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temporais, aplicações à economia. 
 

resumo 
 

 

Consideramos alguns problemas do cálculo das variações em escalas 
temporais. Primeiramente, demonstramos equações do tipo de Euler-Lagrange 
e condições de transversalidade para problemas de horizonte infinito 
generalizados. De seguida, consideramos a composição de uma certa função 
escalar com os integrais delta e nabla de um campo vetorial. Presta-se 
atenção a problemas extremais inversos para funcionais variacionais em 
escalas de tempo arbitrárias. Começamos por demonstrar uma condição 
necessária para uma equação dinâmica integro-diferencial ser uma equação 
de Euler-Lagrange. Resultados novos e interessantes para o cálculo discreto e 
quantum são obtidos como casos particulares. Além disso, usando a equação 
de Euler-Lagrange e a condição de Legendre fortalecida, obtemos uma forma 
geral para uma funcional variacional atingir um mínimo local, num determinado 
ponto do espaço vetorial. No final, duas aplicações interessantes em termos 
económicos são apresentadas. No primeiro caso, consideramos uma empresa 
que quer programar as suas políticas de produção e de investimento para 
alcançar uma determinada taxa de produção e maximizar a sua 
competitividade no mercado futuro. O outro problema é mais complexo e 
relaciona a inflação e o desemprego, que inflige uma perda social. A perda 
social é escrita como uma função da taxa de inflação p e a taxa de 
desemprego u, com diferentes pesos. Em seguida, usando as relações 
conhecidas entre p, u, e a taxa de inflação esperada π, reescrevemos a função 
de perda social como uma função de π. A resposta é obtida através da 
aplicação do cálculo das variações, a fim de encontrar a curva ótima π que 
minimiza a perda social total ao longo de um determinado intervalo de tempo. 

 



 



 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 
Time-scale calculus, calculus of variations, necessary optimality conditions of 
Euler-Lagrange type, inverse problems on time scales, applications to 
economics.  

abstract 

 
We consider some problems of the calculus of variations on time scales. On 
the beginning our attention is paid on two inverse extremal problems on 
arbitrary time scales. Firstly, using the Euler-Lagrange equation and the 
strengthened Legendre condition, we derive a general form for a variation 
functional that attains a local minimum at a given point of the vector space. 
Furthermore, we prove a necessary condition for a dynamic integro-differential 
equation to be an Euler-Lagrange equation. New and interesting results for the 
discrete and quantum calculus are obtained as particular cases. Afterwards, we 
prove Euler-Lagrange type equations and transversality conditions for 
generalized infinite horizon problems. Next we investigate the composition of a 
certain scalar function with delta and nabla integrals of a vector valued field. 
Euler-Lagrange equations in integral form, transversality conditions, and 
necessary optimality conditions for isoperimetric problems, on an arbitrary time 
scale, are proved. In the end, two main issues of application of time scales in 
economic, with interesting results, are presented. In the former case we 
consider a firm that wants to program its production and investment policies to 
reach a given production rate and to maximize its future market 
competitiveness. The model which describes firm activities is studied in two 
different ways: using classical discretizations; and applying discrete versions of 
our result on time scales. In the end we compare the cost functional values 
obtained from those two approaches. The latter problem is more complex and 
relates to rate of inflation, p, and rate of unemployment, u, which inflict a social 
loss. Using known relations between p, u, and the expected rate of inflation π, 
we rewrite the social loss function as a function of π. We present this model in 
the time scale framework and find an optimal path π that minimizes the total 
social loss over a given time interval.  
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Introduction

This thesis is devoted to the study of the calculus of variations on time scales and its

applications to economics. It is a discipline with many opportunities of applications of this

branch of mathematics. When I started my Ph.D. Doctoral Programme, I had not decided

in which direction I would like to develop my research. However, everything became clear

after the first semester of the first year of my studies. The doctoral programme PDMA

Aveiro–Minho provided one-semester course called Research Lab where five different areas of

mathematics were covered. I enrolled to a course led by my current supervisor Prof. Delfim

F. M. Torres and I was introduced to the calculus of variations on time scales. It was the

first time I met this subject and I found it interesting and full of possibilities in research. I

shown a great interest of this theme and due to that Prof. Torres agreed to be my supervisor.

At the same time I was studying economics at University of Bia lystok, Poland, and the title

of my Ph.D. thesis emerged naturally — application of the time-scale calculus in economics.

Since my second studies took place in Poland, Prof. Torres suggested to ask Prof. Agnieszka

B. Malinowska (Faculty of Computer Science, Bia lystok University of Technology, Poland) to

be my co-supervisor. After her acceptance, I got a great support in Portugal and Poland.

The main idea of this thesis is to convert classical economic problems into time scale mod-

els. This procedure gives a lot of possibilities. Instead of considering two different models

(continuous and/or discrete) we deal with only one model and we are able to apply it to

different, even hybrid, time scales. Moreover, we can create mixed models, i.e., combina-

tion of two different discretizations (both forward and backward). Finally, we obtain better

results comparing with traditional discretizations. Our contribution on this area appears

in Section 7.1 of this thesis. We started working on a variational model that describes the

relation between inflation and unemployment (see Section 7.2), which was converted into a

more general time-scale problem of the calculus of variations. The next question is: based on

the set of real data and having a time scale model, is it possible to find a time scale which

describes the reality better than classical methods? Usually the procedure is opposite: a time

scale is already given (see Conclusions and Future Work). Those two conceptions were the

main motivation of this thesis.
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INTRODUCTION

The calculus of variations is one of the classical branches of mathematics with ancient

origins in questions of Aristotle and Zenodoros. However, its mathematical principles first

emerged in the post-calculus investigations of Newton, the Bernoullis, Euler, and Lagrange. A

very strong influence on the development of the calculus of variations had the brachistochrone

problem (see, e.g., [90]), stated by Bernoulli in 1696, which most authors consider as the

birth of this research area. This problem excited great interest among the mathematicians

of XVII century and gave conception to new research which is still continuing. A decisive

step was achieved with the work of Euler and Lagrange who found a systematic way of

dealing with variational problems by introducing what is now known as the Euler–Lagrange

equations (see [53]). The calculus of variations is focused on finding extremum (i.e., maximum

or minimum) values of functionals not treatable by the methods of elementary calculus,

usually given in the form of an integral that involves an unknown function and its derivatives

[33, 49, 61, 90]. The variational integral may represent an action, energy, or cost functional

[42, 91]. The variational calculus, in its present form, provides powerful methods for the

treatment of differential equations, the theory of invariants, existence theorems in geometric

function theory, variational principles in mechanics, that possess also important connections

with other fields of mathematics, e.g., analysis, geometry, physics, and many different areas

– engineering, biology and economics. The classical theory of the calculus of variations is

presented briefly in the beginning of this thesis, in Chapter 2.

The theory of time scales is a relatively new area, that bridges, generalize and extends the

traditional discrete dynamical systems (i.e., difference equations) and continuous dynamical

systems (i.e., differential equations) [24] and the various dialects of q-calculus [41, 74] into

a single unified theory [24, 25, 65]. It was introduced in 1988 by Stefan Hilger in his Ph.D.

thesis [55–57] as the “Calculus on Measure Chains” [10, 65]. Today it is better known as the

time-scale calculus. In Stefan Hilger’s Ph.D. thesis a time scale is defined as a nonempty

closed subset of the real numbers. The term “time scales” describes the behavior of a dy-

namical systems over time, hence, a time scale is a model of time. In the past, engineers and

mathematicians considered a time as a variable in two ways. A continuous time was asso-

ciated to hands of an old-fashioned clock which sweeps continuously, while a discrete time

(with steps equal to one) was related to a digital clock. The time-scale theory unify those two

approaches to describe systems which may be partly continuous and partly discrete, and in

that case having features of both – analog and digital. Currently, this subject is researched in

many different fields in which dynamic processes can be described with discrete or continuous

models [1]. However, there are infinitely many time scales and due to that it is possible to

state more general results.

The calculus of variations on time scales was introduced by Bohner [18] and by Hilscher

2



and Zeidan [2, 58] and has been developing rapidly in the past ten years and is now a fertile

area of research – see, e.g., [19, 47, 51, 67, 79]. The time-scale variational calculus has a great

potential for applications, e.g., in biology [24] or in economics [4,6,9,45,75]. In order to deal

with nontraditional applications in economics, where the system dynamics are described on

a time scale partly continuous and partly discrete, or to accommodate nonuniform sampled

systems, one needs to work with variational problems defined on a time scale [6, 8, 35].

This Ph.D. thesis consists of two parts. The former one, named ’Synthesis’, gives prelim-

inary definitions (Chapter 1) and properties of classical and time-scale calculi of variations

(Chapters 2 and 3). The latter part, called ’Original Work’, is divided into four chapters,

containing new results published during my Ph.D. project in peer reviewed international

journals [35–39]. Moreover, the work has been recognized by the Awarding Committee of

the Symposium on Differential Equations and Difference Equations (SDEDE 2014), Hom-

burg/Germany, 5th-8th September 2014, and awarded with the Bernd Aulbach Prize 2014

for students.

In Chapter 4 we describe, in two different ways, inverse problems of the calculus of vari-

ations. First we consider a fundamental inverse problem of the calculus of variations subject

to the boundary conditions y(a) = ya and y(b) = yb on a given time scale T. We describe a

general form of a variational functional which attains a local minimum at a given function

y0 under Euler–Lagrange and strengthened Legendre conditions. In order to illustrate our

results, we present the form of the Lagrangian L on an isolated time scale (Corollary 4.4).

We end by presenting the form of the Lagrangian L in the periodic time scale T = hZ, h > 0

(Example 4.6) and in the q-scale T = qN0 , q > 1 (Example 4.7). In the latter part of Chapter 4

we also consider an inverse problem but stated as an integro-differential dynamic equation.

Compared with the direct problem, that establish dynamic equations of Euler–Lagrange type

to time-scale variational problems, the inverse problem has not been studied before in the

framework of time scales. On the beginning we define self-adjointness of a first order integro-

differential equation (Definition 4.8) and its equation of variation (Definition 4.9). To the

best of our knowledge, those definitions, in integro-differential form, are new. Using those

features (see Lemma 4.11) we prove a necessary condition for a general (non-classical) inverse

problem of the calculus of variations on an arbitrary time scale (Theorem 4.12). In order to

illustrate our results we present Theorem 4.12 in the particular time scales T ∈ {R, hZ, qZ},
h > 0, q > 1 (Corollaries 4.16, 4.17, and 4.18). The last part of this chapter contains a

discussion about equivalences between: (i) the integro-differential equation (4.22) and the

second order differential equation (4.35) (Proposition 4.19), and (ii) equations of variations

of them ((4.23) andd (4.38), respectively) on an arbitrary time scale T. We found that the

first equivalence is easy to prove while the latter one is even irrealizable on an arbitrary time

3



INTRODUCTION

scale (it is only possible in R). It is shown that the absence of a general chain rule on an ar-

bitrary time scale causes this impossibility [20,24]. Chapter 5 is dedicated to infinite horizon

problems of the calculus of variations with nabla derivatives and nabla integrals (see (5.2)).

The motivation is that infinite horizon models are often considered in macroeconomics and,

moreover, the nabla approach has been recently considered preferably when applied to eco-

nomic problems [6,7]. We proved necessary optimality conditions to problem (5.2) obtaining

Euler–Lagrange equations and transversality conditions (Theorems 5.6 and 5.7). In Chap-

ter 6 we consider a variational problem which often may be found in economics (see [71] and

references therein). We extremize a functional of the calculus of variations that is the compo-

sition of a certain scalar function with the delta and nabla integrals of a vector valued field,

possibly subject to boundary conditions and/or isoperimetric constraints. Depending on the

given boundary conditions, we can distinguish four different problems: with two boundary

conditions, with just initial or terminal point, or with none. Euler–Lagrange equations in

integral form, transversality conditions, and necessary optimality conditions for isoperimetric

problems, on an arbitrary time scale, are proved. At the end, interesting corollaries and ex-

amples are presented. The last chapter, Chapter 7, is devoted to two economic models. Both

of them are presented with a time-scale formulation. In the former, we consider a general

(non-classical) mixed delta-nabla problem (see (7.1)–(7.2)) of the calculus of variations on

time scales, as in Chapter 6. However, here we prove general necessary optimality conditions

of Euler–Lagrange type in differential form (Theorem 7.1). We consider a firm that wants

to program its production and investment policies in order to gain a desirable production

level and maximize its market competitiveness. Our idea is to discretize necessary optimality

conditions of Euler–Lagrange type (ELP ) and the (continuous) problem P in different ways,

combining forward (∆) and backward (∇) discretization operators into a mixed operator D.

One can apply the variational principle to problem P obtaining the respective Euler–Lagrange

equation ELP (Corollary 7.2), and then discretize it using D, obtaining (ELP )D; or we can

begin by discretizing problem P into PD and then develop the respective variational principle,

obtaining ELPD (Theorem 7.1). This is illustrated in the following diagram.

P

ELP

(ELP )D

Corollary 7.2

PD

ELPD

Theorem 7.1

4



Note that, in general, (ELP )D is different from ELPD . Four different problems PD, four

Euler–Lagrange equations ELPD and four Euler–Lagrange equations (ELP )D are discussed

and investigated in Section 7.1. For our problem a time-scale approach leads to better results:

the approach on the right hand side of the diagram gives candidates to minimizers for which

the value of the functional is smaller than the values obtained from the approach on the left

hand side of the diagram. Appendix A provides all calculations made using the Computer

Algebra System Maple, version 10. The latter economic model (Section 7.2) is more complex

and relates to inflation and unemployment, which inflicts a social loss. There exists a strict

relation between both, which is described by the Phillips curve. Economists use a continuous

or a discrete variational problem. In this thesis a time-scale model is presented, which unifies

available results in the literature. We apply the theory of the calculus of variations in order

to find an optimal path of expected rate of inflation that minimizes the total social loss over

a given time interval.

We finish the thesis with a conclusion, pointing also some important directions of future

research.

5
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Synthesis
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Chapter 1

Time-scale Calculus

A time scale T is an arbitrary nonempty closed subset of R. The sets of real numbers R,

the integers Z, the natural numbers N, and the nonnegative integers N0, an union of closed

intervals [1, 2] ∪ [4, 5] or Cantor set are examples of time scales. While the sets of rational

numbers Q, the irrational numbers R \Q, the complex numbers C or an open interval (4, 5)

are not time scales. Throughout this thesis for a, b ∈ T, a < b, we define the interval [a, b] in

T by [a, b]T := [a, b] ∩ T = {t ∈ T : a ≤ t ≤ b}.

Definition 1.1 (See Section 1.1 of [24]). Let T be a time scale and t ∈ T. The forward jump

operator σ : T → T is defined by σ(t) := inf{s ∈ T : s > t} for t 6= supT and σ(supT) :=

supT if supT < +∞. Accordingly, we define the backward jump operator ρ : T → T by

ρ(t) := sup{s ∈ T : s < t} for t 6= inf T and ρ(inf T) := inf T if inf T > −∞. The forward

graininess function µ : T→ [0,∞) is defined by µ(t) := σ(t)−t, while the backward graininess

function ν : T→ [0,∞) is defined by ν(t) := t− ρ(t).

Example 1.2. The two classical time scales are R and Z, representing the continuous and

the purely discrete time, respectively. The other standard examples are periodic numbers

hZ = {hk : h > 0, k ∈ Z}, and q-scale qZ := qZ ∪ {0} = {qk : q > 1, k ∈ Z} ∪ {0} (however,

here we also consider a time scale qN0 = {qk : q > 1, k ∈ N0}). We can also define the

following time scale: Pa,b =
∞⋃
k=0

[k(a+ b), k(a+ b) + a], a, b > 0.

The Table 1.1 and Example 1.3 present different forms of jump operators σ and ρ, and

graininiess functions µ and ν, in specified time scales.

Example 1.3 (See Example 1.3 of [93]). Let a, b > 0 and consider the time scale

Pa,b =
∞⋃
k=0

[k(a+ b), k(a+ b) + a].

9



CHAPTER 1. TIME-SCALE CALCULUS

T R hZ qZ

σ(t) t t+ h qt

ρ(t) t t− h t
q

µ(t) 0 h t(q − 1)

ν(t) 0 h t(q−1)
q

Table 1.1: Examples of jump operators and graininess functions on different time scales.

Then

σ(t) =

t if t ∈ A1,

t+ b if t ∈ A2,
ρ(t) =

t− b if t ∈ B1,

t if t ∈ B2

and

µ(t) =

0 if t ∈ A1,

b if t ∈ A2,
ν(t) =

b if t ∈ B1,

0 if t ∈ B2,

where
∞⋃
k=0

[k(a+ b), k(a+ b) + a] = A1 ∪A2 = B1 ∪B2,

with

A1 =
∞⋃
k=0

[k(a+ b), k(a+ b) + a), B1 =
∞⋃
k=0

{k(a+ b)},

A2 =
∞⋃
k=0

{k(a+ b) + a}, B2 =
∞⋃
k=0

(k(a+ b), k(a+ b) + a].

In the time-scale theory the following classification of points is used:

• A point t ∈ T is called right-scattered or left-scattered if σ(t) > t or ρ(t) < t, respectively.

• A point t is isolated if ρ(t) < t < σ(t).

• If t < supT and σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then

t is called left-dense.

• We say that t is dense if ρ(t) = t = σ(t).

Definition 1.4 (See Section 1 of [80]). A time scale T is said to be an isolated time scale

provided given any t ∈ T, there is a δ > 0 such that (t− δ, t+ δ) ∩ T = {t}.

10



1.1. THE DELTA DERIVATIVE AND THE DELTA INTEGRAL

Remark 1.5. If the graininess function is bounded from below by a strictly positive number,

then the time scale is isolated [22]. Therefore, hZ, h > 0, and qN0, q > 1, are examples

of isolated time scales. Note that the converse is not true. For example, T = log(N) is an

isolated time scale but its graininess function is not bounded from below by a strictly positive

number.

Definition 1.6 (See [13]). A time scale T is said to be regular if the following two conditions

are satisfied simultaneously for all t ∈ T: σ(ρ(t)) = t and ρ(σ(t)) = t.

In the following example we present two regular time scales (R and qZ) and an irregular

time scale (Pa,b).

Example 1.7. For real numbers R and q-numbers qZ we have the required equivalence

σ(ρ(t)) = ρ(σ(t)) = t for a time scale to be regular. Considering the time scale Pa,b, we

get

σ(ρ(t)) = ρ(σ(t)) =



t− b if t ∈ t ∈
∞⋃
k=0

{k(a+ b)},

t if t ∈
∞⋃
k=0

(k(a+ b), k(a+ b) + a),

t+ b if t ∈ t ∈
∞⋃
k=0

{k(a+ b) + a}

and we conclude that Pa,b is irregular.

1.1 The delta derivative and the delta integral

In this section we collect the necessary theorems and properties concerning delta differ-

entiation and delta integration on a time scale. The delta approach is based on the forward

jump operator σ. If f : T −→ R is a function, then we define fσ : T −→ R by fσ(t) := f(σ(t))

for all t ∈ T. The delta derivative (or Hilger derivative) of function f : T −→ R is defined for

points in the set Tκ, where

Tκ :=

T \ {supT} if ρ(supT) < supT <∞,

T if supT =∞ or ρ(supT) = supT.

Let us define the sets Tκn , n ≥ 2, inductively: Tκ1
:= Tκ and Tκn :=

(
Tκn−1

)κ
, n ≥ 2. We

define the delta differentiability in the following way.

Definition 1.8 (Section 1.1 of [24]). Let f : T → R and t ∈ Tκ. We define f∆(t) to be the

number (provided it exists) with the property that given any ε > 0, there is a neighborhood U

(U = (t− δ, t+ δ) ∩ T for some δ > 0) of t such that∣∣fσ(t)− f(s)− f∆(t) (σ(t)− s)
∣∣ ≤ ε |σ(t)− s| for all s ∈ U.

11



CHAPTER 1. TIME-SCALE CALCULUS

A function f is delta differentiable on Tκ provided f∆(t) exists for all t ∈ Tκ. Then, f∆ :

Tκ → R is called the delta derivative of f on Tκ.

Theorem 1.9 (Theorem 1.16 of [24]). Let f : T→ R and t ∈ Tκ. The following hold:

1. If f is delta differentiable at t, then f is continuous at t.

2. If f is continuous at t and t is right-scattered, then f is delta differentiable at t with

f∆(t) =
fσ(t)− f(t)

µ(t)
.

3. If t is right-dense, then f is delta differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case,

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

4. If f is delta differentiable at t, then

fσ(t) = f(t) + µ(t)f∆(t).

The next example is a consequence of Theorem 1.9 and presents different forms of the

delta derivative on specific time scales.

Example 1.10. Let T be a time scale.

1. If T = R, then f : R→ R is delta differentiable at t ∈ R if and only if

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists, i.e., if and only if f is differentiable (in the ordinary sense) at t and in this case

we have f∆(t) = f ′(t).

2. If T = hZ, h > 0, then f : hZ→ R is delta differentiable at t ∈ hZ with

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(t+ h)− f(t)

h
=: ∆hf(t). (1.1)

In the particular case for h = 1, we have f∆(t) = ∆f(t), where ∆ is the usual forward

difference operator.

12
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3. If T = qZ, q > 1, then for a delta differentiable function f : qZ −→ R we have

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(qt)− f(t)

(q − 1)t
=: ∆qf(t), (1.2)

for all t ∈ qZ\{0}, i.e., we get the usual Jackson derivative of quantum calculus [62,74].

Now we formulate the basic properties of the delta derivative on a time scale.

Theorem 1.11 (Theorem 1.20 of [24]). Let f, g : T → R be delta differentiable at t ∈ Tκ.

Then,

1. the sum f + g : T→ R is delta differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t);

2. for any constant α, αf : T→ R is delta differentiable at t with

(αf)∆(t) = αf∆(t);

3. the product fg : T→ R is delta differentiable at t with

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t);

4. if g(t)gσ(t) 6= 0, then f/g is delta differentiable at t with(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)gσ(t)
.

Below we generalize the product rule (the third item of Theorem 1.11) for n functions.

Example 1.12 (Cf. Exercise 1.22 of [24]). Let T be a time scale. If xk is a delta differentiable

function at t, k = 1, . . . n, then(
n∏
k=1

xk(t)

)∆

=
n∑
k=1

(
x∆
k (t)

k−1∏
i=1

xσi (t)
n∏

m=k+1

xm(t)

)
(1.3)

holds at t, for i, k,m, n ∈ N, 1 ≤ i ≤ k − 1, 2 ≤ m ≤ n, 1 ≤ k ≤ n.

Proof. The proof is made using mathematical induction. First we consider the basic step.

For n = 1 we get easily that x∆
1 = x∆

1 . For n = 2 we get the formula presented in the third

item of Theorem 1.11. Next, in the inductive step, we have to prove that if (1.3) holds for

n = j−1, then it also holds for n = j, j ∈ N. Hence, our induction hypothesis is the following:(
j−1∏
k=1

xk(t)

)∆

=

j−1∑
k=1

(
x∆
k (t)

k−1∏
i=1

xσi (t)

j−1∏
m=k+1

xm(t)

)
.

13
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It must be shown that (1.3) holds for n = j. Observe that(
j∏

k=1

xk(t)

)∆

= (x1(t)x2(t) · · ·xj−1(t)xj(t))
∆

= (x1(t)x2(t) · · ·xj−1(t))∆ xj(t) + xσ1 (t)xσ2 (t) · · ·xσj−1(t)x∆
j (t)

=

j−1∑
k=1

(
x∆
k (t)

k−1∏
i=1

xσi (t)

j−1∏
m=k+1

xm(t)

)
xj(t) + xσ1 (t)xσ2 (t) · · ·xσj−1(t)x∆

j (t)

=

j∑
k=1

(
x∆
k (t)

k−1∏
i=1

xσi (t)

j∏
m=k+1

xm(t)

)
.

Thereby our statement is proved for n = j. By mathematical induction, the statement (1.3)

holds for all n ∈ N.

Now we introduce the theory of delta integration on time scales. We start by defining the

necessary class of functions.

Definition 1.13 (Section 1.4 of [25]). A function f : T→ R is called rd-continuous provided

it is continuous at right-dense points in T and its left-sided limits exist (finite) at all left-dense

points in T.

The set of all rd-continuous functions f : T→ R is denoted by

Crd = Crd(T) = Crd(T,R).

The set of functions f : T → R that are delta differentiable and whose derivative is rd-

continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T,R).

