161 (0.8401) 1382 221 (0.2103) 1051

2 668 (0.8477) 788 120 (0.1204) 997

alarm being correct is even higher than the theoretical expected values in

Table 2.2 for the cases in which the true parameters or the QML estimates are

considered: it is approximately 16.7% and 14.7% respectively, for Criterion

1. The estimated detection probability, even though lower than maximum

theoretical values in Table 2.2, is also higher than expected, considering that

some criterion was being pursued. Take, for instance, the case in which the

Bayesian estimates are considered and note that the probability of correct

alarm of around 16.0% with Criterion 1 corresponds to a detection proba-

bility of 21.0%, a much higher value than the one expected from inspection

of Table 2.2. It seems that, in practice, estimated operating characteristics

tend to reach higher values than what was expected theoretically.

Finally, we illustrate how the on-line prediction performs in practice. The

event to predict is Ct,2 = {(xt+1, xt+2) ∈ R2 : xt+1 ≤ u < xt+2}, t =

2000, . . . , 2010, again with u = Q0.90 = 2.293. Alarm regions and corre-

sponding operating characteristics are presented in Table 2.5 for Criterion

1 and in Table 2.6 for Criterion 2.
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Table 2.5: Operating characteristics at different time points for Criterion 1.

Approach t P (Ct,2|Dt) k Alarm Region α2 P (Ct,2|At,2) P (At,2|Ct,2)

2000 0.0827 0.1100 [−∞,−2.0] ∪ [9.0,+∞] 0.1377 0.0852 0.1420

2001 0.1047 0.1047 [−∞,−1.5] ∪ [5.5,+∞] 0.1848 0.1093 0.1929

2002 0.0936 0.0936 [−∞,−2.0] ∪ [9.5,+∞] 0.1209 0.0980 0.1265

2003 0.0923 0.1073 [−∞,−1.5] ∪ [7.5,+∞] 0.2167 0.0947 0.2224

2004 0.0897 0.0977 [−∞,−1.5] ∪ [8.0,+∞] 0.2076 0.0914 0.2116

True 2005 0.0879 0.0979 [−∞,−1.5] ∪ [7.5,+∞] 0.2036 0.0893 0.2069

Parameters 2006 0.0803 0.0953 [−∞,−2.0] ∪ [9.0,+∞] 0.1311 0.0831 0.1356

2007 0.0687 0.0887 [−∞,−2.0] ∪ [8.5,+∞] 0.1286 0.0716 0.1340

2008 0.0573 0.0873 [−∞,−2.0] ∪ [9.5,+∞] 0.1194 0.0614 0.1279

2009 0.0508 0.0758 [−∞,−2.0] ∪ [8.5,+∞] 0.1045 0.0522 0.1075

2010 0.0545 0.0845 [−∞,−2.0] ∪ [8.5,+∞] 0.0924 0.0566 0.0960

2000 0.0844 0.1200 [−∞,−2.0] ∪ [10.5,+∞] 0.1413 0.0864 0.1446

2001 0.1047 0.1097 [−∞,−1.5] ∪ [6.0,+∞] 0.1867 0.1123 0.2002

2002 0.0969 0.0969 [−∞,−2.0] ∪ [9.5,+∞] 0.1230 0.1005 0.1276

2003 0.0946 0.1096 [−∞,−1.5] ∪ [7.5,+∞] 0.2202 0.0972 0.2262

2004 0.0919 0.1019 [−∞,−1.5] ∪ [7.5,+∞] 0.2110 0.0943 0.2165

QMLE 2005 0.0900 0.1000 [−∞,−1.5] ∪ [7.5,+∞] 0.2066 0.0917 0.2104

2006 0.0821 0.0971 [−∞,−2.0] ∪ [8.5,+∞] 0.1340 0.0843 0.1376

2007 0.0697 0.0897 [−∞,−2.0] ∪ [8.5,+∞] 0.1314 0.0723 0.1363

2008 0.0594 0.0894 [−∞,−2.0] ∪ [9.0,+∞] 0.1217 0.0619 0.1269

2009 0.0506 0.0756 [−∞,−2.0] ∪ [8.0,+∞] 0.1059 0.0528 0.1104

2010 0.0544 0.0844 [−∞,−2.0] ∪ [8.5,+∞] 0.0930 0.0566 0.0966

2000 0.0693 0.0950 [−∞,−2.0] ∪ [8.5,+∞] 0.1211 0.0717 0.1252

2001 0.0911 0.0911 [−∞,−1.5] ∪ [6.0,+∞] 0.1685 0.0939 0.1736

2002 0.0820 0.0820 [−∞,−2.0] ∪ [9.5,+∞] 0.1047 0.0845 0.1078

2003 0.0794 0.0994 [−∞,−2.0] ∪ [9.0,+∞] 0.1297 0.0820 0.1340

2004 0.0764 0.0914 [−∞,−2.0] ∪ [9.0,+∞] 0.1218 0.0797 0.1271

Bayesian 2005 0.0715 0.0915 [−∞,−2.0] ∪ [9.0,+∞] 0.1176 0.0779 0.1282

2006 0.0680 0.0830 [−∞,−2.0] ∪ [9.0,+∞] 0.1144 0.0711 0.1196

2007 0.0576 0.0776 [−∞,−2.0] ∪ [9.0,+∞] 0.1121 0.0598 0.1165

2008 0.0498 0.0748 [−∞,−2.0] ∪ [9.0,+∞] 0.1038 0.0513 0.1068

2009 0.0419 0.0669 [−∞,−2.0] ∪ [9.0,+∞] 0.0902 0.0441 0.0948

2010 0.0447 0.0747 [−∞,−2.0] ∪ [9.5,+∞] 0.0790 0.0467 0.0825

Regarding the probability of correct alarm, results presented in Tables 2.5

and 2.6 are very similar: it ranges from around 5 to 11% considering the

true values of the parameters or the QML estimates and from approximately

4 to 9% considering the Bayesian estimates. The main difference between

Table 2.5 and Table 2.6 resides in the values of the detection probability

that are always higher for Criterion 1, reaching values near 23% in some

time instants, in the classical approach. With Criterion 2, the probability of

detecting the event is always about half the value obtained with Criterion
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Table 2.6: Operating characteristics at different time points for Criterion 2.

Approach t P (Ct,2|Dt) k Alarm Region α2 P (Ct,2|At,2) P (At,2|Ct,2)

2000 0.0827 0.1200 [−∞,−2.5] ∪ [11.5,+∞] 0.0864 0.0862 0.0901

2001 0.1047 0.1247 [−∞,−2.0] ∪ [10.5,+∞] 0.1153 0.1088 0.1198

2002 0.0936 0.1036 [−∞,−2.5] ∪ [12.0,+∞] 0.0717 0.1001 0.0767

2003 0.0923 0.1223 [−∞,−2.5] ∪ [12.0,+∞] 0.0958 0.0949 0.0985

2004 0.0897 0.1147 [−∞,−2.5] ∪ [12.0,+∞] 0.0872 0.0924 0.0899

True 2005 0.0879 0.1129 [−∞,−2.5] ∪ [11.5,+∞] 0.0835 0.0906 0.0862

Parameters 2006 0.0803 0.1053 [−∞,−2.5] ∪ [11.5,+∞] 0.0805 0.0831 0.0832

2007 0.0687 0.0987 [−∞,−2.5] ∪ [11.5,+∞] 0.0783 0.0726 0.0827

2008 0.0573 0.1023 [−∞,−2.5] ∪ [13.0,+∞] 0.0705 0.0630 0.0774

2009 0.0508 0.0908 [−∞,−2.5] ∪ [12.0,+∞] 0.0582 0.0531 0.0608

2010 0.0545 0.0945 [−∞,−2.5] ∪ [11.0,+∞] 0.0487 0.0593 0.0530

2000 0.0844 0.1300 [−∞,−3.0] ∪ [13.5,+∞] 0.0535 0.0905 0.0573

2001 0.1047 0.1297 [−∞,−2.0] ∪ [10.5,+∞] 0.1174 0.1104 0.1238

2002 0.0969 0.1069 [−∞,−2.5] ∪ [12.0,+∞] 0.0735 0.1027 0.0780

2003 0.0946 0.1246 [−∞,−2.5] ∪ [11.5,+∞] 0.0992 0.0974 0.1021

2004 0.0919 0.1169 [−∞,−2.5] ∪ [11.5,+∞] 0.0904 0.0947 0.0932

QMLE 2005 0.0900 0.1150 [−∞,−2.5] ∪ [11.0,+∞] 0.0863 0.0929 0.0891

2006 0.0821 0.1121 [−∞,−2.5] ∪ [12.5,+∞] 0.0831 0.0850 0.0860

2007 0.0697 0.0997 [−∞,−2.5] ∪ [11.0,+∞] 0.0808 0.0731 0.0847

2008 0.0594 0.0994 [−∞,−2.5] ∪ [11.5,+∞] 0.0723 0.0637 0.0776

2009 0.0506 0.0956 [−∞,−2.5] ∪ [13.0,+∞] 0.0593 0.0529 0.0619

2010 0.0544 0.0994 [−∞,−2.5] ∪ [11.5,+∞] 0.0491 0.0590 0.0533

2000 0.0693 0.1100 [−∞,−2.5] ∪ [12.5,+∞] 0.0718 0.0730 0.0757

2001 0.0911 0.1011 [−∞,−2.0] ∪ [8.5,+∞] 0.1002 0.0943 0.1037

2002 0.0820 0.0820 [−∞,−2.0] ∪ [9.5,+∞] 0.1047 0.0845 0.1078

2003 0.0794 0.1094 [−∞,−2.5] ∪ [12.0,+∞] 0.0793 0.0835 0.0835

2004 0.0764 0.1014 [−∞,−2.5] ∪ [12.0,+∞] 0.0724 0.0813 0.0771

Bayesian 2005 0.0715 0.1065 [−∞,−2.5] ∪ [13.5,+∞] 0.0689 0.0794 0.0766

2006 0.0680 0.0930 [−∞,−2.5] ∪ [11.5,+∞] 0.0663 0.0726 0.0707

2007 0.0576 0.0876 [−∞,−2.5] ∪ [11.5,+∞] 0.0643 0.0619 0.0692

2008 0.0498 0.0848 [−∞,−2.5] ∪ [12.0,+∞] 0.0576 0.0536 0.0619

2009 0.0419 0.0769 [−∞,−2.5] ∪ [11.5,+∞] 0.0470 0.0461 0.0517

2010 0.0447 0.0847 [−∞,−2.5] ∪ [11.5,+∞] 0.0388 0.0476 0.0413

1, leading us to conclude that, overall, Criterion 1 provides better estimates

for the operating characteristics.

2.4 Exploring the IBOVESPA returns data set

In this section, we model the data set IBOVESPA which contains daily

returns of the São Paulo Stock Market during the period 04/07/1994 to

02/10/2008 (www.ipeadata.gov.br). Data consists on the closing rates of



108 2. Optimal Alarm Systems for FIAPARCH Processes

stocks, It, being the log-returns calculated as yt = ln(It/It−1), t = 1, . . . , n.

The results obtained from this procedure were then multiplied by 100 just

to ensure the stability of posterior calculations. Sáfadi and Pereira (2010)

proved that the FIAPARCH(1, d, 1) provides a good fit for this kind of data

sets. To fit a FIAPARCH(1, d, 1) model for the log-returns we proceeded as

follows: first, the AR(10) model

yt = 0.0689 + 0.0645yt−10 + xt,

is fitted using the least squares method, in order to eliminate serial depen-

dence. The time series plots of both the IBOVESPA daily returns and the

residuals (xt), hereafter designated by x-returns, are exhibited in Figure 2.2

below.

Figure 2.2: Plot of the IBOVESPA data, It, (left) and the x-returns, xt,

(right) from 04/07/1994 to 02/10/2008.

This is, indeed, the set of data reported to show the common features of

financial time series mentioned in Section 1.2.1, that is weak dependence

without any evident pattern on the series level and significant dependence

on squared and absolute returns.

The FIAPARCH(1, d, 1) model was fitted to the series of x-returns by means

of the QMLE procedure and the Bayesian approach described in Section 2.2.

In both cases the adequacy of the fit was checked through the analysis of the
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standardized residuals. Table 2.7 presents the estimates obtained for both

procedures.

Table 2.7: Parameter estimates. Standard deviations in parenthesis.

QMLE Bayesian Estimates

ω 0.3903 (0.1092) 0.4227 (0.0576)

φ 0.0957 (0.1334) 0.1289 (0.0397)

γ 0.6782 (0.1363) 0.7813 (0.1108)

β 0.2794 (0.1693) 0.3246 (0.0568)

δ 1.2744 (0.1274) 1.2218 (0.1008)

d 0.2952 (0.0642) 0.3020 (0.0258)

Since the IBOVESPA x-returns are related to the daily changes of the stock

indexes of S. Paulo Stock Market, we considered that the event of interest is

given by

Ct,2 = {(xt+1, xt+2) ∈ R2 : xt+1 ≥ u > xt+2}

with t = 3450, . . . , 3516, corresponding to July, August and September of

2008, and u = Q0.25 = −1.219. Note that, the down-crossing event Ct,2

can be viewed as related with a stock market crash. Moreover, the choice of

k was done according only to Criterion 1: P (Ct,2|Dt,θ) ' 1

2
P (At,2|Dt,θ).

Two reasons justify this choice. First, Criterion 2 is difficult to implement

since P (Ct,2|At,2, Dt,θ) may never get so close to P (At,2|Ct,2, Dt,θ) or when

it does, some operating characteristics may show not so good results (at least

as compared with those obtained with Criterion 1). Secondly, Criterion 1 re-

sults in better estimates of the operating characteristics. For the time period

considered, the total number of alarms, the total number of catastrophes,

the number of false alarms and the number of detected events was counted.

Results are presented in Table 2.8, considering the QMLE procedure.
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Table 2.8: Results of the alarm system with u = −1.219. Percentages in

parenthesis.

Month Alarms Catastrophes

False Total Detected Total

July 1 (0.50) 2 1 (0.16) 6

August 1 (0.50) 2 1 (0.20) 5

September 0 (0.00) 3 3 (0.27) 11

Trimester 2 (0.28) 7 5 (0.22) 22

A closer look at Table 2.8 reveals that the estimate of the probability of

the alarm being correct is 50% in July and August and raises to 100% in

September. In addition, the estimate of the probability of detecting a catas-

trophe remains around 20% during the time period considered. We noticed

that this on-line prediction system exhibits an adaptive behaviour, that is,

as long as the available information is integrated within the informative ex-

perience, the system adapts itself in order to produce the minimum number

of false alarms. This fact explains on one hand the high estimate of the

probabilities of the alarm given being correct and on the other hand that the

system produces few alarms, so the probability of detection can not be very

high.



Chapter 3

Integer-valued Asymmetric

Power ARCH Model

This chapter is organized as follows: in Section 3.1, relevant background in-

formation and the reasons for the introduction of the INGARCH-type model

proposed in this work are presented. Definitions are given in Section 3.2 and

probabilistic properties of the proposed model are discussed. Parameter es-

timation is covered in Section 3.3. In Section 3.4, results are illustrated

through a simulation study. The implementation of an optimal alarm sys-

tem to the INAPARCH(1,1) model is done in Section 3.5. Finally, in Section

3.6, an application is presented to two data series concerning the number of

transactions in stocks.

3.1 Introduction

The analysis of continuous-valued financial time series like log-return series

of foreign exchange rates, stock indices or share prices, has revealed some

common features: sample means not significantly different from zero, sam-

ple variances of the order 10−4 or smaller and sample distributions roughly

symmetric in the center, sharply peaked around zero but with a tendency to

111
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negative asymmetry. In particular, it has usually been found that the condi-

tional volatility of stocks responds asymmetrically to positive versus negative

shocks: volatility tends to rise higher in response to negative shocks as op-

posed to positive shocks, which is known as the leverage effect. To account

for asymmetric responses in the volatility, Ding et al. (1993) introduced the

Asymmetric Power ARCH or, in short, APARCH(p, q) in which

Yt = σtZt, σ
δ
t = ω +

p∑
i=1

αi(|Xt−i| − γiXt−i)
δ +

q∑
j=1

βjσ
δ
t−j , t ∈ Z, (3.1)

where (Zt) is an i.i.d. sequence with zero mean, ω > 0, αi > 0, βj > 0, δ > 0,

−1 < γi < 1. As mentioned in Section 1.2.1, the APARCH representation

in (3.1) has some noteworthy advantages, from which we would like to point

out the fact that the model allows the detection of asymmetric responses of

the volatility for positive or negative shocks.

Asymmetric responses on the volatility are also commonly observed in the

analysis of time series representing the number of intra-day transactions in

stocks, in which the numbers are typically quite small, as reported in Brän-

näs and Quoreshi (2010). It is worth mentioning that none of the models

covered in Section 1.2.3 is able to cope with the presence of asymmetric

overdispersion in data. In order to account for this feature, we propose a

counterpart of the APARCH model for the analysis of time series of counts.

3.2 Integer-valued APARCH(p, q) Processes

Definition 3.1 (INAPARCH(p, q) model). An INteger-valued APARCH(p, q)

is defined to be an integer-valued process (Yt), such that, conditioned on the

past, the distribution of Yt is Poisson with mean value λt satisfying the re-

cursive equation

λδt = ω +

p∑
i=1

αi(|Yt−i − λt−i| − γi(Yt−i − λt−i))δ +

q∑
j=1

βjλ
δ
t−j , t ∈ Z
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with ω > 0, αi ≥ 0, βj ≥ 0, |γi| < 1 and δ ≥ 0.

3.2.1 First and second order moments of INAPARCH(1,1)

In deriving the first and second order moments of the INAPARCH(1, 1) the

particular case δ = 1 is considered. Note that the unconditional mean must

obey the relation

E[Yt] = ω + β1 E[Yt−1] + α1 E[|Yt−1 − λt−1|],

in which

E[|Yt−1 − λt−1|] = E[Yt−1]

(
1− 2φ1 +

H(λt−1 − 2)

H(λt−1 − 1)
φ1−

− 1−H(λt−1 − 2)

1−H(λt−1 − 1)
(1− φ1)

)
, (3.2)

where H(λt−1 − i) := 1 − FP (λt−1 − i), for i = 1, 2, and FP (·) stands for

the Poisson distribution function. In the expression above, φ1 represents the

probability of Yt−1 being greater or equal to the conditional mean λt−1, at

the same time point, φ1 = P (Yt−1 − λt−1 > 0). After suitable substitution,

it comes that

E[Yt] = ω + E[Yt−1]

{
β1 + α1

(
1− 2φ1 +

H(λt−1 − 2)

H(λt−1 − 1)
φ1−

− 1−H(λt−1 − 2)

1−H(λt−1 − 1)
(1− φ1)

)}
.

By the property Var[X] = E[Var[X|Y ]] + Var[E[X|Y ]], it follows that the

unconditional variance, σ2
Y , is larger than the unconditional mean µY , lead-

ing to a process with overdispersion. Moreover, the unconditional variance

must obey the relation

Var[Yt] = E[Yt]− E[Yt−1](β2
1 − α2

1 + α2
1γ

2
1) + Var[Yt−1](β2

1 + 2α2
1γ

2
1)−

− α2
1(E[|Yt−1 − λt−1|])2,
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where the expectation of the absolute value of the difference between the

observable counts and the conditional mean, at the same time point, t − 1,

is given by (3.2).

Regarding the autocovariance function the following relation must be sat-

isfied for k > 1,

E[Yt−kYt] = ωE[Yt−k] + β1 E[Yt−kYt−1] + α1 E[Yt−k|Yt−1 − λt−1|],

where

E[Yt−k|Yt−1 − λt−1|] = E[Yt−kYt−1]

{
1− 2φ1 +

H(λt−1 − 2)

H(λt−1 − 1)
φ1−

− 1−H(λt−1 − 2)

1−H(λt−1 − 1)
(1− φ1)

}
.

Thus, for k > 1,

E[Yt−kYt] = ωE[Yt−k] + E[Yt−kYt−1]×

×
{
β1 + α1

(
1− 2φ1 +

H(λt−1 − 2)

H(λt−1 − 1)
φ1 −

1−H(λt−1 − 2)

1−H(λt−1 − 1)
(1− φ1)

)}
.