Definition 1.14 (Definition 1.71 of [24]). A function F : T→ R is called a delta antideriva-

tive of f : T→ R provided F∆(t) = f(t) for all t ∈ Tκ.

Definition 1.15. Let T be a time scale and a, b ∈ T. If f : Tκ → R is a rd-continuous

function and F : T→ R is an antiderivative of f , then the Cauchy delta integral is defined by

b∫
a

f(t)∆t := F (b)− F (a).

Theorem 1.16 (Theorem 1.74 of [24]). Every rd-continuous function f has an antiderivative

F . In particular, if t0 ∈ T, then F defined by

F (t) :=

t∫
t0

f(τ)∆τ t ∈ T,

is an antiderivative of f .

14
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Theorem 1.17 (Theorem 1.75 of [24]). If f ∈ Crd and t ∈ Tκ, then

σ(t)∫
t

f(τ)∆τ = µ(t)f(t).

Let us see a few examples.

Example 1.18. Let a, b ∈ T and f : T→ R be rd-continuous.

1. If T = R, then
b∫
a

f(t)∆t =

b∫
a

f(t)dt,

where the integral on the right hand side is the usual Riemann integral.

2. If [a, b] consists of only isolated points, then

b∫
a

f(t)∆t =



∑
t∈[a,b)

µ(t)f(t), if a < b,

0, if a = b,

−
∑

t∈[b,a)

µ(t)f(t), if a > b.

3. If T = hZ, h > 0, then

b∫
a

f(t)∆t =



b
h
−1∑

k= a
h

f(kh)h, if a < b,

0, if a = b,

−
a
h
−1∑

k= b
h

f(kh)h, if a > b.

4. If T = qN0, q > 1, a < b, then

b∫
a

f(t)∆t = (q − 1)
∑

t∈[a,b)∩T

tf(t).

Now we present some useful properties of the delta integral.

Theorem 1.19 (Theorem 1.77 of [24]). If a, b, c ∈ T, a < c < b, α ∈ R, and f, g ∈ Crd(T,R),

then:

1.
b∫
a

(f(t) + g(t))∆t =
b∫
a
f(t)∆t+

b∫
a
g(t)∆t,

15
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2.
b∫
a
αf(t)∆t = α

b∫
a
f(t)∆t,

3.
b∫
a
f(t)∆t = −

a∫
b

f(t)∆t,

4.
b∫
a
f(t)∆t =

c∫
a
f(t)∆t+

b∫
c
f(t)∆t,

5.
a∫
a
f(t)∆t = 0,

6. if f, g ∈ C1
rd(T,R), then

b∫
a
f(t)g∆(t)∆t = f(t)g(t)|t=bt=a −

b∫
a
f∆(t)gσ(t)∆t,

7. if f, g ∈ C1
rd(T,R), then

b∫
a
fσ(t)g∆(t)∆t = f(t)g(t)|t=bt=a −

b∫
a
f∆(t)g(t)∆t,

8. if f(t) > 0 for all a 6 t < b, then
b∫
a
f(t)∆t > 0.

1.2 The nabla derivative and the nabla integral

The nabla calculus is similar to the delta one of Section 1.1. The difference is that the

backward jump operator ρ takes the role of the forward jump operator σ. For a function

f : T −→ R we define fρ : T −→ R by fρ(t) := f(ρ(t)). If T has a right-scattered minimum

m, then we define Tκ := T− {m}; otherwise, we set Tκ := T. In summary,

Tκ :=

T \ {inf T} if −∞ < inf T < σ(inf T),

T otherwise.

Let us define the sets Tκ, n ≥ 2, inductively: Tκ1 := Tκ and Tκn := (Tκn−1)κ, n ≥ 2. Finally,

we can define Tκκ := Tκ ∩ Tκ.

The definition of the nabla derivative of a function f : T −→ R at point t ∈ Tκ is similar

to the delta case (Definition 1.8).

Definition 1.20 (Section 3.1 of [25]). We say that a function f : T→ R is nabla differentiable

at t ∈ Tκ if there is a number f∇(t) such that for all ε > 0 there exists a neighborhood U of

t (i.e., U = (t− δ, t+ δ) ∩ T for some δ > 0) such that

|fρ(t)− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s| for all s ∈ U.

We say that f∇(t) is the nabla derivative of f at t. Moreover, f is said to be nabla differen-

tiable on T provided f∇(t) exists for all t ∈ Tκ.

16
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Below we present the basic properties of the nabla derivative.

Theorem 1.21 (Theorem 8.39 of [24]). Let f : T → R and t ∈ Tκ. Then we have the

following:

1. If f is nabla differentiable at t, then f is continuous at t.

2. If f is continuous at t and t is left-scattered, then f is nabla differentiable at t with

f∇(t) =
f(t)− f(ρ(t))

ν(t)
.

3. If t is left-dense, then f is nabla differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∇(t) = lim
s→t

f(t)− f(s)

t− s
.

4. If f is a nabla differentiable at t, then

fρ(t) = f(t)− ν(t)f∇(t).

Example 1.22. If T = R, then

f∇(t) = f
′
(t),

and if T = hZ, h > 0, then

f∇(t) =
f(t)− f(t− h)

h
=: ∇hf(t).

In the case h = 1, ∇h is the standard backward difference operator ∇f(t) = f(t)− f(t− 1).

Now we present some useful properties of the nabla derivative.

Theorem 1.23 (Theorem 8.41 of [24]). Assume f, g : T → R are nabla differentiable at

t ∈ Tκ. Then,

1. the sum f + g : T→ R is nabla differentiable at t with

(f + g)∇(t) = f∇(t) + g∇(t);

2. for any constant α, αf : T→ R is nabla differentiable at t and

(αf)∇(t) = αf∇(t);

17
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3. the product fg : T→ R is nabla differentiable at t with

(fg)∇(t) = f∇(t)g(t) + fρ(t)g∇(t) = f∇(t)gρ(t) + f(t)g∇(t);

4. f/g is nabla differentiable at t with(
f

g

)∇
(t) =

f∇(t)g(t)− f(t)g∇(t)

g(t)gρ(t)
,

if g(t)gρ(t) 6= 0.

Now we formulate the theory of nabla integration on time scales. Similarly as in the delta

case, first we define an associated class of functions.

Definition 1.24 (Section 3.1 of [25]). Let T be a time scale and f : T → R. We say that f

is ld-continuous if it is continuous at left-dense points t ∈ T and its right-sided limits exist

(finite) at all right-dense points.

Remark 1.25. If T = R, then f is ld-continuous if and only if f is continuous. If T = Z,

then any function is ld-continuous.

The set of all ld-continuous functions f : T→ R is denoted by

Cld = Cld(T) = Cld(T,R)

and the set of all nabla differentiable functions with ld-continuous derivative by

C1
ld = C1

ld(T) = C1
ld(T,R).

Now we present the definition of nabla integral on time scales.

Definition 1.26 (Definition 8.42 of [24]). A function F : T→ R is called a nabla antideriva-

tive of f : T → R provided F∇(t) = f(t) for all t ∈ Tκ. In this case we define the nabla

integral of f from a to b (a, b ∈ T) by∫ b

a
f(t)∇t := F (b)− F (a), for all t ∈ T.

Theorem 1.27 (Theorem 8.45 of [24] or Theorem 11 of [70]). Every ld-continuous function

f has a nabla antiderivative F . In particular, if a ∈ T, then F defined by

F (t) =

∫ t

a
f(τ)∇τ, t ∈ T,

is a nabla antiderivative of f .

18
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Theorem 1.28 (Theorem 8.46 of [24]). If f : T −→ R is ld-continuous and t ∈ Tκ, then∫ t

ρ(t)
f(τ)∇τ = ν(t)f(t).

Properties of the nabla integral are analogous to properties of the delta integral.

Theorem 1.29 (See Theorem 8.47 of [24]). If a, b, c ∈ T, a < c < b, α ∈ R, and f, g : T −→
R, f, g ∈ Cld (T,R), then:

1.
b∫
a

(f(t) + g(t))∇t =
b∫
a
f(t)∇t+

b∫
a
g(t)∇t;

2.
b∫
a
αf(t)∇t = α

b∫
a
f(t)∇t;

3.
b∫
a
f(t)∇t = −

a∫
b

f(t)∇t;

4.
b∫
a
f(t)∇t =

c∫
a
f(t)∇t+

b∫
c
f(t)∇t;

5. if f, g ∈ C1
ld (T,R), then

b∫
a
fρ(t)g∇(t)∇t = f(t)g(t)|t=bt=a −

b∫
a
f∇(t)g(t)∇t;

6. if f, g ∈ C1
ld (T,R), then

b∫
a
f(t)g∇(t)∇t = f(t)g(t)|t=bt=a −

b∫
a
f∇(t)g(ρ(t))∇t;

7.
a∫
a
f(t)∇t = 0.

Theorem 1.30 (See Theorem 8.48 of [24]). Assume a, b ∈ T and f : T −→ R is ld-continuous.

1. If T = R, then
b∫
a

f(t)∇t =

b∫
a

f(t)dt,

where the integral on the right hand side is the Riemann integral.

2. If T consists of only isolated points, then

b∫
a

f(t)∇t =



∑
t∈(a,b]

ν(t)f(t), if a < b,

0, if a = b,

−
∑

t∈(b,a]

ν(t)f(t), if a > b.
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3. If T = hZ, where h > 0, then

b∫
a

f(t)∇t =



b
h∑

k=a+h
h

f(kh)h, if a < b,

0, if a = b,

−
a
h∑

k= b+h
h

f(kh)h, if a > b.

1.3 Relation between delta and nabla operators

It is possible to relate the approach of Section 1.1 with that of Section 1.2.

Theorem 1.31 (See Theorems 2.5 and 2.6 of [7]). If f : T→ R is delta differentiable on Tκ

and if f∆ is continuous on Tκ, then f is nabla differentiable on Tκ with

f∇(t) =
(
f∆
)ρ

(t) for all t ∈ Tκ. (1.4)

If f : T → R is nabla differentiable on Tκ and if f∇ is continuous on Tκ, then f is delta

differentiable on Tκ with

f∆(t) =
(
f∇
)σ

(t) for all t ∈ Tκ. (1.5)

Theorem 1.32 (Proposition 7 of [54]). If function f : T → R is continuous, then for all

a, b ∈ T with a < b we have

b∫
a

f(t)∆t =

b∫
a

fρ(t)∇t, (1.6)

b∫
a

f(t)∇t =

b∫
a

fσ(t)∆t. (1.7)

For a more general theory relating delta and nabla approaches, we refer the reader to the

duality theory of Caputo [29].

1.4 Delta dynamic equations

In the beginning of this section we introduce a generalized delta exponential function

defined for an arbitrary time scale T. This function is used to solve an initial value problem

presented in the further part of this section. The nabla exponential function can be defined

analogously [25]. Next we present a second order linear dynamic homogenous equation with

constant coefficients and its solution.
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Definition 1.33 (Definition 2.25 of [24]). We say that a function p : T→ R is regressive if

1 + µ(t)p(t) 6= 0

for all t ∈ Tκ. The set of all regressive and rd-continuous functions f : T→ R is denoted by

R = R(T) = R(T,R).

Definition 1.34 (Definition 2.30 of [24]). If p ∈ R, then we define the delta exponential

function by

ep(t, s) := exp

 t∫
s

ξµ(τ) (p(τ)) ∆τ

 , s, t ∈ T,

where ξµ is the cylinder transformation (see Definition 2.21 of [24]).

Example 1.35 (Section 2.3 of [24]). Let T be a time scale, t, t0 ∈ T, and α ∈ R(T,R)

be a constant. If T = R, then eα(t, t0) = eα(t−t0) for all t ∈ R. If T = hZ, h > 0, and

α ∈ C\
{
− 1
h

}
, then

eα(t, t0) = (1 + αh)
t−t0
h for all t ∈ hZ. (1.8)

If T = qN0, q > 1, then for all t ∈ qN0

eα(t, t0) =
∏

s∈[t0,t)

[1 + (q − 1)αs], if t > t0. (1.9)

If T =

{
n∑
k=1

1
k : n ∈ N

}
, then eα(t, t0) = (n+α)(n−n0)

n(n−n0) if t =
n∑
k=1

1
k .

The delta exponential function has the following properties.

Theorem 1.36 (Theorem 2.36 of [24]). Let p, q ∈ R and r, s, t ∈ T. We define 	p(t) :=
−p(t)

1+µ(t)p(t) for all t ∈ Tκ. The following holds:

1. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

3. 1
ep(t,s) = e	p(t, s);

4. ep(t, s)ep(s, r) = ep(t, r);

5. ep(t, s) = 1
ep(s,t) = e	p(s, t);

6.
(

1
ep(·,s)

)∆
= −p(t)

eσp (·,s) .
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Next we study the first order nonhomogeneous linear equation y∆(t) = p(t)y + f(t) on

a time scale T. This equation with given initial condition y(t0) = y0 forms a initial value

problem. Under some assumptions (e.g., regressivity) and using the exponential function, we

can find its unique solution.

Theorem 1.37 (Variation of Constants – see Theorem 2.1 of [25]). Let p ∈ R, f ∈ Crd,

t0 ∈ T and y0 ∈ R. Then, the unique solution of the initial value problem (IVP)

y∆ = p(t)y + f(t), y(t0) = y0, (1.10)

is given by

y(t) = ep(t, t0)y0 +

t∫
t0

ep(t, σ(τ))f(τ)∆τ.

Remark 1.38 (See Remark 2.75 of [24]). An alternative form of the solution of the initial

value problem (1.10) is given by

y(t) = ep(t, t0)

y0 +

t∫
t0

ep(t0, σ(τ))f(τ)∆τ

 .
In the following example three initial value problems on specific time scales are presented.

Example 1.39 (Cf. Exercise 2.79 of [24]). 1. IVP: y∆ = 2y + t, y(0) = 0, with T = R.

Solution: For T = R we get the first order differential equation y′(t) = 2y(t) + t, where

functions p and f (of equation (1.10)) are: p(t) = 2, f(t) = t. In order to write the

solution to our problem we need the exponential function ep(t, σ(τ)), which in this case

is equal to e2(t−τ). Hence, the solution to the IVP is given by y(t) =
t∫

0

e2(t−τ)τdτ =

1
4e

2t − 1
2 t−

1
4 .

2. IVP: y∆ = 2y + 3t, y(0) = 0, with T = Z. Solution: For integers Z our problem is the

first order difference equation ∆y(t) = 2y(t) + 3t with functions p(t) = 2, f(t) = 3t.

In this case the exponential function ep(t, σ(τ)) is equal to 3t−τ−1. Hence, we get as

solution y(t) =
t−1∑
k=0

3t−k−13k = t3t−1.

3. IVP: y∆(t) = p(t)y + ep(t, t0), y(t0) = 0, with an arbitrary time scale T and a re-

gressive function p. Solution: First we modify the function ep(t, σ(τ)) using the prop-

erties of the exponential function gathered in Theorem 1.36: ep(t, σ(τ)) = 1
ep(σ(τ),t) =
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1
(1+µ(τ)p(τ))ep(τ,t) . Then the solution to our problem is given by

y(t) =

t∫
t0

ep(t, σ(τ))ep(τ, t0)∆τ =

t∫
t0

1

(1 + µ(τ)p(τ))ep(τ, t)
ep(τ, t0)∆τ

=

t∫
t0

1

(1 + µ(τ)p(τ))
ep(t, τ)ep(τ, t0)∆τ = ep(t, t0)

t∫
t0

1

1 + µ(τ)p(τ)
∆τ

Now let us consider the following second-order linear dynamic homogeneous equation with

constant coefficients:

y∆∆ + αy∆ + βy = 0, α, β ∈ R, (1.11)

on a time scale T. We say that the dynamic equation (1.11) is regressive if 1−αµ(t)+βµ2(t) 6=
0 for all t ∈ Tκ, i.e., βµ− α ∈ R.

Definition 1.40 (Definition 3.5 of [24]). Let y1 and y2 be delta differentiable functions. For

them we define the Wronskian W (y1, y2)(t) by

W (y1, y2)(t) := det

[
y1(t) y2(t)

y∆
1 (t) y∆

2 (t)

]
.

We say that two solutions y1 and y2 of (1.11) form a fundamental set of solutions (or a

fundamental system) for (1.11), provided W (y1, y2)(t) 6= 0 for all t ∈ Tκ.

Theorem 1.41 (Theorem 3.7 of [24]). If functions y1 and y2 form a fundamental system of

solutions for (1.11), then y(t) = γ1y1(t) + γ2y2(t), where γ1, γ2 are constants, is a general

solution to (1.11), i.e., every function of this form is a solution to (1.11) and every solution

of (1.11) is of this form.

In order to solve equation (1.11) we have to build its characteristic equation

λ2 + αλ+ β = 0, (1.12)

where λ ∈ C, 1 + λµ(t) 6= 0, t ∈ Tκ. Then y(t) = eλ(t, t0) is a solution to (1.11) if and only if

λ satisfies (1.12). The solutions λ1, λ2 of (1.12) are given by

λ1 :=
−α−

√
α2 − 4β

2
and λ2 :=

−α+
√
α2 − 4β

2
. (1.13)

Theorem 1.42 (Theorem 3.16 of [24]). If (1.11) is regressive and α2 − 4β 6= 0, then a

fundamental system of (1.11) is given by

eλ1(·, t0) and eλ2(·, t0),

where t0 ∈ Tκ and λ1 and λ2 are given by (1.13).
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In order to formulate the fundamental system of (1.11) in case α2 − 4β < 0, we have to

introduce the trigonometric functions cosp and sinp.

Definition 1.43 (See Definition 3.25 of [24]). If p ∈ Crd and µp2 ∈ R, then we define the

trigonometric functions cosp and sinp by

cosp =
eip + e−ip

2
and sinp =

eip − e−ip
2i

.

Remark 1.44. Let us consider an arbitrary time scale T, p ∈ Crd and t, t0 ∈ T. Then Euler’s

formula eip(t, t0) = cosp(t, t0) + i sinp(t, t0) holds. This is easy to show using Definition 1.43

of trigonometric functions. However, the identity

[sinp(t, t0)]2 + [cosp(t, t0)]2 = 1 (1.14)

is not necessarily true on an arbitrary time scale. When we extend the left-hand side of

equation (1.14), we get

[sinp(t, t0)]2 + [cosp(t, t0)]2 =

(
eip(t, t0)− e−ip(t, t0)

2i

)2

+

(
eip(t, t0) + e−ip(t, t0)

2

)2

= eip(t, t0)e−ip(t, t0).

The value of eip(t, t0)e−ip(t, t0) depends on the time scale and it is not necessary to be equal

to one. In order to show this we consider the two classical time scales R and Z, for t 6=
t0 (otherwise it is trivial, since ep(t, t) ≡ 1), and to simplify calculations (without loss of

generality) we set p(t) ≡ 2. For T = R we get e2i(t−t0)e−2i(t−t0) = e0 = 1. However, for

T = Z we obtain (1 + 2i)(t−t0)(1− 2i)(t−t0) = (1− (2i)2)(t−t0) = (−3)(t−t0) 6= 1.

Theorem 1.45 (See Theorem 3.32 of [24]). Suppose that α2 − 4β < 0. Define p = −α
2 and

q =

√
4β−α2

2 . If p and µβ −α are regressive, then a fundamental system of (1.11) is given by

cos q
1+µp

(·, t0)ep(·, t0) and sin q
1+µp

(·, t0)ep(·, t0),

where t0 ∈ Tκ and the Wronskian of these solutions is qeµβ−α(·, t0).

Finally, we consider the case α2 − 4β = 0.

Theorem 1.46 (Theorem 3.34 of [24]). Suppose α2−4β = 0. Define p = −α
2 . If p ∈ R, then

a fundamental system of (1.11) is given by

ep(t, t0) and ep(t, t0)

t∫
t0

1

1 + pµ(τ)
∆τ,

where t0 ∈ Tκ, and the Wronskian of these solutions is equal to eα−µα2/4(·, t0).
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Chapter 2

Classical Calculus of Variations

The history of the calculus of variations begins with a problem posed by Johann Bernoulli

(1696) as a challenge to the mathematical community and in particular to his brother Jacob.

The problem that Johann posed is as follows. Two points a and b are given in a vertical

plane. It is required to determine the shape of a curve along which a bead slides initially at

rest under gravity from one end to the other in minimal time. The endpoints of the curve are

specified and absence of friction is assumed.

The problem attracted the attention of a number of a mathematicians including Huygens,

L’Hôpital, Leibniz, Newton and the Bernoulli brothers, and later Euler and Lagrange; and was

called the brachistochrone problem or the problem of the curve of fastest descent. The solution

was provided by Johann and Jacob Bernoulli, Newton, Euler, and Leibniz. All of them

reached the same conclusion – that the brachistochrone is not the circular arc (as predicted

by Galileo), but a cycloid. Afterwards, a student of Bernoulli, the brilliant mathematician

Leonhard Euler, considered the general problem of finding a function extremizing (minimizing

or maximizing) an integral

L[y] =

b∫
a

L(t, y(t), y′(t))dt (2.1)

subject to the boundary conditions

y(a) = ya, y(b) = yb (2.2)

with y ∈ C1([a, b];Rn), a, b ∈ R, ya, yb ∈ Rn and L(t, y, v) ∈ C2([a, b]×Rn×Rn). We say that

y0 ∈ C1([a, b];Rn) is a global minimizer (respectively, global maximizer) of the variational

problem (2.1)–(2.2) if L[y] ≥ L[y0] (respectively, L[y] ≤ L[y0]) for all y ∈ C1([a, b];Rn)

satisfying (2.2).

Definition 2.1 (See, e.g., Definition 1.1 of [94]). The functional L is said to attain a local

minimum (respectively, local maximum) at ŷ ∈ C1([a, b];Rn) if there exists δ > 0 such that for
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CHAPTER 2. CLASSICAL CALCULUS OF VARIATIONS

any y ∈ C1([a, b];Rn) with ||y − ŷ|| < δ, y(a) = ya and y(b) = yb, the inequality L[y] ≥ L[ŷ]

(respectively, L[y] ≤ L[ŷ]) holds, where

||y|| = max
t∈[a,b]

||y(t)− ŷ(t)||+ max
t∈[a,b]

||y′(t)− ŷ′(t)||.

The following necessary optimality condition, first proved by Euler and called Euler–

Lagrange equation, holds:

Ly(t, y(t), y′(t))− d

dt
Lv(t, y(t), y′(t)) = 0, (2.3)

where Ly and Lv are partial derivatives of the Lagrangian L with respect to its second and

third arguments, respectively. Solutions y(t) of (2.3) are called extremals.

The calculus of variations has a long history of interaction with other branches of mathe-

matics such as geometry and differential equations, and with physics, particularly mechanics.

More recently, the calculus of variations has found applications in other fields such as eco-

nomics or electrical engineering.

The next example demonstrates an application of the calculus of variations in economics.

We present an economic model related to the tradeoff between inflation and unemployment

[84]. The inflation rate, p, affects decisions of the society regarding consumption and saving,

and therefore aggregated demand for domestic production, which, in turn, affects the rate of

unemployment, u. A relationship between the inflation rate and the rate of unemployment

is described by the Phillips curve, the most commonly used term in the analysis of inflation

and unemployment [84]. Having a Phillips tradeoff between u and p, what is then the best

combination of inflation and unemployment over time? To answer this question, we follow

here the formulations presented in [31, 87]. The Phillips tradeoff between u and p is defined

by

p := −βu+ π, β > 0, (2.4)

where π is the expected rate of inflation that is captured by the equation

π′ = j(p− π), 0 < j ≤ 1. (2.5)

The government loss function, λ, is specified in the following quadratic form:

λ = u2 + αp2, (2.6)

where α > 0 is the weight attached to government’s distaste for inflation relative to the loss

from income deviating from its equilibrium level. Combining (2.4) and (2.5), and substituting

the result into (2.6), we obtain that

λ
(
π(t), π′(t)

)
=

(
π′(t)

βj

)2

+ α

(
π′(t)

j
+ π(t)

)2

,
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where α, β, and j are real positive parameters that describe the relations between all variables

that occur in the model [87]. The problem is to find the optimal path π that minimizes the

total social loss over the time interval [0, T ]. The initial and the terminal values of π, π0 and

πT , respectively, are given with π0, πT > 0. To express the importance of the present relative

to the future, all social losses are discounted to their present values via a positive discount

rate δ. The problem is the following:

ΛC [π] =

T∫
0

λ(t, π(t), π′(t))e−δtdt −→ min (2.7)

subject to given boundary conditions

π(0) = π0, π(T ) = πT , (2.8)

where the Lagrangian is given by

λ(t, π, υ) :=

(
υ

βj

)2

+ α

(
υ

j
+ π

)2

. (2.9)

The Euler–Lagrange equation for the continuous model (2.7) has the form

d

dt
Lv(t, π(t), π′(t)) = Ly(t, π(t), π′(t)).

Now we present the discrete calculus of variations [63]. Assume that f(t, y, v) is a C2

function of (y, v) for each fixed t ∈ [a, b] ∩ Z, a, b ∈ Z. Let

D := {y : [a, b] ∩ Z→ Rn : y(a) = ya, y(b) = yb} .

We call D the set of admissible functions. The simplest variational problem is to extremize

(maximize or minimize) the finite sum

L[y] =
b−1∑
t=a

L(t, y(t+ 1),∆y(t)) −→ extr (2.10)

subject to the boundary conditions

y(a) = ya, y(b) = yb, (2.11)

where y ∈ D. We say that y0 ∈ D is a global minimizer (respectively, global maximizer) of

the variational problem (2.10)–(2.11) if L[y] ≥ L[y0] (respectively, L[y] ≤ L[y0]) for all y ∈ D.

Definition 2.2. We say that L has a local minimum (respectively, local maximum) at y0

provided there is a δ > 0 such that L[y] ≥ L[y0] (respectively, L[y] ≤ L[y0]) for all y ∈ D with

||y(t) − y0(t)|| < δ, t ∈ [a, b] ∩ Z and || · || the Euclidian norm. If, in addition, L[y] > L[y0]

for all y 6= y0 in D with ||y(t) − y0(t)|| < δ, t ∈ [a, b] ∩ Z, then we say that L has a proper

(strict) local minimum at y0.
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CHAPTER 2. CLASSICAL CALCULUS OF VARIATIONS

Next we state a necessary optimality condition for the variational problem (2.10)–(2.11).

Theorem 2.3 (Cf. [3,63]). If ŷ is a local extremizer for the variational problem (2.10)–(2.11),

then ŷ satisfies the discrete Euler–Lagrange equation

∆Lv(t, y(t+ 1),∆y(t)) = Ly(t, y(t+ 1),∆y(t)) (2.12)

for t ∈ [a, b− 1] ∩ Z.

Remark 2.4. There are two formulations for discrete-time variational problems. The dif-

ference basically lies in the presence of either y(t + 1) or y(t) in the data of the problem (in

the Lagrangian). The formulation with y(t+ 1) is commonly used in discrete and time-scale

theories. However, the presence of y(t) is traditionally used in the classical discrete opti-

mal control setting. The definitions of admissibility and local minimum (or maximum) for a

variational problem

L[y] =

b−1∑
t=a

L (t, y(t),∆y(t)) −→ extr (2.13)

are similar to those for (2.10). Problem (2.10) can be transformed into problem (2.13) by

using relation y(t+ 1) = ∆y(t) + y(t).

Now we consider the discrete-time economic model, presented for the continuous case in

(2.7)–(2.8), which describes the tradeoff between inflation and unemployment. The problem

is to minimize the discrete functional

ΛD[π] =

T−1∑
t=0

λ(π(t),∆π(t))(1 + δ)−t −→ min (2.14)

subject to the boundary conditions (2.8), where the Lagrangian λ(t, π, v) is given by (2.9) as

well. The Euler–Lagrange equation for the discrete model has the form

∆Lv(t, π(t),∆π(t)) = Ly(t, π(t),∆π(t)).

Often in economics, dynamic models are set up in either continuous or discrete time [8,84].

Since the calculus on time scales can be used to model dynamic processes whose time domains

are more complex than the set of integers or real numbers, the use of time scales in economics

is a flexible and capable modeling technique. Some advantages of using time-scale models in

economics will be showed in Chapter 7.
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Chapter 3

Calculus of Variations on Time

Scales

There are two available approaches to the calculus of variations on time scales. The first

one, the delta approach, is widely described in literature (see, e.g., [18,23–25,44,45,58,70,77,

88,93]). The latter one, the nabla approach, was introduced mainly due to its applications in

economics (see, e.g., [6–9]). However, it has been shown that these two types of calculus of

variations on time scales are dual [29,52,72].

Let T be a time scale with a = minT and b = maxT. For abbreviation, we use [a, b]

instead of [a, b]T := [a, b] ∩ T.

3.1 The delta approach to the calculus of variations

In this section we present the basic information about the delta calculus of variations on

time scales. First and second order necessary optimality conditions are formulated (Theo-

rem 3.4 and Theorem 3.6, respectively). Furthermore, transversality conditions are given.

Let T be a given time scale with at least three points, and a, b ∈ T, a < b. Consider the

following (so-called shifted1) variational problem on the time scale T:

L[y] =

b∫
a

L
(
t, yσ(t), y∆(t)

)
∆t −→ min (3.1)

in the class of functions y ∈ C1
rd(T,Rn) subject to the boundary conditions

y(a) = ya, y(b) = yb, ya, yb ∈ Rn, n ∈ N. (3.2)

1A shifted problem of the calculus of variations considers a shifted Lagrangian: the Lagrangian L of

functional (3.1) depends on yσ instead of y.
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Definition 3.1. A function y ∈ C1
rd(T,Rn) is said to be an admissible path (function) to

problem (3.1)–(3.2) if it satisfies the given boundary conditions y(a) = ya and y(b) = yb.

In what follows the Lagrangian L is understood as a function L : T×R2n −→ R, (t, y, v)→
L(t, y, v) and by Ly and Lv we denote the partial derivatives of L with respect to y and

v, respectively. Similar notation is used for second order partial derivatives. We assume

that L(t, ·, ·) is differentiable in (y, v); L(t, ·, ·), Ly(t, ·, ·) and Lv(t, ·, ·) are continuous at(
yσ(t), y∆(t)

)
uniformly at t and rd-continuous at t for any admissible path y. Let us consider

the following norm in C1
rd:

‖y‖C1
rd

= sup
t∈[a,b]

‖y(t)‖+ sup
t∈[a,b]κ

‖y4(t)‖,

where ‖ · ‖ is a norm in Rn.

Definition 3.2. We say that an admissible function ŷ ∈ C1
rd(T;Rn) is a local minimizer

(respectively, a local maximizer) to problem (3.1)–(3.2) if there exists δ > 0 such that L[ŷ] ≤
L[y] (respectively, L[ŷ] ≥ L[y]) for all admissible functions y ∈ C1

rd(T;Rn) satisfying the

inequality ||y − ŷ||C1
rd
< δ.

Local minimizers (or maximizers) to problem (3.1)–(3.2) fulfill the delta differential Euler–

Lagrange equation.

Theorem 3.3 (Delta differential Euler–Lagrange equation – see Theorem 4.2 of [18]). If

ŷ ∈ C1
rd(T;Rn) is a local minimizer to (3.1)–(3.2), then the Euler–Lagrange equation (in the

delta differential form)

L∆
v (t, ŷσ(t), ŷ∆(t)) = Ly(t, ŷ

σ(t), ŷ∆(t)) (3.3)

holds for t ∈ [a, b]κ.

The next theorem provides a delta integral Euler–Lagrange equation.

Theorem 3.4 (Delta integral Euler–Lagrange equation – see Theorem 1 of [58]). If ŷ(t) ∈
C1
rd(T;Rn) is a local minimizer of the variational problem (3.1)–(3.2), then there exists a

vector c ∈ Rn such that the Euler–Lagrange equation (in the delta integral form)

Lv
(
t, ŷσ(t), ŷ∆(t)

)
=

t∫
a

Ly(τ, ŷ
σ(τ), ŷ∆(τ))∆τ + cT (3.4)

holds for t ∈ [a, b]κ.

In the proof of Theorem 3.3 and Theorem 3.4 a time scale version of the Dubois–Reymond

lemma is used.
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Lemma 3.5 (See [18,45]). Let f ∈ Crd, f : [a, b] −→ Rn. Then

b∫
a

fT (t)η∆(t)∆t = 0

holds for all η ∈ C1
rd([a, b],Rn) with η(a) = η(b) = 0 if and only if f(t) = c for all t ∈ [a, b]κ,

c ∈ Rn.

The next theorem contains the second order necessary optimality condition for problem

(3.1)–(3.2).

Theorem 3.6 (Legendre condition – see Result 1.3 of [18]). If ŷ ∈ C2
rd(T;Rn) is a local

minimizer of the variational problem (3.1)–(3.2), then

A(t) + µ(t)
{
C(t) + CT (t) + µ(t)B(t) + (µ(σ(t)))†A(σ(t))

}
≥ 0, (3.5)

t ∈ [a, b]κ
2
, where

A(t) = Lvv
(
t, ŷσ(t), ŷ∆(t)

)
,

B(t) = Lyy
(
t, ŷσ(t), ŷ∆(t)

)
,

C(t) = Lyv
(
t, ŷσ(t), ŷ∆(t)

)
and where α† = 1

α if α ∈ R \ {0} and 0† = 0.

Remark 3.7. If (3.5) holds with the strict inequality “>”, then it is called the strengthened

Legendre condition.

The shifted calculus of variations on time scales was introduced in the pioneering work

of Bohner [18]. Since then, it has been developed in several directions, e.g., for problems

with double integrals [21], with higher-order delta derivatives [46], with non fixed boundary

conditions [58], and many other extensions [38, 59, 60]. However, there are just few papers

related to the non shifted calculus of variations on a general time scale [26, 32, 43, 44].2 In

those papers, the non shifted basic variational problem is defined as

L[y] =

b∫
a

L(t, y(t), y∆(t))∆t −→ min (3.6)

in the class of functions y ∈ C1
rd(T;Rn) subject to the boundary conditions

y(a) = ya, y(b) = yb. (3.7)

2Non shifted in the sense that Lagrangian L depends on (t, y(t), y∆(t)) instead of (t, yσ(t), y∆(t)) as in

problem (3.1)–(3.2).
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Theorem 3.8 (Euler–Lagrange equation for (3.6)–(3.7) – see Theorem 2 of [44]). If ŷ ∈
C1
rd(T;Rn) is a local minimizer to problem (3.6)–(3.7), then ŷ satisfies the Euler–Lagrange

equation (in delta integral form)

Lv(t, y(t), y∆(t)) =

σ(t)∫
a

Ly(τ, y(τ), y∆(τ))∆τ + c (3.8)

for all t ∈ [a, b]κ and some c ∈ Rn.

3.2 The nabla approach to the calculus of variations

In this section we consider a problem of the calculus of variations which involves a func-

tional with a nabla derivative and a nabla integral. The motivation to study such variational

problems is coming from applications, in particular from economics [6, 9]. Let T be a given

time scale, which has sufficiently many points in order for all calculations to make sense, and

let a, b ∈ T, a < b. The problem consists of minimizing or maximizing3

L[y] =

b∫
a

L(t, yρ(t), y∇(t))∇t (3.9)

in the class of functions y ∈ C1
ld(T;Rn) subject to the boundary conditions

y(a) = ya, y(b) = yb, ya, yb ∈ Rn, n ∈ N. (3.10)

Definition 3.9. A function y ∈ C1
ld(T,Rn) is said to be an admissible path (function) to

problem (3.9)–(3.10) if it satisfies the given boundary conditions y(a) = ya and y(b) = yb.

In what follows the Lagrangian L is understood as a function L : T×R2n −→ R, (t, y, v)→
L(t, y, v), and by Ly and Lv we denote the partial derivatives of L with respect to y and

v, respectively. Similar notation is used for second order partial derivatives. We assume

that L(t, ·, ·) is differentiable in (y, v); L(t, ·, ·), Ly(t, ·, ·) and Lv(t, ·, ·) are continuous at(
yσ(t), y∆(t)

)
uniformly at t and ld-continuous at t for any admissible path y. Let us consider

the following norm in C1
ld:

‖y‖C1
ld

= sup
t∈[a,b]

‖y(t)‖+ sup
t∈[a,b]κ

‖y∇(t)‖,

where ‖ · ‖ is a norm in Rn.

3In this section we consider the so-called shifted calculus of variations, where Lagrangian L depends on

(t, yρ(t), y∇(t)) in functional (3.9).
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Definition 3.10 (See [4]). We say that an admissible function y ∈ C1
ld(T;Rn) is a local

minimizer (respectively, a local maximizer) for the variational problem (3.9)–(3.10) if there

exists δ > 0 such that L[ŷ] ≤ L[y] (respectively, L[ŷ] ≥ L[y]) for all y ∈ C1
ld(T;Rn) satisfying

the inequality ||y − ŷ||C1
ld
< δ.

In case of first order necessary optimality condition for the nabla variational problem on

time scales, the Euler–Lagrange equation takes the following form.

Theorem 3.11 (Nabla Euler–Lagrange equation – see [88]). If a function ŷ ∈ C1
ld(T;Rn)

provides a local extremum to the variational problem (3.9)–(3.10), then ŷ satisfies the Euler–

Lagrange equation (in the nabla differential form)

L∇v (t, yρ(t), y∇(t)) = Ly(t, y
ρ(t), y∇(t)) (3.11)

for all t ∈ [a, b]κ.

Now we present the fundamental lemma of the nabla calculus of variations on time scales.

Lemma 3.12 (See [75]). Let f ∈ Cld([a, b],Rn). If

b∫
a

f(t)η∇(t)∇t = 0

for all η ∈ C1
ld([a, b],Rn) with η(a) = η(b) = 0, then f(t) = c for all t ∈ [a, b]κ, c ∈ Rn.

For a good survey on the calculus of variations on time scales, covering both delta and

nabla approaches, we refer the reader to [88].
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Chapter 4

Inverse Problems of the Calculus of

Variations on Arbitrary Time Scales

This chapter is devoted to the inverse problem of the calculus of variations on an arbitrary

time scale. First we present a classical approach [90]. The typical inverse problem consists to

determine a function (Lagrangian) F (t, y, y′) such that y is a solution to the given differential

equation

y′′ − f(t, y, y′) = 0 (4.1)

if and only if y is a solution to the Euler–Lagrange equation

d

dt
Fy′ − Fy = 0. (4.2)

In this chapter we consider two inverse problems of the calculus of variations on time scales.

To our best knowledge, the inverse problem has not been studied before in the framework of

time scales, in contrast with the direct problem, that establishes dynamic equations of Euler–

Lagrange type to time-scale variational problems. The classical approach relies on using the

chain rule, which is not valid in the general context of time scales [20, 24]. It seems that the

absence of a general chain rule on an arbitrary time scale is the main reason explaining the

lack of a general theory for the inverse time-scale variational calculus. To begin (Section 4.1)

we consider an inverse extremal problem associated with the following fundamental problem

of the calculus of variations: to minimize

L[y] =

b∫
a

L
(
t, yσ(t), y∆(t)

)
∆t (4.3)

subject to the boundary conditions y(a) = y0(a), y(b) = y0(b) on a given time scale T.

The Euler–Lagrange equation and the strengthened Legendre condition are used in order
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to describe a general form of a variational functional (4.3) that attains an extremum at a

given function y0. In the latter Section 4.2, we introduce a completely different approach to

the inverse problem of the calculus of variations, using an integral perspective instead of the

classical differential point of view [27,34]. We present a sufficient condition of self-adjointness

for an integro-differential equation (Lemma 4.11). Using this property, we prove a necessary

condition for an integro-differential equation on an arbitrary time scale T to be an Euler–

Lagrange equation (Theorem 4.12), related to a property of self-adjointness (Definition 4.8)

of the equation of variation (Definition 4.9) of the given dynamic integro-differential equation.

4.1 A general form of the Lagrangian

The problem under our consideration is to find a general form of the variational functional

L[y] =

b∫
a

L
(
t, yσ(t), y∆(t)

)
∆t (4.4)

subject to the boundary conditions y(a) = y(b) = 0, possessing a local minimum at zero, under

the Euler–Lagrange and the strengthened Legendre conditions. We assume that L(t, ·, ·) is a

C2-function with respect to (y, v) uniformly in t, and L, Ly, Lv, Lvv ∈ Crd for any admissible

path y(·). Observe that under our assumptions, by Taylor’s theorem, we may write L, with

the big O notation, in the form

L(t, y, v) = P (t, y) +Q(t, y)v +
1

2
R(t, y, 0)v2 +O(v3), (4.5)

where

P (t, y) = L(t, y, 0),

Q(t, y) = Lv(t, y, 0),

R(t, y, 0) = Lvv(t, y, 0).

(4.6)

Let R(t, y, v) = R(t, y, 0) +O(v). Then, one can write (4.5) as

L(t, y, v) = P (t, y) +Q(t, y)v +
1

2
R(t, y, v)v2. (4.7)

Now the idea is to find general forms of P (t, yσ(t)), Q(t, yσ(t)) and R(t, yσ(t), y∆(t)) using

the Euler–Lagrange and the strengthened Legendre conditions. Note that the Euler–Lagrange

equation (3.4) at the null extremal, with notation (4.6), is

Q(t, 0) =

t∫
a

Py(τ, 0)∆τ + C, (4.8)
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t ∈ [a, b]κ, where P (t, yσ(t)) is chosen arbitrarily such that P (t, ·) ∈ C2 with respect to the

second variable, uniformly in t, P and Py are rd-continuous in t for all admissible y. From

(4.8) we can write a general form of Q:

Q(t, yσ(t)) = C +

t∫
a

Py(τ, 0)∆τ + q(t, yσ(t))− q(t, 0), (4.9)

where C ∈ R and q is an arbitrarily function such that q(t, ·) ∈ C2 with respect to the second

variable, uniformly in t, q and qy are rd-continuous in t for all admissible y. With notation

(4.6), the strengthened Legendre condition (3.5) at the null extremal has the form

R(t, 0, 0) + µ(t)
{

2Qy(t, 0) + µ(t)Pyy(t, 0) + (µσ(t))†R(σ(t), 0, 0)
}
> 0, (4.10)

t ∈ [a, b]κ
2
, where α† = 1

α if α ∈ R \ {0} and 0† = 0. Hence, we set

R(t, 0, 0) + µ(t)
{

2Qy(t, 0) + µ(t)Pyy(t, 0) + (µσ(t))†R(σ(t), 0, 0)
}

= p(t) (4.11)

with p ∈ Crd([a, b]), p(t) > 0 for all t ∈ [a, b]κ, chosen arbitrary. Note that there exists a

unique solution to (4.11) with respect to R(t, 0, 0). If t is a right-dense point, then µ(t) = 0

and R(t, 0, 0) = p(t). Otherwise, µ(t) 6= 0, and using Theorem 1.9 with f(t) = R(t, 0, 0) we

modify equation (4.11) into a first order delta dynamic equation, which has a unique solution

R(t, 0, 0) in agreement with Theorem 1.37 (see details in the proof of Corollary 4.4). We derive

a general form of R from Legendre’s condition (4.10), as a sum of the solution R(t, 0, 0) of

equation (4.11) and function w, which is chosen arbitrarily in such a way that w(t, ·, ·) ∈ C2

with respect to the second and the third variables, uniformly in t; w, wy, wv and wvv are

rd-continuous in t for all admissible y. Concluding: a general form of the integrand L for

functional (4.4) follows from (4.7), (4.9) and (4.11), and is given by

L
(
t, yσ(t), y∆(t)

)
= P (t, yσ(t))

+

C +

t∫
a

Py(τ, 0)∆τ + q(t, yσ(t))− q(t, 0)

 y∆(t)

+

(
p(t)− µ(t)

{
2Qy(t, 0) + µ(t)Pyy(t, 0) + (µσ(t))†R(σ(t), 0, 0)

}
+ w(t, yσ(t), y∆(t))− w(t, 0, 0)

)
(y∆(t))2

2
.

(4.12)

We have just proved the following result.

Theorem 4.1. Let T be an arbitrary time scale. If functional (4.4) with boundary conditions

y(a) = y(b) = 0 attains a local minimum at ŷ(t) ≡ 0 under the strengthened Legendre con-

dition, then its Lagrangian L takes the form (4.12), where R(t, 0, 0) is a solution of equation
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(4.11), C ∈ R, α† = 1
α if α ∈ R \ {0} and 0† = 0. Functions P , p, q and w are arbitrary

functions satisfying:

(i) P (t, ·), q(t, ·) ∈ C2 with respect to the second variable uniformly in t; P , Py, q, qy are

rd-continuous in t for all admissible y; Pyy(·, 0) is rd-continuous in t; p ∈ Crd with

p(t) > 0 for all t ∈ [a, b]κ;

(ii) w(t, ·, ·) ∈ C2 with respect to the second and the third variable, uniformly in t; w, wy,

wv, wvv are rd-continuous in t for all admissible y.

Now we consider the general situation when the variational problem consists in minimizing

(4.4) subject to arbitrary boundary conditions y(a) = y0(a) and y(b) = y0(b), for a certain

given function y0 ∈ C2
rd([a, b]).

Theorem 4.2. Let T be an arbitrary time scale. If the variational functional (4.4) with

boundary conditions y(a) = y0(a), y(b) = y0(b), attains a local minimum for a certain given

function y0(·) ∈ C2
rd([a, b]) under the strengthened Legendre condition, then its Lagrangian L

has the form

L
(
t, yσ(t), y∆(t)

)
= P (t, yσ(t)− yσ0 (t)) +

(
y∆(t)− y∆

0 (t)
)

×

C +

t∫
a

Py (τ,−yσ0 (τ)) ∆τ + q (t, yσ(t)− yσ0 (t))− q (t,−yσ0 (t))

+
1

2

(
p(t)

− µ(t)
{

2Qy(t,−yσ0 (t)) + µ(t)Pyy(t,−yσ0 (t)) + (µσ(t))†R(σ(t),−yσ0 (t),−y∆
0 (t))

}
+ w(t, yσ(t)− yσ0 (t), y∆(t)− y∆

0 (t))− w
(
t,−yσ0 (t),−y∆

0 (t)
)) (

y∆(t)− y∆
0 (t)

)2
,

where R(t, 0, 0) is the solution to equation (4.11), C ∈ R, and functions P , p, q, w satisfy

conditions (i) and (ii) of Theorem 4.1.

Proof. The result follows as a corollary of Theorem 4.1. In order to reduce the problem to

the case of the zero extremal considered above, it suffices to introduce the auxiliar variational

functional

L̃[y] := L[y + y0] =

b∫
a

L
(
t, yσ(t) + yσ0 (t), y∆(t) + y∆

0 (t)
)

∆t

=:

b∫
a

L̃
(
t, yσ(t), y∆(t)

)
∆t

subject to boundary conditions y(a) = 0 and y(b) = 0. The result follows by application of

Theorem 4.1 to the auxiliar Lagrangian L̃.
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For the classical situation T = R, Theorem 4.2 gives a recent result of [81].

Corollary 4.3 (Theorem 4 of [81]). If the variational functional

L[y] =

b∫
a

L(t, y(t), y′(t))dt

attains a local minimum at y0(·) ∈ C2[a, b] satisfying boundary conditions y(a) = y0(a) and

y(b) = y0(b) and the classical strengthened Legendre condition R(t, y0(t), y′0(t)) > 0, t ∈ [a, b],

then its Lagrangian L has the form

L(t, y(t), y′(t)) = P (t, y(t)− y0(t))

+ (y′(t)− y′0(t))

C +

t∫
a

Py(τ,−y0(τ))dτ + q(t, y(t)− y0(t))− q(t,−y0(t))


+

1

2

(
p(t) + w(t, y(t)− y0(t), y′(t)− y′0(t))− w(t,−y0(t),−y′0(t))

)
(y′(t)− y′0(t))2,

where C ∈ R.

Proof. Follows from Theorem 4.2 with T = R.

Theorem 4.2 seems to be new for any time scale other than T = R. In the particular case

of an isolated time scale, where µ(t) 6= 0 for all t ∈ T, we get the following corollary.

Corollary 4.4. Let T be an isolated time scale. If functional (4.4) subject to the boundary

conditions y(a) = y(b) = 0 attains a local minimum at ŷ(t) ≡ 0 under the strengthened

Legendre condition, then the Lagrangian L has the form

L
(
t, yσ(t), y∆(t)

)
= P (t, yσ(t))

+

C +

t∫
a

Py(τ, 0)∆τ + q(t, yσ(t))− q(t, 0)

 y∆(t)

+

er(t, a)R0 +

t∫
a

er(t, σ(τ))s(τ)∆τ + w(t, yσ(t), y∆(t))− w(t, 0, 0)

 (y∆(t))2

2
,

(4.13)

where C,R0 ∈ R and r(t) and s(t) are given by

r(t) := −1 + µ(t)(µσ(t))†

µ2(t)(µσ(t))†
, s(t) :=

p(t)− µ(t)[2Qy(t, 0) + µ(t)Pyy(t, 0)]

µ2(t)(µσ(t))†
, (4.14)

with α† = 1
α if α ∈ R \ {0} and 0† = 0, and functions P , p, q, w satisfy assumptions of

Theorem 4.1.