3.2.2 Stationarity and Ergodicity of the INAPARCH(1,1)

The analysis of weak dependence properties of a process are fundamental for

the establishment of standard asymptotics and valid inference, and predic-

tion. Following the work of Doukhan et al. (2012) (see also Davis et al., 2003;

Neumann, 2011; Franke, 2010) we will establish the existence and unique-

ness of a stationary solution, and ergodicity for the p = q = 1 case. The

INAPARCH(1, 1) process is defined as an integer-valued process (Yt) such

that

Yt|Ft−1 ∼ Po(λt)

λδt = ω + α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1, t ∈ Z (3.3)
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with α ≡ α1, β ≡ β1 and γ ≡ γ1. The γ parameter should reflect the leverage

effect relative to the conditional mean of the process (Yt).

Proposition 3.2. Under the conditions in Definition 3.1, the bivariate pro-

cess (Yt, λt) has a stationarity solution.

Proof. For a general Markov chain and according to Theorem 12.0.1(i) of

Meyn and Tweedie (1994), if (Xt) is a weak Feller chain and if for any ε > 0

there exists a compact set C ⊂ X such that

P (x,Cc) < ε,∀x ∈ X,

then (Xt) is bounded in probability and thus there exists at least one sta-

tionary distribution for the chain. We will show that the chain is bounded in

probability and therefore admits at least one stationary distribution. First

note that the chain is weak Feller (cf., Davis et al., 2003). Define C := [−c, c]

then,

P (λ,Cc) =

= P (λδt ∈ Cc|λt−1 = λ)

= P
(
|ω + α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1| > c|λt−1 = λ

)
which, by Markov’s inequality

6
E
[
|ω + α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1||λt−1 = λ

]
c

6
E
[
|ω|+ |α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ|+ |βλδt−1||λt−1 = λ

]
c

6
E [|ω|] + E

[
|α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ||λt−1 = λ

]
c

+

+
E
[
|βλδt−1||λt−1 = λ

]
c

=
E [|ω|] + E

[
|α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ||λt−1 = λ

]
+ E

[
|βλδ|

]
c
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and since α, β, δ, λ > 0

P (λ,Cc) 6
ω

c
+
α

c
E
[
|(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ||λt−1 = λ

]
+
βλδ

c
.

In view of the fact that |γ| < 1 and |Yt−1 − λt−1| − γ(Yt−1 − λt−1) > 0, the

expression above simplifies to

P (λ,Cc) 6
ω + βλδ

c
+
α

c
E
[
(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ|λt−1 = λ

]
.

Since by definition

E
[
(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ|λt−1 = λ

]
=

=
+∞∑

yt−1=0

(|yt−1 − λ| − γ(yt−1 − λ))δP (Yt−1 = yt−1|λt−1 = λ)

=

+∞∑
yt−1=0

(|yt−1 − λ| − γ(yt−1 − λ))δ
e−λλyt−1

(yt−1)!
,

then

P (λ,Cc) 6
ω + βλδ

c
+
α

c
e−λ

+∞∑
yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ.

By d’Alembert’s criterion, the series

+∞∑
yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ,

is absolutely convergent. Being convergent, the series has a finite sum and

so it can be written that

P (λ,Cc) 6
ω + βλδ

c
+
α

c
e−λ

+∞∑
yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ < ε.

Thus, for any ε > 0 just choose c large enough so that

1

c

ω + βλδ + αe−λ
+∞∑

yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ

 < ε,

leading to conclude that the series has at least one stationary solution.
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In proving uniqueness we proceed as follows: note that the INAPARCH(1, 1)

model belongs to the class of observation-driven Poisson count processes con-

sidered in Neumann (2011)

Yt|FY,λt−1 ∼ Po(λt); λt = f(λt−1, Yt−1), t ∈ N

with

f(λt−1, Yt−1) = (ω + α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1)
1
δ .

Thus, the result follows if the function f above satisfies the following con-

tractive condition

|f(λ, y)− f(λ′, y′)| ≤ k1|λ− λ′|+ k2|y − y′| ∀λ, λ′ ≥ 0, ∀ y, y′ ∈ N0,

(3.4)

where k1 and k2 are nonnegative constants such that k := k1 + k2 < 1. For

the INAPARCH(1, 1) model the contractive condition simplifies to

|f(λt−1, Yt−1)− f(λ′t−1, Y
′
t−1)| ≤ ‖ ∂f

∂λt−1
‖∞|λt−1 − λ′t−1|+

+ ‖ ∂f

∂Yt−1
‖∞|Yt−1 − Y ′t−1|,

where for the Euclidean space Rd and h : Rd → R, ‖h‖∞ is defined by

‖h‖∞ = supx∈Rd |h(x)|. The partial derivatives are given by

∂f

∂Yt−1
= αλ1−δ

t (|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ−1 (IYt−1 − γ)

∂f

∂λt−1
= βλδ−1

t−1λ
1−δ
t − αλ1−δ

t (|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ−1 (IYt−1 − γ)

where

IYt−1 =

 1 Yt−1 > λt−1

−1 Yt−1 < λt−1

,

that is
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• Case I: Yt−1 > λt−1,

∂f

∂Yt−1
= α(1− γ)δ

(
Yt−1 − λt−1

λt

)δ−1

> 0

∂f

∂λt−1
= β

(
λt−1

λt

)δ−1

− α(1− γ)δ
(
Yt−1 − λt−1

λt

)δ−1

6 β

(
λt−1

λt

)δ−1

.

• Case II: Yt−1 < λt−1,

∂f

∂Yt−1
= α(−1− γ)δ

(
Yt−1 − λt−1

λt

)δ−1

= α(−1)δ(1 + γ)δ
(
Yt−1 − λt−1

λt

)δ−1

∂f

∂λt−1
= β

(
λt−1

λt

)δ−1

− α(−1− γ)δ
(
Yt−1 − λt−1

λt

)δ−1

= β

(
λt−1

λt

)δ−1

− α(−1)δ(1 + γ)δ
(
Yt−1 − λt−1

λt

)δ−1

.

Having in mind that −1 < γ < 1, then both 1− γ and 1 + γ take values in

]0, 2[. Moreover, for δ > 2∣∣∣∣∣
(
Yt−1 − λt−1

λt

)δ−1
∣∣∣∣∣ < δ.

Thus, for Yt−1 > λt−1 and taking δ > 2 it follows that∣∣∣∣ ∂f

∂Yt−1

∣∣∣∣ = α(1− γ)δ

∣∣∣∣∣
(
Yt−1 − λt−1

λt

)δ−1
∣∣∣∣∣ < α(1− γ)δδ < α2δδ.

On the other hand, for Yt−1 < λt−1 and δ > 2∣∣∣∣ ∂f

∂Yt−1

∣∣∣∣ = α|(−1)δ|(1 + γ)δ

∣∣∣∣∣
(
Yt−1 − λt−1

λt

)δ−1
∣∣∣∣∣

= α(1 + γ)δ

∣∣∣∣∣
(
Yt−1 − λt−1

λt

)δ−1
∣∣∣∣∣ < α2δδ,

leading to obtain

‖ ∂f

∂Yt−1
‖∞ = α2δδ, for δ > 2.
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Note that by stationarity, when Yt−1 > λt−1, it follows that∣∣∣∣ ∂f

∂λt−1

∣∣∣∣ < β2δ−1.

For the case Yt−1 < λt−1∣∣∣∣ ∂f

∂λt−1

∣∣∣∣ =

∣∣∣∣∣β
(
λt−1

λt

)δ−1

− α(−1)δ(1 + γ)δ
(
Yt−1 − λt−1

λt

)δ−1
∣∣∣∣∣

=

∣∣∣∣∣β
(
λt−1

λt

)δ−1
∣∣∣∣∣+

∣∣∣∣∣α(1 + γ)δ
(
Yt−1 − λt−1

λt

)δ−1
∣∣∣∣∣

= β

(
λt−1

λt

)δ−1

+ α(1 + γ)δ

∣∣∣∣∣
(
Yt−1 − λt−1

λt

)δ−1
∣∣∣∣∣

< β2δ−1 + α2δδ,

for δ > 2, since δ and δ − 1 have opposite parities.

Finally, a majorant for the partial derivative in order to λt−1, can be taken

by

‖ ∂f

∂λt−1
‖∞ = β2δ−1 + α2δδ.

Hence, if

α2δ+1δ + β2δ−1 < 1, (3.5)

for δ > 2, then the contractive condition holds. This concludes the proof.

Neumann (2011) proved that the contractive condition in (3.4) is, indeed,

sufficient to ensure uniqueness of the stationary distribution and ergodicity

of (Yt, λt). The results are quoted below.

Proposition 3.3. Suppose that the bivariate process (Yt, λt) satisfies (3.3)

and (3.5) for δ ≥ 2. Then the stationary distribution is unique and E[λ1] <

∞.

Proposition 3.4. Suppose that the bivariate process (Yt, λt) is in its sta-

tionarity regime and satisfies (3.3) and (3.5) for δ ≥ 2. Then the bivariate

process (Yt, λt) is ergodic and E[λ2
1] <∞.
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Furthermore, following Theorem 2.1. in Doukhan et al. (2012), it can be

shown that if the process (Yt, λt) satisfies (3.3) and (3.5) for δ ≥ 2, then there

exists a solution of (3.3) which is a τ -weakly dependent strictly stationary

process with finite moments up to any positive order and is ergodic.

3.3 Estimation

In this section, we estimate the parameters of the INAPARCH(p, q) model.

The conditional maximum likelihood method can be applied in a very straight-

forward manner. Note that by the fact that the conditional distribution is

Poisson, the conditional likelihood function, given the starting value λ0 and

the observations y1, . . . , yn, takes the form

L(θ) :=
n∏
t=1

e−λt(θ)λytt (θ)

yt!
(3.6)

with θ := (ω, α1, . . . , αp, β1, . . . , βq, γ1, . . . , γp, δ) ≡ (θ1, θ2, . . . , θ2p+q+2) de-

noting the unknown parameter vector. The log-likelihood function is given

by

ln(L(θ)) =

n∑
t=1

[yt ln(λt)− λt − ln(yt!)] =

n∑
t=1

`t(θ). (3.7)

The score function is the vector defined by

Sn(θ) :=
∂ ln(L(θ))

∂θ
=

n∑
t=1

∂`t(θ)

∂θ
. (3.8)

The auxiliary calculations presented below are needed for the calculation of

the first order derivatives of the general INAPARCH(p, q) model.

∂`t
∂θi

=
∂λt
∂θi

(
yt
λt
− 1

)
, i = 1, . . . , 2 + 2p+ q,

where
∂λt
∂θi

=
λt

δλδt

∂(λδt )

∂θi
, i = 1, . . . , 2 + 2p+ q.
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Thus, the first derivatives are given by the following expressions

∂λt
∂ω

=
λt

δλδt

δ p∑
i=1

αig
δ−1
t−i (It−i + γi)

∂λt−i
∂ω

+

q∑
j=1

βj
∂λδt−j
∂ω

+ 1

 ,

∂λt
∂αi

=
λt

δλδt

δ p∑
k=1

αkg
δ−1
t−k (It−k + γk)

∂λt−k
∂αi

+

q∑
j=1

βj
∂λδt−j
∂αi

+ gδt−i

 ,

∂λt
∂γi

=
λt

δλδt

(
δ

p∑
k=1

αkg
δ−1
t−k (It−k + γk)

∂λt−k
∂γi

+

+

q∑
j=1

βj
∂λδt−j
∂γi

− δαigδ−1
t−i (yt−i − λt−i)

 ,

for i = 1, . . . , p,

∂λt
∂βj

=
λt

δλδt

(
δ

p∑
i=1

αig
δ−1
t−i (It−i + γi)

∂λt−i
∂βj

+

q∑
k=1

βk
∂λδt−k
∂βj

+ λδt−j

)
,

for j = 1, . . . , q,

∂λt
∂δ

=
λt

δλδt

{
p∑
i=1

αig
δ
t−i

(
δ

gt−i
(It−i + γi)

∂λt−i
∂δ

+ ln(gt−i)

)
+

+

q∑
j=1

βj
∂λδt−j
∂δ

− λδt
δ

ln(λδt )

 ,

where gt−i = |yt−i − λt−i| − γi(yt−i − λt−i) and

It =

 −1 yt > λt

1 yt < λt
.

Thus, for the INAPARCH(1, 1) model the score function can then be explic-
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itly written as

Sn(θ) =



∑n
t=1

(
yt
λt
− 1
)
∂λt
∂ω∑n

t=1

(
yt
λt
− 1
)
∂λt
∂α∑n

t=1

(
yt
λt
− 1
)
∂λt
∂γ∑n

t=1

(
yt
λt
− 1
)
∂λt
∂β∑n

t=1

(
yt
λt
− 1
)
∂λt
∂δ


with

∂λt
∂ω

=
λt

δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂ω
+ 1

)
,

∂λt
∂α

=
λt

δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂α
+ gδt−1

)
,

∂λt
∂γ

=
λt

δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂γ
− αδgδ−1

t−1 (yt−1 − λt−1)

)
,

∂λt
∂β

=
λt

δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂β
+ λδt−1

)
,

∂λt
∂δ

=
λt

δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂δ
+ αgδt−1 ln(gt−1)+

+ βλδt−1 ln(λt−1)
)
− λt

δ
ln(λt).

The solution of the equation Sn(θ) = 0 is the conditional maximum likeli-

hood estimator, θ̂, if it exists. To study the asymptotic properties of the

maximum likelihood estimator we proceed as follows: first it can be shown

that the score function, evaluated at the true value of the parameter, say

θ0, is asymptotically normal. The score function has martingale difference

terms defined by
∂`t
∂θi

=

(
yt
λt
− 1

)
∂λt
∂θi

.
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The partial derivatives defined above can be rewritten after repeated substi-

tution by

∂λt
∂ω

=
λt

δλδt

1 +

t−1∑
i=1

i∏
j=1

λ1−δ
t−j (α(It−j + γ)gδ−1

t−j + βλδ−1
t−j )

 ,

∂λt
∂α

=
λt

δλδt

gδt−1 +

t−2∑
i=1

gδt−(i+1)

i∏
j=1

λ1−δ
t−j (α(It−j + γ)gδ−1

t−j + βλδ−1
t−j )

 ,

∂λt
∂γ

= −λt
λδt

(
αgδ−1

t−1 (yt−1 − λt−1) +

t−2∑
i=1

αgδ−1
t−(i+1)(yt−(i+1) − λt−(i+1))×

×
i∏

j=1

λ1−δ
t−j (α(It−j + γ)gδ−1

t−j + βλδ−1
t−j )

 ,

∂λt
∂β

=
λt

δλδt

λδt−1 +
t−2∑
i=1

λδt−(i+1)

i∏
j=1

λ1−δ
t−j (α(It−j + γ)gδ−1

t−j + βλδ−1
t−j )

 ,

∂λt
∂δ

=
λt

δλδt
(αgδt−1 ln(gt−1) + βλδt−1 ln(λt−1)− λt

δ
ln(λt)−

−
t−1∑
i=1

λt−i
δ

ln(λt−1)
i∏

j=1

λ1−δ
t−j+1(α(It−j + γ)gδ−1

t−j + βλδ−1
t−j )+

+
λt

δλδt

t−2∑
i=1

(
αgδt−(i+1) ln(gt−(i+1)) + βλδt−(i+1) ln(λt−(i+1))

)
×

×
i∏

j=1

λ1−δ
t−j (α(It−j + γ)gδ−1

t−j + βλδ−1
t−j ).

It follows that at θ = θ0

E

[
∂`t
∂θ
|Ft−1

]
= 0,
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since E
[
yt
λt
− 1|Ft−1

]
= 0 and

E

[(
yt
λt
− 1

)2

|Ft−1

]
= Var

[
yt
λt
− 1|Ft−1

]
=

1

λt
,

where Ft−1 represents the σ-algebra generated by (Ys, s ≤ t− 1). It can also

easily be shown that, for δ > 2

E
[
λ2−2δ
t |Ft−1

]
< +∞;

E
[
λ1−δ
t |Ft−1

]
< +∞;

E
[
λ2−δ
t ln(λt)|Ft−1

]
< E[ln(λt)|Ft−1] < E[λt|Ft−1] < +∞;

E
[
λ2
t ln2(λt)|Ft−1

]
< +∞;

E [λt ln(λt)|Ft−1] < +∞.

Thus, it can be concluded that Var
[
∂`t
∂θ |Ft−1

]
< +∞ and that ∂`t/∂θ is

a martingale difference sequence with respect to Ft−1. The application of

a central limit theorem for martingales guarantees the desired asymptotic

normality.

It is worth to mention here that in Section 3.2 it was concluded that the

process has finite moments up to any positive order and is τ -weak depen-

dent, which implies ergodicity. This is sufficient to state that the Hessian

matrix converges in probability to a finite limit. Finally, all third derivatives

are bounded by a sequence that converges in probability1. Given these three

conditions, it is then concluded that the conditional maximum likelihood

estimator, θ̂, is consistent and asymptotically normal,

√
n(θ̂ − θ0)

d→ N (0, G−1(θ))

1In Appendix A, the third derivative of `t(θ) in order to ω is provided for illustration.

Other third order derivatives are obtained straightforwardly.
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with variance-covariance matrix, G(θ), given by

G(θ) = E

[
1

λt

(
∂λt
∂θ

)(
∂λt
∂θ

)′]
.

A consistent estimator of G(θ) is given by Gn(θ̂), where

Gn(θ) =
n∑
t=1

Var

[
∂`t(θ)

∂θ
|Ft−1

]
=

n∑
t=1

1

λt(θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′
.

The diagonal entries of the Hessian matrix are related to the expressions

presented next and all other entries are calculated in a very straightforward

manner

∂2`t(θ)

∂ω2
=

(
δ − 1

δλδt
− yt

λδ+1
t

)(
1 + δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂ω

)
∂λt
∂ω

+

+

(
yt

λδt
− 1

λδ−1
t

){
(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂2λt−1

∂ω2
+

+ (α(δ − 1)(It−1 + γ)2gδ−2
t−1 + β(δ − 1)λδ−2

t−1 )

(
∂λt−1

∂ω

)2
}
,

∂2`t(θ)

∂α2
=

(
δ − 1

δλδt
− yt

λδ+1
t

)(
gδt−1+δ(α(It−1 + γ)gδ−1

t−1 +βλδ−1
t−1 )

∂λt−1

∂α

)
∂λt
∂α

+

+

(
yt

λδt
− 1

λδ−1
t

){
(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂2λt−1

∂α2
+

+ (α(δ − 1)(It−1 + γ)2gδ−2
t−1 + β(δ − 1)λδ−2

t−1 )

(
∂λt−1

∂α

)2

+

+ +2(It−1 + γ)gδ−1
t−1

∂λt−1

∂α

}
,
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∂2`t(θ)

∂γ2
=

(
δ − 1

δλδt
− yt

λδ+1
t

)(
−αδgδ−1

t−1 (yt−1 − λt−1)+

+ δ(α(It−1 + γ)gδ−1
t−1 + βλδ−1

t−1 )
∂λt−1

∂γ

)
∂λt
∂γ

+

+

(
yt

λδt
− 1

λδ−1
t

){
(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂2λt−1

∂γ2
+

+ (α(δ − 1)(It−1 + γ)2gδ−2
t−1 + β(δ − 1)λδ−2

t−1 )

(
∂λt−1

∂γ

)2

+

+ 2γ
(
gδ−1
t−1 − (δ − 1)(It−1 + γ)gδ−2

t−1 (yt−1 − λt−1)
) ∂λt−1

∂γ
+

+ α(δ − 1)gδ−2
t−1 (yt−1 − λt−1)2

}
,

∂2`t(θ)

∂β2
=

(
δ − 1

δλδt
− yt

λδ+1
t

)(
λδt−1+δ(α(It−1+γ)gδ−1

t−1 +βλδ−1
t−1 )

∂λt−1

∂β

)
∂λt
∂β

+

+

(
yt

λδt
− 1

λδ−1
t

){
(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂2λt−1

∂β2
+

+ (α(δ − 1)(It−1 + γ)2gδ−2
t−1 + β(δ − 1)λδ−2

t−1 )

(
∂λt−1

∂β

)2

+

+ 2λδ−1
t−1

∂λt−1

∂β

}
,

∂2`t(θ)

∂δ2
=

((
δ − 1

δλδt
− yt

λδ+1
t

)
∂λt
∂δ
− yt − λt

δλδt

(
1

δ
+ ln(λt)

))
×

×
(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂δ
+

+ αgδt−1 ln(gt−1) + βλδt−1 ln(λt−1)
)

+

+

(
yt

λδt
− 1

λδ−1
t

){
(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂2λt−1

∂δ2
+

+ (α(δ − 1)(It−1 + γ)2gδ−2
t−1 + β(δ − 1)λδ−2

t−1 )

(
∂λt−1

∂δ

)2

+

+
2

δ

(
α(It−1+γ)gδ−1

t−1 (1+δ ln(gt−1))+βλδ−1
t−1 (1+δ ln(λt−1))

)∂λt−1

∂δ
+

+
α

δ
gδt−1(ln(gt−1))2 +

β

δ
λδt−1(ln(λt−1))2

}
.
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3.4 Simulation

In this section, a simulation study is carried out to illustrate the theoretical

findings given in the section above for the INAPARCH(1, 1) model. The

simulation study contemplates five different combinations for θ, which are

displayed in Table 3.1 below. For each set of parameters time series of length

500 with 300 independent replicates from the INAPARCH(1, 1) model were

simulated. A sample path and its corresponding sample ACF are presented

in Figure 3.1, for the combination of parameters C2. The remaining cases

are presented in the Appendix A.