41



CHAPTER 4. INVERSE PROBLEMS OF THE CALCULUS OF VARIATIONS ON
ARBITRARY TIME SCALES

Proof. In the case of an isolated time scale T, we may obtain the form of function Q in the

same way as it is done in the proof of Theorem 4.1 (equation (4.9)). We derive a general form

for R from Legendre’s condition. By relation fσ = f + µf∆ (Theorem 1.9), one may write

equation (4.11) as

R(t, 0, 0) + µ(t)(µσ(t))†
(
R(t, 0, 0) + µ(t)R∆(t, 0, 0)

)
+ µ(t) {2Qy(t, 0) + µ(t)Pyy(t, 0)} − p(t) = 0.

Hence,

µ2(t)(µσ(t))†R∆(t, 0, 0) +
[
1 + µ(t)(µσ(t))†

]
R(t, 0, 0)

+ µ(t)[2Qy(t, 0) + µ(t)Pyy(t, 0)]− p(t) = 0. (4.15)

For an isolated time scale T, equation (4.15) is a first order delta dynamic equation of the

following form:

R∆(t, 0, 0) +
1 + µ(t)(µσ(t))†

µ2(t)(µσ(t))†
R(t, 0, 0) +

µ(t)[2Qy(t, 0) + µ(t)Pyy(t, 0)]− p(t)
µ2(t)(µσ(t))†

= 0.

With notation (4.14), we have

R∆(t, 0, 0) = r(t)R(t, 0, 0) + s(t). (4.16)

Observe that r(t) is regressive. Indeed, if µ(t) 6= 0, then

1 + µ(t)r(t) = 1− 1 + µ(t)(µσ(t))†

µ(t)(µσ(t))†
= 1− µσ(t) + µ(t)

µ(t)
= −µ

σ(t)

µ(t)
6= 0

for all t ∈ [a, b]κ. Therefore, by Theorem 1.37, there is a unique solution to equation (4.16)

with initial condition R(a, 0, 0) = R0 ∈ R:

R(t, 0, 0) = er(t, a)R0 +

t∫
a

er(t, σ(τ))s(τ)∆τ. (4.17)

Thus, a general form of the integrand L for functional (4.4) is given by (4.13).

Remark 4.5. Instead of (4.17), we can use an alternative form for the solution of the initial

value problem (4.16) subject to R(a, 0, 0) = R0 (cf. Remark 1.38):

R(t, 0, 0) = er(t, a)

R0 +

t∫
a

er(a, σ(τ))s(τ)∆τ

 .
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Then the Lagrangian L (4.13) can be written as

L
(
t, yσ(t), y∆(t)

)
= P (t, yσ(t))

+

C +

t∫
a

Py(τ, 0)∆τ + q(t, yσ(t))− q(t, 0)

 y∆(t)

+

er(t, a)

R0 +

t∫
a

er(a, σ(τ))s(τ)∆τ

+ w(t, yσ(t), y∆(t))− w(t, 0, 0)

 (y∆(t))2

2
.

Based on Corollary 4.4, we present the form of Lagrangian L in the periodic time scale

T = hZ.

Example 4.6. Let T = hZ, h > 0, and a, b ∈ hZ with a < b. Then µ(t) ≡ h. We consider

the variational functional

L[y] = h

b
h
−1∑

k= a
h

L (kh, y(kh+ h),∆hy(kh)) (4.18)

subject to the boundary conditions y(a) = y(b) = 0, which attains a local minimum at ŷ(kh) ≡
0 under the strengthened Legendre condition

R(kh, 0, 0) + 2hQy(kh, 0) + h2Pyy(kh, 0) +R(kh+ h, 0, 0) > 0,

kh ∈ [a, b− 2h] ∩ hZ. Functions r(t) and s(t) (see (4.14)) have the following form:

r(t) =
−2

h
∈ R, s(t) =

p(t)

h
− (2Qy(t, 0) + hPyy(t, 0)) .

Hence,
t∫

a

Py(τ, 0)∆τ = h

t
h
−1∑

i= a
h

Py(ih, 0),

t∫
a

er(t, σ(τ))s(τ)∆τ =

t
h
−1∑

i= a
h

(−1)
t
h
−i−1

(
p(ih)− 2hQy(ih, 0)− h2Pyy(ih, 0)

)
.

Therefore, the Lagrangian L of the variational functional (4.18) on T = hZ has the form

L (kh, y(kh+ h),∆hy(kh)) = P (kh, y(kh+ h))

+

C +

k−1∑
i= a

h

hPy(ih, 0) + q(kh, y(kh+ h))− q(kh, 0)

∆hy(kh)

+
1

2

(
(−1)k−

a
hR0 +

k−1∑
i= a

h

(−1)k−i−1
(
p(ih)− 2hQy(ih, 0)− h2Pyy(ih, 0)

)
+ w(kh, y(kh+ h),∆hy(kh))− w(kh, 0, 0)

)
(∆hy(kh))2 ,
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where functions P , p, q, w are arbitrary but satisfy assumptions of Theorem 4.1.

Now we consider the q-scale T = qN0 , q > 1. In order to present the form of Lagrangian

L, we use Remark 4.5.

Example 4.7. Let T = qN0 = {qk : q > 1, k ∈ N0} and a, b ∈ qN0 with a < b. We consider

the variational functional

L[y] = (q − 1)
∑

t∈[a,b)∩qN0

tL (t, y(qt),∆qy(t)) (4.19)

subject to the boundary conditions y(a) = y(b) = 0, which attains a local minimum at ŷ(t) ≡ 0

under the strengthened Legendre condition

R(t, 0, 0) + (q − 1)t{2Qy(t, 0) + (q − 1)tPyy(t, 0)}+
1

q
R(qt, 0, 0) > 0

at the null extremal, t ∈
[
a, b

q2

]
∩ qN0. Functions given by (4.14) may be written as

r(t) =
q + 1

t(1− q)
, s(t) =

qp(t)

t(q − 1)
− 2qQy(t, 0)− q(q − 1)tPyy(t, 0).

Hence,

t∫
a

Py(τ, 0)∆τ = (q − 1)
∑

τ∈[a,t)∩qN0

τPy(τ, 0), er(t, a) =
∏

s∈[a,t)∩qN0

(−q),

t∫
a

er(a, σ(τ))s(τ)∆τ =
∑

τ∈[a,t)∩qN0

(1− q)τ
q

∏
s∈[a,τ)∩qN0

(−q)

[
qp(τ)

τ(q − 1)
− 2qQy(τ, 0)− q(q − 1)τPyy(τ, 0)

]
.

Therefore, the Lagrangian L of the variational functional (4.19) has the form

L(t, y(qt),∆qy(t)) = P (t, y(qt))

+

C + (q − 1)
∑

τ∈[a,t)∩qN0

τPy(τ, 0) + q(t, y(qt))− q(t, 0)

∆qy(t) +

{ ∏
s∈[a,t)∩qN0

(−q)

×

R0 +
∑

τ∈[a,t)∩qN0

(1− q)τ
q

∏
s∈[a,τ)∩qN0

(−q)

(
qp(τ)

τ(q − 1)
− 2qQy(τ, 0)− q(q − 1)τPyy(τ, 0)

)
+ w (t, y(qt),∆qy(t))− w(t, 0, 0)

}
(∆qy(t))2

2
,

where functions P , p, r, w are arbitrary but satisfy assumptions of Theorem 4.1.
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4.2 Necessary condition for an Euler–Lagrange equation

This section provides a necessary condition for an integro-differential equation on an

arbitrary time scale to be an Euler–Lagrange equation (Theorem 4.12). For that the notions

of self-adjointness (Definition 4.8) and equation of variation (Definition 4.9) are essential.

Definition 4.8 (First order self-adjoint integro-differential equation). A first order integro-

differential dynamic equation is said to be self-adjoint if it has the form

Lu(t) = const, where Lu(t) = p(t)u∆(t) +

t∫
t0

[r(s)uσ(s)] ∆s, (4.20)

with p, r ∈ Crd, p 6= 0 for all t ∈ T, and t0 ∈ T.

Let D be the set of all functions y : T −→ R such that y∆ : Tκ −→ R is continuous. A

function y ∈ D is said to be a solution of (4.20) provided Ly(t) = const holds for all t ∈ Tκ.

Along the text we use the operators [·] and 〈·〉 defined as

[y](t) := (t, yσ(t), y∆(t)), 〈y〉(t) := (t, yσ(t), y∆(t), y∆∆(t)), (4.21)

and partial derivatives of function (t, y, v, z) −→ L(t, y, v, z) are denoted by ∂2L = Ly, ∂3L =

Lv, ∂4L = Lz.

Definition 4.9 (Equation of variation). Let

H[y](t) +

t∫
t0

G[y](s)∆s = const (4.22)

be an integro-differential equation on time scales with Hv 6= 0, t −→ Fy[y](t), t −→ Fv[y](t) ∈
Crd(T,R) along every curve y, where F ∈ {G,H}. The equation of variation associated with

(4.22) is given by

Hy[u](t)uσ(t) +Hv[u](t)u∆(t) +

t∫
t0

Gy[u](s)uσ(s) +Gv[u](s)u∆(s)∆s = 0. (4.23)

Remark 4.10. The equation of variation (4.23) can be interpreted in the following way. As-

suming y = y(t, b), b ∈ R, is a one-parameter solution of a given integro-differential equation

(4.22), then

H(t, yσ(t, b), y∆(t, b)) +

t∫
t0

G(s, yσ(s, b), y∆(s, b))∆s = const. (4.24)

Let u(t) be a particular solution, that is, u(t) = y(t, b̄) for a certain b̄. Differentiating (4.24)

with respect to the parameter b, and then putting b = b̄, we obtain equation (4.23).
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Lemma 4.11 (Sufficient condition of self-adjointness). Let (4.22) be a given integro-differential

equation. If

Hy[y](t) +Gv[y](t) = 0, (4.25)

then its equation of variation (4.23) is self-adjoint.

Proof. Let us consider a given equation of variation (4.23). Using fourth item of Theorem 1.9

and sixth item of Theorem 1.19, we expand the two components of the given equation:

Hy[u](t)uσ(t) = Hy[u](t)
(
u(t) + µ(t)u∆(t)

)
,

t∫
t0

Gv[u](s)u∆(s)∆s = Gv[u](t)u(t)−Gv[u](t0)u(t0)−
t∫

t0

[Gv[u](s)]∆ uσ(s)∆s.

Hence, equation of variation (4.23) can be written in the form

Gv[u](t0)u(t0) = u∆(t) [µ(t)Hy[u](t) +Hv[u](t)] +

t∫
t0

uσ(s)
[
Gy[u](s)− (Gv[u](s))∆

]
∆s

+ u(t) (Hy[u](t) +Gv[u](t)) . (4.26)

If (4.25) holds, then (4.26) is a particular case of (4.20) with

p(t) = µ(t)Hy[u](t) +Hv[u](t),

r(t) = Gy[u](s)− (Gv[u](s))∆,

Gv[u](t0)u(t0) = const.

This concludes the proof.

Now we provide an answer to the general inverse problem of the calculus of variations on

time scales.

Theorem 4.12 (Necessary condition for an Euler–Lagrange equation in integral form). Let

T be an arbitrary time scale and

H(t, yσ(t), y∆(t)) +

t∫
t0

G(s, yσ(s), y∆(s))∆s = const (4.27)

be a given integro-differential equation. If (4.27) is to be an Euler–Lagrange equation, then

its equation of variation (4.23) is self-adjoint, in the sense of Definition 4.8.
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Proof. Assume (4.27) is the Euler–Lagrange equation of the variational functional

I[y] =

t1∫
t0

L(t, yσ(t), y∆(t))∆t, (4.28)

where L ∈ C2. Since the Euler–Lagrange equation in integral form of (4.28) is given by

Lv[y](t) +

t∫
t0

−Ly[y](s)∆s = const

(cf. [32, 43, 44]), we conclude that H[y](t) = Lv[y](t) and G[y](s) = −Ly[y](s). Having in

mind that

Hy = Lvy, Hv = Lvv,

Gy = −Lyy Gv = −Lyv,

it follows from the Schwarz theorem, Lvy = Lyv, that

Hy[y](t) +Gv[y](t) = 0.

We conclude from Lemma 4.11 that the equation of variation (4.27) is self-adjoint.

Remark 4.13. In practical terms, Theorem 4.12 is useful to identify equations which are not

Euler–Lagrange: if the equation of variation (4.23) of a given dynamic equation (4.22) is not

self-adjoint, then we conclude that (4.22) is not an Euler–Lagrange equation.

Remark 4.14 (Self-adjointness for a second order differential equation). Let p be delta dif-

ferentiable in Definition 4.8 and u ∈ C2
rd. Then, by differentiating (4.20), one obtains a

second-order self-adjoint dynamic equation

pσ(t)u∆∆(t) + p∆(t)u∆(t) + r(t)uσ(t) = 0

or

p(t)u∆∆(t) + p∆(t)u∆σ(t) + r(t)uσ(t) = 0

with r ∈ Crd and p ∈ C1
rd and p 6= 0 for all t ∈ T.

Now we present an example of a second order differential equation on time scales which

is not an Euler–Lagrange equation.

Example 4.15. Let us consider the following second order dynamic equation on an arbitrary

time scale T:

y∆∆(t) + y∆(t)− t = 0. (4.29)
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We may write equation (4.29) in integro-differential form (4.22):

y∆(t) +

t∫
t0

(
y∆(s)− s

)
∆s = const, (4.30)

where H[y](t) = y∆(t) and G[y](t) = y∆(t)− t. Because

Hy[y](t) = Gy[y](t) = 0, Hv[y](t) = Gv[y](t) = 1,

the equation of variation associated with (4.30) is given by

u∆(t) +

t∫
t0

u∆(s)∆s = 0 ⇐⇒ u∆(t) + u(t) = u(t0). (4.31)

We may notice that equation (4.31) cannot be written in form (4.20), hence, it is not self-

adjoint. Indeed, notice that (4.31) is a first-order dynamic equation while from Remark 4.14

one obtains a second-order dynamic equation. Following Theorem 4.12 (see Remark 4.13) we

conclude that equation (4.29) is not an Euler–Lagrange equation.

Now we consider the particular case of Theorem 4.12 when T = R and y ∈ C2([t0, t1];R).

In this case operator [·] of (4.21) has the form

[y](t) = (t, y(t), y′(t)) =: [y]R(t),

while condition (4.20) can be written as

p(t)u′(t) +

t∫
t0

r(s)u(s)ds = const. (4.32)

Corollary 4.16. If a given integro-differential equation

H(t, y(t), y′(t)) +

t∫
t0

G(s, y(s), y′(s))ds = const

is to be the Euler–Lagrange equation of the variational problem

I[y] =

t1∫
t0

L(t, y(t), y′(t))dt

(cf., e.g., [90]), then its equation of variation

Hy[u]R(t)u(t) +Hv[u]R(t)u′(t) +

t∫
t0

Gy[u]R(s)u(s) +Gv[u]R(s)u′(s)ds = 0

must be self-adjoint, in the sense of Definition 4.8 with (4.20) given by (4.32).
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Proof. Follows from Theorem 4.12 with T = R.

Now we consider the particular case of Theorem 4.12 when T = hZ, h > 0. In this case

operator [·] of (4.21) has the form

[y](t) = (t, y(t+ h),∆hy(t)) =: [y]h(t),

where

∆hy(t) =
y(t+ h)− y(t)

h
.

For T = hZ, h > 0, condition (4.20) can be written as

p(t)∆hu(t) +

t
h
−1∑

k=
t0
h

hr(kh)u(kh+ h) = const. (4.33)

Corollary 4.17. If a given difference equation

H(t, y(t+ h),∆hy(t)) +

t
h
−1∑

k=
t0
h

hG(kh, y(kh+ h),∆hy(kh)) = const

is to be the Euler–Lagrange equation of the discrete variational problem

I[y] =

t1
h
−1∑

k=
t0
h

hL(kh, y(kh+ h),∆hy(kh))

(cf., e.g., [15]), then its equation of variation

Hy[u]h(t)u(t+ h) +Hv[u]h(t)∆hu(t)

+ h

t
h
−1∑

k=
t0
h

(Gy[u]h(kh)u(kh+ h) +Gv[u]h(kh)∆hu(kh)) = 0

is self-adjoint, in the sense of Definition 4.8 with (4.20) given by (4.33).

Proof. Follows from Theorem 4.12 with T = hZ.

Finally, let us consider the particular case of Theorem 4.12 when T = qZ = qZ ∪ {0},
where qZ =

{
qk : k ∈ Z, q > 1

}
. In this case operator [·] of (4.21) has the form

[y]
qZ

(t) = (t, y(qt),∆qy(t)) =: [y]q(t),

where

∆qy(t) =
y(qt)− y(t)

(q − 1)t
.
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For T = qZ, q > 1, condition (4.20) can be written as (cf., e.g., [85]):

p(t)∆qu(t) + (q − 1)
∑

s∈[t0,t)∩T

sr(s)u(qs) = const. (4.34)

Corollary 4.18. If a given q-equation

H(t, y(qt),∆qy(t)) + (q − 1)
∑

s∈[t0,t)∩T

sG(s, y(qs),∆qy(s)) = const,

q > 1, is to be the Euler–Lagrange equation of the variational problem

I[y] = (q − 1)
∑

t∈[t0,t1)∩T

tL(t, y(qt),∆qy(t)),

t0, t1 ∈ qZ, then its equation of variation

Hy[u]q(t)u(qt) +Hv[u]q(t)∆qu(t)

+ (q − 1)
∑

s∈[t0,t)∩T

s (Gy[u]q(s)u(qs) +Gv[u]q(s)∆qu(s)) = 0

is self-adjoint, in the sense of Definition 4.8 with (4.20) given by (4.34).

Proof. Choose T = qZ in Theorem 4.12.

More information about the Euler–Lagrange equations for q-variational problems may be

found in [44,74,78] and references therein.

4.3 Discussion

On an arbitrary time scale T, we can easily show equivalence between the integro-differential

equation (4.22) and the second order differential equation (4.35) below (Proposition 4.19).

However, when we consider equations of variations of them, we notice that it is not possible

to prove an equivalence between them on an arbitrary time scale. The main reason of this

impossibility, even in the discrete time scale Z, is the absence of a general chain rule on an

arbitrary time scale (see Example 1.85 of [24]). However, on T = R we can present this

equivalence (Proposition 4.20).

Proposition 4.19. The integro-differential equation (4.22) is equivalent to a second order

delta differential equation

W
(
t, yσ(t), y∆(t), y∆∆(t)

)
= 0. (4.35)
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Proof. Let (4.35) be a given second order differential equation. We may write it as a sum of

two components

W 〈y〉(t) = F 〈y〉(t) +G[y](t) = 0, (4.36)

where operator 〈·〉 is defined by 〈y〉 (t) := (t, yσ(t), y∆(t), y∆∆(t)). Let F 〈y〉 = H∆[y]. Then,

H∆(t, yσ(t), y∆(t)) +G(t, yσ(t), y∆(t)) = 0, (4.37)

where H(t, yσ(t), y∆(t)) is of class C1
rd(T,R) for any admissible path y, u ∈ C1

rd(T,R). Inte-

grating both sides of equation (4.37) from t0 to t, we obtain the integro-differential equation

(4.22).

Let T be a time scale such that µ is delta differentiable. The equation of variation of a

second order differential equation (4.35) is given by

Wz〈u〉(t)u∆∆(t) +Wv〈u〉(t)u∆(t) +Wy〈u〉(t)uσ(t) = 0. (4.38)

Equation (4.38) is obtained by using the method presented in Remark 4.10. On an arbitrary

time scale it is impossible to prove the equivalence between the equation of variation (4.23)

and (4.38). Indeed, after differentiating both sides of equation (4.23) and using the product

rule given by Theorem 1.11, we have

Hy[u](t)uσ∆(t) +H∆
y [u](t)uσσ(t) +Hv[u](t)u∆∆(t) +H∆

v [u](t)u∆σ(t)

+Gy[u](t)uσ(t) +Gv[u](t)u∆(t) = 0. (4.39)

The direct calculations

• Hy[u](t)uσ∆(t) = Hy[u](t)(u∆(t) + µ∆(t)u∆(t) + µσ(t)u∆∆(t)),

• H∆
y [u](t)uσσ(t) = H∆

y [u](t)(uσ(t) + µσ(t)u∆(t) + µ(t)µσ(t)u∆∆(t)),

• H∆
v [u](t)u∆σ(t) = H∆

v [u](t)(u∆(t) + µu∆∆(t)),

allow us to write the equation (4.39) in form

0 =

[
µσ(t)Hy[u](t) + µ(t)µσ(t)H∆

y [u](t) +Hv[u](t) + µ(t)H∆
v [u](t)

]
u∆∆(t)

+

[
Hy[u](t) + (µ(t)Hy[u](t))∆ +H∆

v [u](t) +Gv[u](t)

]
u∆(t) +

[
H∆
y [u](t) +Gy[u](t)

]
uσ(t),

(4.40)
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that is, using fourth item of Theorem 1.9,

u∆∆(t) [µ(t)Hy[u](t) +Hv[u](t)]σ

+ u∆(t)
[
Hy[u](t) + (µ(t)Hy[u](t))∆ +H∆

v [u](t) +Gv[u](t)
]

+ uσ(t)
[
H∆
y [u](t) +Gy[u](t)

]
= 0. (4.41)

We are not able to prove that the coefficients of equation (4.41) are the same as in (4.38),

respectively. This is due to the fact that we cannot find the partial derivatives of (4.35), that

is, Wz〈u〉(t), Wv〈u〉(t) and Wy〈u〉(t), from equation (4.37) because of lack of a general chain

rule in an arbitrary time scale [20]. The equivalence, however, is true for T = R. In this case

operator 〈·〉 has the form 〈y〉 (t) = (t, y(t), y′(t), y′′(t)) =: 〈y〉R (t).

Proposition 4.20. The equation of variation

Hy[u]R(t)u(t) +Hv[u]R(t)u′(t) +

t∫
t0

Gy[u]R(s)u(s) +Gv[u]R(s)u′(s)ds = 0 (4.42)

is equivalent to the second order differential equation

Wz〈u〉R(t)u′′(t) +Wv〈u〉R(t)u′(t) +Wy〈u〉R(t)u(t) = 0. (4.43)

Proof. We show that coefficients of equations (4.42) and (4.43) are the same, respectively.

Let T = R. From equation (4.36) and relation F 〈u〉R = d
dtH[u]R we have

W (t, u(t), u′(t), u′′(t)) =
d

dt
H(t, u(t), u′(t)) +G(t, u(t), u′(t)).

Using operators [·], 〈·〉, and chain rule (which is valid for T = R), we can calculate the

following partial derivatives:

• Wy〈u〉R(t) = d
dtHy[u]R(t) +Gy[u]R(t),

• Wv〈u〉R(t) = Hy[u]R(t) + d
dtHv[u]R(t) +Gv[u]R(t),

• Wz〈u〉R(t) = Hv[u]R(t).

After differentiation of both sides of (4.42) we obtain

Hv[u]R(t)u′′(t) +

(
Hy[u]R(t) +

d

dt
Hv[u]R(t) +Gv[u]R(t)

)
u′(t)

+

(
d

dt
Hy[u]R(t) +Gy[u]R(t)

)
u(t) = 0.

Hence, the intended equivalence is proved.
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Proposition 4.20 allows us to obtain the classical result of [34, Theorem II] as a corollary

of our Theorem 4.12. The absence of a chain rule on an arbitrary time scale (even for T = Z)

implies that the classical approach [34] fails on time scales. This is the reason why here we

introduce a completely different approach to the subject based on the integro-differential form.

The case T = Z was recently investigated in [27]. However, similarly to [34], the approach

of [27] is based on the differential form and cannot be extended to general time scales.

4.4 State of the art

The results of Section 4.1 are published in [36] and were presented by the author at PODE

2013 Progress on Difference Equations, July 21-26, 2013, Bialystok, Poland. The results from

Section 4.2 were presented by the author at the XXX EURO mini-Conference on Optimization

in the Natural Sciences, February 5-9, 2014, Aveiro, Portugal, in a contributed session entitled

“Optimization in Dynamical Systems”; and at the 3rd International Conference on Dynamics,

Games and Science, February 17-21, 2014, Porto, Portugal, in an invited session entitled

“Dynamic Equations on Time Scales”.
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Chapter 5

Infinite Horizon Variational

Problems on Time Scales

This chapter is devoted to infinite horizon problems of the calculus of variations on time

scales. Infinite time horizon models have been considered in macroeconomics very early, see,

e.g., the model of economic growth [12] or the Ramsey model [11]. In some cases, their impor-

tance is due to the fact that it is hard to predict a natural finite time and the consequences

of investment are very long-lived [92]. In case of Ramsey’s model, the infinite time horizon is

connected with inheritance, which means that finitely lived people care about their offspring

or because today’s agents care about the value of their asset tomorrow. However, the infinite

horizon assumption requires that people have some basic information about possible things

that may happen many years from now. Moreover, they should be able to include these

contingencies in their planning already today [86]. For infinite horizon variational problems

in the discrete-time setting, we refer the reader to [17].

The infinite planning horizon entails, at least, two methodological complications: the

convergence of the objective functional and the transversality conditions. In order to deal

with the former problem we follow Brock’s notion of optimality. Precisely, our optimality

criterion (Definition 5.2) for the special case T = Z coincides with Brock’s notion of weak

maximality [28, 68]. If T = R, then our definition of maximality coincides the extension

of Brock’s notion of weak maximality to the continuous situation [64, 68]. In this chapter,

borrowing an idea from [77], we consider nabla infinite horizon problems of the calculus of

variations that depend also on a nabla indefinite integral. We prove the Euler–Lagrange

equation and the transversality condition.

55



CHAPTER 5. INFINITE HORIZON VARIATIONAL PROBLEMS ON TIME SCALES

5.1 Dubois–Reymond type lemma

In this section a Dubois–Reymond type lemma for infinite horizon nabla variational prob-

lems on time scales is presented (Lemma 5.3). This lemma is used in the proof of necessary

optimality conditions (Section 5.2). Along this chapter, for simplicity, we use the following

operators {·} and {·, ·}:

{y}(t) := (t, yρ(t), y∇(t)), {y, z}(t) := (t, yρ(t), y∇(t), z(t)). (5.1)

We assume that T is a time scale such that supT = +∞ and a, T , T ′ ∈ T fulfill the inequalities

T > a and T ′ > a. Let us consider the following variational problem on T:

L[y] :=

∫ ∞
a

L{y, z}(t)∇t =

∫ ∞
a

L
(
t, yρ(t), y∇(t), z(t)

)
∇t −→ max (5.2)

subject to y(a) = ya. For the definition of improper integrals on time scales we refer the

reader to [69]. The variable z is the integral defined by

z(t) :=

∫ t

a
g{y}(τ)∇τ =

∫ t

a
g
(
τ, yρ(τ), y∇(τ)

)
∇τ.

We assume that (t, y, v, w) −→ L(t, y, v, w), (t, y, v) −→ g(t, y, v) have continuous partial

derivatives with respect to y, v, w for all t ∈ [a, b]; t −→ L(t, yρ(t), y∇(t), z(t)) belongs to

the class C1
ld(T,Rn) for any admissible function y ∈ C1

ld(T,Rn); (y, v, w) −→ L(t, y, v, w)

is a C1(R3n,R) function for all t ∈ T; Lv(t, y
ρ(t), y∇(t)), gv(t, y

ρ(t), y∇(t)) ∈ C1
rd(T,Rn) for

any admissible y. By Ly{y, z}(t), Lv{y, z}(t), Lz{y, z}(t) we denote, respectively, the partial

derivatives of L(·, ·, ·, ·) with respect to its second, third and fourth argument, gy{y}(t) and

gv{y}(t) are, respectively, the partial derivatives of g(·, ·, ·) with respect to its second and

third argument.

Definition 5.1. We say that y is an admissible path (function) for problem (5.2) if y ∈
C1
ld (T;Rn) and y(a) = ya.

Definition 5.2 (Cf. [28, 68]). We say that ŷ is a maximizer to problem (5.2) if ŷ is an

admissible path and, moreover,

lim
T→+∞

inf
T ′≥T

T ′∫
a

(L{y, z}(t)− L{ŷ, ẑ}(t))∇t ≤ 0

for all admissible path y.

Lemma 5.3. Let g ∈ Cld(T;R). Then,

lim
T→∞

inf
T ′≥T

T ′∫
a

g(t)ηρ(t)∇t = 0

for all η ∈ Cld (T;R) such that η(a) = 0 if and only if g(t) = 0 on [a,+∞).
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Proof. The implication ⇐ is obvious. We prove the latter implication ⇒ by contradiction.

Assume that g(t) 6≡ 0. Let t0 be a point on [a,+∞) such that g(t0) 6= 0. Suppose, without

loss of generality, that g(t0) > 0. The proof falls naturally into two main parts: t0 is left-dense

(case I) or t0 is left-scattered (case II). Case I: if t0 is left-dense, then function g is positive

on [t1, t0] for t1 < t0. Define:

η(t) =

{
(t0 − t)(t− t1) for t ∈ [t1, t0],

0 otherwise.

Then,

η(ρ(t)) =

{
(t0 − ρ(t)) (ρ(t)− t1) for ρ(t) ∈ [t1, t0],

0 otherwise.

If ρ(t) ∈ [t1, t0], then η(ρ(t)) = (t0 − ρ(t))(ρ(t)− t1) > 0. Thus,

lim
T→+∞

inf
T ′≥T

T ′∫
a

g(t)ηρ(t)∇t =

t0∫
t1

g(t)η(ρ(t))∇t > 0

and we obtain a contradiction. Case II: t0 is left-scattered. Then two situations are possible:

ρ(t0) is left-scattered or ρ(t0) is left-dense. If ρ(t0) is left-scattered, then ρ(ρ(t0)) < ρ(t0) < t0.

Let t ∈ [ρ(t0), t0]. Define

η(t) =

{
g(t0) for t = ρ(t0),

0 otherwise.

Then, η(ρ(t0)) = g(t0) > 0 and from Theorem 1.28 we obtain

lim
T→+∞

inf
T ′≥T

T ′∫
a

g(t)ηρ(t)∇t =

t0∫
ρ(t0)

g(t)ηρ(t)∇t

= g(t0)η(ρ(t0))ν(t0) = g(t0)g(t0)(t0 − ρ(t0)) > 0,

which is a contradiction. The same conclusion can be drawn when ρ(t0) is left-dense. Hence,

two cases are possible: g(ρ(t0)) 6= 0 or g(ρ(t0)) = 0. If g(ρ(t0)) 6= 0, then we can assume that

g(ρ(t0)) > 0 and g is also positive in [t2, ρ(t0)] for t2 < ρ(t0). Define

η(t) =

{
(ρ(t0)− t) (t− t2) for t ∈ [t2, ρ(t0)],

0 otherwise.

Then,

η(ρ(t)) =

{
(ρ(t0)− ρ(t)) (ρ(t)− t2) for ρ(t) ∈ [t2, ρ(t0)],

0 otherwise.
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On the interval [t2, ρ(t0)] the function η(ρ(t)) is greater than 0. Then,

lim
T→+∞

inf
T ′≥T

T ′∫
a

g(t)ηρ(t)∇t =

ρ(t0)∫
t2

g(t)ηρ(t)∇t > 0,

which is a contradiction. Suppose that g(ρ(t0)) = 0. Here two situations may occur: (i)

g(t) = 0 on [t3, ρ(t0)] for some t3 < ρ(t0) or (ii) for all t3 < ρ(t0) there exists t ∈ [t3, ρ(t0)]

such that g(t) 6= 0. In case (i) t3 < ρ(t0) < t0. Let us define

η(t) =


g(t0) for t = ρ(t0),

ϕ(t) for t ∈ [t3, ρ(t0)[,

0 otherwise,

for function ϕ such that ϕ ∈ Cld, ϕ(t3) = 0 and ϕ(ρ(t0)) = g(t0). Then,

η(ρ(t)) =


g(t0) for ρ(t) = ρ(t0),

ϕ(ρ(t)) for ρ(t) ∈ [t3, ρ(t0)),

0 otherwise.

From Theorem 1.28 it follows that

lim
T→+∞

inf
T ′≥T

T ′∫
a

g(t)ηρ(t)∇t =

t0∫
t3

g(t)ηρ(t)∇t =

t0∫
ρ(t0)

g(t)ηρ(t)∇t

= ν(t0)g(t0)η(ρ(t0)) = (t0 − ρ(t0))g(t0)η(ρ(t0)) > 0,

which is a contradiction. In case (ii), t3 < ρ(t0) < t0. When ρ(t0) is left-dense, then there

exists a strictly increasing sequence S = {sk : k ∈ N} ⊆ T such that lim
k→∞

sk = ρ(t0) and

g(sk) 6= 0 for all k ∈ N. If there exists a left-dense sk, then we have Case I with t0 := sk.

If all points of the sequence S are left-scattered, then we have Case II with t0 := si, i ∈ N.

Since ρ(t0) is a left-scattered point, we are in the first situation of Case II and we obtain a

contradiction. Therefore, we conclude that g ≡ 0 on [a,+∞).

Corollary 5.4. Let h ∈ C1
ld(T;R). Then,

lim
T→∞

inf
T ′≥T

T ′∫
a

h(t)η∇(t)∇t = 0 (5.3)

for all η ∈ C1
ld (T;R) such that η(a) = 0 if and only if h(t) = c, c ∈ R, on [a,+∞).

Proof. Using integration by parts (sixth item of Theorem 1.29), we obtain

T ′∫
a

h(t)η∇(t)∇t = h(t)η(t)

∣∣∣∣∣
t=T ′

t=a

−
T ′∫
a

h∇(t)ηρ(t)∇t = h(T ′)η(T ′)−
T ′∫
a

h∇(t)ηρ(t)∇t
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for all η ∈ C1
ld(T;R). In particular, it holds for the subclass of η with η(T ′) = 0. Therefore,

(5.3) is equivalent to

lim
T→∞

inf
T ′≥T

T ′∫
a

h∇(t)ηρ(t)∇t = 0.

From Lemma 5.3 it follows that h∇(t) = 0, i.e., h(t) = c, c ∈ R, on [a,+∞).

5.2 Euler–Lagrange equation and transversality condition

Now we recall a classical theorem of Analysis, which is used in the proof of Theorem 5.6

that provides Euler–Lagrange equations and a transversality condition to problem (5.2).

Theorem 5.5 (See, e.g., [66]). Let S and T be subsets of a normed vector space. Let f be a

map defined on T ×S, having values in some complete normed vector space. Let v be adherent

to S and w adherent to T . Assume that

1. lim
x→v

f(t, x) exists for each t ∈ T ;

2. lim
t→w

f(t, x) exists uniformly for x ∈ S.

Then, lim
t→w

lim
x→v

f(t, x), lim
x→v

lim
t→w

f(t, x) and lim
(t,x)→(w,v)

f(t, x) all exist and are equal.

Now we are in a position to state the main theorem of this chapter.

Theorem 5.6. Suppose that a maximizer to problem (5.2) exists and is given by ŷ. Let

p ∈ C1
ld (T;Rn) be such that p(a) = 0. Define

A(ε, T ′) :=

T ′∫
a

L
(
t, ŷρ(t) + εpρ(t), ŷ∇(t) + εp∇(t), ẑ(t, p)

)
− L{ŷ, ẑ}(t)

ε
∇t,

where

ẑ(t, p) =

t∫
a

g{ŷ + εp}(τ)∇τ, ẑ(t) =

t∫
a

g{ŷ}(τ)∇τ,

and

V (ε, T ) := inf
T ′≥T

εA(ε, T ′), V (ε) := lim
T→∞

V (ε, T ).

Suppose that

1. lim
ε→0

V (ε,T )
ε exists for all T ;

2. lim
T→∞

V (ε,T )
ε exists uniformly for ε;
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3. for every T ′ > a, T > a, ε ∈ R \ {0}, there exists a sequence (A(ε, T ′n))n∈N such that

lim
n→∞

A(ε, T ′n) = inf
T ′≥T

A(ε, T ′) uniformly for ε.

Then, ŷ satisfies the Euler–Lagrange system of n equations

lim
T→∞

inf
T ′≥T

gy{y}(t)
T ′∫

ρ(t)

Lz{y, z}(τ)∇τ −

gv{y}(t) T ′∫
ρ(t)

Lz{y, z}(τ)∇τ


∇

+ Ly{y, z}(t)− L∇v {y, z}(t) = 0 (5.4)

for all t ∈ [a,+∞) and the transversality condition

lim
T→∞

inf
T ′≥T

(
y(T ′) ·

[
Lv{y, z}(T ′) + gv{y}(T ′)ν(T ′)Lz{y, z}(T ′)

])
= 0. (5.5)

Proof. If ŷ is optimal, in the sense of Definition 5.2, then V (ε) ≤ 0 for any ε ∈ R. Since

V (0) = 0, then 0 is a maximizer of V . We prove that V is differentiable at 0, thus V ′(0) = 0.

From Theorem 5.5 and assumptions of Theorem 5.6 it follows that

0 = V ′(0) = lim
ε→0

V (ε)

ε
= lim

ε→0
lim
T→∞

V (ε, T )

ε
= lim

T→∞
lim
ε→0

V (ε, T )

ε

= lim
T→∞

lim
ε→0

inf
T ′≥T

A(ε, T ′) = lim
T→∞

lim
ε→0

lim
n→∞

A(ε, T
′
n)

= lim
T→∞

lim
n→∞

lim
ε→0

A(ε, T
′
n) = lim

T→∞
inf
T ′≥T

lim
ε→0

A(ε, T ′)

= lim
T→∞

inf
T ′≥T

lim
ε→0

T ′∫
a

L
(
t, ŷρ(t) + εpρ(t), ŷ∇(t) + εp∇(t), ẑ(t, p)

)
− L{ŷ, ẑ}(t)

ε
∇t

= lim
T→∞

inf
T ′≥T

T ′∫
a

lim
ε→0

L
(
t, ŷρ(t) + εpρ(t), ŷ∇(t) + εp∇(t), ẑ(t, p)

)
− L{ŷ, ẑ}(t)

ε
∇t.

Hence,

lim
T→∞

inf
T ′≥T

T ′∫
a

[
Ly{ŷ, ẑ}(t) · pρ(t) + Lv{ŷ, ẑ}(t) · p∇(t)

+ Lz{ŷ, ẑ}(t)
t∫

a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

]
∇t = 0.

(5.6)

Using the integration by parts formula given by point 6 of Theorem 1.29, we obtain:

T ′∫
a

Lv{ŷ, ẑ}(t) · p∇(t)∇t = Lv{ŷ, ẑ}(t) · p(t)

∣∣∣∣∣
t=T ′

t=a

−
T ′∫
a

L∇v {ŷ, ẑ}(t) · pρ(t)∇t

= Lv{ŷ, ẑ}(T ′) · p(T ′)−
T ′∫
a

L∇v {ŷ, ẑ}(t) · pρ(t)∇t.
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Next, we consider the second component of equation (5.6). First we use the third nabla

differentiation formula of Theorem 1.23 and obtain

 T ′∫
t

Lz{ŷ, ẑ}(τ)∇τ
t∫

a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

∇

=

 T ′∫
t

Lz{ŷ, ẑ}(τ)∇τ

∇ t∫
a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

+

 T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


 t∫
a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

∇

= −Lz{ŷ, ẑ}(t)
t∫

a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

+

 T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

(gy{ŷ}(t) · pρ(t) + gv{ŷ}(t) · p∇(t)
)
.

Integrating both sides from t = a to t = T ′, yields

T ′∫
a

 T ′∫
t

Lz{ŷ, ẑ}(τ)∇τ
t∫

a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

∇∇t
= −

T ′∫
a

Lz{ŷ, ẑ}(t) t∫
a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

∇t
+

T ′∫
a

 T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ
(
gy{ŷ}(t) · pρ(t) + gv{ŷ}(t) · p∇(t)

)∇t.

The left hand side of above equation is equal to zero:

T ′∫
a

 T ′∫
t

Lz{ŷ, ẑ}(τ)∇τ
t∫

a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

∇∇t
=

T ′∫
t

Lz{ŷ, ẑ}(τ)∇τ
t∫

a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

∣∣∣∣∣∣
t=T ′

t=a

= 0,

61



CHAPTER 5. INFINITE HORIZON VARIATIONAL PROBLEMS ON TIME SCALES

and, therefore,

T ′∫
a

Lz{ŷ, ẑ}(t) t∫
a

(
gy{ŷ}(τ) · pρ(τ) + gv{ŷ}(τ) · p∇(τ)

)
∇τ

∇t
=

T ′∫
a

 T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ
(
gy{ŷ}(t) · pρ(t) + gv{ŷ}(t) · p∇(t)

)∇t
=

T ′∫
a

gy{ŷ}(t) · pρ(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

∇t
+

T ′∫
a

p∇(t) · gv{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

∇t.

(5.7)

Using point 6 of Theorem 1.29 and the fact that p(a) = 0, we have

T ′∫
a

p∇(t) · gv{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

∇t = p(T ′) · gv{ŷ}(T ′)
T ′∫

ρ(T ′)

Lz{ŷ, ẑ}(τ)∇τ

−
T ′∫
a

gv{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇

· pρ(t)∇t.

From (5.6) it follows that

lim
T→∞

inf
T ′≥T


T ′∫
a

Ly{ŷ, ẑ}(t) · pρ(t)∇t+ Lv{ŷ, ẑ}(T ′) · p(T ′)−
T ′∫
a

L∇v {ŷ, ẑ}(t) · pρ(t)∇t

+

T ′∫
a

 T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ
(
gy{ŷ}(t) · pρ(t) + gv{ŷ}(t) · p∇(t)

)∇t

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= lim
T→∞

inf
T ′≥T


T ′∫
a

Ly{ŷ, ẑ}(t) · pρ(t)∇t+ Lv{ŷ, ẑ}(T ′) · p(T ′)

−
T ′∫
a

L∇v {ŷ, ẑ}(t) · pρ(t) +

T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τgy{ŷ}(t) · pρ(t)

∇t
+ gv{ŷ}(T ′)

T ′∫
ρ(T ′)

Lz{ŷ, ẑ}(τ)∇τ · p(T ′)

−
T ′∫
a

gv{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇

· pρ(t)∇t


= lim

T→∞
inf
T ′≥T


T ′∫
a

pρ(t) ·

[
Ly{ŷ, ẑ}(t)− L∇v {ŷ, ẑ}(t)

+gy{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ −

gv{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇∇t

+Lv{ŷ, ẑ}(T ′) · p(T ′) +

gv{ŷ}(T ′) T ′∫
ρ(T ′)

Lz{ŷ, ẑ}(τ)∇τ

 · p(T ′)
 = 0.

(5.8)

The equation (5.8) holds for all p ∈ C1
ld such that p(a) = 0. Then, in particular, it also holds

for the subclass of p with p(T ′) = 0. Therefore,

lim
T→∞

inf
T ′≥T

T ′∫
a

pρ(t) ·

Ly{ŷ, ẑ}(t)− L∇v {ŷ, ẑ}(t) + gy{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

−

gv{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇∇t = 0.

Choosing p = (p1, . . . , pn) such that p2 ≡ · · · ≡ pn ≡ 0, yields

lim
T→∞

inf
T ′≥T

T ′∫
a

pρ1(t)

Ly1{ŷ, ẑ}(t) + gy1{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

−L∇v1
{ŷ, ẑ}(t)−

gv1{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇∇t = 0.
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From Lemma 5.3 it follows that

gy1{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ −

gv1{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇

+ Ly1{ŷ, ẑ}(t)− L∇v1
{ŷ, ẑ}(t) = 0

holds for all t ∈ [a,+∞) and all T ′ ≥ t. The same procedure may be done for other coordi-

nates. For all i = 1, . . . , n we obtain the equation

gyi{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ −

gvi{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇

+ Lyi{ŷ, ẑ}(t)− L∇vi{ŷ, ẑ}(t) = 0

for all t ∈ [a,+∞) and all T ′ ≥ t. These n conditions can be written in vector form as

gy{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ −

gv{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


∇

+ Ly{ŷ, ẑ}(t)− L∇v {ŷ, ẑ}(t) = 0 (5.9)

for all t ∈ [a,+∞) and all T ′ ≥ t, which implies the Euler–Lagrange system of n equations

(5.4). From equation (5.8) and the system of equations (5.9), we conclude that

lim
T→∞

inf
T ′≥T


Lv{ŷ, ẑ}(T ′) + gv{ŷ}(T ′)

T ′∫
ρ(T ′)

Lz{ŷ, ẑ}(τ)∇τ

 · p(T ′)
 = 0. (5.10)

Next, we define a special curve p: for all t ∈ [a,∞)

p(t) = α(t)ŷ(t) , (5.11)

where α : [a,∞)→ R is a C1
ld function satisfying α(a) = 0 and for which there exists T0 ∈ T

such that α(t) = β ∈ R \ {0} for all t > T0. Substituting p(T ′) = α(T ′)ŷ(T ′) into (5.10), we

conclude that

lim
T→∞

inf
T ′≥T

Lv{ŷ, ẑ}(T ′) · βŷ(T ′) + gv{ŷ}(T ′)
T ′∫

ρ(T ′)

Lz{ŷ, ẑ}(τ)∇τ · βŷ(T ′)


vanishes and, therefore,

lim
T→∞

inf
T ′≥T

ŷ(T ′) ·

Lv{ŷ, ẑ}(T ′) + gv{ŷ}(T ′)
T ′∫

ρ(T ′)

Lz{ŷ, ẑ}(τ)∇τ


 = 0.

From Theorem 1.28 it follows that ŷ satisfies the transversality condition (5.5).
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In contrast to Theorem 5.6, the following theorem is proved by manipulating equation (5.6)

differently: using integration by parts and nabla differentiation formulas, the composition pρ

is transformed into the nabla derivative p∇. Therefore, we apply Corollary 5.4 instead of

Lemma 5.3 in order to obtain the intended conclusions.

Theorem 5.7. Under assumptions of Theorem 5.6, the Euler–Lagrange system of n equations

lim
T→∞

inf
T ′≥T


T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s∇τ + gv{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ


+ Lv{ŷ, ẑ}(t)−

t∫
a

Ly{ŷ, ẑ}(τ)∇τ = c (5.12)

holds for all t ∈ [a,∞), c ∈ Rn, together with the transversality condition

lim
T→∞

inf
T ′≥T

ŷ(T ′) ·
T ′∫
a

Ly{ŷ, ẑ}(τ)∇τ

 = 0. (5.13)

Proof. Our proof starts with the necessary optimality condition (5.6) computed in the proof

of Theorem 5.6. Using point 3 of Theorem 1.23, we have[
p(t) ·

t∫
a

Ly{ŷ, ẑ}(τ)∇τ

]∇
= p∇(t) ·

t∫
a

Ly{ŷ, ẑ}(τ)∇τ + pρ(t) ·

 t∫
a

Ly{ŷ, ẑ}(τ)∇τ

∇

= p∇(t) ·
t∫

a

Ly{ŷ, ẑ}(τ)∇τ + pρ(t) · Ly{ŷ, ẑ}(t).

Then, integrating both sides from t = a to t = T ′, yields

T ′∫
a

p(t) · t∫
a

Ly{ŷ, ẑ}(τ)∇τ

∇∇t
=

T ′∫
a

p∇(t) ·
t∫

a

Ly{ŷ, ẑ}(τ)∇τ

∇t+

T ′∫
a

pρ(t) · Ly{ŷ, ẑ}(t)∇t.

Therefore,

p(t) ·
t∫

a

Ly{ŷ, ẑ}(τ)∇τ

∣∣∣∣∣∣
t=T ′

t=a

=

T ′∫
a

p∇(t) ·
t∫

a

Ly{ŷ, ẑ}(τ)∇τ

∇t+

T ′∫
a

pρ(t) · Ly{ŷ, ẑ}(t)∇t.
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Since p(a) = 0, we have

T ′∫
a

pρ(t) · Ly{ŷ, ẑ}(t)∇t

= −
T ′∫
a

p∇(t) ·

 t∫
a

Ly{ŷ, ẑ}(τ)∇τ

∇t+ p(T ′) ·
T ′∫
a

Ly{ŷ, ẑ}(τ)∇τ.

We obtain (5.7) in the same manner as in the proof of Theorem 5.6. Using again point 3 of

Theorem 1.23, we have[
p(t)·

T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ]∇

= p∇(t) ·
T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ

+ pρ(t) ·

 T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ

∇

= p∇(t) ·
T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ − pρ(t) · gy{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ.