Note that for C1-C4 cases, condition (3.5) holds, whereas for case C5 this

condition fails. The simulation study was computed using Matlab and the

programs developed are provided in Appendix B. The results are summa-

rized in Table 3.1. The bias of the conditional ML estimates is presented

in Figure 3.2 for the combination of parameters C2 and in Appendix A for

the remaining cases. Numbers one to five below the boxplots refer to the

estimated parameters, in the order appearing in Table 3.1.

Considering the conditional ML estimates in Table 3.1 and the boxplots

of the bias in Figure 3.2, a few conclusions can be drawn. Firstly, the α

parameter seems to be conveniently estimated, i.e., the point estimates follow

the theoretical values in a coherent way, even for very small values such as

for the combinations of parameters C1, C2 and C3. The observed bias is also

quite small. On the other hand, the β parameter is always overestimated,

there is a tendency to underestimate the ω parameter and there is a very

high degree of variability, in particular for the δ parameter.
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Figure 3.1: Sample path for the INAPARCH(1, 1) process. Combination of

parameters C2 (top) and its corresponding autocorrelation function (bot-

tom).

3.4.1 Log-likelihood analysis

For C2 and C4 cases, 300 samples were simulated considering values of δ

varying from 2.0 to 3.0 (i.e., six different situations for each case). After

preliminary data analysis with the construction of boxplots and histograms

(presented in Appendix A and that can confirm the presence of overdisper-

sion) the log-likelihood was studied in the following manner: for each set

of 300 samples the log-likelihood was calculated, varying the δ parameter

in the range 2.0 to 3.0. It was expected that the log-likelihood was max-

imum for the δ value used to simulate that particular set of 300 samples.
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Table 3.1: Parameter estimates and standard errors (se) in parentheses.

Parameter Values Point estimates and (se)

Case ω α γ β δ 2δ(2αδ + β
2
) ω̂ α̂ γ̂ β̂ δ̂

C1 2.30 0.01 0.68 0.10 2.00 0.36 1.8510 0.0641 0.6356 0.1850 1.9245

(0.4825) (0.0685) (0.3180) (0.2246) (0.7156)

C2 2.30 0.03 0.68 0.06 2.00 0.60 1.9067 0.0755 0.6174 0.1452 1.9170

(0.5142) (0.0698) (0.3351) (0.1981) (0.6860)

C3 2.30 0.01 0.68 0.10 3.00 0.88 1.9674 0.0571 0.5922 0.1572 2.9588

(0.4229) (0.0684) (0.2914) (0.1813) (0.7183)

C4 2.30 0.05 0.68 0.08 2.00 0.96 1.8931 0.0880 0.7005 0.1753 1.9535

(0.5294) (0.0722) (0.3070) (0.2102) (0.7154)

C5 2.30 0.30 0.68 0.10 2.00 5.00 2.2724 0.3082 0.7489 0.1294 2.0401

(0.7519) (0.1290) (0.2229) (0.1318) (0.6510)

Results are presented in Figure 3.3 and Table 3.2 for Case 2. Case 2 was

chosen for representation herein just because for this case the first three val-

ues for the δ parameter lie inside the region that obeys condition (3.5) and

the last 3 lie outside this region. Nevertheless, same behaviour was observed

for both Case 2 and Case 4 (represented in Appendix A) and the δ value

for which the calculated log-likelihood was maximum was exactly what was

expected for both cases and all 6 different situations. In Table 3.2, it can

be observed that the mean log-likelihood is maximum for the δ value cor-

responding to the δ value used for the simulation of the respective set of

samples. In Figure 3.3, the numbers 1 to 6 in the x-axis correspond to the

δ values of {2.00, 2.20, 2.40, 2.60, 2.80, 3.00}, respectively, and it can be seen

that the results are in accordance with Table 3.2. For each situation, the

median log-likelihood is maximum for the expected δ value and variability

is comparable not only between different δ values for the same set of 300

samples, but also between different sets of samples.
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Figure 3.2: Bias of the conditional ML estimates, for the combination of

parameters C2.

Table 3.2: Maximum likelihood estimation results for Case 2.

Samples simulated with Log-likelihood for varying δ

θ=(2.30, 0.03, 0.68, 0.06, δ) 2.0 2.2 2.4 2.6 2.8 3.0

δ = 2.00 -785.4787 -786.1563 -787.6991 -789.6634 -791.8038 -793.9828

δ = 2.20 -775.2089 -774.5939 -775.0658 -776.1291 -777.5016 -779.0191

δ = 2.40 -766.7914 -765.1027 -764.6847 -764.9993 -765.7337 -766.7013

δ = 2.60 -760.1167 -757.5743 -756.4490 -756.1685 -756.3958 -756.9265

δ = 2.80 -755.0275 -751.7783 -750.0676 -749.2947 -749.1024 -749.2715

δ = 3.00 -751.1783 -747.3026 -745.0736 -743.8653 -743.3025 -743.1530
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Figure 3.3: Log-likelihood for varying δ, Case 2.

3.5 Optimal alarm systems: application to the IN-

APARCH (1,1) model

Let (Yt)t∈N be a count time process with parameter space Θ ⊂ Rk for some

k ∈ N. The time sequence {1, 2, . . . , t − 1, t, t + 1, . . . } will be divided in

three sections: {1, 2, . . . , t− q}, {t− q+ 1, . . . , t}, {t+ 1, . . . }, namely, past,

present and future, such that for some q > 0 the following subsets will be
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defined

Data or informative experience: Dt = {Y1, Y2, . . . , Yt−q}

Present experiment: Y2 = {Yt−q+1, . . . , Yt}

Future experiment: Y3 = {Yt+1, . . . }

Any event of interest, Ct,j , in the σ-algebra generated by Y3 is defined as

a catastrophe. In this work, the catastrophe shall be considered as the up-

crossing event of some fixed level u,

Ct,j = {Yt+j−1 6 u < Yt+j} for some j ∈ N.

The alarm region of optimal size αt,j is given by

At,j =

{
y2 ∈ Nq :

P (Ct,j |y2, Dt)

P (Ct,j |Dt)
≥ kt,j

}

= {y2 ∈ Nq : P (Ct,j |y2, Dt) ≥ k}, (3.9)

where k = kt,jP (Ct,j |Dt).

The first step in the construction of the alarm system consists on the calcu-

lation of both probabilities: the probability of catastrophe conditional on Dt

and y2, i.e., P (Ct,j |y2, Dt,θ), and the probability of catastrophe conditional

on Dt, P (Ct,j |Dt,θ).
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P (Ct,j |y2, Dt,θ) =

= P (Yt+j−1 6 u < Yt+j |y2, Dt,θ)

=
u∑

yt+j−1=0

P (Yt+j−1 = yt+j−1, Yt+j > u|y1, ..., yt,θ)

=
u∑

yt+j−1=0

P (Yt+j−1 = yt+j−1|y2, Dt,θ)P (Yt+j > u|yt+j−1,y2, Dt,θ)

=

u∑
yt+j−1=0

P (Yt+j−1 = yt+j−1|y2, Dt,θ) (1− P (Yt+j 6 u|Yt+j−1,y2, Dt,θ))

=

u∑
yt+j−1=0

P (Yt+j−1 = yt+j−1|y2, Dt,θ)×

×

1−
u∑

yt+j=0

P (Yt+j = yt+j |yt+j−1,y2, Dt,θ)


=

u∑
yt+j−1=0

p(yt+j−1|yt,θ)

1−
u∑

yt+j=0

p(yt+j |yt+j−1,θ)

,
P (Ct,j |Dt,θ) =

= P (Yt+j−1 6 u < Yt+j |Dt,θ)

=
u∑

yt+j−1=0

P (Yt+j−1 = yt+j−1, Yt+j > u|Dtθ)

=

u∑
yt+j−1=0

P (Yt+j−1 = yt+j−1|Dt,θ)P (Yt+j > u|yt+j−1, Dt,θ)

=

u∑
yt+j−1=0

P (Yt+j−1 = yt+j−1|Dt,θ)(1−P (Yt+j6u|yt+j−1, Dt,θ))

=
u∑

yt+j−1=0

P (Yt+j−1 = yt+j−1|Dt,θ)

×

1−
u∑

yt+j=0

P (Yt+j = yt+j |yt+j−1, Dt,θ)


=

u∑
yt+j−1=0

p(yt+j−1|yt−q,θ)

1−
u∑

yt+j=0

p(yt+j |yt+j−1,θ)

.
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After calculating these probabilities it is then possible to move on to the

operating characteristics of the alarm system:

1. Alarm size

Since Y2 = {Yt−q+1, Yt−q+2, . . . , Yt−1, Yt}, the size of the alarm region

is given by:

αt,j = P (At,j |Dt,θ)

=
∑

y2∈At,j

P (Y2 = y2|Dt,θ)

=
∑

y2∈At,j

p(yt|yt−1,θ)p(yt−1|yt−2,θ) · · · p(yt−q+1|yt−q,θ)

=
∑

y2∈At,j

q−1∏
i=0

p(yt−i|yt−i−1,θ)

=
∑

y2∈At,j

q∏
i=1

p(yt−i+1|yt−i,θ)

=
∑

y2∈At,j

q∏
i=1

e−λt−i+1λ
yt−i+1

t−i+1

(yt−i+1)!
.

2. Probability of correct alarm

P (Ct,j |At,j , Dt,θ) =
P (Ct,j

⋂
At,j |Dt,θ)

P (At,j |Dt,θ)

=
P (Yt+j−1 6 u < Yt+j ,Y2 ∈ At,j |Dt,θ)

P (Y2 ∈ At,j |Dt,θ)

=

∑
y2∈At,j

P (Y2 = y2|Dt,θ)P (Ct,j |Y2 = y2, Dt,θ)

∑
y2∈At,j

P (Y2 = y2|Dt,θ)

=

∑
y2∈At,j

q∏
i=1

p(yt−i+1|yt−i,θ)P (Ct,j |Y2 = y2, Dt,θ)

∑
y2∈At,j

q∏
i=1

p(yt−i+1|yt−i,θ)
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and, given the probability of catastrophe, P (Ct,j |y2, Dt,θ),

=
∑

y2∈At,j

 q∏
i=1

p(yt−i+1|yt−i,θ)

u∑
yt+j−1=0

p(yt+j−1|yt,θ)×

×

1−
u∑

yt+j=0

p(yt+j |yt+j−1,θ)

 ∑
y2∈At,j

q∏
i=1

p(yt−i+1|yt−i,θ)

−1

.

3. Probability of detecting the event

P (At,j |Ct,j , Dt,θ) =
P (At,j

⋂
Ct,j |Dt,θ)

P (Ct,j |Dt,θ)

=
P (Y2 ∈ At,j , Yt+j−1 6 u < Yt+j |Dt,θ)

P (Ct,j |Dt,θ)

=

∑
y2∈At,j

P (Y2 = y2|Dt,θ)P (Ct,j |Y2 = y2, Dt,θ)

P (Ct,j |Dt,θ)
.

Since the numerator in this expression is the same as the numerator

in the expression for the probability of correct alarm, and, given the

probability of catastrophe, P (Ct,j |Dt,θ),

=
∑

y2∈At,j

 q∏
i=1

p(yt−i+1|yt−i,θ)
u∑

yt+j−1=0

p(yt+j−1|yt,θ)×

×

1−
u∑

yt+j=0

p(yt+j |yt+j−1,θ)


×

 u∑
yt+j−1=0

p(yt+j−1|yt−q,θ)

1−
u∑

yt+j=0

p(yt+j |yt+j−1,θ)

−1

.

4. Probability of false alarm

P (Ct,j |At,j , Dt,θ) = 1− P (Ct,j |At,j , Dt,θ).

5. Probability of not detecting the event

P (At,j |Ct,j , Dt,θ) = 1− P (At,j |Ct,j , Dt,θ).
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The application to the INAPARCH(1, 1) model will be done for the particular

case q = 1 and j = 2. Thus, the time sequel is divided in the following

manner:

Dt = {y1, y2, . . . , yt−1} y2 = {yt} y3 = {yt+1, yt+2, . . . }.

The event of interest or the catastrophe is defined as the up-crossing of some

fixed level u two steps ahead,

Ct,2 = {(yt+1, yt+2) ∈ N2 : yt+1 6 u < yt+2}.

The optimal alarm region of size α2 is given by

At,2 =

{
yt ∈ N :

P (Ct,2|yt, Dt)

P (Ct,2|Dt)
> kt,2

}

= {yt ∈ N : P (Ct,2|yt, Dt) > k},

where k = kt,2P (Ct,2|Dt). As already mentioned, the first step in the con-

struction of the alarm system consists on the calculation of P (Ct,2|yt, Dt,θ)

and P (Ct,2|Dt,θ).

P (Ct,2|yt, Dt,θ) =

= P (Yt+1 6 u < Yt+2|yt, Dt,θ)

=

u∑
yt+1=0

P (Yt+1 = yt+1, Yt+2 > u|y1, . . . , yt,θ)

=
u∑

yt+1=0

P (Yt+1 = yt+1|yt, Dt,θ)P (Yt+2 > u|yt+1, yt, Dt,θ)

=

u∑
yt+1=0

P (Yt+1 = yt+1|yt, Dt,θ) (1− P (Yt+2 6 u|yt+1, yt, Dt,θ))
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=

u∑
yt+1=0

P (Yt+1 = yt+1|yt, Dt,θ)×

×

1−
u∑

yt+2=0

P (Yt+2 = yt+2|yt+1, yt, Dt,θ)


=

u∑
yt+1=0

p(yt+1|yt,θ)

1−
u∑

yt+2=0

p(yt+2|yt+1,θ)


=

u∑
yt+1=0

e−λt+1λ
yt+1

t+1

(yt+1)!

1−
u∑

yt+2=0

e−λt+2λ
yt+2

t+2

(yt+2)!



P (Ct,2|Dt,θ) =

= P (Yt+1 6 u < Yt+2|Dt,θ)

=
u∑

yt+1=0

P (Yt+1 = yt+1, Yt+2 > u|Dtθ)

=
u∑

yt+1=0

P (Yt+1 = yt+1|Dt,θ)P (Yt+2 > u|yt+1, Dt,θ)

=
u∑

yt+1=0

P (Yt+1 = yt+1|Dt,θ) (1− P (Yt+2 6 u|yt+1, Dt,θ))

=

u∑
yt+1=0

P (Yt+1 = yt+1|Dt,θ)

1−
u∑

yt+2=0

P (Yt+2 = yt+2|yt+1, Dt,θ)


=

u∑
yt+1=0

p(yt+1|yt−1,θ)

1−
u∑

yt+2=0

p(yt+2|yt+1,θ)


=

∑
yt

p(yt|yt−1,θ)

u∑
yt+1=0

p(yt+1|yt,θ)

1−
u∑

yt+2=0

p(yt+2|yt+1,θ)


=

∑
yt

e−λtλytt
(yt)!

u∑
yt+1=0

e−λt+1λ
yt+1

t+1

(yt+1)!

1−
u∑

yt+2=0

e−λt+2λ
yt+2

t+2

(yt+2)!

.

Having calculated these probabilities it is then possible to explicit all the

operating characteristics.



138 3. Integer-valued Asymmetric Power ARCH Model

1. Alarm size

Since y2 = {yt}, the alarm size is simply

αt,2 = P (At,2|Dt,θ)

=
∑

yt∈At,2

P (Yt = yt|Dt,θ)

=
∑

yt∈At,2

p(yt|yt−1,θ)

=
∑

yt∈At,2

e−λtλytt
(yt)!

,

with At,2 being the alarm region which depends on the choice of kt,2.

2. Probability of correct alarm

P (Ct,2|At,2, Dt,θ) =
P (Ct,2

⋂
At,2|Dt,θ)

P (At,2|Dt,θ)

=
P (Yt+1 6 u < Yt+2, Yt ∈ At,2|Dt,θ)

P (Yt ∈ At,2|Dt,θ)

=

∑
yt∈At,2

P (Yt = yt|Dt,θ)P (Ct,2|Yt = yt, Dt,θ)

∑
yt∈At,2

P (Yt = yt|Dt,θ)

=

∑
yt∈At,2

p(yt|yt−1,θ)P (Ct,2|yt, Dt,θ)

∑
yt∈At,2

p(yt|yt−1,θ)

and given P (Ct,2|yt, Dt,θ) it follows that

P (Ct,2|At,2, Dt,θ) =
∑

yt∈At,2

e−λtλytt
(yt)!

u∑
yt+1=0

e−λt+1λ
yt+1

t+1

(yt+1)!
×

×

1−
u∑

yt+2=0

e−λt+2λ
yt+2

t+2

(yt+2)!

 ∑
yt∈At,2

e−λtλytt
(yt)!

−1

.
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3. Probability of detecting the event

P (At,2|Ct,2, Dt,θ) =
P (At,2

⋂
Ct,2|Dt,θ)

P (Ct,2|Dt,θ)

=
P (Yt ∈ At,2, Yt+1 6 u < Yt+2|Dt,θ)

P (Ct,2|Dt,θ)

=

∑
yt∈At,2

P (Yt = yt|Dt,θ)P (Ct,2|Yt = yt, Dt,θ)

P (Ct,2|Dt,θ)
.

Once again, the numerator in this expression is the same as the numer-

ator in the expression for the probability of correct alarm, and, given

the probability of catastrophe, P (Ct,2|Dt,θ), the above expression can

be rewritten as

=
∑

yt∈At,2

e−λtλytt
(yt)!

u∑
yt+1=0

e−λt+1λ
yt+1

t+1

(yt+1)!

1−
u∑

yt+2=0

e−λt+2λ
yt+2

t+2

(yt+2)!

×
×

∑
yt

e−λtλytt
(yt)!

u∑
yt+1=0

e−λt+1λ
yt+1

t+1

(yt+1)!

1−
u∑

yt+2=0

e−λt+2λ
yt+2

t+2

(yt+2)!

−1

.

4. Probability of false alarm

P (Ct,2|At,2, Dt,θ) = 1− P (Ct,2|At,2, Dt,θ).

5. Probability of not detecting the event

P (At,2|Ct,2, Dt,θ) = 1− P (At,2|Ct,2, Dt,θ).

3.6 Application to the number of transactions in

stocks

Finally, the conditional maximum likelihood estimation procedure was ap-

plied to estimate two time series of count data, generated from stock trans-

actions. The tick-by-tick data for Glaxosmithkline and Astrazeneca have
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been downloaded from www.dukascopy.com, and treated in order to fill in

the zero counts during the trading periods considered and delete all trading

during the first and the last five minutes of each day (trading mechanisms

may be different during the opening and closing of the stock exchange mar-

ket). The data consists on the number of transactions per minute during

one trading day (September 19, 2012, for Glaxosmithkline and September

21, 2012, for Astrazeneca), corresponding to 501 observations for each series.

The series are presented in Figure 3.4 and the estimation results in Table 3.3

with standard errors in parentheses.

(mean 18.86, variance 277.00, maximum 85)

(mean 30.83, variance 819.14, maximum 151)

Figure 3.4: Time series plots for Glaxosmithkline and Astrazeneca.

The estimated value of the γ parameter (γ̂ = −0.3269 for the Glaxosmithk-

line series and γ̂ = −0.2787 for the Astrazeneca series) is negative for both
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Table 3.3: Maximum likelihood estimation results for Glaxosmithkline and

Astrazeneca time series.