Integrating both sides from t = a to t = T ′ and using point 7 of Theorem 1.29 and condition

p(a) = 0, we have

T ′∫
a

p(t) · T
′∫

t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ

∇

∇t

= p(t) ·
T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ
∣∣∣∣∣∣∣
t=T ′

t=a

= 0.

Then,

T ′∫
a

pρ(t) ·

gy{ŷ}(t) T ′∫
ρ(t)

Lz{ŷ, ẑ}(s)∇s

∇t
=

T ′∫
a

p∇(t) ·

 T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ
∇t.
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From (5.7) and previous relations, we write (5.6) in the following way:

lim
T→∞

inf
T ′≥T

−
T ′∫
a

p∇(t) ·
t∫

a

Ly{ŷ, ẑ}(τ)∇τ∇t+ p(T ′) ·
T ′∫
a

Ly{ŷ, ẑ}(τ)∇τ

+

T ′∫
a

Lv{ŷ, ẑ}(t) · p∇(t)∇t+

T ′∫
a

p∇(t) ·
T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ∇t
+

T ′∫
a

gv{ŷ}(t) ·

p∇(t)

T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

∇t


= lim
T→∞

inf
T ′≥T


T ′∫
a

p∇(t)·

 t∫
a

−Ly{ŷ, ẑ}(τ)∇τ + Lv{ŷ, ẑ}(t)

+

T ′∫
t

gy{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ
+gv{ŷ}(t)

T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

∇t +p(T ′) ·
T ′∫
a

Ly{ŷ, ẑ}(τ)∇τ

 = 0.

(5.14)

Since (5.14) holds for all p ∈ C1
ld with p(a) = 0, in particular it also holds in the subclass of

functions p ∈ C1
ld with p(a) = p(T ′) = 0. Let i ∈ {1, . . . , n}. Choosing p = (p1, . . . , pn) such

that all pj ≡ 0, j 6= i, and pi ∈ C1
ld with pi(a) = pi(T

′) = 0, we conclude that

lim
T→∞

inf
T ′≥T

T ′∫
a

p∇i (t)


t∫

a

−Lyi{ŷ, ẑ}(τ)∇τ + Lvi{ŷ, ẑ}(t)

+

T ′∫
t

gyi{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s∇τ + gvi{ŷ}(t)
T ′∫

ρ(t)

Lz{ŷ, ẑ}(τ)∇τ

∇t = 0.

From Corollary 5.4 it follows that

Lvi{ŷ, ẑ}(t)−
t∫

a

Lyi{ŷ, ẑ}(τ)∇τ +

T ′∫
t

gyi{ŷ}(τ)

T ′∫
ρ(τ)

Lz{ŷ, ẑ}(s)∇s

∇τ
+ gvi{ŷ}(t)

T ′∫
ρ(t)

Lz{ŷ, ẑ}(τ)∇τ = ci, (5.15)

ci ∈ R, i = 1, . . . , n, for all t ∈ [a,+∞) and all T ′ ≥ t. These n conditions imply the
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Euler–Lagrange system of equations (5.12). From (5.14) and (5.15), we conclude that

lim
T→∞

inf
T ′≥T

p(T ′) ·
T ′∫
a

Ly{ŷ, ẑ}(τ)∇τ

 = 0. (5.16)

Using the special curve p defined by (5.11) and equation (5.16), we obtain that

lim
T→∞

inf
T ′≥T

βŷ(T ′) ·
T ′∫
a

Ly{ŷ, ẑ}(τ)∇τ

 = 0.

Therefore, ŷ satisfies the transversality condition (5.13).

5.3 State of the art

The results of this chapter are published in [37].
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Chapter 6

The Delta-nabla Calculus of

Variations for Composition

Functionals

This chapter is devoted to problems of the time-scale calculus of variations for a functional

that is the composition of a certain scalar function with the delta and nabla integrals of

a vector valued field. We begin by proving general Euler–Lagrange equations in integral

form (Theorem 6.3). Then we consider cases when initial or terminal boundary conditions

are not specified, obtaining corresponding transversality conditions (Theorems 6.5 and 6.6).

Furthermore, we prove necessary optimality conditions for general isoperimetric problems

given by the composition of delta-nabla integrals (Theorem 6.10). Finally, some illustrating

examples are presented (Section 6.4).

6.1 The Euler–Lagrange equations

This section starts with the definition of the class of functions C1
k,n([a, b];R), which con-

tains delta and nabla differentiable functions. Next, a necessary optimality condition (in

integral form) and an illustrative example for an irregular time scale are provided.

Definition 6.1. By C1
k,n([a, b];R), k, n ∈ N, we denote the class of functions y : [a, b] → R

such that: if k 6= 0 and n 6= 0, then y∆ is continuous on [a, b]κκ and y∇ is continuous on

[a, b]κκ, where [a, b]κκ := [a, b]κ∩ [a, b]κ; if n = 0, then y∆ is continuous on [a, b]κ; if k = 0, then

y∇ is continuous on [a, b]κ.
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We consider the following variational problem:

L[y] = H

 b∫
a

f1(t, yσ(t), y∆(t))∆t, . . . ,

b∫
a

fk(t, y
σ(t), y∆(t))∆t,

b∫
a

fk+1(t, yρ(t), y∇(t))∇t, . . . ,
b∫
a

fk+n(t, yρ(t), y∇(t))∇t

 −→ extr, (6.1)

(y(a) = ya), (y(b) = yb), (6.2)

in the class of functions y ∈ C1
k,n, where “extr” means “minimize” or “maximize”. The

parentheses in (6.2), around the end-point conditions, means that those conditions may or

may not occur (it is possible that both y(a) and y(b) are free). A function y ∈ C1
k,n is said

to be admissible provided it satisfies the boundary conditions (6.2) (if any is given). For

k = 0 problem (6.1) becomes a nabla problem (neither delta integral nor delta derivative is

present); for n = 0 problem (6.1) reduces to a delta problem (neither nabla integral nor nabla

derivative is present). For simplicity, along the text we introduce the operators [·] and {·} by

[y](t) := (t, yσ(t), y∆(t)), {y}(t) := (t, yρ(t), y∇(t)). (6.3)

Along the chapter, c denotes constants that are generic and may change at each occurrence.

We assume that:

1. the function H : Rn+k → R has continuous partial derivatives with respect to its

arguments, which we denote by H
′
i , i = 1, . . . , n+ k;

2. functions (t, y, v) → fi(t, y, v) from [a, b] × R2 to R, i = 1, . . . , n + k, have continuous

partial derivatives with respect to y and v uniformly in t ∈ [a, b], which we denote by

fiy and fiv;

3. fi, fiy, fiv are rd-continuous on [a, b]κ, i = 1, . . . , k, and ld-continuous on [a, b]κ, i =

k + 1, . . . , k + n, for all y ∈ C1
k,n.

Definition 6.2 (Cf. [70]). We say that an admissible function ŷ ∈ C1
k,n([a, b];R) is a local

minimizer (respectively, local maximizer) to the problem (6.1)–(6.2), if there exists δ > 0 such

that L[ŷ] ≤ L[y] (respectively, L[ŷ] ≥ L[y]) for all admissible functions y ∈ C1
k,n([a, b];R)

satisfying the inequality ||y − ŷ||1,∞ < δ, where

||y||1,∞ := ||yσ||∞ + ||y∆||∞ + ||yρ||∞ + ||y∇||∞ (6.4)

with ||y||∞ := supt∈[a,b]κκ
|y(t)|.
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Depending on the given boundary conditions, we can distinguish four different problems.

The first one is the problem (Pab), where the two boundary conditions are specified. To solve

this problem we need an Euler–Lagrange necessary optimality condition, which is given by

Theorem 6.3 below. Next two problems — denoted by (Pa) and (Pb) — occur when y(a) is

given and y(b) is free (problem (Pa)) and when y(a) is free and y(b) is specified (problem (Pb)).

To solve both of them we need an Euler–Lagrange equation and one proper transversality

condition. The last problem — denoted by (P ) — occurs when both boundary conditions

are not present. To find a solution for such a problem we need to use an Euler–Lagrange

equation and two transversality conditions (one at each time a and b).

For brevity, in what follows we omit the arguments of H
′
i . Precisely,

H
′
i :=

∂H

∂Fi
(F1(y), . . . ,Fk+n(y)),

i = 1, . . . , n+ k, where

Fi(y) =

b∫
a

fi[y](t)∆t, for i = 1, . . . , k, Fi(y) =

b∫
a

fi{y}(t)∇t, for i = k + 1, . . . , k + n.

Theorem 6.3 (The Euler–Lagrange equations in integral form). If ŷ is a local solution to

problem (6.1)–(6.2), then the Euler–Lagrange equations (in integral form)

k∑
i=1

H
′
i ·

fiv[ŷ](ρ(t))−
ρ(t)∫
a

fiy[ŷ](τ)∆τ


+

k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(t)− t∫
a

fiy{ŷ}(τ)∇τ

 = c, t ∈ Tκ, (6.5)

and

k∑
i=1

H
′
i ·

fiv[ŷ](t)−
t∫

a

fiy[ŷ](τ)∆τ


+

k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(σ(t))−
σ(t)∫
a

fiy{ŷ}(τ)∇τ

 = c, t ∈ Tκ, (6.6)

hold.

Proof. Suppose that L [y] has a local extremum at ŷ. Consider a variation h ∈ C1
k,n of ŷ for

which we define the function φ : R→ R by φ(ε) = L [ŷ + εh]. A necessary condition for ŷ to
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be an extremizer for L [y] is given by φ
′
(ε) = 0 for ε = 0. Using the chain rule, we obtain

that

0 = φ
′
(0) =

k∑
i=1

H
′
i ·

b∫
a

(
fiy[ŷ](t)hσ(t) + fiv[ŷ](t)h∆(t)

)
∆t

+

k+n∑
i=k+1

H
′
i ·

b∫
a

(
fiy{ŷ}(t)hρ(t) + fiv{ŷ}(t)h∇(t)

)
∇t.

Integration by parts of the first terms of both integrals gives

b∫
a

fiy[ŷ](t)hσ(t)∆t =

t∫
a

fiy[ŷ](τ)∆τh(t)

∣∣∣∣∣∣
b

a

−
b∫
a

 t∫
a

fiy[ŷ](τ)∆τ

h∆(t)∆t,

b∫
a

fiy{ŷ}(t)hρ(t)∇t =

t∫
a

fiy{ŷ}(τ)∇τh(t)

∣∣∣∣∣∣
b

a

−
b∫
a

 t∫
a

fiy{ŷ}(τ)∇τ

h∇(t)∇t.

Thus, the necessary condition φ
′
(0) = 0 can be written as

k∑
i=1

H
′
i ·

 t∫
a

fiy[ŷ](τ)∆τh(t)

∣∣∣∣∣∣
b

a

−
b∫
a

 t∫
a

fiy[ŷ](τ)∆τ

h∆(t)∆t

+

b∫
a

fiv[ŷ](t)h∆(t)∆t


+

k+n∑
i=k+1

H
′
i ·

 t∫
a

fiy{ŷ}(τ)∇τh(t)

∣∣∣∣∣∣
b

a

−
b∫
a

 t∫
a

fiy{ŷ}(τ)∇τ

h∇(t)∇t

+

b∫
a

fiv{ŷ}(t)h∇(t)∇t

 = 0. (6.7)

In particular, condition (6.7) holds for all variations that are zero at both ends: h(a) = 0 and

h(b) = 0. Then, we obtain:

b∫
a

k∑
i=1

H
′
i · h∆(t)

fiv[ŷ](t)−
t∫

a

fiy[ŷ](τ)∆τ

∆t

+

b∫
a

k+n∑
i=k+1

H
′
i · h∇(t)

fiv{ŷ}(t)− t∫
a

fiy{ŷ}(τ)∇τ

∇t = 0.
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Introducing ξ and χ by

ξ(t) :=

k∑
i=1

H
′
i ·

fiv[ŷ](t)−
t∫

a

fiy[ŷ](τ)∆τ

 (6.8)

and

χ(t) :=
k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(t)− t∫
a

fiy{ŷ}(τ)∇τ

 , (6.9)

we obtain the following relation:

b∫
a

h∆(t)ξ(t)∆t+

b∫
a

h∇(t)χ(t)∇t = 0. (6.10)

The further part of the proof follows naturally into two fragments. (i) In the former part, we

change the first integral of (6.10) and we obtain two nabla-integrals and, subsequently, the

equation (6.5). (ii) In the latter case, we change the second integral of (6.10) and obtain two

delta-integrals, which leads us to (6.6).

(i) Using relation (1.6) of Theorem 1.32, we have:

b∫
a

(
h∆(t)

)ρ
ξρ(t)∇t+

b∫
a

h∇(t)χ(t)∇t = 0.

From (1.4) of Theorem 1.31 it follows that

b∫
a

h∇(t) (ξρ(t) + χ(t))∇t = 0.

From the Dubois–Reymond Lemma 3.12 we conclude that

ξρ(t) + χ(t) = const, (6.11)

hence, we obtain (6.5).

(ii) From (6.10), and using relation (1.7) of Theorem 1.32, we have

b∫
a

h∆(t)ξ(t)∆t+

b∫
a

(h∇(t))σχσ(t)∆t = 0.

Using (1.5) of Theorem 1.31, we obtain:

b∫
a

h∆(t)(ξ(t) + χσ(t))∆t = 0.

From the Dubois–Reymond Lemma 3.5, it follows that ξ(t)+χσ(t) = const. Hence, we obtain

the Euler–Lagrange equation (6.6).
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For regular time scales (Definition 1.6), the Euler–Lagrange equations (6.5) and (6.6)

coincide; on a general time scale, they are different. Such a difference is illustrated in Exam-

ple 6.4.

Example 6.4. Let us consider the irregular time scale T = P1,1 =
∞⋃
k=0

[2k, 2k + 1]. We show

that for this time scale there is a difference between the Euler–Lagrange equations (6.5) and

(6.6). The forward and backward jump operators are given by

σ(t) =


t, t ∈

∞⋃
k=0

[2k, 2k + 1),

t+ 1, t ∈
∞⋃
k=0

{2k + 1} ,
ρ(t) =


t, t ∈

∞⋃
k=0

(2k, 2k + 1],

t− 1, t ∈
∞⋃
k=1

{2k} ,

0, t = 0.

For t = 0 and t ∈
∞⋃
k=0

(2k, 2k + 1), equations (6.5) and (6.6) coincide. We can distinguish

between them for t ∈
∞⋃
k=0

{2k + 1} and t ∈
∞⋃
k=1

{2k}. In what follows we use the notations

(6.8) and (6.9). If t ∈
∞⋃
k=0

{2k + 1}, then we obtain from (6.5) and (6.6) the Euler–Lagrange

equations ξ(t) + χ(t) = c and ξ(t) + χ(t + 1) = c, respectively. If t ∈
∞⋃
k=1

{2k}, then the

Euler–Lagrange equation (6.5) has the form ξ(t − 1) + χ(t) = c while (6.6) takes the form

ξ(t) + χ(t) = c.

6.2 Natural boundary conditions

In this section we minimize or maximize the variational functional (6.1), but initial and/or

terminal boundary condition y(a) and/or y(b) are not specified. In what follows we obtain

corresponding transversality conditions.

Theorem 6.5 (Transversality condition at the initial time t = a). Let T be a time scale for

which ρ(σ(a)) = a. If ŷ is a local extremizer to (6.1) with y(a) not specified, then

k∑
i=1

H
′
i · fiv[ŷ](a) +

k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(σ(a))−
σ(a)∫
a

fiy{ŷ}(t)∇t

 = 0 (6.12)

holds together with the Euler–Lagrange equations (6.5) and (6.6).

Proof. From (6.7), what has already been proved, and (6.11), we have

k∑
i=1

H
′
i ·

t∫
a

fiy[ŷ](τ)∆τh(t)

∣∣∣∣∣∣
b

a

+
k+n∑
i=k+1

H
′
i ·

t∫
a

fiy{ŷ}(τ)∇τh(t)

∣∣∣∣∣∣
b

a

+

b∫
a

h∇(t) · c∇t = 0.
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It follows that

k∑
i=1

H
′
i ·

t∫
a

fiy[ŷ](τ)∆τh(t)

∣∣∣∣∣∣
b

a

+
k+n∑
i=k+1

H
′
i ·

t∫
a

fiy{ŷ}(τ)∇τh(t)

∣∣∣∣∣∣
b

a

+ h(t) · c|ba = 0.

Next, we conclude that

h(b)

 k∑
i=1

H
′
i ·

b∫
a

fiy[ŷ](τ)∆τ +
k+n∑
i=k+1

H
′
i ·

b∫
a

fiy{ŷ}(τ)∇τ + c


− h(a)

 k∑
i=1

H
′
i ·

a∫
a

fiy[ŷ](τ)∆τ +

k+n∑
i=k+1

H
′
i ·

a∫
a

fiy{ŷ}(τ)∇τ + c

 = 0, (6.13)

where

c = ξ(ρ(t)) + χ(t). (6.14)

The Euler–Lagrange equation (6.5) of Theorem 6.3 (or (6.14)) is given at t = σ(a) as

k∑
i=1

H
′
i ·

fiv[ŷ](ρ(σ(a)))−
ρ(σ(a))∫
a

fiy[ŷ](τ)∆τ


+

k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(σ(a))−
σ(a)∫
a

fiy{ŷ}(τ)∇τ

 = c.

We obtain that

k∑
i=1

H
′
i · fiv[ŷ](a) +

k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(σ(a))−
σ(a)∫
a

fiy{ŷ}(τ)∇τ

 = c.

Restricting the variations h to those such that h(b) = 0, it follows from (6.13) that h(a)·c = 0.

From the arbitrariness of h, we conclude that c = 0. Hence, we obtain (6.12).

Theorem 6.6 (Transversality condition at the terminal time t = b). Let T be a time scale

for which σ(ρ(b)) = b. If ŷ is a local extremizer to (6.1) with y(b) not specified, then

k∑
i=1

H
′
i ·

fiv[ŷ](ρ(b)) +

b∫
ρ(b)

fiy[ŷ](t)∆t

+
k+n∑
i=k+1

H
′
i · fiv{ŷ}(b) = 0 (6.15)

holds together with the Euler–Lagrange equations (6.5) and (6.6).
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Proof. The calculations in the proof of Theorem 6.5 give us (6.13). When h(a) = 0, the

Euler–Lagrange equation (6.6) of Theorem 6.3 has the following form at t = ρ(b):

k∑
i=1

H
′
i ·

fiv[ŷ](ρ(b))−
ρ(b)∫
a

fiy[ŷ](τ)∆τ


+

k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(σ(ρ(b)))−
σ(ρ(b))∫
a

fiy{ŷ}(t)∇τ

 = c.

Then,

k∑
i=1

H
′
i ·

fiv[ŷ](ρ(b))−
ρ(b)∫
a

fiy[ŷ](τ)∆τ


+

k+n∑
i=k+1

H
′
i ·

fiv{ŷ}(b)− b∫
a

fiy{ŷ}(t)∇τ

 = c. (6.16)

We obtain (6.15) from (6.13) and (6.16).

Several new interesting results can be immediately obtained from Theorems 6.3, 6.5 and

6.6. An example of such results is given by Corollary 6.7.

Corollary 6.7. If ŷ is a solution to the problem

L[y] =

b∫
a
f1(t, yσ(t), y∆(t))∆t

b∫
a
f2(t, yρ(t), y∇(t))∇t

−→ extr,

(y(a) = ya), (y(b) = yb),

then the Euler–Lagrange equations

1

F2

f1v[ŷ](ρ(t))−
ρ(t)∫
a

f1y[ŷ](τ)∆τ

− F1

F2
2

f2v{ŷ}(t)−
t∫

a

f2y{ŷ}(τ)∇τ

 = c, t ∈ Tκ

and

1

F2

f1v[ŷ](t)−
t∫

a

f1y[ŷ](τ)∆τ

− F1

F2
2

f2v{ŷ}(σ(t))−
σ(t)∫
a

f2y{ŷ}(τ)∇τ

 = c, t ∈ Tκ

76



6.3. ISOPERIMETRIC PROBLEMS

hold, where

F1 :=

b∫
a

f1(t, ŷσ(t), ŷ∆(t))∆t and F2 :=

b∫
a

f2(t, ŷρ(t), ŷ∇(t))∇t.

Moreover, if y(a) is free and ρ(σ(a)) = a, then

1

F2
f1v[ŷ](a)− F1

F2
2

f2v{ŷ}(σ(a))−
σ(a)∫
a

f2y{ŷ}(t)∇t

 = 0;

if y(b) is free and σ(ρ(b)) = b, then

1

F2

f1v[ŷ](ρ(b)) +

b∫
ρ(b)

f1y[ŷ](t)∆t

− F1

F2
2

f2v{ŷ}(b) = 0.

6.3 Isoperimetric problems

Let us consider the general delta–nabla composition isoperimetric problem on time scales

subject to given boundary conditions. The problem consists of minimizing or maximizing

L[y] = H

 b∫
a

f1(t, yσ(t), y∆(t))∆t, . . . ,

b∫
a

fk(t, y
σ(t), y∆(t))∆t,

b∫
a

fk+1(t, yρ(t), y∇(t))∇t, . . . ,
b∫
a

fk+n(t, yρ(t), y∇(t))∇t

 (6.17)

in the class of functions y ∈ C1
k+m,n+p satisfying given boundary conditions

y(a) = ya, y(b) = yb, (6.18)

and a generalized isoperimetric constraint

K[y] = P

 b∫
a

g1(t, yσ(t), y∆(t))∆t, . . . ,

b∫
a

gm(t, yσ(t), y∆(t))∆t,

b∫
a

gm+1(t, yρ(t), y∇(t))∇t, . . . ,
b∫
a

gm+p(t, y
ρ(t), y∇(t))∇t

 = d, (6.19)

where ya, yb, d ∈ R. We assume that:

1. the functions H : Rn+k → R and P : Rm+p → R have continuous partial derivatives

with respect to all their arguments, which we denote by H
′
i , i = 1, . . . , n + k, and P

′
i ,

i = 1, . . . ,m+ p;
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2. functions (t, y, v)→ fi(t, y, v), i = 1, . . . , n+k, and (t, y, v)→ gj(t, y, v), j = 1, . . . ,m+

p, from [a, b] × R2 to R, have continuous partial derivatives with respect to y and v

uniformly in t ∈ [a, b], which we denote by fiy, fiv, and gjy, gjv;

3. for all y ∈ C1
k+m,n+p, fi, fiy, fiv and gj , gjy, gjv are rd-continuous in t ∈ [a, b]κ, i =

1, . . . , k, j = 1, . . . ,m, and ld-continuous in t ∈ [a, b]κ, i = k + 1, . . . , k + n, j =

m+ 1, . . . ,m+ p.

A function y ∈ C1
k+m,n+p is said to be admissible provided it satisfies the boundary conditions

(6.18) and the isoperimetric constraint (6.19).

Definition 6.8. We say that an admissible function ŷ is a local minimizer (respectively, a

local maximizer) to the isoperimetric problem (6.17)–(6.19), if there exists a δ > 0 such that

L[ŷ] 6 L[y] (respectively, L[ŷ] > L[y]) for all admissible functions y ∈ C1
k+m,n+p satisfying

the inequality ||y − ŷ||1,∞ < δ.

For brevity, we omit the argument of P
′
i : P

′
i := ∂P

∂Gi (G1(ŷ), . . . ,Gm+p(ŷ)) for i = 1, . . . ,m+

p, with Gi(ŷ) =
b∫
a
gi(t, ŷ

σ(t), ŷ∆(t))∆t, i = 1, . . . ,m, and Gi(ŷ) =
b∫
a
gi(t, ŷ

ρ(t), ŷ∇(t))∇t,

i = m+ 1, . . . ,m+ p. Let us define u and w by

u(t) :=
m∑
i=1

P
′
i ·

giv[ŷ](t)−
t∫

a

giy[ŷ](τ)∆τ

 (6.20)

and

w(t) :=

m+p∑
i=m+1

P
′
i ·

giv{ŷ}(t)− t∫
a

giy{ŷ}(τ)∇τ

 . (6.21)

Definition 6.9. An admissible function ŷ is said to be an extremal for K if u(t) +w(σ(t)) =

const and u(ρ(t))+w(t) = const for all t ∈ [a, b]κκ. An extremizer (i.e., a local minimizer or a

local maximizer) to problem (6.17)–(6.19) that is not an extremal for K is said to be a normal

extremizer; otherwise (i.e., if it is an extremal for K), the extremizer is said to be abnormal.