Time series ω̂ α̂ γ̂ β̂ δ̂

Glaxosmithkline 0.3781 0.1392 -0.3269 0.8791 0.9826

(0.0685) (0.0074) (0.0843) (0.0073) (0.0005)

Astrazeneca 2.4862 0.2824 -0.2787 0.7501 1.0598

(0.1087) (0.0062) (0.0363) (0.0044) (0.0008)

series meaning that for these time series, there is evidence that positive

shocks have stronger impact on overdispersion than negative shocks. The

estimated value of the δ parameter (δ̂ = 0.9826 for the Glaxosmithkline se-

ries and δ̂ = 0.9826 for the Astrazeneca series) both fail the condition δ ≥ 2.

It is worth mentioning that this is not a surprising result since in the esti-

mation of the Standard & Poor 500 stock market daily closing price index

by Ding et al. (1993) the δ estimate obtained did not satisfy the sufficient

condition for the process to be covariance stationary, which was also δ ≥ 2.

We believe emphasis should be put on finding necessary instead of sufficient

conditions for stationarity and this will remain as future work.

The application of the alarm system was done to the aforementioned data

series. As these are real data series, only the maximum likelihood estimates

were considered in this application. The analysis was done for the time

instants t = 450 to t = 460. A preliminary study was done in order to

chose the value of the fixed value u. The probabilities P (Ct,2|yt, Dt,θ) and

P (Ct,2|Dt,θ) and also the alarm region were calculated for different values of

u, for all the time instants mentioned. As a result of this preliminary study

and in order to have reasonable probabilities of catastrophe, two different

values of u were chosen for each data series: the 39th percentile (Q0.39) and

the 50th percentile (Q0.50). It is worth mentioning that these data series have
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many zero counts and the probability of catastrophe for higher percentiles

is very low. Hence, the fixed levels u considered in this application cannot

be understood as a catastrophe in the sense that it should be related to a

relatively rare event, but, it is simply a fixed level for which the probability

of up-crossing is not negligible.

In order to obtain the optimal alarm region for each case, it is necessary

to obtain the alarm region for several values of k, according to expression

(1.21), Chapter 1. For each value of k the operating characteristics alarm

size, αt,2, probability of correct alarm P (Ct,2|At,2, Dt,θ) and probability of

detecting the event P (At,2|Ct,2, Dt,θ) are then calculated. For every fixed

value of k, the alarm region has to be obtained through a systematic search

in a three dimensional region for {yt, yt+1, yt+2}. We considered yt taking

all the integer values from 0 to 150 and determined, for each value of yt,

if P (Ct,2|yt, Dt,θ) exceeds or not k. This procedure is repeated for all the

values of k tested. The results concerning time instants t = 450, . . . , 460

for the Astrazeneca series are shown in Tables 3.4, 3.5 and 3.6. The results

concerning time instants t = 450, . . . , 460 for the Glaxosmithkline series are

shown in Tables 3.7, 3.8 and 3.9.

The step and range of variation in k were chosen for each case in order to

have as many different situations as possible.

Considering Tables 3.4, 3.5 and 3.6 for the Astrazeneca series and the cross-

ing of the fixed level u = Q0.39 = 19, the alarm size ranges from values in

the interval [0.31, 0.51] for the lowest value of k to around 1 × 10−5 for the

highest k. The variation with k in the probability of detecting the event

has the same amplitude, but, because this operating characteristic is always

slightly higher than the alarm size, it starts, for the lowest value of k, taking

values in the interval [0.40, 0.53]. It is not surprising that the probability of
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detection has the same behaviour as the alarm size, because as the alarm

size decreases with the increase in k, the number of alarms decreases, leading

directly to a lower probability of detecting the event. On the other hand, as

k increases, the probability of the alarm being correct increases, starting in

values around 5% or 8% for the first time instants considered, and reaching

values around 16%. This behaviour is not also unexpected: as the number

of alarm decreases the probability of false alarm also decreases, and, conse-

quently, the probability of the alarm being correct is expected to increase.

Still in Tables 3.4, 3.5 and 3.6 are the results for the Astrazeneca series

with u = Q0.50 = 25. Alarm size always starts at lower values than in the

previous situation for corresponding time instants. The only exception is

t = 451 for which has exactly the same value. This operation characteristic

takes values starting in the interval [0.29, 0.40] and decreases, as k increases,

until 10−12. The probability of detecting the event follows the behaviour of

the alarm size, although being always slightly higher: starts taking values

in [0.45, 0.53] and decreases until 10−10, for the highest value of k and for

the first time instants analysed. The probability of the alarm being cor-

rect also has a different range of variation for the first and the last time

instants considered. Considering the first time instants, P (Ct,2|At,2, Dt,θ)

increases from 0.2% − 0.5% until around 11%; considering the last time in-

stants, P (Ct,2|At,2, Dt,θ) starts in the interval [0.01, 0.04] and increases with

k but also does not exceed 12.6%.

The behaviour of the alarm system for the Glaxosmithkline series is similar

to what was described for the Astrazeneca series, not only in what concerns

the general tendencies of the operating characteristics but also in what con-

cerns the comparison of the level crossings of the 39 and 50th percentiles.
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Considering Tables 3.7, 3.8 and 3.9 for the Glaxosmithkline series and the

crossing of the fixed level u = Q0.39 = 13, there is a particular time instant

for which the variation of the operating characteristics is more significant.

For t = 452, the alarm size and the detection probability range from 40% to

around 2×10−4, as k increases. Simultaneously, the probability of the alarm

being correct increases from 15% to 20%. For all other time instants the op-

erating characteristics follow exactly the same tendency but in a shorter

range. For the first value of k, the alarm size takes values in [0.38, 0.85],

depending on the time instant, and, as k increases, the alarm size decreases,

reaching values ranging from 0.8% to 38.6%. The probability of detecting

the event has the same behaviour as the alarm size and is always very similar

to the value of the alarm size although slightly higher. On the other hand,

as k increases, the probability of the alarm being correct increases, but this

variation does not exceed the range [0.17, 0.20].

Considering now the fixed level crossing of the 50th percentile for the Glax-

osmithkline series, also in Tables 3.7, 3.8 and 3.9, the general tendencies of

the operation characteristics are the same as in the previous case, but in

different ranges. For instance, the alarm size ranges from around 40%, for

the lowest value of k, to very small sizes, of the order of 10−16, for the high-

est value of k. Also, for corresponding time instants, alarm size is always

smaller in the case of the crossing of the fixed level u = Q0.50 = 18, and this

difference is bigger for the last time instants analysed. The probability of

detecting the event has the same behaviour and similar value as the alarm

size. Regarding the probability of the alarm being correct, the range of vari-

ation is wider than in the previous case of the 39th percentile: as k increases,

P (Ct,2|At,2, Dt,θ) increases from 0.02 for t = 452 to around 0.18 for some

time instants.
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One last remark about Tables 3.4 to 3.9 is that the first time instants seem

to have lower probability of catastrophe for both level crossings. As a coinci-

dence this seems to happen for both time series, influencing also the resulting

operating characteristics of the alarm system.

As is obvious from the remarks above it is not possible to maximize simul-

taneously P (Ct,2|At,2, Dt,θ) and P (At,2|Ct,2, Dt,θ). A compromise must

be reached between these operating characteristics by a proper choice of k.

Several criteria have already been proposed in the literature. For instance,

as already mentioned in Chapter 2, Section 2.3, Antunes et al. (2003) sug-

gested that k should be chosen so that the alarm size is about twice the

probability of having a catastrophe given the past values of the process,

P (Ct,2|Dt,θ) ' 1
2P (At,2|Dt,θ), meaning that in this situation the system

spends twice the time in the alarm state than in the catastrophe region. The

first criterion used in this application is a variation of the former. Since the

alarm size is given by P (At,2|Dt,θ) and as was seen above, because the prob-

ability of detecting the event has the same behaviour of the alarm size with

the variation with k, taking also similar values, we decided to substitute the

alarm size with the detection probability. Moreover, we also found that the

probability of correct alarm is always of the same order of the probability

of catastrophe given past values of the process, P (Ct,2|Dt,θ): the difference

between these two probabilities never exceeds 0.02. As such, we also substi-

tuted P (Ct,2|Dt,θ) by P (Ct,2|At,2, Dt,θ), the probability of correct alarm.

Therefore, our Criterion 1 relates directly to operating characteristics and is

P (At,2|Ct,2, Dt,θ) ' 2P (Ct,2|At,2, Dt,θ).

Another criterion found in the literature and also mentioned in Chapter

2, Section 2.3, is the one suggested by Svensson et al. (1996) in which k

should be chosen so that the probability of correct alarm and the proba-
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bility of detecting the event are approximately equal. Our Criterion 1 is

already related with these two operating characteristics. Also, because the

probability of detection is directly dependent on the alarm size, it can be

chosen to be as high as desired. Thus, it seems wise to look for the best

set of operating characteristics in a different perspective, looking towards

minimizing the number of false alarms, which is the same as maximizing the

probability of the alarm being correct. As the probability of the alarm being

correct increases, the detection probability decreases and, in order not to

have too small detection probability we state the Criterion 2 as: Maximum

P (Ct,2|At,2, Dt,θ), as long as P (At,2|Ct,2, Dt,θ) ≥ 0.001.

The online prediction is illustrated in Tables 3.10, 3.11, 3.12 and 3.13. The

informative experience evolves as the time instant varies from t = 450 to

t = 460. The probability of catastrophe given the past experience, the alarm

region and respective operating characteristics are presented, for each crite-

ria. Tables 3.10 and 3.11 refer to the fixed level crossings u = Q0.39 = 19

and u = Q0.50 = 25, respectively, for the Astrazeneca series. Tables 3.12 and

3.13 refer to the fixed level crossings u = Q0.39 = 13 and u = Q0.50 = 18,

respectively, for the Glaxosmithkline series.

One general remark regarding the online prediction system is that Criterion

2, which tends to minimize the number of false alarms, is always satisfied

for a higher value of k, when compared with Criterion 1. Only exceptions

are two cases for which both criteria are simultaneously satisfied: t = 452,

level crossing of the 50th percentile for the Astrazeneca series and t = 458,

level crossing of the 39th percentile for the Glaxosmithkline series. This

observation is not surprising since the probability of correct alarm increases

with the increase in k.

In order to test the alarm system, three extra values of both time series were

simulated: (y2,y3) = (yt, yt+1, yt+2). This procedure was repeated 100 000
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times with the same informative experience, Dt, for each series. Considering

the alarm regions obtained before for u = Q0.39 and for u = Q0.50 and

for the two criteria already mentioned, it was observed for each of the 100

000 samples whether an alarm was given or not and whether a catastrophe

occurred or not. The operating characteristics can then be estimated with

these counts. This procedure was repeated for several time instants and

results are presented in Tables 3.14 and 3.15 for the Astrazeneca series and

in Tables 3.16 and 3.17 for the Glaxosmithkline series. The time instants

were chosen for their better set of operating characteristics and particularly

for the higher values of P (Ct,2|At,2, Dt,θ).

Regarding these results several conclusions can be outlined:

• First of all, considering the fixed level crossing of the 39th percentile,

the application overall overestimates the theoretical operating charac-

teristics. This overestimation is more noticeable for the probability of

correct alarm, whose theoretical values are around a half of the esti-

mated ones.

• Considering the fixed level crossing of the 50th percentile, the estimates

obtained with the application are very similar to the theoretical val-

ues of the operating characteristics. Notice, for instance, that in the

Glaxosmithkline series, the estimated and theoretical probability of de-

tecting the event for the time instants t = 454, t = 459 and t = 460

differ only on the fourth decimal place.

• Overall, Criterion 1 seems to provide better estimates of the operat-

ing characteristics, even when one considers the fixed level crossing of

the 39th percentile, which, as already mentioned, provides estimates

somewhat far from the theoretical values.

• Alarm size and probability of detection are the operating character-

istics better estimated with this application. Particularly, the alarm
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size (not shown directly on Tables 3.14 to 3.17, but easily obtainable)

always follows the theoretical value to the third decimal place, consid-

ering any of the fixed level crossings treated above.
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Table 3.4: Operating characteristics at time points t = 450, . . . , 453 for the

Astrazeneca series.

u = Q0.39= 19 u=Q0.50= 25

t=450 t=450

P (Ct,2|yt, Dt) = 0.0787 P (Ct,2, yt, Dt) = 0.0049

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.0655 0.3783 0.0805 0.4645 0.0036 0.3254 0.0059 0.5227

0.0755 0.1982 0.0904 0.2735 0.0136 0.0113 0.0177 0.0549

0.0855 0.0853 0.1037 0.1350 0.0236 9.2994× 10−4 0.0300 0.0076

0.0955 0.0525 0.1111 0.0891 0.0336 2.2149× 10−4 0.0379 0.0023

0.1055 0.0324 0.1178 0.0583 0.0436 2.0778× 10−5 0.0520 2.9600× 10−4

0.1155 0.0195 0.1244 0.0370 0.0536 3.7483× 10−6 0.0625 6.4171× 10−5

0.1255 0.0064 0.1367 0.0133 0.0636 1.5318× 10−6 0.0679 2.8507× 10−5

0.1355 0.0035 0.1423 0.0075 0.0736 2.3750× 10−7 0.0791 5.1493× 10−6

0.1455 9.2971× 10−4 0.1518 0.0022 0.0836 3.3476× 10−8 0.0903 8.2845× 10−7

0.1555 2.1996× 10−4 0.1586 0.5.3245× 10−4 0.0936 4.3072× 10−9 0.1010 1.1921× 10−7

t=451 t=451

P (Ct,2|yt, Dt) = 0.0463 P (Ct,2|yt, Dt) = 0.0017

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.0604 0.3124 0.0777 0.4018 0.0031 0.3124 0.0051 0.5148

0.0704 0.1817 0.0860 0.2587 0.0131 0.0089 0.0166 0.0475

0.0804 0.1060 0.0944 0.1656 0.0231 6.7534× 10−4 0.0285 0.0062

0.0904 0.0434 0.1080 0.0777 0.0331 7.0772× 10−5 0.0406 9.2566× 10−4

0.1004 0.0265 0.1148 0.0503 0.0431 1.3647× 10−5 0.0501 2.2018× 10−4

0.1104 0.0156 0.1214 0.0314 0.0531 2.3638× 10−6 0.0605 4.6046× 10−5

0.1204 0.0089 0.1280 0.0189 0.0631 3.6962× 10−7 0.0715 8.5042× 10−6

0.1304 0.0026 0.1400 0.0061 0.0731 1.4087× 10−7 0.0772 3.4982× 10−6

0.1404 0.0013 0.1455 0.0032 0.0831 1.9058× 10−8 0.0884 5.4209× 10−7

0.1504 3.2775× 10−4 0.1543 8.3707× 10−4 0.0931 2.3533× 10−9 0.0992 7.5153× 10−8

0.1604 2.9144× 10−5 0.1612 7.7785× 10−5 0.1031 2.6624× 10−10 0.1094 9.3727× 10−9

t=452 t=452

P (Ct,2|yt, Dt) = 0.0473 P (Ct,2|yt, Dt) = 0.0018

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.0381 0.3489 0.0504 0.4615 0.0013 0.2994 0.0023 0.5272

0.0481 0.1260 0.0636 0.2103 0.0113 0.0012 0.0141 0.0124

0.0581 0.0721 0.0715 0.1353 0.0213 5.1216× 10−5 0.0254 9.8759× 10−4

0.0681 0.0266 0.0852 0.0594 0.0313 3.5946× 10−6 0.0371 1.0123× 10−4

0.0781 0.0153 0.0924 0.0370 0.0413 5.3168× 10−7 0.0464 1.8723× 10−5

0.0881 0.0085 0.0996 0.0221 0.0513 7.0761× 10−8 0.0567 3.0420× 10−6

0.0981 0.0045 0.1071 0.0127 0.0613 8.5163× 10−9 0.0677 4.3710× 10−7

0.1081 0.0012 0.1214 0.0037 0.0713 9.3114× 10−10 0.0791 5.5846× 10−8

0.1181 5.5679× 10−4 0.1283 0.0019 0.0813 2.9740× 10−10 0.0847 1.9109× 10−8

0.1281 2.5937× 10−4 0.1347 9.1651× 10−4 0.0913 2.8375× 10−11 0.0959 2.0652× 10−9

0.1381 5.1216× 10−5 0.1463 1.9651× 10−4 0.1013 2.4841× 10−12 0.1065 2.0066× 10−10

t=453 t=453

P (Ct,2|yt, Dt) = 0.0745 P (Ct,2|yt, Dt) = 0.0044

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.0388 0.3510 0.0512 0.4630 0.0014 0.3025 0.0024 0.5291

0.0488 0.1286 0.0644 0.2132 0.0114 0.0012 0.0143 0.0129

0.0588 0.0744 0.0721 0.1381 0.0214 5.5180× 10−5 0.0256 0.0010

0.0688 0.0276 0.0858 0.0611 0.0314 3.9202× 10−6 0.0374 1.0761× 10−4

0.0788 0.0159 0.0929 0.0382 0.0414 5.8460× 10−7 0.0467 2.0048× 10−5

0.0888 0.0089 0.1002 0.0229 0.0514 7.8444× 10−8 0.0570 3.2816× 10−6

0.0988 0.0047 0.1076 0.0132 0.0614 9.5189× 10−9 0.0680 4.7499× 10−7

0.1088 0.0012 0.1219 0.0039 0.0714 1.0494× 10−9 0.0794 6.1147× 10−8

0.1188 5.9269× 10−4 0.1287 0.0020 0.0814 3.3654× 10−10 0.0850 2.1002× 10−8

0.1288 2.7720× 10−4 0.1351 9.6467× 10−4 0.0914 3.2377× 10−11 0.0963 2.2872× 10−9

0.1388 5.5180× 10−5 0.1466 2.0833× 10−4 0.1014 2.8579× 10−12 0.1068 2.2394× 10−10
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Table 3.5: Operating characteristics at time points t = 454, . . . , 457 for the

Astrazeneca series.

u = Q0.39= 19 u=Q0.50= 25

t=454 t=454

P (Ct,2|yt, Dt) = 0.1395 P (Ct,2|yt, Dt) = 0.0210

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.0575 0.3806 0.0715 0.4732 0.0028 0.3062 0.0047 0.5108

0.0675 0.1731 0.0833 0.2509 0.0128 0.0077 0.0160 0.0436

0.0775 0.0973 0.0924 0.1564 0.0228 5.5741× 10−4 0.0277 0.0055

0.0875 0.0620 0.0993 0.1070 0.0328 5.6373× 10−5 0.0397 7.9245× 10−4

0.0975 0.0234 0.1130 0.0460 0.0428 1.0613× 10−5 0.0491 1.8459× 10−4

0.1075 0.0137 0.1198 0.0284 0.0528 1.7947× 10−6 0.0594 3.7780× 10−5

0.1175 0.0077 0.1264 0.0169 0.0628 2.7394× 10−7 0.0703 6.8271× 10−6

0.1275 0.0022 0.1387 0.0053 0.0728 3.7923× 10−8 0.0816 1.0972× 10−6

0.1375 0.0011 0.1443 0.0028 0.0828 1.3621× 10−8 0.0872 4.2115× 10−7

0.1475 2.6742× 10−4 0.1534 7.1367× 10−4 0.0928 1.6415× 10−9 0.0982 5.7129× 10−8

0.1575 5.5663× 10−5 0.1596 1.5452× 10−4 0.1028 1.8124× 10−10 0.1084 6.9663× 10−9

t=455 t=455

P (Ct,2|yt, Dt) = 0.1563 P (Ct,2|yt, Dt) = 0.0623

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1085 0.4239 0.1223 0.4778 0.0111 0.3056 0.0168 0.4647

0.1135 0.3056 0.1273 0.3583 0.0211 0.0541 0.0283 0.1380

0.1185 0.2127 0.1323 0.2594 0.0311 0.0131 0.0391 0.0463

0.1235 0.1305 0.1388 0.1669 0.0411 0.0044 0.0477 0.0190

0.1285 0.1236 0.1395 0.1588 0.0511 0.0013 0.0572 0.0068

0.1335 0.0832 0.1442 0.1107 0.0611 3.5349× 10−4 0.0676 0.0022

0.1385 0.0541 0.1488 0.0741 0.0711 8.5315× 10−5 0.0784 6.0369× 10−4

0.1435 0.0347 0.1526 0.0488 0.0811 1.8622× 10−5 0.0892 1.4997× 10−4

0.1485 0.0216 0.1559 0.0310 0.0911 3.6916× 10−6 0.0998 3.3236× 10−5

0.1535 0.0130 0.1585 0.0189 0.1011 1.5874× 10−6 0.1048 1.5017× 10−5

0.1585 0.0074 0.1603 0.0109 0.1111 2.7443× 10−7 0.1140 2.8236× 10−6

t=456 t=456

P (Ct,2|yt, Dt) = 0.1464 P (Ct,2|yt, Dt) = 0.0250

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1520 0.5094 0.1572 0.5270 0.0325 0.3961 0.0418 0.5101