Theorem 6.10 (Optimality condition to the isoperimetric problem (6.17)–(6.19)). Let ξ and

χ be given as in (6.8) and (6.9), and u and w be given as in (6.20) and (6.21). If ŷ is a

normal extremizer to the isoperimetric problem (6.17)–(6.19), then there exists a real number

λ such that

1. ξρ(t) + χ(t)− λ (uρ(t) + w(t)) = const;

2. ξ(t) + χσ(t)− λ (uρ(t) + w(t)) = const;

3. ξρ(t) + χ(t)− λ (u(t) + wσ(t)) = const;
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4. ξ(t) + χσ(t)− λ (u(t) + wσ(t)) = const;

for all t ∈ [a, b]κκ.

Proof. We prove the first item of Theorem 6.10. The other items are proved in a similar

way. Consider a variation of ŷ such that y = ŷ + ε1h1 + ε2h2, where hi ∈ C1
k+m,n+p and

hi(a) = hi(b) = 0, i = 1, 2, and parameters ε1 and ε2 are such that ||y − ŷ||1,∞ < δ for some

δ > 0. Function h1 is arbitrary and h2 is chosen later. Define

K(ε1, ε2) = K[y] = P

 b∫
a

g1(t, yσ(t), y∆(t))∆t, . . . ,

b∫
a

gm(t, yσ(t), y∆(t))∆t,

b∫
a

gm+1(t, yρ(t), y∇(t))∇t, . . . ,
b∫
a

gm+p(t, y
ρ(t), y∇(t))∇t

− d.
A direct calculation gives

∂K
∂ε2

∣∣∣∣
(0,0)

=

m∑
i=1

P
′
i ·

b∫
a

(
giy[ŷ](t)hσ2 (t) + giv[ŷ](t)h∆

2 (t)
)

∆t

+

m+p∑
i=m+1

P
′
i ·

b∫
a

(
giy{ŷ}(t)hρ2(t) + giv{ŷ}(t)h∇2 (t)

)
∇t.

Integration by parts of the first terms of both integrals yields:

m∑
i=1

P
′
i ·

 t∫
a

giy[ŷ](τ)∆τh2(t)

∣∣∣∣∣∣
b

a

−
b∫
a

 t∫
a

giy[ŷ](τ)∆τ

h∆
2 (t)∆t

+

b∫
a

giv[ŷ](t)h∆
2 (t)∆t


+

m+p∑
i=m+1

P
′
i ·

 t∫
a

giy{ŷ}(τ)∇τh2(t)

∣∣∣∣∣∣
b

a

−
b∫
a

 t∫
a

giy{ŷ}(τ)∇τ

h∇2 (t)∇t

+

b∫
a

giv{ŷ}(t)h∇2 (t)∇t

 .
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Since h2(a) = h2(b) = 0, we have

b∫
a

m∑
i=1

P
′
ih

∆
2 (t)

giv[ŷ](t)−
t∫

a

giy[ŷ](τ)∆τ

∆t

+

b∫
a

m+p∑
i=m+1

P
′
ih
∇
2 (t)

giv{ŷ}(t)− t∫
a

giy{ŷ}(τ)∇τ

∇t.
Therefore,

∂K
∂ε2

∣∣∣∣
(0,0)

=

b∫
a

h∆
2 (t)u(t)∆t+

b∫
a

h∇2 (t)w(t)∇t.

Using relation (1.4) of Theorem 1.31, we obtain that

b∫
a

(
h∆

2

)ρ
(t)uρ(t)∇t+

b∫
a

h∇2 (t)w(t)∇t =

b∫
a

h∇2 (t) (uρ(t) + w(t))∇t.

By the Dubois–Reymond Lemma 3.12, there exists a function h2 such that ∂K
∂ε2

∣∣∣
(0,0)

6= 0.

Since K(0, 0) = 0, there exists a function ε2, defined in the neighborhood of zero, such that

K(ε1, ε2(ε1)) = 0, i.e., we may choose a subset of variations ŷ satisfying the isoperimetric

constraint. Let us consider the real function

L(ε1, ε2) = L[y] = H

 b∫
a

f1(t, yσ(t), y∆(t))∆t, . . . ,

b∫
a

fk(t, y
σ(t), y∆(t))∆t,

b∫
a

fk+1(t, yρ(t), y∇(t))∇t, . . . ,
b∫
a

fk+n(t, yρ(t), y∇(t))∇t

 .

The point (0, 0) is an extremal of L subject to the constraint K = 0 and ∇K(0, 0) 6= 0. By

the Lagrange multiplier rule, there exists λ ∈ R such that ∇
(
L(0, 0)− λK(0, 0)

)
= 0. Due to

h1(a) = h2(b) = 0, we have

∂L
∂ε1

∣∣∣∣
(0,0)

=
k∑
i=1

H
′
i ·

b∫
a

(
fiy[ŷ](t)hσ1 (t) + fiv[ŷ](t)h∆

1 (t)
)

∆t

+

k+n∑
i=k+1

H
′
i ·

b∫
a

(
fiy{ŷ}(t)hρ1(t) + fiv{ŷ}(t)h∇1 (t)

)
∇t.

Integrating by parts, and using h1(a) = h1(b) = 0, gives

∂L
∂ε1

∣∣∣∣
(0,0)

=

b∫
a

h∆
1 (t)ξ(t)∆t+

b∫
a

h∇1 (t)χ(t)∇t.
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Using (1.6) of Theorem 1.32 and (1.4) of Theorem 1.31, we obtain that

∂L
∂ε1

∣∣∣∣
(0,0)

=

b∫
a

(
h∆

1

)ρ
(t)ξρ(t)∇t+

b∫
a

h∇1 (t)χ(t)∇t =

b∫
a

h∇1 (t) (ξρ(t) + χ(t))∇t

and

∂K
∂ε1

∣∣∣∣
(0,0)

=
m∑
i=1

P
′
i ·

b∫
a

(
giy[ŷ](t)hσ1 (t) + giv[ŷ](t)h∆

1 (t)
)

∆t

+

m+p∑
i=m+1

P
′
i ·

b∫
a

(
giy{ŷ}(t)hρ1(t) + giv{ŷ}(t)h∇1 (t)

)
∇t.

Integrating by parts, and recalling that h1(a) = h1(b) = 0,

∂K
∂ε1

∣∣∣∣
(0,0)

=

b∫
a

h∆
1 (t)u(t)∆t+

b∫
a

h∇1 (t)w(t)∇t.

Using relation (1.6) of Theorem 1.32 and relation (1.4) of Theorem 1.31, we obtain that

∂K
∂ε1

∣∣∣∣
(0,0)

=

b∫
a

(
h∆

1

)ρ
(t)uρ(t)∇t +

b∫
a

h∇1 (t)w(t)∇t =

b∫
a

h∇1 (t) (uρ(t) + w(t))∇t.

Since ∂L
∂ε1

∣∣∣
(0,0)
− λ ∂K

∂ε1

∣∣∣
(0,0)

= 0, we have

b∫
a

h∇1 (t) [ξρ(t) + χ(t)− λ (uρ(t) + w(t))]∇t = 0

for any h1 ∈ Ck+m,n+p. Therefore, by the Dubois–Reymond Lemma 3.12, one has ξρ(t) +

χ(t)− λ (uρ(t) + w(t)) = c, where c ∈ R.

Remark 6.11. One can easily cover both normal and abnormal extremizers with Theo-

rem 6.10, if in the proof we use the abnormal Lagrange multiplier rule [90].

6.4 Illustrative examples

In this section we consider four examples which illustrate the results obtained in Theo-

rem 6.3 and Theorem 6.10. We begin with a nonautonomous problem.
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Example 6.12. Consider the problem

L[y] =

1∫
0

ty∆(t)∆t

1∫
0

(y∇(t))2∇t
−→ min,

y(0) = 0, y(1) = 1.

(6.22)

If y is a local minimizer to problem (6.22), then the Euler–Lagrange equations of Corollary 6.7

must hold, i.e.,

1

F2
ρ(t)− 2

F1

F2
2

y∇(t) = c, t ∈ Tκ, and
1

F2
t− 2

F1

F2
2

y∇(σ(t)) = c, t ∈ Tκ,

where F1 := F1(y) =
1∫
0

ty∆(t)∆t and F2 := F2(y) =
1∫
0

(y∇(t))2∇t. Let us consider the second

equation. Using (1.5) of Theorem 1.31, it can be written as

1

F2
t− 2

F1

F2
2

y∆(t) = c, t ∈ Tκ. (6.23)

Solving equation (6.23) and using the boundary conditions y(0) = 0 and y(1) = 1, gives

y(t) =
1

2Q

t∫
0

τ∆τ − t

 1

2Q

1∫
0

τ∆τ − 1

 , t ∈ Tκ, (6.24)

where Q := F1
F2

. Therefore, the solution depends on the time scale. Let us consider two

examples: T = R and T =
{

0, 1
2 , 1
}

. On T = R, from (6.24) we obtain

y(t) =
1

4Q
t2 +

4Q− 1

4Q
t, y∆(t) = y∇(t) = y′(t) =

1

2Q
t+

4Q− 1

4Q
, (6.25)

as solution of (6.23). Substituting (6.25) into F1 and F2 gives F1 = 12Q+1
24Q and F2 = 48Q2+1

48Q2 ,

that is,

Q =
2Q(12Q+ 1)

48Q2 + 1
. (6.26)

Solving equation (6.26) we get Q ∈
{

3−2
√

3
12 , 3+2

√
3

12

}
. Because (6.22) is a minimizing problem,

we select Q = 3−2
√

3
12 and we get the extremal

y(t) = −(3 + 2
√

3)t2 + (4 + 2
√

3)t. (6.27)

If T =
{

0, 1
2 , 1
}

, then from (6.24) we obtain y(t) = 1
8Q

2t−1∑
k=0

k + 8Q−1
8Q t, that is,

y(t) =


0, if t = 0,

8Q−1
16Q , if t = 1

2 ,

1, if t = 1.
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Direct calculations show that

y∆(0) =
y(1

2)− y(0)
1
2

=
8Q− 1

8Q
, y∆

(
1

2

)
=
y(1)− y(1

2)
1
2

=
8Q+ 1

8Q
,

y∇
(

1

2

)
=
y(1

2)− y(0)
1
2

=
8Q− 1

8Q
, y∇(1) =

y(1)− y(1
2)

1
2

=
8Q+ 1

8Q
.

(6.28)

Substituting (6.28) into the integrals F1 and F2 gives

F1 =
8Q+ 1

32Q
, F2 =

64Q2 + 1

64Q2
, Q =

F1

F2
=

2Q(8Q+ 1)

64Q2 + 1
.

Thus, we obtain the equation 64Q2 − 16Q − 1 = 0. The solutions to this equation are:

Q ∈
{

1−
√

2
8 , 1+

√
2

8

}
. We are interested in the minimum value Q, so we select Q = 1+

√
2

8 to

get the extremal

y(t) =


0, if t = 0,

1−
√

2
2 , if t = 1

2 ,

1, if t = 1.

(6.29)

Note that the extremals (6.27) and (6.29) are different: for (6.27) one has x(1/2) = 5
4 +

√
3

2 .

We now present a problem where, in contrast with Example 6.12, the extremal does not

depend on the time scale T.

Example 6.13. Consider the autonomous problem

L[y] =

2∫
0

(
y∆(t)

)2
∆t

2∫
0

[
y∇(t) + (y∇(t))2

]
∇t
−→ min,

y(0) = 0, y(2) = 4.

(6.30)

If y is a local minimizer to (6.30), then the Euler–Lagrange equations of Corollary 6.7 must

hold, i.e.,

2

F2
y∇(t)− F1

F2
2

(2y∇(t) + 1) = c, t ∈ Tκ, and
2

F2
y∆(t)− F1

F2
2

(2y∆(t) + 1) = c, t ∈ Tκ,

(6.31)

where F1 := F1(y) =
2∫
0

(
y∆(t)

)2
∆t and F2 := F2(y) =

2∫
0

[
y∇(t) +

(
y∇(t)

)2]∇t. Choosing

one of the equations of (6.31), for example the first one, we get

y∇(t) =

(
c+
F1

F2
2

)
F2

2

2F2 − 2F1
, t ∈ Tκ. (6.32)

Using (6.32) with boundary conditions y(0) = 0 and y(2) = 4, we obtain, for any given time

scale T, the extremal y(t) = 2t.
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In the previous two examples, the variational functional is given by the ratio of a delta and

a nabla integral. We now discuss a variational problem where the composition is expressed

by the product of three time-scale integrals.

Example 6.14. Consider the problem

L[y] =

 1∫
0

ty∆(t)∆t

 1∫
0

y∆(t) (1 + t) ∆t

 1∫
0

(
y∇(t)

)2∇t
 −→ min,

y(0) = 0, y(1) = 1.

(6.33)

If y is a local minimizer to problem (6.33), then the Euler–Lagrange equations must hold, and

we can write that

(F1F3 + F2F3) t+ F1F3 + 2F1F2y
∇(σ(t)) = c, t ∈ Tκ, (6.34)

where c is a constant, F1 := F1(y) =
1∫
0

ty∆(t)∆t, F2 := F2(y) =
1∫
0

y∆(t) (1 + t) ∆t, and

F3 := F3(y) =
1∫
0

(
y∇(t)

)2∇t. Using relation (1.5), we can write (6.34) as

(F1F3 + F2F3) t+ F1F3 + 2F1F2y
∆(t) = c, t ∈ Tκ. (6.35)

Using the boundary conditions y(0) = 0 and y(1) = 1, from (6.35) we get that

y(t) =

1 +Q

1∫
0

τ∆τ

 t−Q
t∫

0

τ∆τ, t ∈ Tκ, (6.36)

where Q = F1F3+F2F3
2F1F2

. Therefore, the solution depends on the time scale. Let us consider

T = R and T =
{

0, 1
2 , 1
}

. On T = R, expression (6.36) gives

y(t) =

(
2 +Q

2

)
t− Q

2
t2, y∆(t) = y∇(t) = y′(t) =

2 +Q

2
−Qt (6.37)

as solution of (6.35). Substituting (6.37) into F1, F2 and F3 gives:

F1 =
6−Q

12
, F2 =

18−Q
12

, F3 =
Q2 + 12

12
.

One can proceed by solving the equation Q3 − 18Q2 + 60Q − 72 = 0, to find the extremal

y(t) =
(

2+Q
2

)
t− Q

2 t
2 with Q = 2

3
√

9 +
√

17 + 9−
√

17
8

3

√
(9 +

√
17)2 + 6.

Let us consider now the time scale T =
{

0, 1
2 , 1
}

. From (6.36), we obtain

y(t) =

(
4 +Q

4

)
t− Q

4

2t−1∑
k=0

k =


0, if t = 0,

4+Q
8 , if t = 1

2 ,

1, if t = 1,

(6.38)
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as solution of (6.35). Substituting (6.38) into F1, F2 and F3, we obtain

F1 =
4−Q

16
, F2 =

20−Q
16

, F3 =
Q2 + 16

16
.

Solving equation Q3 − 18Q2 + 48Q− 96 = 0, we find the extremal

y(t) =


0, if t = 0,

5+ 3√5+ 3√25
4 , if t = 1

2 ,

1, if t = 1,

for problem (6.33).

Finally, we apply the results of Section 6.3 to an isoperimetric variational problem.

Example 6.15. Let us consider the problem of extremizing

L[y] =

1∫
0

(y∆(t))2∆t

1∫
0

ty∇(t)∇t

subject to the boundary conditions y(0) = 0 and y(1) = 1, and the constraint

K[y] =

1∫
0

ty∇(t)∇t = 1.

Applying Theorem 6.10, we get the nabla differential equation

2

F2
y∇(t)−

(
λ+

F1

(F2)2

)
t = c, t ∈ Tκκ. (6.39)

Solving this equation, we obtain

y(t) =

1−Q
1∫

0

τ∇τ

 t+Q

t∫
0

τ∇τ, (6.40)

where Q = F2
2

(
F1

(F2)2 + λ
)

. Therefore, the solution of equation (6.39) depends on the time

scale. As before, let us consider T = R and T =
{

0, 1
2 , 1
}

.

On T = R, from (6.40) we obtain that y(t) = 2−Q
2 t+Q

2 t
2. Substituting this expression for y

into the integrals F1 and F2, gives F1 = Q2+12
12 and F2 = Q+6

12 . Using the given isoperimetric

constraint, we obtain Q = 6, λ = 8, and y(t) = 3t2 − 2t.

Let us consider now the time scale T =
{

0, 1
2 , 1
}

. From (6.40), we have

y(t) =
4− 3Q

4
t+Q

2t∑
k=1

k

4
=


0, if t = 0,

4−Q
8 , if t = 1

2 ,

1, if t = 1.
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Simple calculations show that

F1 =

1∑
k=0

1

2

(
y∆

(
k

2

))2

=
1

2

(
y∆(0)

)2
+

1

2

(
y∆

(
1

2

))2

=
Q2 + 16

16
,

F2 =
2∑

k=1

1

4
ky∇

(
k

2

)
=

1

4
y∇
(

1

2

)
+

1

2
y∇(1) =

Q+ 12

16

and K(y) = Q+12
16 = 1. Therefore, Q = 4, λ = 6, and we have the extremal

y(t) =

0, if t ∈
{

0, 1
2

}
,

1, if t = 1.

6.5 State of the art

The results of this chapter are published in [38].
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Chapter 7

Applications to Economics

This chapter is divided into two parts (Sections 7.1 and 7.2) and at each of them an

economic model is presented. In Section 7.1 we study a general nonclassical problem of the

calculus of variations on time scales. More precisely, we consider problems of minimizing or

maximizing a composition of delta and nabla integral functionals. We prove general necessary

optimality conditions of Euler–Lagrange type in differential form (Theorem 7.1), which are

then applied to the particular time scales T = R (Corollary 7.2) and T = Z (Corollary 7.3).

Next we consider an economic problem describing a firm that wants to program its production

and investment policies to reach a given production rate and to maximize its future market

competitiveness. The continuous case, denoted by (P ), was discussed in [30]; here we focus

our attention on four different discretizations of problem (P ), in particular to two mixed

delta-nabla discretizations that we call (P∆∇) and (P∇∆). For these discrete problems the

direct discretization of the Euler–Lagrange equation for (P ) does not lead to the solution of

the problems: the results found by applying our Corollary 7.3 to (P∆∇) and (P∇∆) are shown

to be better. The comparison is done in Section 7.1.4.

In Section 7.2 we present a relation between inflation and unemployment which both

inflict social losses. When a Phillips tradeoff exists between them, what would be the best

combination of inflation and unemployment? A well-known approach in economics to address

this question consists to write the social loss function as a function of the rate of inflation

p and the rate of unemployment u, with different weights; then, using relations between p,

u and the expected rate of inflation π, to rewrite the social loss function as a function of π;

finally, to apply the theory of the calculus of variations in order to find an optimal path π that

minimizes the total social loss over a certain time interval [0, T ]. Economists dealing with this

question implement the above approach using both continuous and discrete models [31, 87].

Here we propose a new, more general, time-scale model. We derive necessary (Theorem 7.6

and Corollary 7.9) and sufficient (Theorem 7.12) optimality conditions for the variational
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problem that models the economical situation. For the time scale T = hZ with appropriate

values of h > 0, we obtain an explicit solution for the global minimizer of the total social loss

problem (Theorem 7.13).

7.1 A general delta-nabla problem of the calculus of variations

on time scales

Let T be a given time scale with at least three points, and let a, b ∈ T. We consider the

following general problem of the calculus of variations on time scales.

Problem. Find a function y that extremizes, that is, minimizes or maximizes, the functional

L[y] = H

 b∫
a

f1(t, yσ(t), y∆(t))∆t, . . . ,

b∫
a

fk(t, y
σ(t), y∆(t))∆t,

b∫
a

fk+1(t, yρ(t), y∇(t))∇t, . . . ,
b∫
a

fk+n(t, yρ(t), y∇(t))∇t

 (7.1)

subject to the boundary conditions

y(a) = ya, y(b) = yb, (7.2)

where y ∈ C1
k,n([a, b],R) (Definition 6.1), k, n ∈ N.

For brevity, we use the operators [·] and {·} defined by (6.3). We assume that

1. function H : Rn+k → R has continuous partial derivatives with respect to its arguments,

which we denote by H
′
i , i = 1, . . . , n+ k;

2. functions (t, y, v) → fi(t, y, v) from [a, b] × R2 to R, i = 1, . . . , n + k, have continuous

partial derivatives with respect to y and v uniformly in t ∈ [a, b], which we denote by

fiy and fiv, respectively;

3. functions fi, fiy, fiv are rd-continuous in t ∈ [a, b]κ, i = 1, . . . , k, and ld-continuous in

t ∈ [a, b]κ, i = k + 1, . . . , k + n, for all y ∈ C1
k,n([a, b];R).

A function y ∈ C1
k,n([a, b];R) is said to be admissible provided it satisfies the boundary

conditions (7.2). A local minimizer ŷ (respectively, maximizer) to problem (7.1)–(7.2) is given

by Definition 6.2 for all admissible functions y ∈ C1
k,n([a, b];R).
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7.1.1 The Euler–Lagrange equations

Now Euler–Lagrange type optimality conditions in differential form are obtained, which

are different than the ones presented in [38] and Chapter 6. If one considers the particular case

where function H in problem (7.1)–(7.2) does not depend on nabla operators, then one obtains

exactly the delta problem studied in [71]. In this case, the assumptions we are considering

for problem (7.1)–(7.2) coincide with the ones of [71]. However, it should be noted that when

it is written ∆
∆t or ∇∇t for some given expression, this is formal and does not mean that one

can really expand the delta (or nabla) derivative. Such formal expressions are common in

the literature of calculus of variations (see, e.g., [48, Theorem 1 of Section 4], [83, Corollary 2

to Theorem 2.3] or [89, Section 6.1]). All our expressions are valid in integral form (see

Chapter 6).

For brevity, in what follows we omit the arguments of H
′
i , that is,

H
′
i :=

∂H

∂Fi
(F1(y), . . . ,Fk+n(y)),

i = 1, . . . , n+ k, where

Fi(y) =

b∫
a

fi[y](t)∆t, for i = 1, . . . , k, Fi(y) =

b∫
a

fi{y}(t)∇t, for i = k + 1, . . . , k + n.

Theorem 7.1 (The delta-nabla Euler–Lagrange equations). Let T be a time scale having at

least three points and let a, b ∈ T. If ŷ is a solution to problem (7.1)–(7.2), then the delta-nabla

Euler–Lagrange equations

k∑
i=1

H
′
i ·
(
fiy[ŷ](t)− f∆

iv [ŷ](t)
)

+
k+n∑
i=k+1

H
′
i ·
(
fiy{ŷ}(σ(t))− f∆

iv {ŷ}(t)
)

+
∆

∆t

[
k+n∑
i=k+1

H
′
i · ν(t) ·

(
fiy{ŷ}(t)− f∇iv {ŷ}(t)

)]σ
(t) = 0 (7.3)

and

k∑
i=1

H
′
i ·
(
fiy[ŷ](ρ(t))− f∇iv [ŷ](t)

)
+

k+n∑
i=k+1

H
′
i ·
(
fiy{ŷ}(t)− f∇iv {ŷ}(t)

)
− ∇
∇t

[
k∑
i=1

H
′
i · µ(t) ·

(
fiy[ŷ](t)− f∆

iv [ŷ](t)
)]ρ

(t) = 0 (7.4)

hold for all t ∈ Tκκ.

Proof. Suppose that L [y] has a local extremum at ŷ. Consider a variation h ∈ C1
k,n([a, b],R)

of ŷ for which we define the function φ : R→ R by φ(ε) = L [ŷ + εh]. A necessary condition
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for ŷ to be an extremizer for L [y] is given by φ′ (ε) = 0 for ε = 0. Using the chain rule, we

obtain that

φ′ (0) =
k∑
i=1

H
′
i ·

b∫
a

(
fiy[ŷ](t)hσ(t) + fiv[ŷ](t)h∆(t)

)
∆t

+

k+n∑
i=k+1

H
′
i ·

b∫
a

(
fiy{ŷ}(t)hρ(t) + fiv{ŷ}(t)h∇(t)

)
∇t = 0.

Using delta and nabla product rules (Theorems 1.11 and 1.23) we have

[fiv[ŷ](t)h(t)]∆ = fiv[ŷ](t)h∆(t) + (fiv[ŷ](t))∆ hσ(t)

and

[fiv{ŷ}(t)h(t)]∇ = fiv{ŷ}(t)h∇(t) + (fiv{ŷ}(t))∇ hρ(t).