0.1530 0.4373 0.1581 0.4547 0.0425 0.1186 0.0552 0.2018

0.1540 0.3734 0.1588 0.3902 0.0525 0.0534 0.0647 0.1063

0.1550 0.3734 0.1588 0.3902 0.0625 0.0227 0.0744 0.0519

0.1560 0.3300 0.1592 0.3456 0.0725 0.0088 0.0844 0.0228

0.1570 0.2673 0.1599 0.2813 0.0825 0.0031 0.0945 0.0089

0.1580 0.2229 0.1604 0.2352 0.0925 0.0017 0.0994 0.0053

0.1590 0.2229 0.1604 0.2352 0.1025 5.2170× 10−4 0.1087 0.0017

0.1600 0.1306 0.1612 0.1385 0.1125 1.4272× 10−4 0.1170 5.1454× 10−4

0.1610 0.0738 0.1615 0.0784 0.1225 1.7229× 10−5 0.1260 6.6871× 10−5

t=457 t=457

P (Ct,2|yt, Dt) = 0.1603 P (Ct,2|yt, Dt) = 0.0395

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1156 0.4194 0.1293 0.4690 0.0130 0.3654 0.0185 0.5180

0.1206 0.2596 0.1358 0.3050 0.0230 0.0673 0.0304 0.1571

0.1256 0.2318 0.1372 0.2751 0.0330 0.0173 0.0416 0.0553

0.1306 0.1605 0.1418 0.1969 0.0430 0.0061 0.0503 0.0235

0.1356 0.1026 0.1470 0.1305 0.0530 0.0019 0.0600 0.0088

0.1406 0.0684 0.1510 0.0893 0.0630 5.3314× 10−4 0.0704 0.0029

0.1456 0.0439 0.1545 0.0587 0.0730 1.3463× 10−4 0.0812 8.3796× 10−4

0.1506 0.0277 0.1575 0.0378 0.0830 3.0755× 10−5 0.0919 2.1680× 10−4

0.1556 0.0168 0.1596 0.0232 0.0930 6.3828× 10−6 0.1022 5.0027× 10−5

0.1606 0.0042 0.1616 0.0058 0.1030 2.8085× 10−6 0.1072 2.3080× 10−5
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Table 3.6: Operating characteristics at time points t = 458, . . . , 460 for the

Astrazeneca series.

u = Q0.39= 19 u=Q0.50= 25

t=458 t=458

P (Ct,2|yt, Dt) = 0.1596 P (Ct,2|yt, Dt) = 0.0563

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1345 0.4380 0.1454 0.4732 0.0202 0.3200 0.0288 0.4556

0.1370 0.3195 0.1486 0.3530 0.0302 0.0857 0.0407 0.1727

0.1395 0.3195 0.1486 0.3530 0.0402 0.0360 0.0494 0.0879

0.1420 0.2818 0.1498 0.3138 0.0502 0.0142 0.0585 0.0412

0.1445 0.1984 0.1529 0.2255 0.0602 0.0050 0.0684 0.0170

0.1470 0.1814 0.1536 0.2071 0.0702 0.0016 0.0788 0.0062

0.1495 0.1249 0.1564 0.1451 0.0802 4.5795× 10−4 0.0893 0.0020

0.1520 0.0841 0.1585 0.0991 0.0902 1.1877× 10−4 0.0996 5.8510× 10−4

0.1545 0.0801 0.1588 0.0945 0.1002 2.8006× 10−5 0.1092 1.5132× 10−4

0.1570 0.0505 0.1603 0.0601 0.1102 6.0272× 10−6 0.1177 3.5094× 10−5

0.1595 0.0310 0.1611 0.0371 0.1202 1.1878× 10−6 0.1243 7.3016× 10−6

t=459 t=459

P (Ct,2|yt, Dt) = 0.1404 P (Ct,2|yt, Dt) = 0.0215

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1485 0.5085 0.1548 0.5300 0.0291 0.3379 0.0394 0.4576

0.1495 0.4482 0.1556 0.4697 0.0391 0.1046 0.0519 0.1867

0.1505 0.3793 0.1567 0.4002 0.0491 0.0438 0.0619 0.0932

0.1515 0.3267 0.1576 0.3467 0.0591 0.0181 0.0716 0.0445

0.1525 0.3267 0.1576 0.3467 0.0691 0.0068 0.0817 0.0190

0.1535 0.3267 0.1576 0.3467 0.0791 0.0040 0.0868 0.0118

0.1545 0.2318 0.1591 0.2484 0.0891 0.0013 0.0969 0.0042

0.1555 0.2318 0.1591 0.2484 0.0991 3.6816× 10−4 0.1065 0.0013

0.1565 0.1995 0.1596 0.2144 0.1091 9.7163× 10−5 0.1151 3.8480× 10−4

0.1575 0.1995 0.1596 0.2144 0.1191 2.3413× 10−5 0.1224 9.8558× 10−5

0.1585 0.1346 0.1606 0.1456

0.1595 0.1141 0.1609 0.1236

0.1605 0.0704 0.1614 0.0765

0.1615 0.0232 0.1617 0.0252

t=460 t=460

P (Ct,2|yt, Dt) = 0.1617 P (Ct,2|yt, Dt) = 0.0469

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1094 0.3529 0.1259 0.4063 0.0113 0.3077 0.0171 0.4660

0.1144 0.3077 0.1279 0.3599 0.0213 0.0555 0.0285 0.1401

0.1194 0.2148 0.1330 0.2611 0.0313 0.0136 0.0394 0.0473

0.1244 0.1451 0.1380 0.1831 0.0413 0.0046 0.0480 0.0195

0.1294 0.1260 0.1399 0.1611 0.0513 0.0014 0.0576 0.0070

0.1344 0.0851 0.1446 0.1126 0.0613 3.7183× 10−4 0.0679 0.0022

0.1394 0.0555 0.1491 0.0757 0.0713 9.0236× 10−5 0.0787 6.2842× 10−4

0.1444 0.0357 0.1528 0.0499 0.0813 1.9805× 10−5 0.0896 1.5689× 10−4

0.1494 0.0223 0.1561 0.0318 0.0913 3.9483× 10−6 0.1000 3.4939× 10−5

0.1544 0.0134 0.1587 0.0194 0.1013 1.7025× 10−6 0.1051 1.5827× 10−5

0.1594 0.0073 0.1604 0.0107 0.1113 2.9600× 10−7 0.1142 2.9909× 10−6
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Table 3.7: Operating characteristics at time points t = 450, . . . , 453 for the

Glaxosmithkline series.

u = Q0.39= 13 u=Q0.50= 18

t=450 t=450

P (Ct,2) = 0.1883 P (Ct,2) = 0.0416

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1725 0.4099 0.1809 0.4298 0.0294 0.3495 0.0366 0.4345

0.1755 0.3495 0.1822 0.3691 0.0444 0.0509 0.0509 0.0893

0.1785 0.2075 0.1861 0.2238 0.0594 0.0051 0.0687 0.0120

0.1815 0.1347 0.1890 0.1476 0.0744 6.2032× 10−4 0.0834 0.0018

0.1845 0.1289 0.1893 0.1414 0.0894 1.2793× 10−4 0.0936 4.0718× 10−4

0.1875 0.0819 0.1919 0.0911 0.1044 9.4528× 10−6 0.1096 3.5205× 10−5

0.1905 0.0508 0.1941 0.0572 0.1194 5.3616× 10−7 0.1252 2.2811× 10−6

0.1935 0.0303 0.1958 0.0344 0.1344 2.3816× 10−8 0.1401 1.1341× 10−7

0.1965 0.0094 0.1978 0.0107 0.1494 8.4309× 10−10 0.1535 4.3979× 10−9

t=451 t=451

P (Ct,2) = 0.1603 P (Ct,2) = 0.0222

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1688 0.4056 0.1779 0.4273 0.0272 0.3423 0.0342 0.4299

0.1718 0.3423 0.1794 0.3638 0.0422 0.0465 0.0491 0.0839

0.1748 0.1984 0.1838 0.2160 0.0572 0.0045 0.0659 0.0109

0.1778 0.1843 0.1843 0.2012 0.0722 5.2734× 10−4 0.0804 0.0016

0.1808 0.1206 0.1874 0.1339 0.0872 4.5577× 10−5 0.0958 1.6039× 10−4

0.1838 0.0756 0.1903 0.0852 0.1022 7.6165× 10−6 0.1065 2.9786× 10−5

0.1868 0.0465 0.1928 0.0531 0.1172 4.1818× 10−7 0.1221 1.8758× 10−6

0.1898 0.0465 0.1928 0.0531 0.1322 1.7978× 10−8 0.1373 9.0700× 10−8

0.1928 0.0275 0.1948 0.0317 0.1472 6.1587× 10−10 0.1510 3.4150× 10−9

0.1958 0.0084 0.1974 0.0099 0.1622 4.9408× 10−12 0.1662 3.0161× 10−11

t=452 t=452

P (Ct,2) = 0.1949 P (Ct,2) = 0.0513

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1364 0.3840 0.1487 0.4186 0.0143 0.3193 0.0190 0.4227

0.1424 0.2763 0.1528 0.3094 0.0293 0.0120 0.0357 0.0298

0.1484 0.1657 0.1587 0.1929 0.0443 7.1593× 10−4 0.0504 0.0025

0.1544 0.1039 0.1640 0.1249 0.0593 5.8834× 10−5 0.0635 2.6065× 10−4

0.1604 0.0644 0.1689 0.0798 0.0743 3.5853× 10−6 0.0782 1.9553× 10−5

0.1664 0.0384 0.1736 0.0489 0.0893 1.6612× 10−7 0.0937 1.0853× 10−6

0.1724 0.0219 0.1779 0.0286 0.1043 5.9800× 10−9 0.1098 4.5790× 10−8

0.1784 0.0063 0.1854 0.0085 0.1193 1.7041× 10−10 0.1255 1.4916× 10−9

0.1844 0.0032 0.1886 0.0044 0.1343 3.9074× 10−12 0.1405 3.8277× 10−11

0.1904 7.1587× 10−4 0.1940 0.0010 0.1493 7.3124× 10−14 0.1539 7.8455× 10−13

0.1964 1.3876× 10−4 0.1972 2.0059× 10−4 0.1643 2.7066× 10−16 0.1683 3.1760× 10−15

t=453 t=453

P (Ct,2) = 0.1896 P (Ct,2) = 0.0955

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1789 0.4200 0.1859 0.4365 0.0339 0.3650 0.0413 0.4449

0.1809 0.2842 0.1884 0.2995 0.0489 0.0601 0.0566 0.1004

0.1829 0.2477 0.1893 0.2622 0.0639 0.0121 0.0696 0.0248

0.1849 0.1618 0.1918 0.1735 0.0789 0.0017 0.0842 0.0043

0.1869 0.1506 0.1922 0.1618 0.0939 1.8007× 10−4 0.0997 5.2957× 10−4

0.1889 0.0971 0.1943 0.1055 0.1089 1.4137× 10−5 0.1155 4.8156× 10−5

0.1909 0.0952 0.1944 0.1035 0.1239 8.5245× 10−7 0.1309 3.2928× 10−6

0.1929 0.0598 0.1960 0.0656 0.1389 4.0269× 10−8 0.1452 1.7250× 10−7

0.1949 0.0358 0.1971 0.0394 0.1539 1.5163× 10−9 0.1580 7.0689× 10−9

0.1969 0.0197 0.1979 0.0218 0.1689 1.3806× 10−11 0.1713 6.9776× 10−11
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Table 3.8: Operating characteristics at time points t = 454, . . . , 457 for the

Glaxosmithkline series.

u = Q0.39 = 13 u = Q0.50 = 18

t=454 t=454

P (Ct,2) = 0.1982 P (Ct,2) = 0.0639

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1969 0.7558 0.1979 0.7594 0.0668 0.3766 0.0776 0.4378

0.1970 0.7558 0.1979 0.7594 0.0768 0.1419 0.0887 0.1884

0.1971 0.7558 0.1979 0.7594 0.0868 0.0589 0.0985 0.0868

0.1972 0.7558 0.1979 0.7594 0.0968 0.0220 0.1085 0.0357

0.1973 0.6452 0.1980 0.6487 0.1068 0.0127 0.1135 0.0217

0.1974 0.6452 0.1980 0.6487 0.1168 0.0071 0.1184 0.0127

0.1975 0.5482 0.1981 0.5513 0.1268 0.0010 0.1334 0.0021

0.1976 0.4897 0.1981 0.4927 0.1368 2.4113× 10−4 0.1427 5.1524× 10−4

0.1977 0.4897 0.1981 0.4927 0.1468 5.0216× 10−5 0.1514 1.1385× 10−4

0.1978 0.3786 0.1982 0.3811 0.1568 9.3408× 10−6 0.1595 2.2310× 10−5

0.1979 0.3786 0.1982 0.3811 0.1668 6.1357× 10−7 0.1694 1.5565× 10−6

0.1980 0.3786 0.1982 0.3811 0.1768 1.1486× 10−8 0.1789 3.0764× 10−8

0.1981 0.2687 0.1982 0.2705

0.1982 0.1820 0.1983 0.1832

t=455 t=455

P (Ct,2) = 0.1982 P (Ct,2) = 0.0645

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1878 0.5080 0.1921 0.5194 0.0428 0.3563 0.0519 0.4316

0.1888 0.3556 0.1938 0.3669 0.0528 0.1230 0.0619 0.1777

0.1898 0.3556 0.1938 0.3669 0.0628 0.0499 0.0705 0.0822

0.1908 0.3087 0.1943 0.3194 0.0728 0.0176 0.0799 0.0328

0.1918 0.2069 0.1958 0.2156 0.0828 0.0053 0.0897 0.0112

0.1928 0.2055 0.1958 0.2142 0.0928 0.0014 0.1000 0.0033

0.1938 0.1887 0.1960 0.1969 0.1028 3.2288× 10−4 0.1104 8.3267× 10−4

0.1948 0.1238 0.1970 0.1298 0.1128 6.5477× 10−5 0.1207 1.8461× 10−4

0.1958 0.1177 0.1971 0.1235 0.1228 1.1777× 10−5 0.1310 3.6019× 10−5

0.1968 0.0700 0.1978 0.0737 0.1328 1.8903× 10−6 0.1407 6.2086× 10−6

0.1978 0.0324 0.1982 0.0342 0.1428 2.7232× 10−7 0.1496 9.5105× 10−7

t=456 t=456

P (Ct,2) = 0.1827 P (Ct,2) = 0.1066

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1882 0.5088 0.1923 0.5200 0.0555 0.3597 0.0657 0.4254

0.1892 0.3565 0.1940 0.3675 0.0655 0.1115 0.0783 0.1572

0.1902 0.3558 0.1940 0.3668 0.0755 0.0444 0.0879 0.0702

0.1912 0.3100 0.1945 0.3204 0.0855 0.0268 0.0928 0.0448

0.1922 0.2081 0.1959 0.2166 0.0955 0.0088 0.1029 0.0163

0.1932 0.2067 0.1959 0.2152 0.1055 0.0025 0.1131 0.0051

0.1942 0.1901 0.1961 0.1981 0.1155 6.2622× 10−4 0.1233 0.0014

0.1952 0.1223 0.1972 0.1282 0.1255 1.3787× 10−4 0.1333 3.3099× 10−4

0.1962 0.1188 0.1972 0.1245 0.1355 2.6937× 10−5 0.1428 6.9250× 10−5

0.1972 0.0708 0.1979 0.0744 0.1455 4.6989× 10−6 0.1515 1.2822× 10−5

0.1982 0.0327 0.1982 0.0345 0.1555 7.3593× 10−7 0.1597 2.1158× 10−6

t=457 t=457

P (Ct,2) = 0.1831 P (Ct,2) = 0.1061

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1961 0.7248 0.1979 0.7317 0.0758 0.3933 0.0866 0.4491

0.1963 0.7248 0.1979 0.7317 0.0858 0.1707 0.0964 0.2169

0.1965 0.7248 0.1979 0.7317 0.0958 0.0715 0.1065 0.1004

0.1967 0.7248 0.1979 0.7317 0.1058 0.0279 0.1163 0.0428

0.1969 0.6845 0.1980 0.6913 0.1158 0.0095 0.1261 0.0157

0.1971 0.6845 0.1980 0.6913 0.1258 0.0028 0.1358 0.0050

0.1973 0.6067 0.1981 0.6129 0.1358 0.0015 0.1404 0.0027

0.1975 0.5498 0.1982 0.5557 0.1458 1.6950× 10−4 0.1535 3.4307× 10−4

0.1977 0.5498 0.1982 0.5557 0.1558 3.4913× 10−5 0.1612 7.4249× 10−5

0.1979 0.5498 0.1982 0.5557 0.1658 2.6603× 10−6 0.1708 5.9917× 10−6

0.1981 0.4761 0.1982 0.4814 0.1758 1.6104× 10−7 0.1779 3.7794× 10−7

0.1983 0.1964 0.1983 0.1987
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Table 3.9: Operating characteristics at time points t = 458, . . . , 460 for the

Glaxosmithkline series.

u = Q0.39 = 13 u = Q0.50 = 18

t=458 t=458

P (Ct,2) = 0.1884 P (Ct,2) = 0.0977

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1962 0.7517 0.1979 0.7584 0.0754 0.3925 0.0862 0.4485

0.1964 0.7256 0.1980 0.7324 0.0854 0.1697 0.0960 0.2160

0.1966 0.7256 0.1980 0.7324 0.0954 0.0709 0.1062 0.0998

0.1968 0.7256 0.1980 0.7324 0.1054 0.0276 0.1159 0.0424

0.1970 0.6852 0.1980 0.6917 0.1154 0.0093 0.1257 0.0156

0.1972 0.6852 0.1980 0.6917 0.1254 0.0028 0.1355 0.0050

0.1974 0.6075 0.1981 0.6136 0.1354 0.0014 0.1401 0.0027

0.1976 0.5504 0.1982 0.5561 0.1454 1.6640× 10−4 0.1532 3.3802× 10−4

0.1978 0.5504 0.1982 0.5561 0.1554 3.4203× 10−5 0.1610 7.3031× 10−5

0.1980 0.4764 0.1982 0.4814 0.1654 6.2986× 10−6 0.1676 1.4003× 10−6

0.1982 0.3864 0.1983 0.3905 0.1754 1.5678× 10−7 0.1778 3.6973× 10−7

t=459 t=459

P (Ct,2) = 0.1960 P (Ct,2) = 0.0810

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1969 0.8451 0.1979 0.8491 0.0685 0.3796 0.0794 0.4398

0.1970 0.8451 0.1979 0.8491 0.0785 0.1459 0.0903 0.1921

0.1971 0.7429 0.1980 0.7468 0.0885 0.0612 0.1001 0.0894

0.1972 0.7429 0.1980 0.7468 0.0985 0.0231 0.1100 0.0370

0.1973 0.7429 0.1980 0.7468 0.1085 0.0134 0.1150 0.0225

0.1974 0.6834 0.1980 0.6872 0.1185 0.0041 0.1249 0.0075

0.1975 0.6661 0.1980 0.6699 0.1285 0.0011 0.1348 0.0022

0.1976 0.6661 0.1980 0.6699 0.1385 2.6091× 10−4 0.1440 5.4834× 10−4

0.1977 0.5656 0.1981 0.5690 0.1485 5.4834× 10−5 0.1527 1.2216× 10−4

0.1978 0.4682 0.1982 0.4711 0.1585 4.2826× 10−6 0.1641 1.0255× 10−5

0.1979 0.4389 0.1982 0.4418 0.1685 2.6415× 10−7 0.1731 6.6722× 10−7

0.1980 0.4389 0.1982 0.4418 0.1785 1.3076× 10−8 0.1793 3.4214× 10−8

0.1981 0.3466 0.1982 0.3490

0.1982 0.2279 0.1983 0.2295

t=460 t=460

P (Ct,2) = 0.1018 P (Ct,2) = 0.1739

k α2 P (Ct,2|At,2) P (At,2|Ct,2) k α2 P (Ct,2|At,2) P (At,2|Ct,2)

0.1951 0.4857 0.1971 0.4908 0.0433 0.3572 0.0523 0.4322

0.1954 0.4857 0.1971 0.4908 0.0533 0.1243 0.0623 0.1789

0.1957 0.4857 0.1971 0.4908 0.0633 0.0506 0.0710 0.0830

0.1960 0.4138 0.1973 0.4186 0.0733 0.0179 0.0803 0.0332

0.1963 0.3963 0.1974 0.4010 0.0833 0.0054 0.0902 0.0113

0.1966 0.3154 0.1976 0.3195 0.0933 0.0014 0.1005 0.0033

0.1969 0.2615 0.1978 0.2652 0.1033 3.3114× 10−4 0.1109 8.4899× 10−4

0.1972 0.2615 0.1978 0.2652 0.1133 6.7361× 10−5 0.1212 1.8872× 10−4

0.1975 0.1986 0.1980 0.2016 0.1233 1.2153× 10−5 0.1314 3.6923× 10−5

0.1978 0.1325 0.1981 0.1346 0.1333 1.9569× 10−6 0.1411 6.3811× 10−6

0.1981 0.1098 0.1982 0.1116 0.1433 2.8279× 10−7 0.1500 9.8026× 10−7
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Table 3.10: Astrazeneca Series: operating characteristics at different time

points, with Criteria 1 and 2, considering u = Q0.39= 19.

Criterion t P (Ct,2|Dt) k Alarm Region α2 P (Ct,2|At,2) P (At,2|Ct,2)

450 0.0655 0.0855 {0, . . . , 6} ∪ {22, . . . , 47} 0.0853 0.1037 0.1350

451 0.0604 0.0804 {0, . . . , 5} ∪ {21, . . . , 48} 0.1060 0.0944 0.1656

452 0.0381 0.0581 {0, . . . , 3} ∪ {20, . . . , 53} 0.0721 0.0715 0.1353

453 0.0388 0.0588 {0, . . . , 3} ∪ {20, . . . , 53} 0.0744 0.0721 0.1381

454 0.0575 0.0775 {0, . . . , 5} ∪ {21, . . . , 49} 0.0973 0.0924 0.1564

1 455 0.1085 0.1185 {0, . . . , 11} ∪ {23, . . . , 41} 0.2127 0.1323 0.2594

456 0.1520 0.1560 {5, . . . , 15} ∪ {25, . . . , 31} 0.3300 0.1592 0.3456

457 0.1156 0.1256 {0, . . . , 11} ∪ {23, . . . , 39} 0.2318 0.1372 0.2751

458 0.1345 0.1420 {0, . . . , 13} ∪ {24, . . . , 36} 0.2818 0.1498 0.3138

459 0.1485 0.1525 {1, . . . , 15} ∪ {25, . . . , 32} 0.3267 0.1576 0.3467

460 0.1094 0.1194 {0, . . . , 11} ∪ {23, . . . , 41} 0.2148 0.1330 0.2611

450 0.0655 0.1455 {30, . . . , 39} 9.2971× 10−4 0.1518 0.0022

451 0.0604 0.1404 {29, . . . , 41} 0.0013 0.1455 0.0032

452 0.0381 0.1181 {28, . . . , 45} 5.5679× 10−4 0.1283 0.0019

453 0.0388 0.1188 {28, . . . , 45} 5.9269× 10−4 0.1287 0.0020

454 0.0575 0.1375 {29, . . . , 41} 0.0011 0.1443 0.0028

2 455 0.1085 0.1585 {30, . . . , 34} 0.0074 0.1603 0.0109

456 0.1520 0.1610 {9, . . . , 12} ∪ {28, 29} 0.0738 0.1615 0.0784

457 0.1156 0.1606 {31, 32} 0.0042 0.1616 0.0058

458 0.1345 0.1595 {0, . . . , 5} ∪ {29, . . . , 32} 0.0310 0.1611 0.0371

459 0.1485 0.1615 {8, 9} ∪ {29} 0.0232 0.1617 0.0252

460 0.1094 0.1594 {30, . . . , 33} 0.0073 0.1604 0.0107
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Table 3.11: Astrazeneca Series: operating characteristics at different time

points, with Criteria 1 and 2, considering u=Q0.50= 25.

Criterion t P (Ct,2|Dt) k Alarm Region α2 P (Ct,2|At,2) P (At,2|Ct,2)

450 0.0036 0.0136 {26, . . . , 82} 0.0113 0.0177 0.0549

451 0.0031 0.0131 {26, . . . , 82} 0.0089 0.0166 0.0475

452 0.0013 0.0113 {27, . . . , 85} 0.0012 0.0141 0.0124

453 0.0014 0.0114 {27, . . . , 84} 0.0012 0.0143 0.0129

454 0.0028 0.0128 {26, . . . , 82} 0.0077 0.0160 0.0436

1 455 0.0111 0.0311 {0} ∪ {29, . . . , 73} 0.0131 0.0391 0.0463

456 0.0325 0.0525 {0, . . . , 8} ∪ {30, . . . , 65} 0.0534 0.0647 0.1063

457 0.0130 0.0330 {0, 1} ∪ {29, . . . , 72} 0.0173 0.0416 0.0553

458 0.0202 0.0402 {0, . . . , 4} ∪ {29, . . . , 69} 0.0360 0.0494 0.0879

459 0.0291 0.0491 {0, . . . , 7} ∪ {30, . . . , 66} 0.0438 0.0619 0.0932

460 0.0113 0.0313 {0} ∪ {29, . . . , 73} 0.0136 0.0394 0.0473

450 0.0036 0.0336 {32, . . . , 74} 2.2149× 10−4 0.0379 0.0023

451 0.0031 0.0231 {30, . . . , 78} 6.7534× 10−4 0.0285 0.0062

452 0.0013 0.0113 {27, . . . , 85} 0.0012 0.0141 0.0124

453 0.0014 0.0214 {31, . . . , 80} 5.5180× 10−5 0.0256 0.0010

454 0.0028 0.0228 {30, . . . , 78} 5.5741× 10−4 0.0277 0.0055

2 455 0.0111 0.0611 {35, . . . , 66} 3.5349× 10−4 0.0676 0.0022

456 0.0325 0.1025 {39, . . . , 56} 5.2170× 10−4 0.1087 0.0017

457 0.0130 0.0630 {35, . . . , 65} .53314× 10−4 0.0704 0.0029

458 0.0202 0.0802 {37, . . . , 61} 4.5795× 10−4 0.0893 0.0020

459 0.0291 0.0991 {39, . . . , 57} 3.6816× 10−4 0.1065 0.0013

460 0.0113 0.0613 {35, . . . , 66} 3.7183× 10−4 0.0679 0.0022
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Table 3.12: Glaxosmithkline Series: operating characteristics at different

time points, with Criteria 1 and 2, considering u = Q0.39= 13.

Criterion t P (Ct,2|Dt) k Alarm Region α2 P (Ct,2|At,2) P (At,2|Ct,2)

450 0.1725 0.1755 {0, . . . , 8} ∪ {16, . . . , 33} 0.3495 0.1822 0.3691

451 0.1688 0.1718 {0, . . . , 8} ∪ {16, . . . , 35} 0.3423 0.1794 0.3638

452 0.1364 0.1424 {0, . . . , 6} ∪ {15, . . . , 44} 0.2763 0.1528 0.3094

453 0.1789 0.1789 {0, . . . , 9} ∪ {16, . . . , 31} 0.4200 0.1859 0.4365

454 0.1969 0.1979 {9, . . . , 12} ∪ {17, 18} 0.3786 0.1982 0.3811

1 455 0.1878 0.1888 {0, . . . , 9} ∪ {17, . . . , 27} 0.3556 0.1938 0.3669

456 0.1882 0.1892 {0, . . . , 9} ∪ {17, . . . , 27} 0.3565 0.1940 0.3675

457 0.1961 0.1981 {13, . . . , 17} 0.4761 0.1982 0.4814

458 0.1962 0.1982 {13, . . . , 16} 0.3864 0.1983 0.3905

459 0.1969 0.1979 {10, . . . , 13} ∪ {17, 18} 0.4389 0.1982 0.4418

460 0.1951 0.1963 {1, . . . , 10} ∪ {17, . . . , 21} 0.3963 0.1974 0.4010

450 0.1725 0.1965 {23, . . . , 27} 0.0094 0.1978 0.0107

451 0.1688 0.1958 {23, . . . , 28} 0.0084 0.1974 0.0099

452 0.1364 0.1904 {25, . . . , 34} 7.1587× 10−4 0.1940 0.0010

453 0.1789 0.1969 {22, . . . , 25} 0.0197 0.1979 0.0218

454 0.1969 0.1982 {10, 11} ∪ {18} 0.1820 0.1983 0.1832

2 455 0.1878 0.1978 {0, 1} ∪ {21, 22} 0.0324 0.1982 0.0342

456 0.1882 0.1982 {0} ∪ {21, 22} 0.0327 0.1982 0.0345

457 0.1961 0.1983 {14} ∪ {16} 0.1964 0.1983 0.1987

458 0.1962 0.1982 {13, . . . , 16} 0.3864 0.1983 0.3905

459 0.1969 0.1982 {11, 12} ∪ {17} 0.2279 0.1983 0.2295

460 0.1951 0.1981 {4, . . . , 7} ∪ {19, 20} 0.1098 0.1982 0.1116
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Table 3.13: Glaxosmithkline Series: operating characteristics at different

time points, with Criteria 1 and 2, considering u=Q0.50= 18.

Criterion t P (Ct,2|Dt) k Alarm Region α2 P (Ct,2|At,2) P (At,2|Ct,2)

450 0.0294 0.0444 {0} ∪ {20, . . . , 93} 0.0509 0.0509 0.0893

451 0.0272 0.0422 {0} ∪ {20, . . . , 95} 0.0465 0.0491 0.0839

452 0.0143 0.0293 {21, . . . , 100} 0.0120 0.0357 0.0298

453 0.0339 0.0489 {0, 1} ∪ {20, . . . , 91} 0.0601 0.0566 0.1004

454 0.0668 0.0768 {0, . . . , 6} ∪ {20, . . . , 76} 0.1419 0.0887 0.1884

1 455 0.0428 0.0528 {0, . . . , 4} ∪ {19, . . . , 87} 0.1230 0.0619 0.1777

456 0.0433 0.0533 {0, . . . , 4} ∪ {19, . . . , 87} 0.1243 0.0623 0.1789

457 0.0758 0.0858 {0, . . . , 7} ∪ {20, . . . , 73} 0.1707 0.0964 0.2169

458 0.0754 0.0854 {0, . . . , 7} ∪ {20, . . . , 73} 0.1697 0.0960 0.2160

459 0.0685 0.0785 {0, . . . , 6} ∪ {20, . . . , 76} 0.1459 0.0903 0.1921

460 0.0555 0.0655 {0, . . . , 5} ∪ {20, . . . , 81} 0.1115 0.0783 0.1572

450 0.0294 0.0744 {27, . . . , 84} 6.2032× 10−4 0.0834 0.0018

451 0.0272 0.0722 {27, . . . , 85} 5.2734× 10−4 0.0804 0.0016

452 0.0143 0.0443 {25, . . . , 98} 7.1593× 10−4 0.0504 0.0025

453 0.0339 0.0789 {26, . . . , 82} 0.0017 0.0842 0.0043

454 0.0668 0.1268 {29, . . . , 65} 0.0010 0.1334 0.0021

2 455 0.0428 0.0928 {27, . . . , 77} 0.0014 0.1000 0.0033

456 0.0433 0.0933 {27, . . . , 77} 0.0014 0.1005 0.0033

457 0.0758 0.1358 {29, . . . , 61} 0.0015 0.1404 0.0027

458 0.0754 0.1354 {29, . . . , 62} 0.0014 0.1401 0.0027

459 0.0685 0.1285 {29, . . . , 64} 0.0011 0.1348 0.0022

460 0.0555 0.1155 {29, . . . , 69} 6.2622× 10−4 0.1233 0.0014
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Table 3.14: Results for the Astrazeneca series, with u = Q0.39 = 19. Per-

centages in parenthesis.

Time instant Criterion Alarms Catastrophes

False Total Detected Total

t = 456 1 21011 (0.6369) 32992 11981 (0.3755) 31906

2 4381 (0.5886) 7443 3062 (0.0948) 32315

t = 457 1 17464 (0.7505) 23271 5807 (0.3105) 18705

2 249 (0.5818) 428 179 (0.0095) 18761

t = 458 1 19618 (0.6958) 28193 8575 (0.3523) 24340

2 1820 (0.5938) 3065 1245 (0.0504) 24713

t = 459 1 20963 (0.6449) 32508 11545 (0.3798) 30396

2 1417 (0.5984) 2368 951 (0.0313) 30389

t = 460 1 16254 (0.7655) 21233 4979 (0.2914) 17089

2 464 (0.6097) 761 297 (0.0170) 17433

Table 3.15: Results for the Astrazeneca series, with u = Q0.50 = 25. Per-

centages in parenthesis.

Time instant Criterion Alarms Catastrophes

False Total Detected Total

t = 456 1 4855 (0.9063) 5357 502 (0.1190) 4220

2 38 (0.7917) 48 10 (0.0024) 4189

t = 457 1 1550 (0.9394) 1650 100 (0.0641) 1560

2 43 (0.8431) 51 8 (0.0052) 1544

t = 458 1 3377 (0.9365) 3606 229 (0.0904) 2534

2 48 (0.8136) 59 11 (0.0043) 2532

t = 459 1 3963 (0.9081) 4364 401 (0.1072) 3739

2 30 (0.9091) 33 3 (0.0008) 3748

t = 460 1 1302 (0.9518) 1368 66 (0.0509) 1297

2 44 (0.8627) 51 7 (0.0054) 1303
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Table 3.16: Results for the Glaxosmithkline series, with u = Q0.39 = 13.

Percentages in parenthesis.

Time instant Criterion Alarms Catastrophes

False Total Detected Total

t = 454 1 20607 (0.5452) 37794 17187 (0.3786) 45399

2 9873 (0.5449) 18119 8246 (0.1819) 45340

t = 457 1 25776 (0.5397) 47761 21985 (0.4496) 48898

2 10609 (0.5401) 19641 9032 (0.1848) 48867

t = 458 1 21062 (0.5429) 38795 17733 (0.3638) 48742

2 21062 (0.5429) 38795 17733 (0.3638) 48742

t = 459 1 24280 (0.5499) 44152 19872 (0.4338) 45814

2 12447 (0.5510) 22589 10142 (0.2198) 46145

t = 460 1 22415 (0.5663) 39583 17168 (0.4169) 41183

2 5918 (0.5408) 10944 5026 (0.1226) 41006

Table 3.17: Results for the Glaxosmithkline series, with u = Q0.50 = 18.

Percentages in parenthesis.

Time instant Criterion Alarms Catastrophes

False Total Detected Total

t = 454 1 12571 (0.8819) 14254 1683 (0.1988) 8464

2 77 (0.8105) 95 18 (0.0022) 8120

t = 457 1 14895 (0.8718) 17085 2190 (0.2279) 9609

2 125 (0.8013) 156 31 (0.0032) 9726

t = 458 1 14801 (0.8719) 16976 2175 (0.2263) 9611

2 109 (0.7956) 137 28 (0.0030) 9430

t = 459 1 12749 (0.8775) 14529 1780 (0.2052) 8675

2 98 (0.8305) 118 20 (0.0023) 8601

t = 460 1 9935 (0.9003) 11035 1100 (0.1678) 6554

2 58 (0.8788) 66 8 (0.0012) 6521



Chapter 4

Conclusions and Future

Directions of Research

This thesis focuses on the analysis of non-linear time series with empha-

sis on the application of optimal alarm systems and on the development of

observation-driven models to address particular features commonly observed

in time series of counts.

In Chapter 2, models with conditional heteroscedasticity were considered and

the FIAPARCH(p, d, q) model was given particular attention. Estimation

procedures were implemented following classical and Bayesian approaches.

Under the classical perspective, only the Quasi-Maximum Likelihood Estima-

tion procedure assuming conditional normality was used. Although QMLE

standard errors obtained were slightly higher than standard deviations ob-

tained under the Bayesian perspective, parameter estimates seem satisfac-

tory. An optimal alarm system was constructed for the FIAPARCH(1, d, 1)

model and expressions for the alarm characteristics of the alarm system were

given. Two criteria were tested and a choice could be made regarding the op-

timization of the operating characteristics, as we could conclude that, overall,

Criterion 1 provided better estimates. The alarm system was tested in a fre-
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quencist perspective and probabilities of correct alarm and of detecting the

event of around 17% and 21% were reached, respectively. The on-line alarm

system was also implemented and the adaptive behaviour of the alarm sys-

tem could be observed. After the simulation study an application was made

to a particular real data series, the IBOVESPA returns data set, contain-

ing the daily returns of the São Paulo Stock Market during a fourteen year

period. An optimal alarm system was constructed, taking as the event of

interest the down-crossing of a particular level. Once again, the advantages

of the on-line implementation where the past and present experiments are

updated at each time point, became clear. The system adapts itself in order

to produce a minimum number of false alarms allowing the probability of

correct alarm to be near one. On the other hand, as few alarms were given,

the detection probability never exceeded 30%.

In the second part of the work, we turned our attention to non-linear models

used in the analysis of time series of counts. In Chapter 3, two fundamen-

tally different goals were pursued. The implementation of an optimal alarm

system was carried out for the INAPARCH(1,1) model and all the expres-

sions for the alarm characteristics were obtained. An application was made

concerning two integer-valued data series of the daily number of transactions

in the Astrazeneca and Glaxosmithkline stocks. The event of interest was

in both situations considered as the up-crossing of a fixed level u. Both

percentiles 39 and 50 were considered as a fixed level. The designation of

catastrophe may not be as adequate as in the application in Chapter 2, as

these quantiles do not exactly represent rare events. Anyway, as these par-

ticular data series present many zero counts, the probability of catastrophe

should be negligible if we were to consider higher percentiles as really rare

events. As a consequence, the operating characteristics of the alarm system

would not be satisfactory. This is an issue we would like to explore in future
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work considering the application of alarm systems to other real data time

series exhibiting a significant number of zero counts.

Considering the behaviour of the alarm system above described, we would

like to point out a few conclusions. Firstly, the adaptation of the criteria

used in Chapter 2 to the integer-valued case in Chapter 3 seems satisfactory,

as very reasonable operating characteristics were obtained. Overall, the first

criterion used provided better estimates. The testing of the alarm system in

the case were the theoretical operating characteristics were evaluated through

frequency counts of the number of false alarms and undetected catastrophes,

had a similar outcome to that of Chapter 2: frequency estimates tend to

overestimate the theoretical values, considering both time series, both fixed

levels u = Q0.39 and u = Q0.50 and both operating characteristics, the prob-

ability of correct alarm and the probability of detection. Better operating

characteristics were obtained for the up-crossing of the 39th percentile, for

both time series, and once again, we suspect this behaviour is related to the

nature of the particular time series used. Further developments should help

to shed some light on these matters.

The second aforementioned goal pursued in Chapter 3 relates to the mod-

elling of time series of counts. The presence of asymmetric overdispersion

in data had never been addressed for integer-valued time series. As an in-

novative contribution of this thesis in this field of study, we propose the

INAPARCH model as an integer-valued counterpart of the APARCH model,

a well known model in the analysis of real-valued financial time series. The

establishment of stationarity and ergodicity of the INAPARCH process is

addressed by employing Markov chain theory and the concept of τ−weak

dependence by Dedecker and Prieur (2004). Sufficient conditions for the er-

godicity of the INAPARCH(1,1) were obtained making use of the previous
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concepts. Nevertheless, an important issue that we expect to develop in

further research is the establishment of necessary instead of sufficient condi-

tions. A less restrictive parameter space should be useful in order to address

wider practical applications.

The conditional Maximum Likelihood Estimation method was successfully

applied to parameter estimation of the proposed model. Necessary calcula-

tions and asymptotic theory were straightforwardly developed for the INA-

PARCH(1,1) model. A simulation study was included in Chapter 3 in order

to illustrate the methodology. The results deserve a few comments, the first

of which is the reinforcement of the necessity to develop necessary conditions

for ergodicity: five different parameter sets were considered in the simulations

and the last one was intentionally chosen in order to be outside the admissi-

ble parameter range. Empirical results of preliminary data analysis pointed

towards stability of the underlying process, for all cases considered. Also in

the application section, Section 3.6, in which the conditional MLE procedure

was applied to estimate two time series of tick-by-tick data generated from

stock transactions, the estimated δ parameter fails the δ ≥ 2 condition for

both data series. This did not come as a surprise as the same condition was

violated in the original paper by Ding et al. (1993), where the real-valued

APARCHmodel was adjusted to the Standard & Poor 500 stock market daily

closing price index and the δ ≥ 2 condition was just a sufficient condition

for the process to be covariance stationary. Although the results obtained

with the conditional MLE method were satisfactory, it may be worthwhile

to consider other estimation procedures in the future. For instance, it is

known that the Autoregressive Conditional Poisson specification can also be

estimated by a Bayesian posterior analysis using the Gibbs sampling scheme

proposed by Bauwens and Lubrano (1998) for GARCH-type models. Also,

the Quasi-Maximum Likelihood Estimation procedure, used in Chapter 2
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for the real-valued FIAPARCH(p, d, q) model could be implemented for the

integer-valued INAPARCH(p, q) case, considering the Poisson QML estima-

tor and eventually result in enhanced robustness. As Wooldridge (1999)

points out, specifying a distribution that depends on both conditional mean

parameters and additional parameters, and then maximizing the likelihood

with respect to all parameters, generally produces inconsistent estimates of

the conditional mean parameters if some aspects of the true distribution are

misspecified. This misleading inference could be avoided by allowing the

density in the log-likelihood function to be different from the actual condi-

tional density of the count variable, Yt.

A final remark related to the application in Section 3.6, and already discussed

therein, remains to be done about the estimated value of the γ parameter: it

was negative for both real data time series, leading us to the conclusion that

positive shocks should have stronger impact on overdispersion than negative

ones. The existence of the leverage effect is not supported by the data. In

the paper by Tse (1998), the conditional heteroscedasticity of the yen-dollar

exchange rate was modelled, amongst others, through the APARCH and the

FIAPARCH representations for the volatility. It was found that the asymme-

try parameter, γ, though having positive estimates, could not be considered

statistically significant. This results were afterwards contradicted by Tsui

and Ho (2004), who found evidence of asymmetric volatility in some data

series of daily returns of currencies measured against the dollar or the yen

(with both positive and negative estimates for the γ parameter) being the

asymmetric effects more significant for currencies measured against the yen.

As future work we expect to apply the INAPARCH(p, q) in the analysis of a

few more real data financial integer-valued time series. Different conclusions

related to the presence of asymmetric overdispersion relative to the condi-

tional mean of the process are expected to be drawn.
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Appendix A

Additional Results for

Conditional MLE

A.1 Estimation

For illustration purposes, the third derivative of `t(θ) in order to ω is pre-

sented next. Other third order derivatives are easily obtained and the con-

clusion that all third derivatives are bounded by a sequence that converges

in probability follows straightforwardly.
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A.2 Conditional ML estimation of the model pa-

rameters

The simulation study carried contemplated five different combinations for θ,

displayed in Table 3.1, Chapter 3. For each set of parameters, time series

of length 500 with 300 independent replicates from the INAPARCH(1, 1)

model were simulated. A sample path and its corresponding sample ACF is

presented in Figure 3.1, Chapter 3, for the combination of parameters C2.

The remaining cases are presented in Figures A.1, A.2, A.3 and A.4.

Figure A.5 represents the boxplots of the bias of the conditional maximum

likelihood estimates for combination of parameters C1, C3, C4 and C5, re-

spectively, from top to bottom. In a similar way to Figure 3.2, Chapter 3,

the α parameter seems to be correctly estimated, having a very small bias.

On the other hand, the variability in the estimates obtained for the δ pa-

rameter is very high. In the C5 combination of parameters case, not only

the δ parameter is difficult to estimate but also the ω parameter shows very

high variability.
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Figure A.1: Sample path for the INAPARCH(1, 1) process. Combination

of parameters C1 (top) and its corresponding autocorrelation function (bot-

tom).

A.3 Log-likelihood analysis

For C2 and C4, 300 samples were simulated considering values of δ varying

from 2.0 to 3.0 (i.e., six different situations for each case). Preliminary data

analysis was done with the construction of boxplots and histograms. Box-

plots and histograms for Case 2 are presented in figures A.6, A.7, A.8 and

A.9. Boxplots and histograms for Case 4 are presented in figures A.10, A.11,

A.12 and A.13.

The log-likelihood was studied in the following manner: for each set of 300

samples the log-likelihood was calculated, varying the δ parameter in the

range 2.0 to 3.0. Results are presented in Table A.1 for Case 4. For this

Case 4, only the first value of the δ parameter results in a parameter set that

lies inside the contractivity condition region. Nevertheless, same behaviour
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Figure A.2: Sample path for the INAPARCH(1, 1) process. Combination

of parameters C3 (top) and its corresponding autocorrelation function (bot-

tom).

was observed for both Case 4 and Case 2, presented in Chapter 3, Section 3.4:

the δ value for which the calculated log-likelihood was maximum was exactly

what was expected for both cases and all 6 different situations.

Table A.1: Maximum likelihood estimation results for Case 4.

Samples simulated with Log-likelihood for varying δ

θ=(2.30, 0.03, 0.68, 0.06, δ) 2.0 2.2 2.4 2.6 2.8 3.0

δ = 2.00 -419.3641 -420.0895 -421.7561 -423.8736 -426.1726 -428.5032

δ = 2.20 -435.4349 -434.6769 -435.1181 -436.2077 -437.6332 -439.2132

δ = 2.40 -447.7643 -445.8791 -445.3893 -445.6977 -446.4591 -447.4683

δ = 2.60 -457.7094 -454.9324 -453.7080 -453.4023 -453.6436 -454.2076

δ = 2.80 -467.5063 -463.8594 -461.9165 -461.0084 -460.7380 -460.8626

δ = 3.00 -473.2921 -469.0898 -466.6888 -465.3968 -464.8004 -464.6450
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Figure A.3: Sample path for the INAPARCH(1, 1) process. Combination

of parameters C4 (top) and its corresponding autocorrelation function (bot-

tom).

Figure A.4: Sample path for the INAPARCH(1, 1) process. Combination

of parameters C5 (top) and its corresponding autocorrelation function (bot-

tom).
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Figure A.5: Bias of conditional ML estimates, for combination of parameters

C1, C3, C4 and C5, respectively, from top to bottom.
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Figure A.6: Boxplots of the means, with δ varying from 2.0 to 3.0, for

combination of parameters C2.

Figure A.7: Histograms of the means, with δ varying from 2.0 to 3.0, for

combination of parameters C2.
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Figure A.8: Boxplots of the standard deviations, with δ varying from 2.0 to

3.0, for combination of parameters C2.

Figure A.9: Histograms of the standard deviations, with δ varying from 2.0

to 3.0, for combination of parameters C2.
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Figure A.10: Boxplots of the means, with δ varying from 2.0 to 3.0, for

combination of parameters C4.

Figure A.11: Histograms of the means, with δ varying from 2.0 to 3.0, for

combination of parameters C4.
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Figure A.12: Boxplots of the standard deviations, with δ varying from 2.0

to 3.0, for combination of parameters C4.

Figure A.13: Histograms of the standard deviations, with δ varying from 2.0

to 3.0, for combination of parameters C4.
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Figure A.14: Log-likelihood for varying δ, Case 4.





Appendix B

Matlab Code

B.1 Programs related to Chapter 2

Obtaining a sample from the FIAPARCH process.

clear all

n=2500;

m=n/2;

a0=0.40; %(= ω)

a1=0.10; %(= φ)

g1=0.68; %(= γ)

b1=0.28; %(= β)

delta=1.27; %(= δ)

df=0.30; %(= d)

z=normrnd(0,1,n,1);

y1(1,1)=normrnd(0,0.1)

h1(1,1)=(y1’*y1)

for i=2:n

h1(i,1)=a0+a1*((abs(y1(i-1,1))-g1*y1(i-1,1))∧delta)+b1*h1(i-1,1);

y1(i,1)=z(i,1)*h1(i,1)∧(1/delta);

end

179
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for i=1:n

B(i,1)=(abs(y1(i,1))-g1*y1(i,1))∧delta;

end

Kzero=sum(B)/n

lambda(1,1) =df;

aux(1,1) =a1-b1+df;

for i =2:n

soma=0;

for j=2:n/2

aux(j,1)=aux(j-1,1)*(j-1-df)/j;

lambda(j,1)=b1*lambda(j-1,1)+[((j-1-df)/j)-a1]*aux(j-1,1);

if i-j<=0

soma=soma+lambda(j,1)*Kzero;

else

soma=soma+lambda(j,1)*B(i-j,1);

end

end

somavar(i,1)=soma;

h1(i,1)=(a0/(1-b1))+lambda(1,1)*B(i-1,1)+soma;

y1(i,1)=(h1(i,1)∧(1/delta))*z(i,1);

B(i,1)=(abs(y1(i,1))-g1*y1(i,1))∧delta;

end

save ’FIAPARCHsample’

Obtaining the volatility from a real data series considering the

FIAPARCH model.

clear all

load ’residuos100ar10’

y1=residuos100AR10;

h1(1)=y1(1,1)’*y1(1,1)



B.1 Programs related to Chapter 2 181

n=length(y1)

a0=0.3903;

a1=0.0957;

g1=0.6782;

b1=0.2794;

delta=1.2744;

df=0.2952;

for i=1:n

B(i,1)=(abs(y1(i,1))-g1*y1(i,1))∧delta;

end

Kzero=sum(B)/n

lambda(1,1)=a1-b1+df;

aux(1,1)=df;

for i=2:n

soma=0;

for j=2:n/2

aux(j,1)=aux(j-1,1)*(j-1-df)/j;

lambda(j,1)=b1*lambda(j-1,1)+[((j-1-df)/j)-a1]*aux(j-1,1);

if i-j<=0

soma=soma+lambda(j,1)*Kzero;

else

soma=soma+lambda(j,1)*B(i-j,1);

end

end

somavar(i,1)=soma;

h1(i,1)=(a0/(1-b1))+lambda(1,1)*B(i-1,1)+soma;

z(i,1)=y1(i,1)/(h1(i,1)∧(1/delta));

end

save ’IBOsampleML’
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Auxiliary function for the calculation of the volatility, consider-

ing the FIAPARCH model.

function s=fsigmaF(Banterior,somatorio)

a0=0.40;

a1=0.10;

g1=0.68;

b1=0.28;

delta=1.27;

df=0.30;

%Same function, considering an APARCH model

% e=y1(i-1,1) previous epsilon value

% sa=h1(i-1,1) previous sigma value

% s=(a0+a1*((abs(e)-g1*e)∧delta)+b1*sa)∧(1/delta);

lambda(1,1)=a1-b1+df;

s=(a0/(1-b1)+lambda(1,1)*Banterior+somatorio)∧(1/delta);

Calculating P (Ct,j |x2, Dt, θ), P (Ct,j |Dt, θ) and the alarm region (D,

T and R, respectively).

load ’amostraFIAPARCHparametrosIbovespaML’

percentil95=3.136;

percentil90=2.293;

mu=percentil90

ti=2000

for t=1:5

ti+t

e1=B(ti+t-1,1);

s1=somavar(ti+t,1);

e2=B(ti+t,1);

s2=somavar(ti+t+1,1);

e3=B(ti+t+1,1);
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s3=somavar(ti+t+2,1);

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

funtriplo=@(x,y,z) exp(-x.∧2/(2.*(fsigmaF(e1,s1).∧2))

-y.∧2./(2.*(fsigmaF(e2,s2)∧2))-z.∧2/(2.*(fsigmaF(e3,s3)∧2)))

./(((2*pi)∧(3/2))*fsigmaF(e1,s1)*fsigmaF(e2,s2)*fsigmaF(e3,s3));

D=dblquad(funduplo,-100000,mu,mu,100000);

T=triplequad(funtriplo,-100000,100000,-100000,mu,mu,100000);

et=[-100:100];

L=length(et);

k=T

e1=B(ti+t-1,1);

s1=somavar(ti+t,1);

s=0;

for j=3:(ti+t+2)/2

s=s+lambda(j,1)*B(ti+t+2-j);

end

for i=1:L

e2=(abs(et(i))-g1*et(i))∧delta;

s2=somavar(ti+t+1,1);

h1tmais1=(a0/(1-b1))+lambda(1,1)*e2+s2;

y1tmais1=(h1tmais1∧(1/delta))*z(ti+t+1,1);

e3=(abs(y1tmais1)-g1*y1tmais1)∧delta;

s3=lambda(2,1)*e2+s;

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

P(i,t)=dblquad(funduplo,-100000,mu,mu,100000);

if P(i,t)>k

R(i,t)=et(i);
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else

R(i,t)=999;

end

end

end

R

Calculating P (Ct,j |x2, Dt, θ), P (Ct,j |Dt, θ) and the alarm region for

the application with the IBOVESPA data series (D, T and R, re-

spectively).

load ’amostraIBO’

percentil25=-1.219; mu=percentil25

ti=3450

for t=1:10

ti+t

e1=B(ti+t-1,1);

s1=somavar(ti+t,1);

e2=B(ti+t,1);

s2=somavar(ti+t+1,1);

e3=B(ti+t+1,1);

s3=somavar(ti+t+2,1);

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

funtriplo=@(x,y,z) exp(-x.∧2/(2.*(fsigmaF(e1,s1).∧2))

-y.∧2./(2.*(fsigmaF(e2,s2)∧2))-z.∧2/(2.*(fsigmaF(e3,s3)∧2)))

./(((2*pi)∧(3/2))*fsigmaF(e1,s1)*fsigmaF(e2,s2)*fsigmaF(e3,s3));

D=dblquad(funduplo,mu,100000,-100000,mu);

T=triplequad(funtriplo,-100000,100000,mu,100000,-100000,mu);

et=[-100:100];

L=length(et);



B.1 Programs related to Chapter 2 185

k=T

e1=B(ti+t-1,1);

s1=somavar(ti+t,1);

s=0;

for j=3:(ti+t+2)/2

s=s+lambda(j,1)*B(ti+t+2-j);

end

for i=1:L

e2=(abs(et(i))-g1*et(i))∧delta;

s2=somavar(ti+t+1,1);

h1tmais1=(a0/(1-b1))+lambda(1,1)*e2+s2;

y1tmais1=(h1tmais1∧(1/delta))*z(ti+t+1,1);

e3=(abs(y1tmais1)-g1*y1tmais1)∧delta;

s3=lambda(2,1)*e2+s;

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

P(i,t)=dblquad(funduplo,mu,100000,-100000,mu);

if P(i,t)>k

R(i,t)=et(i);

else

R(i,t)=999;

end

end

end

R

Varying alarm region with varying k.

load ’amostraFIAPARCHparametrosIbovespaML’

percentil90=2.293;

percentil95=3.136;
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mu=percentil90

t=2050

e1=B(t-1,1);

s1=somavar(t,1);

e2=B(t,1);

s2=somavar(t+1,1);

e3=B(t+1,1);

s3=somavar(t+2,1);

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3))

funtriplo=@(x,y,z) exp(-x.∧2/(2.*(fsigmaF(e1,s1).∧2))

-y.∧2./(2.*(fsigmaF(e2,s2)∧2))-z.∧2/(2.*(fsigmaF(e3,s3)∧2)))

./(((2*pi)∧(3/2))*fsigmaF(e1,s1)*fsigmaF(e2,s2)*fsigmaF(e3,s3))

D=dblquad(funduplo,-100000,mu,mu,100000);

T=triplequad(funtriplo,-100000,100000,-100000,mu,mu,100000);

et=[-10:0.1:20];

L=length(et);

P=zeros(L,8);

R=zeros(L,8);

k=T

e1=B(t-1,1);

s1=somavar(t,1);

s=0;

for j=3:(t+2)/2

s=s+lambda(j,1)*B(t+2-j);

end

cont=0;

while k<T+0.04

cont=cont+1
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for i=1:L

e2=(abs(et(i))-g1*et(i))∧delta;

s2=somavar(t+1,1);

h1tmais1=(a0/(1-b1))+lambda(1,1)*e2+s2;

y1tmais1=(h1tmais1∧(1/delta))*z(t+1,1);

e3=(abs(y1tmais1)-g1*y1tmais1)∧delta;

s3=lambda(2,1)*e2+s;

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

P(i,cont)=dblquad(funduplo,-100000,mu,mu,100000);

if P(i,cont)>k

R(i,cont)=et(i);

else

R(i,cont)=999;

end

end

k=k+0.005

end

R

Varying alarm region with varying k, for the application with

the IBOVESPA data series.

load ’amostraIBOcorrigido’

percentil25=-1.219

mu=percentil25

t=3452

e1=B(t-1,1);

s1=somavar(t,1);

e2=B(t,1);

s2=somavar(t+1,1);
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e3=B(t+1,1);

s3=somavar(t+2,1);

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3))

funtriplo=@(x,y,z) exp(-x.∧2/(2.*(fsigmaF(e1,s1).∧2))

-y.∧2./(2.*(fsigmaF(e2,s2)∧2))-z.∧2/(2.*(fsigmaF(e3,s3)∧2)))

./(((2*pi)∧(3/2))*fsigmaF(e1,s1)*fsigmaF(e2,s2)*fsigmaF(e3,s3))

D=dblquad(funduplo,mu,100000,-100000,mu);

T=triplequad(funtriplo,-100000,100000,mu,100000,-100000,mu);

et=[-10:0.5:50];

L=length(et);

P=zeros(L,10);

R=zeros(L,10);

k=T

e1=B(t-1,1);

s1=somavar(t,1);

s=0;

for j=3:(t+2)/2

s=s+lambda(j,1)*B(t+2-j);

end

cont=0;

while k<T+0.045

cont=cont+1

for i=1:L

e2=(abs(et(i))-g1*et(i))∧delta;

s2=somavar(t+1,1);

h1tmais1=(a0/(1-b1))+lambda(1,1)*e2+s2;

y1tmais1=(h1tmais1∧(1/delta))*z(t+1,1);

e3=(abs(y1tmais1)-g1*y1tmais1)∧delta;
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s3=lambda(2,1)*e2+s;

funduplo=@(x,y) exp(-x.∧2./(2.*fsigmaF(e2,s2).∧2)

-y.∧2./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

P(i,cont)=dblquad(funduplo,mu,100000,-100000,mu);

if P(i,cont)>k

R(i,cont)=et(i);

else

R(i,cont)=999;

end

end

k=k+0.01

end

R

Calculating the operating characteristics of the alarm system.

load ’amostraFIAPARCHparametrosIbovespaML’

percentil90=2.293;

percentil95=3.136;

mu=percentil90

t=2050

% Alarm Region:

RAinf1=-100000;

RAsup1=-1.3

RAinf2=6.7

RAsup2=100000;

e1=B(t-1,1);

s1=somavar(t,1);

e2=B(t,1);

s2=somavar(t+1,1);

e3=B(t+1,1);
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s3=somavar(t+2,1);

fun=@(x) exp(-x.∧2./(2.*fsigmaF(e1,s1).∧2))./(sqrt(2*pi).*(fsigmaF(e1,s1)));

% Size of the alarm region

Tamanho=quad(fun,RAinf1,RAsup1)+quad(fun,RAinf2,RAsup2)

funD=@(x,y) exp(-x.*x./(2.*fsigmaF(e2,s2).∧2)

-y.*y./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

funT=@(x,y,z) exp(-x.∧2/(2.*(fsigmaF(e1,s1)∧2))

-y.∧2/(2.*(fsigmaF(e2,s2)∧2))-z.∧2/(2.*(fsigmaF(e3,s3)∧2)))

/(((2*pi)∧(3/2))*fsigmaF(e1,s1)*fsigmaF(e2,s2)*fsigmaF(e3,s3));

D=dblquad(funD,-100000,mu,mu,100000)

T=triplequad(funT,-100000,100000,-100000,mu,mu,100000)

% Probability of the Alarm being Correct

PAC=(triplequad(funT,RAinf1,RAsup1,-100000,mu,mu,100000)+

triplequad(funT,RAinf2,RAsup2,-100000,mu,mu,100000))

/(quad(fun,RAinf1,RAsup1)+quad(fun,RAinf2,RAsup2))

% Probability of Detecting the Event

PD=(triplequad(funT,RAinf1,RAsup1,-100000,mu,mu,100000)

+triplequad(funT,RAinf2,RAsup2,-100000,mu,mu,100000))

/triplequad(funT,-100000,100000,-100000,mu,mu,100000)

Calculating the operating characteristics of the alarm system,

for the application with the IBOVESPA data series.

load amostraIBOcorrigido

percentil25=-1.219

mu=percentil25

t=3516

% Alarm Region

RAinf1=-100000;

RAsup1=-8

RAinf2=41.7
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RAsup2=100000;

e1=B(t-1,1);

s1=somavar(t,1);

e2=B(t,1);

s2=somavar(t+1,1);

e3=B(t+1,1);

s3=somavar(t+2,1);

fun=@(x) exp(-x.∧2./(2.*fsigmaF(e1,s1).∧2))./(sqrt(2*pi).*(fsigmaF(e1,s1)));

% Size of the Alarm Region (Size)

Size=quad(fun,RAinf1,RAsup1)+quad(fun,RAinf2,RAsup2)

funD=@(x,y) exp(-x.*x./(2.*fsigmaF(e2,s2).∧2)

-y.*y./(2.*fsigmaF(e3,s3).∧2))./(2*pi.*fsigmaF(e2,s2)*fsigmaF(e3,s3));

funT=@(x,y,z) exp(-x.∧2/(2.*(fsigmaF(e1,s1)∧2))

-y.∧2/(2.*(fsigmaF(e2,s2)∧2))-z.∧2/(2.*(fsigmaF(e3,s3)∧2)))

/(((2*pi)∧(3/2))*fsigmaF(e1,s1)*fsigmaF(e2,s2)*fsigmaF(e3,s3));

D=dblquad(funD,mu,100000,-100000,mu)

T=triplequad(funT,-100000,100000,mu,100000,-100000,mu)

% Probability of the Alarm being Correct (PAC)

PAC=(triplequad(funT,RAinf1,RAsup1,mu,100000,-100000,mu)

+triplequad(funT,RAinf2,RAsup2,mu,100000,-100000,mu))

/(quad(fun,RAinf1,RAsup1)+quad(fun,RAinf2,RAsup2))

% Probability of Detecting the Event (PD)

PD=(triplequad(funT,RAinf1,RAsup1,mu,100000,-100000,mu)

+triplequad(funT,RAinf2,RAsup2,mu,100000,-100000,mu))

/triplequad(funT,-100000,100000,mu,100000,-100000,mu)
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B.2 Programs related to Chapter 3

Obtaining a sample from the INAPARCH process.

clear all

n=500 % n=size

rep=300 % rep=number of samples

omega=2.3

alpha1=0.03

gamma1=0.68

beta1=0.06

delta=2.0

condunica=2∧delta*(2*alpha1*delta+0.5*beta1)

lambda0=3

for j=1:rep

x(1,j)=poissrnd(lambda0);

lambda(1,j)=lambda0;

for i=2:n

lambda(i,j)=(omega+alpha1*(abs(x(i-1,j)-lambda(i-1,j))-gamma1*

*(x(i-1,j)-lambda(i-1,j)))∧delta+beta1*lambda(i-1,j)∧delta)∧(1/delta);

x(i,j)=poissrnd(lambda(i,j));

end

end

figure

plot(x(:,1),’b’)

legend(’case 2’)

save ’INAPARCHsampleCase2’

Function for the calculation of λt (necessary in estimation pro-

cedures).

function y=lambdatdelta(theta,amX,lambdai,n)
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omega=theta(1);

alpha1=theta(2);

gamma1=theta(3);

beta1=theta(4);

delta=theta(5);

lambdatdelta(1)=lambdai;

for i=2:n

lambdatdelta(i)=(omega+alpha1*(abs(amX(i-1)-lambdatdelta(i-1))

-gamma1*(amX(i-1)-lambdatdelta(i-1)))∧delta+beta1*lambdatdelta(i-1)∧

∧delta)∧(1/delta);

end y=lambdatdelta(n);

ML Estimation of INAPARCH samples.

clear all

load amostraINAPARCHcaso3

size=size(x);

n=size(:,2);

global amostra

x0=[2 0.1 0.6 0.1 2.5] % parameter initialization

lb=[1.5 0.001 -0.999 0.001 2]; % lower bounds for the estimates

ub=[3.5 0.999 0.999 0.999 4]; % upper bounds for the estimates

options=optimset(’GradObj’,’on’);

for amostra=1:n

phat=mle(x(:,amostra),’nloglf’,@nllfdeltateste,’start’,x0,’lowerbound’,

lb,’upperbound’,ub,’optimfun’,’fmincon’)

xlist(amostra,:)=phat;

save ’xlist’

amostra

end

xlist
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Auxiliary function for the ML Estimation of INAPARCH sam-

ples.

function [Q, gradQ]=nllfteste(theta,x,cens,freq)

global amostra

omega=theta(1);

alpha1=theta(2);

gamma1=theta(3);

beta1=theta(4);

delta=theta(5);

load amostraINAPARCHcaso3

amX=x(:,amostra);

amlambda(1)=3;

n=size(amX,1);

Q=0;

for i=1:n

Q=Q+amX(i)*log(lambdatdelta(theta,amX,amlambda(1),i))-

-lambdatdelta(theta,amX,amlambda(1),i)-log(factorial(amX(i)));

end

Q=-Q;

Calculating log-likelihood with varying δ.

clear all

load ’amostraINAPARCH300caso4delta30’

%theta=[2.30 0.03 0.68 0.06 1.80]; Case 2

theta=[2.30 0.05 0.68 0.08 1.80]; % Case 4

for amostra=1:300

amlambda=lambda(:,amostra);

amX=x(:,amostra);

n=size(amX,1);

for i=1:6
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theta(5)=theta(5)+0.2;

Q=0;

for j=1:n

Q=Q+amX(j)*log(lambdatdelta(theta,amX,amlambda(1),j))-

-lambdatdelta(theta,amX,amlambda(1),j)-log(factorial(amX(j)));

end

L(i,amostra)=Q;

end

theta(5)=1.80;

end

L

save (’logverosim300caso4delta30’,’L’)

ML Estimation of real data time series, based on the INA-

PARCH model.

clear all

load DADOS

x0=[2 0.2 -0.6 0.2 2.0] % parameter initialization

lb=[0.001 0.001 -0.999 0.001 0.001]; % lower bounds for the estimates

ub=[10 0.999 0.999 0.999 10]; % upper bounds for the estimates

options=optimset(’GradObj’,’on’);

phat=mle(GSK,’nloglf’,@nllfdeltatestedados,’start’,x0,’lowerbound’,

lb,’upperbound’,ub,’optimfun’,’fmincon’);

xlist=phat

Auxiliary function for the ML Estimation of real data time se-

ries, based on the INAPARCH model.

function [Q, gradQ]=nllfdeltatestedados(theta,x,cens,freq)

omega=theta(1);

alpha1=theta(2);

gamma1=theta(3);
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beta1=theta(4);

delta=theta(5);

load DADOS

amX=GSK;

amlambda(1)=18.8563;

%amlambda(1)=30.8283;

n=size(amX,1);

Q=0;

for i=1:n

Q=Q+amX(i)*log(lambdatdelta(theta,amX,amlambda(1),i))-

-lambdatdelta(theta,amX,amlambda(1),i)-log(factorial(amX(i)));

end

Q=-Q;

Calculating P (Ct,j |y2, Dt, θ), P (Ct,j |Dt, θ) and the alarm region for

the application with the Astrazeneca or the Glaxosmithkline data

series (P1, P2 and R, respectively).

clear all

load DADOS

thetaGSK=[0.3781 0.1392 -0.3269 0.8791 0.9826];

thetaAZN21Set=[2.4862 0.2824 -0.2787 0.7501 1.0598];

% theta=thetaGSK;

theta=thetaAZN21Set;

omega=theta(1);

alfa=theta(2);

gama=theta(3);

beta=theta(4);

delta=theta(5);

funlambda=@(y,l)(omega+alfa*(abs(y-l)-gama*(y-l))∧delta+beta*l∧delta)

∧(1/delta);
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mu=25

% amX=GSK;

amX=AZN21Set;

% lambda1GSK=18.8563;

lambda1AZN21Set=30.8283;

% lambdatdelt(1)=lambda1GSK;

lambdatdelt(1)=lambda1AZN21Set;

for i=2:501

lambdatdelt(i)=(omega+alfa*(abs(amX(i-1)-lambdatdelt(i-1))-

-gama*(amX(i-1)-lambdatdelt(i-1)))∧delta+beta*lambdatdelt(i-1)∧delta)

∧(1/delta);

end

ti=450

for t=1:11

ti+t-1

yt=amX(ti+t-1);

lbt=funlambda(amX(ti+t-2),lambdatdelt(ti+t-2));

% Calculating P (Ct,j |y2, Dt, θ), P1

t1=0;

for i=0:mu

ytmais1=i;

lbtmais1=funlambda(yt,lbt);

t2=0;

for j=mu+1:150

ytmais2=j;

lbtmais2=funlambda(i,lbtmais1);

t2=t2+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

t1=t1+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*t2;
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end

P1=t1

% Calculating P (Ct,j |Dt, θ), P2

t1=0;

for i=0:150

yt=i;

lbt=funlambda(amX(ti+t-2),lambdatdelt(ti+t-2));

t2=0;

for j=0:mu

ytmais1=j;

lbtmais1=funlambda(i,lbt);

t3=0;

for k=mu+1:150

ytmais2=k;

lbtmais2=funlambda(j,lbtmais1);

t3=t3+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

t2=t2+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*t3;

end

t1=t1+(exp(-lbt)*lbt∧yt/factorial(yt))*t2;

end

P2=t1

% Calculating the Alarm Region, R

et=[0:1:150];

L=length(et);

kt2=P2;

for i=1:L

yt=et(i);

lbt=funlambda(amX(ti+t-2),lambdatdelt(ti+t-2));
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s1=0;

for j=0:mu

ytmais1=j;

lbtmais1=funlambda(yt,lbt);

s2=0;

for k=mu+1:150

ytmais2=k;

lbtmais2=funlambda(ytmais1,lbtmais1);

s2=s2+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

s1=s1+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*s2;

end

P(i,t)=s1;

if P(i,t)>kt2

R(i,t)=et(i);

else

R(i,t)=999;

end

end

end

R

Varying alarm region with varying k, for the application with

Astrazeneca and Glaxosmithkline data series.

clear all

load DADOS

thetaGSK=[0.3781 0.1392 -0.3269 0.8791 0.9826];

thetaAZN21Set=[2.4862 0.2824 -0.2787 0.7501 1.0598];

%theta=thetaGSK;

theta=thetaAZN21Set;
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omega=theta(1);

alfa=theta(2);

gama=theta(3);

beta=theta(4);

delta=theta(5);

funlambda=@(y,l)(omega+alfa*(abs(y-l)-gama*(y-l))∧delta+beta*l∧delta)

∧(1/delta);

%amX=GSK;

amX=AZN21Set;

%lambda1GSK=18.8563;

lambda1AZN21Set=30.8283;

%lambdatdelt(1)=lambda1GSK;

lambdatdelt(1)=lambda1AZN21Set;

for i=2:501

lambdatdelt(i)=(omega+alfa*(abs(amX(i-1)-lambdatdelt(i-1))-

-gama*(amX(i-1)-lambdatdelt(i-1)))∧delta+beta*lambdatdelt(i-1)∧delta)

∧(1/delta);

end

mu=19

t=460

yt=amX(t);

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

s1=0;

for i=0:mu

ytmais1=i;

lbtmais1=funlambda(yt,lbt);

s2=0;

for j=mu+1:100

ytmais2=j;
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lbtmais2=funlambda(i,lbtmais1);

s2=s2+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

s1=s1+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*s2;

end

P1=s1

t1=0;

for i=0:100

yt=i;

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

t2=0;

for j=0:mu

ytmais1=j;

lbtmais1=funlambda(i,lbt);

t3=0;

for k=mu+1:100

ytmais2=k;

lbtmais2=funlambda(j,lbtmais1);

t3=t3+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

t2=t2+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*t3;

end

t1=t1+(exp(-lbt)*lbt∧yt/factorial(yt))*t2;

end

P2=t1

et=[0:1:100];

L=length(et);

P=zeros(L,12);

R=zeros(L,12);
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kt2=P2

contador=0;

while kt2<P2+0.08

contador=contador+1

for i=1:L

yt=et(i);

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

s1=0;

for j=0:mu

ytmais1=j;

lbtmais1=funlambda(yt,lbt);

s2=0;

for k=mu+1:100

ytmais2=k;

lbtmais2=funlambda(ytmais1,lbtmais1);

s2=s2+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

s1=s1+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*s2;

end

P(i,contador)=s1;

if P(i,contador)>kt2

R(i,contador)=et(i);

else

R(i,contador)=999;

end

end

kt2=kt2+0.005

end

R
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Calculating the operating characteristics of the alarm system,

for the application with the Astrazeneca and Glaxosmithkline data

series.

clear all

load DADOS

thetaGSK=[0.3781 0.1392 -0.3269 0.8791 0.9826];

thetaAZN21Set=[2.4862 0.2824 -0.2787 0.7501 1.0598];

%theta=thetaGSK;

theta=thetaAZN21Set;

omega=theta(1);

alfa=theta(2);

gama=theta(3);

beta=theta(4);

delta=theta(5);

funlambda=@(y,l)(omega+alfa*(abs(y-l)-gama*(y-l))∧delta+beta*l∧delta)

∧(1/delta);

%amX=GSK;

amX=AZN21Set;

%lambda1GSK=18.8563;

lambda1AZN21Set=30.8283;

%lambdatdelt(1)=lambda1GSK;

lambdatdelt(1)=lambda1AZN21Set;

for i=2:501

lambdatdelt(i)=(omega+alfa*(abs(amX(i-1)-lambdatdelt(i-1))-

-gama*(amX(i-1)-lambdatdelt(i-1)))∧delta+beta*lambdatdelt(i-1)∧delta)

∧(1/delta);

end

mu=19

t=460
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% Alarm Region:

RAinf1=0;

RAsup1=0;

RAinf2=29;

RAsup2=35;

% Size of the Alarm Region

s1=0;

s2=0;

for i=RAinf1:RAsup1

yt=i;

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

s1=s1+exp(-lbt)*lbt∧yt/factorial(yt);

end

for i=RAinf2:RAsup2

yt=i;

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

s2=s2+exp(-lbt)*lbt∧yt/factorial(yt);

end

Size=s1+s2

% Probability of the Alarm being Correct (PAC)

t1=0;

v1=0;

for i=RAinf1:RAsup1

yt=i;

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

t2=0;

for j=0:mu

ytmais1=j;

lbtmais1=funlambda(i,lbt);
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t3=0;

for k=mu+1:100

ytmais2=k;

lbtmais2=funlambda(j,lbtmais1);

t3=t3+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

t2=t2+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*t3;

end

t1=t1+(exp(-lbt)*lbt∧yt/factorial(yt))*t2;

end

for i=RAinf2:RAsup2

yt=i;

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

v2=0;

for j=0:mu

ytmais1=j;

lbtmais1=funlambda(i,lbt);

v3=0;

for k=mu+1:100

ytmais2=k;

lbtmais2=funlambda(j,lbtmais1);

v3=v3+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

v2=v2+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*v3;

end

v1=v1+(exp(-lbt)*lbt∧yt/factorial(yt))*v2;

end

numerator=t1+v1;

PAC=numerator/Size
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% Probability of Detecting the Event (PD)

u1=0;

for i=0:100

yt=i;

lbt=funlambda(amX(t-1),lambdatdelt(t-1));

u2=0;

for j=0:mu

ytmais1=j;

lbtmais1=funlambda(i,lbt);

u3=0;

for k=mu+1:100

ytmais2=k;

lbtmais2=funlambda(j,lbtmais1);

u3=u3+exp(-lbtmais2)*lbtmais2∧ytmais2/factorial(ytmais2);

end

u2=u2+(exp(-lbtmais1)*lbtmais1∧ytmais1/factorial(ytmais1))*u3;

end

u1=u1+(exp(-lbt)*lbt∧yt/factorial(yt))*u2;

end

P2=u1

PD=numerator/P2

Frequency estimation of the operating characteristics of the

alarm system, for the application with the Astrazeneca and Glax-

osmithkline data series.

clear all

load DADOS

thetaGSK=[0.3781 0.1392 -0.3269 0.8791 0.9826];

thetaAZN21Set=[2.4862 0.2824 -0.2787 0.7501 1.0598];

theta=thetaGSK;
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%theta=thetaAZN21Set;

omega=theta(1);

alfa=theta(2);

gama=theta(3);

beta=theta(4);

delta=theta(5);

funlambda=@(y,l)(omega+alfa*(abs(y-l)-gama*(y-l))∧delta+beta*l∧delta)

∧(1/delta);

amX=GSK;

%amX=AZN21Set;

lambda1GSK=18.8563;

%lambda1AZN21Set=30.8283;

lambdatdelt(1)=lambda1GSK;

%lambdatdelt(1)=lambda1AZN21Set;

for i=2:501

lambdatdelt(i)=(omega+alfa*(abs(amX(i-1)-lambdatdelt(i-1))-

-gama*(amX(i-1)-lambdatdelt(i-1)))∧delta+beta*lambdatdelt(i-1)∧delta)

∧(1/delta);

end

mu=18

t=460

% Alarm Region RAinf1=0

RAsup1=5

RAinf2=20

RAsup2=81

max=100000 % Number of iterations

alarms=0; % Number of alarms

catastrophes=0; % Number of catastrophes

correctalarms=0; % Number of correct alarms
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for i=1:max

lbt(i)=funlambda(amX(t-1),lambdatdelt(t-1));

yt(i)=poissrnd(lbt(i));

lbtmais1(i)=funlambda(yt(i),lbt(i));

ytmais1(i)=poissrnd(lbtmais1(i));

lbtmais2(i)=funlambda(ytmais1(i),lbtmais1(i));

ytmais2(i)=poissrnd(lbtmais2(i));

% Counting the number of alarms

if yt(i)>=RAinf1

if yt(i)<=RAsup1

alarms=alarms+1;

end

end

if yt(i)>=RAinf2

if yt(i)<=RAsup2

alarms=alarms+1;

end

end

% Counting the number of catastrophes

if ytmais2(i)>mu

catastrophes=catastrophes+1;

end

% Counting the number of correct alarms

if yt(i)>=RAinf1

if yt(i)<=RAsup1

if ytmais2(i)>mu

correctalarms=correctalarms+1;

end

end
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end

if yt(i)>=RAinf2

if yt(i)<=RAsup2

if ytmais2(i)>mu

correctalarms=correctalarms+1;

end

end

end

end

alarms

PAlarm=alarms/max

catastrophes

PCatastrophe=catastrophes/max

correctalarms

% Probability of the Alarm being Correct (PAC)

PAC=correctalarms/alarms

% Probability of Detecting the Event (PD)

PD=correctalarms/catastrophes





Appendix C

Abbreviations and Notation

γn,Y sample ACVF

ρn,Y sample ACF

ACF AutoCorrelation Function

ACP Autoregressive Conditional Poisson

ACVF AutoCoVariance Function

APARCH Asymmetric Power ARCH

ARCH AutoRegressive Conditional Heteroscedasticity

ARMA AutoRegressive Moving Average

AR AutoRegressive

BINMA Bivariate INMA

BOVESPA São Paulo Stock Exchange (BOlsa de Valores do Estado de

São PAulo)

CLT Central Limit Theorem

DARMA Discrete ARMA

DAR Discrete AutoRegressive

DSC Discrete Self Decomposable

DSINAR Doubly Stochastic INAR

EVT Extreme Value Theory

EWMA Exponentially Weighted Moving Average
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FIAPARCH Fractionally Integrated Asymmetric Power ARCH

FIGARCH Fractionally Integrated GARCH

FINGARCH Functional INGARCH

GARCH Generalized ARCH

GLARMA Generalized Linear ARMA

GLM Generalized Linear Models

GP Generalized Poisson

IBOVESPA BOVESPA Index

IGARCH Integrated GARCH

INARMA INteger-valued ARMA

INAR INteger-valued AutoRegressive

INGARCH INteger-valued GARCH

INMA INteger-valued Moving Average

MA Moving Average

MC Monte Carlo

MLE Maximum Likelihood Estimation

ML Maximum Likelihood

MTD Mixture Transition Distribution

NYSE New York Stock Exchange

PM10 Particulate Matter of aerodynamic diameter 10µm or less

QINAR Quasi-binomial INAR

QMLE Quasi-Maximum Likelihood Estimation

RCINAR Random Coefficient INAR

RUP Reinforced Urn Processes

SAM Stochastic Autoregressive Mean

SRE Stochastic Recurrence Equation

SV Stochastic Volatility

i.i.d. independent identically distributed

r.v.(’s) random variable(s)
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