Integrating both sides from t = a to t = b and having in mind that from (7.2) one has

h(a) = h(b) = 0, we obtain that

b∫
a

k∑
i=1

H
′
i ·
(
fiy[ŷ](t)− (fiv[ŷ](t))∆

)
hσ(t)∆t

+

b∫
a

k+n∑
i=k+1

H
′
i ·
(
fiy{ŷ}(t)− (fiv{ŷ}(t))∇

)
hρ(t)∇t = 0.

Let us denote

s(t) :=
k∑
i=1

H
′
i ·
(
fiy[ŷ](t)− (fiv[ŷ](t))∆

)
,

r(t) :=

k+n∑
i=k+1

H
′
i ·
(
fiy{ŷ}(t)− (fiv{ŷ}(t))∇

)
.

Then,
b∫
a

s(t)hσ(t)∆t+

b∫
a

r(t)hρ(t)∇t = 0.

The proof is divided into two parts. First we use (1.7) of Theorem 1.32 and (1.5) of Theo-

rem 1.31 in order to obtain the Euler–Lagrange equation (7.3). In the latter case we apply

(1.6) of Theorem 1.32 and (1.4) of Theorem 1.31 to receive the Euler–Lagrange equation (7.4).

(i) Since h is nabla differentiable, we have that hρ(t) = h(t) − ν(t)h∇(t) (cf. item (iv)

of [5, Theorem 3.2]) and thus

b∫
a

s(t)hσ(t)∆t+

b∫
a

[
r(t)h(t)− r(t)ν(t)h∇(t)

]
∇t = 0.
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Using equation (1.7) of Theorem 1.32, it follows that

b∫
a

s(t)hσ(t)∆t+

b∫
a

[
(rh)σ(t)− (rν)σ(t)(h∇)σ(t)

]
∆t = 0.

Therefore, from equation (1.5) of Theorem 1.31, we obtain

b∫
a

s(t)hσ(t)∆t+

b∫
a

[
(rh)σ(t)− (rν)σ(t)h∆(t)

]
∆t = 0.

Integrating the second part of the latter integral, gives

b∫
a

(rν)σ(t)h∆(t)∆t = (rν)σ(t)h(t)

∣∣∣∣∣
b

a

−
b∫
a

hσ(t)
∆

∆t
(rν)σ(t)∆t,

and it follows that

b∫
a

[
s(t)hσ(t) + rσ(t)h(t)σ + hσ(t)

∆

∆t
(rν)σ(t)

]
∆t = 0.

Thus,
b∫
a

[
s(t) + rσ(t) +

∆

∆t
(rν)σ(t)

]
hσ(t)∆t = 0.

From the fundamental lemma of the delta calculus of variations (cf. [2, Lemma 8] and [45,

Lemma 3.2]), we get the Euler–Lagrange equation

s(t) + rσ(t) +
∆

∆t
(rν)σ(t) = 0

and therefore equation (7.3).

(ii) Since h is delta differentiable, the following relation holds (cf. item (iv) of [23, Theo-

rem 1.3]):

hσ(t) = h(t) + µ(t)h∆(t).

Then we obtain that

b∫
a

s(t)h(t) + s(t)µ(t)h∆(t)∆t+

b∫
a

r(t)hρ(t)∇t = 0.

Using equation (1.6) of Theorem 1.32, we have

b∫
a

[
sρ(t)hρ(t) + (sµ)ρ (t)(h∆)ρ(t) + r(t)hρ(t)

]
∇t = 0.
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From equation (1.4) of Theorem 1.31 it follows that

b∫
a

[
sρ(t)hρ(t) + (sµ)ρ (t)h∇(t) + r(t)hρ(t)

]
∇t = 0.

Integrating the second item of the above integral,

b∫
a

(sµ)ρ(t)h∇(t)∇t = (sµ)ρ(t)h(t)

∣∣∣∣∣
b

a

−
b∫
a

∇
∇t

(sµ)ρ(t)hρ(t)∇t,

yields
b∫
a

[
sρ(t)hρ(t) + r(t)hρ(t)− hρ(t) ∇

∇t
(sµ)ρ(t)

]
∇t = 0

and then
b∫
a

[
sρ(t) + r(t)− ∇

∇t
(sµ)ρ(t)

]
hρ(t)∇t = 0.

From the fundamental lemma of the nabla calculus of variations (cf. [75, Lemma 15]), we get

the Euler–Lagrange equation

sρ(t) + r(t)− ∇
∇t

(sµ)ρ(t) = 0

and therefore equation (7.4).

Corollary 7.2 (See Theorem 3 of [30]). Let a, b ∈ R with a < b. If ŷ is solution to problem

L[y] = H

 b∫
a

f1(t, y(t), y′(t))dt,

b∫
a

f2(t, y(t), y′(t))dt

 −→ extr

y(a) = ya, y(b) = yb,

(7.5)

then the Euler–Lagrange differential equation

H
′
1(F1,F2) ·

(
f1y(t, ŷ(t), ŷ′(t))− d

dt
f1v(t, ŷ(t), ŷ′(t))

)
+H ′2(F1,F2) ·

(
f2y(t, ŷ(t), ŷ′(t))− d

dt
f2v(t, ŷ(t), ŷ′(t))

)
= 0 (7.6)

holds for all t ∈ [a, b], where

Fi =

b∫
a

fi(t, ŷ(t), ŷ′(t))dt, i = 1, 2.

Proof. Let T = R and k = n = 1. The result follows from Theorem 7.1.
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Corollary 7.3. Let a, b ∈ N with b − a > 1 and denote by ∆y(t) and ∇y(t) the standard

forward and backward differences operators, that is, ∆y(t) := y(t + 1) − y(t) and ∇y(t) :=

y(t)− y(t− 1). If ŷ is solution to problem

L[y] = H

(
b−1∑
t=a

f1(t, y(t+ 1),∆y(t)),
b∑

t=a+1

f2(t, y(t− 1),∇y(t))

)
−→ extr

y(a) = ya, y(b) = yb,

(7.7)

then both Euler–Lagrange difference equations

H
′
1(F1,F2) · [f1y(t, ŷ(t+ 1),∆ŷ)−∆f1v(t, ŷ(t+ 1),∆ŷ)]

+H ′2(F1,F2) · [f2y(t+ 1, ŷ(t),∇ŷ(t+ 1))−∆f2v(t, ŷ(t− 1),∇ŷ(t))]

+H ′2(F1,F2) ·∆ [f2y(t+ 1, ŷ(t),∇ŷ(t+ 1))−∇f2v(t+ 1, ŷ(t),∇ŷ(t+ 1))] = 0

(7.8)

and

H
′
1(F1,F2) · [f1y(t− 1, ŷ(t),∆ŷ(t− 1))−∇f1v(t, ŷ(t+ 1),∆ŷ(t))]

−H ′1(F1,F2) · ∇ [f1y(t− 1, ŷ(t),∆ŷ(t− 1))−∆f1v(t− 1, ŷ(t),∆ŷ(t− 1))]

+H
′
2(F1,F2) · [f2y(t, ŷ(t− 1),∇ŷ(t))−∇f2v(t, ŷ(t− 1),∇ŷ(t))] = 0

(7.9)

hold for t ∈ {a+ 1, . . . , b− 1}, where

F1 :=
b−1∑
t=a

f1(t, ŷ(t+ 1),∆ŷ(t)), F2 :=
b∑

t=a+1

f2(t, ŷ(t− 1),∇ŷ(t)).

Proof. The result is a direct consequence of Theorem 7.1 with T = Z and k = n = 1.

7.1.2 Economic model and its direct discretizations

In this section we introduce an economic problem that is considered in continuous (Ex-

ample 7.4 below) and discrete (Example 7.5 below) cases. The first example is made under

the assumptions from Section 6 of [30]. The latter example corresponds to discretizations of

the problem of Example 7.4, for which one can discretize the Euler–Lagrange equation (7.6).

In what follows,

∆y(t) := yσ(t)− y(t), ∇y(t) := y(t)− yρ(t).

In particular, if T has a maximum M , then ∆y(M) = 0; if T has a minimum m, then

∇y(m) = 0.

Example 7.4 (A continuous problem of the calculus of variations – see Section 6 of [30]).

Consider the following problem, denoted in the sequel by (P ):

max
y(t)

f(k(T ), a(T )) = min
y(t)

[−k(T )a(T )] = min
y(t)

K(T )a(T ),
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where

K(T ) = −k(T ) =

T∫
0

e−ρ(T−t) [c0 + c1y(t) + c2y
′2(t)− y(t)p(t)

]
dt,

a(T ) =

T∫
0

e−ρ(T−t)
[
λy(t) + β

√
y′(t) + b

]
dt

with ρ the discount rate (not to be confused with the backward jump operator ρ(t) of time

scales). For this problem the Euler–Lagrange equation (7.6) in the differential form can be

written as

a(T ) · e−ρ(T−t) [c1 − p(t)− 2c2(ρy′(t) + y′′(t))
]

+K(T ) · e−ρ(T−t)

[
λ− β

2

(
ρ√

y′(t) + b
− y′′(t)

2
√

(y′(t) + b)3

)]
= 0. (7.10)

The solution of the continuous problem (P ) is found by solving the Euler–Lagrange equation

(7.10). It turns out that this is a highly nonlinear differential equation of second order, for

which no analytical solution is known. In other words, to solve the continuous problem one

needs to apply a suitable discretization. This is exactly one of the main motivations of our

study: to provide an appropriate theory of discretization.

A discretization can always be done in two different ways: using the delta or the nabla

approach. In the next example we consider four different discretizations for the problem (P )

of Example 7.4 and the corresponding four discretizations of the Euler–Lagrange equation

(7.10).

Example 7.5. Consider a firm that wants to program its production and investment policies

to reach a given production rate k(T ), T ∈ N, and to maximize its future market competi-

tiveness at time horizon T . Economic models, leading to the maximization of a variational

functional, are presented below and are based on the following assumptions:

1. The firm competitiveness is measured by the function f(k(T ), a(T )), which depends on

the accumulated capital k(T ) and on the accumulated technology a(T ), both at time

horizon t = T . Here, the function to measure the firm market competitiveness is assumed

to be of form

f(k(T ), a(T )) = k(T )γ1a(T )γ2 (7.11)

with given constants γ1 and γ2 that measure the absolute and relative importance of

capital and technology competitiveness, respectively.
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2. The acquisition technology rate is given by the function g(y(tk+1),∆y(tk)) (delta version)

or g(y(tk−1),∇y(tk)) (nabla version), where y(tk) is the sales rate at time tk, which we

assume equal to the actual production rate at the same point of time, that is, ∆y(tk)

(delta version) or ∇y(tk) (nabla version) are the actual production rate change.

3. The firm starts operating at point t0 = 0 and accumulates capital as

K∆(T ) =
T−1∑
tk=0

(1 + ρ)tk−T (c0 + c1yk+1 + c2 (∆yk)
2 − yk+1pk+1) (7.12)

(delta version) or

K∇(T ) =

T∑
tk=1

(1− ρ)T−tk(c0 + c1yk−1 + c2 (∇yk)2 − yk−1pk−1) (7.13)

(nabla version), where ρ is the discount rate, pk = p(tk) is the unit product price,

yk = y(tk) is the sales rate at time tk, and c(yk+1,∆yk) (delta) or c(yk−1,∇yk) (nabla)

is the cost of producing yk+1 (delta) or yk−1 (nabla) units of product at time tk+1 (delta)

or tk−1 (nabla) plus technology increases.

4. The accumulate technology is given by

a∆(T ) =
T−1∑
tk=0

(1 + ρ)tk−T
(
λyk+1 + β

√
∆yk + b

)
(7.14)

(delta version) or

a∇(T ) =
T∑

tk=1

(1− ρ)T−tk
(
λyk−1 + β

√
∇yk + b

)
(7.15)

(nabla version).

5. The price-sales relationship regulating the market is given by the equation

h(yk+1, pk+1) = (yk+1 − y0)(pk+1 − p0)−B = 0 (7.16)

(delta version) or by the equation

h(yk−1, pk−1) = (yk−1 − y0)(pk−1 − p0)−B = 0 (7.17)

(nabla version). There is an upper bound b for the size of production rate change, so

that |∆yk| ≤ b (delta) or |∇yk| ≤ b (nabla).
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6. Two boundary conditions are given:

y(0) = y0, y(T ) = yT , (7.18)

which are the initial sales rate at point t0 = 0 and the target sales rate at the terminal

point of time tk = T .

Then, the firm problem is stated as:

max
yk

k(T )γ1a(T )γ2

subject to the hypotheses (7.11)–(7.18). For illustrative purposes and to be coherent with

Example 7.4 borrowed from [30], we assume γ1 = γ2 = 1 and transform the maximization

problem into an equivalent minimization process:

min
yk

(−k(T ))a(T ) = min
yk

K(T )a(T ).

Each component of the objective functional f(K(T ), a(T )) may be discretized in two ways

(using the delta or the nabla approach). Due to this reason, we obtain four different discrete

problems of the calculus of variations:

1. Problem (P∆∇) with cost functional min
yk

K∆(T )a∇(T );

2. Problem (P∇∆) with cost functional min
yk

K∇(T )a∆(T );

3. Problem (P∆∆) with cost functional min
yk

K∆(T )a∆(T );

4. Problem (P∇∇) with cost functional min
yk

K∇(T )a∇(T );

where KD(T ) and aD(T ), D ∈ {∆,∇}, are defined as in (7.12)–(7.15). With the notation of

Section 7.1, such functionals consist of the following integrands:

f1∆ = (1 + ρ)tk−T (c0 + c1yk+1 + c2 (∆yk)
2 − yk+1pk+1),

f1∇ = (1− ρ)T−tk(c0 + c1yk−1 + c2 (∇yk)2 − yk−1pk−1),

f2∆ = (1 + ρ)tk−T
(
λyk+1 + β

√
∆yk + b

)
,

f2∇ = (1− ρ)T−tk
(
λyk−1 + β

√
∇yk + b

)
,

where fi∆ = fi∆(tk, yk+1,∆yk), fi∇ = fi∆(tk, yk−1,∇yk), i = 1, 2, and function f1D is associ-

ated with functional KD(T ) and function f2D is associated with functional aD(T ), D ∈ {∆,∇}.
Using the same discretization as the one from (P ) to (P∆∇), the Euler–Lagrange equation

(7.6) is discretized into

a∇(T ) ·
(
∂f1∆

∂yk+1
−∆

∂f1∆

∂∆yk

)
+K∆(T ) ·

(
∂f2∇
∂yk−1

−∇ ∂f2∇
∂∇yk

)
= 0, (7.19)
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which for our economic problem (P ) takes the form

a∇(T )(1 + ρ)tk−T
[
c1 − p0 +

By0

(yk+1 − y0)2
− 2c2

(
ρ∆yk + (1 + ρ)∆2yk

)]
+K∆(T )(1− ρ)T−tk

[
λ−

β
(
ρ
√
∇yk + b−∇

√
∇yk + b

)
2
√
∇yk + b

√
∇yk−1 + b

]
= 0, ((ELP )∆∇)

valid for tk ∈ Tκκ. Note that we start with a given value of sales (or production) rate y0 that the

firm wants to improve (increase) in order to generate a profit. For this reason, the next values

yk, k > 0, are assumed to be greater than the initial value y0. This economic assumption,

makes valid the Euler–Lagrange equation ((ELP )∆∇). Indeed, it is known a priori, from

economic insight, that y(t) is an increasing function [30]. Similarly, the discretization from

(P ) into (P∇∆) gives the discretized Euler–Lagrange equation

a∆(T ) ·
(
∂f1∇
∂yk−1

−∇ ∂f1∇
∂∇yk

)
+K∇(T ) ·

(
∂f2∆

∂yk+1
−∆

∂f2∆

∂∆yk

)
= 0 (7.20)

that, for our example, reads

a∆(T )(1− ρ)T−tk
[
c1 − p0 +

By0

(yk−1 − y0)2
− 2c2

(
ρ∇yk + (1− ρ)∇2yk

)]
+K∇(T )(1 + ρ)tk−T

[
λ−

β
(
ρ
√

∆yk + b−∆
√

∆yk + b
)

2
√

∆yk + b
√

∆yk+1 + b

]
= 0, ((ELP )∇∆)

for tk ∈ Tκκ; the discretization from (P ) into (P∆∆) leads to the discretized Euler–Lagrange

equation

a∆(T ) ·
(
∂f1∆

∂yk+1
−∆

∂f1∆

∂∆yk

)
+K∆(T ) ·

(
∂f2∆

∂yk+1
−∆

∂f2∆

∂∆yk

)
= 0 (7.21)

and to

a∆(T )(1 + ρ)tk−T
[
c1 − p0 +

By0

(yk+1 − y0)2
− 2c2

(
ρ∆yk + (1 + ρ)∆2yk

)]
+K∆(T )(1 + ρ)tk−T

[
λ−

β
(
ρ
√

∆yk + b−∆
√

∆yk + b
)

2
√

∆yk + b
√

∆yk+1 + b

]
= 0, ((ELP )∆∆)

for tk ∈ Tκ2
; while the discretization from (P ) into problem (P∇∇) gives

a∇(T ) ·
(
∂f1∇
∂yk−1

−∇ ∂f1∇
∂∇yk

)
+K∇(T ) ·

(
∂f2∇
∂yk−1

−∇ ∂f2∇
∂∇yk

)
= 0 (7.22)

that reduces in our case to

a∇(T )(1− ρ)T−tk
[
c1 − p0 +

By0

(yk−1 − y0)2
− 2c2

(
ρ∇yk + (1− ρ)∇2yk

)]
+K∇(T )(1− ρ)T−tk

[
λ−

β
(
ρ
√
∇yk + b−∇

√
∇yk + b

)
2
√
∇yk + b

√
∇yk−1 + b

]
= 0, ((ELP )∇∇)
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valid for tk ∈ Tκ2. As can be easily noticed, all the four discretizations of the continuous

Euler–Lagrange equation (7.6) are different but consist of the same items. For this reason,

we define:

γ1∆ :=

(
∂f1∆

∂yk+1
−∆

∂f1∆

∂∆yk

)
, γ1∇ :=

(
∂f1∇
∂yk−1

−∇ ∂f1∇
∂∇yk

)
,

γ2∆ :=

(
∂f2∆

∂yk+1
−∆

∂f2∆

∂∆yk

)
, γ2∇ :=

(
∂f2∇
∂yk−1

−∇ ∂f2∇
∂∇yk

)
.

With such notations, the discretizations of the Euler–Lagrange equation (7.6) are conveniently

written in the following way:

1. equation (7.19) is equivalently written as

a∇(T )γ1∆ +K∆(T )γ2∇ = 0, tk ∈ Tκκ; (7.23)

2. equation (7.20) is equivalently written as

a∆(T )γ1∇ +K∇(T )γ2∆ = 0, tk ∈ Tκκ; (7.24)

3. equation (7.21) is equivalently written as

a∆(T )γ1∆ +K∆(T )γ2∆ = 0, tk ∈ Tκ
2
; (7.25)

4. and equation (7.22) is equivalently written as

a∇(T )γ1∇ +K∇(T )γ2∇ = 0, tk ∈ Tκ2 . (7.26)

7.1.3 Time-scale Euler–Lagrange equations in discrete time scales

The equation (7.25) coincides with the time-scale Euler–Lagrange delta equation given

by [71, Corollary 3.4] while equation (7.26) coincides with the time-scale Euler–Lagrange

equation given by [72, Corollary 3.4]. From our Corollary 7.3 it follows that such coincidence,

between the direct discretization of the continuous Euler–Lagrange equation (7.6) and the

discrete Euler–Lagrange equations (7.8)–(7.9) obtained from the calculus of variations on

time scales, does not hold for mixed delta-nabla discretizations: neither (7.23) is a time-scale

Euler–Lagrange equation (7.8) or (7.9) nor (7.24) is a time-scale Euler–Lagrange equation

(7.8) or (7.9).
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For the economic problem (P∆∇) the Euler–Lagrange equations have the following form:

the Euler–Lagrange equation (7.8) takes the form

a∇(T ) (1 + ρ)tk−T
[
c1 − p0 +

By0

(yk+1 − y0)2
− 2c2

(
ρ∆yk + (1 + ρ)∆2yk

)]
+K∆(T )(1− ρ)T−tk

(
λ−

β
(
ρ
√
∇yk + b− (1− ρ)∆

√
∇yk + b

)
2
√
∇yk + b

√
∇yk+1 + b

)

+ ∆

[
K∆(T )(1− ρ)T−tk

(
λ−

β
(
ρ
√
∇yk + b−∇

√
∇yk + b

)
2
√
∇yk + b

√
∇yk−1 + b

)]
(tk+1) = 0

(EL1
P∆∇

)

for tk ∈ Tκκ, while the Euler–Lagrange equation (7.9) gives

a∇(T ) (1 + ρ)tk−1−T
[
c1 − p0 +

By0

(yk − y0)2
− 2c2 (ρ∆yk +∇ (∆yk))

]
+K∆(T )(1− ρ)T−tk

(
λ−

β
(
ρ
√
∇yk1 + b−∇

√
∇yk + b

)
2
√
∇yk + b

√
∇yk−1 + b

)

−∇
[
a∇(T )(1 + ρ)tk−T

(
c1 − p0 +

By0

(yk − y0)2
− 2c2

(
ρ∆yk + (1 + ρ)∆2yk

))]
(tk−1) = 0

(EL2
P∆∇

)

for tk ∈ Tκκ.

For problem (P∇∆) the Euler–Lagrange equations take the following form: the Euler–

Lagrange equation (7.8) gives

a∆(T ) (1− ρ)T−tk−1

[
c1 − p0 +

By0

(yk − y0)2
− 2c2 (ρ∇yk + ∆(∇yk))

]
+K∇(T )(1 + ρ)tk−T

[
λ−

β
(
ρ
√

∆yk + b−∆
√

∆yk + b
)

2
√

∆yk + b
√

∆yk+1 + b

]

+ ∆

[
a∆(T )(1− ρ)T−tk

[
c1 − p0 +

By0

(yk−1 − y0)2
− 2c2

(
ρ∇yk + (1− ρ)∇2yk

)]]
(tk+1) = 0

(EL1
P∇∆

)

for tk ∈ Tκκ, and (7.9) gives

a∆(T ) (1− ρ)T−tk
[
c1 − p0 +

By0

(yk−1 − y0)2
− 2c2

(
ρ∇yk + (1− ρ)∇2yk

)]
+K∇(T )(1 + ρ)tk−1−T

[
λ−

β
(
ρ
√

∆yk + b− (1 + ρ)∇
√

∆yk + b
)

2
√

∆yk + b
√
∇yk + b

]

−∇

[
K∇(T )(1 + ρ)tk−T

[
λ−

β
(
ρ
√

∆yk + b−∆
√

∆yk + b
)

2
√

∆yk + b
√

∆yk+1 + b

]]
(tk−1) = 0

(EL2
P∇∆

)

for tk ∈ Tκκ. Then the Euler–Lagrange equations (EL1
P∆∇

) and (EL2
P∆∇

) for (P∆∇) are

a∇(T )γ1∆ +K∆(T )

(
∂f2∇
∂yk−1

◦ σ −∆
∂f2∇
∂∇yk

)
+ ∆ [K∆(T )γ2∇] ◦ σ = 0, tk ∈ Tκκ, (7.27)
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and

a∇(T )

(
∂f1∆

∂yk+1
◦ ρ−∇ ∂f1∆

∂∆yk

)
+K∆(T )γ2∇ −∇ [a∇(T )γ1∆] ◦ ρ = 0, tk ∈ Tκκ, (7.28)

respectively, and the Euler–Lagrange equations (EL1
P∇∆

) and (EL2
P∇∆

) for (P∇∆) are

a∆(T )

(
∂f1∇
∂yk−1

◦ σ −∆
∂f1∇
∂∇yk

)
+K∇(T )γ2∆ + ∆ [a∆(T )γ1∇] ◦ σ = 0, tk ∈ Tκκ, (7.29)

and

a∆(T )γ1∇ +K∇(T )

(
∂f2∆

∂yk+1
◦ ρ−∇ ∂f2∆

∂∆yk

)
−∇ [K∇(T )γ2∆] ◦ ρ = 0, tk ∈ Tκκ, (7.30)

respectively.

For the convenience of the reader, we recall the introduced notations:

• P – the continuous economic problem describing a market policy of a firm, presented

in Section 7.1.2;

• ELP – the continuous Euler–Lagrange equation (7.6) associated to problem P (see

(7.10));

• PD – a discretization of problem P , in four possible forms: D ∈ {∆∆,∇∇,∆∇,∇∆};

• (ELP )D – a discretization of the Euler–Lagrange equation ELP , in four different forms:

D ∈ {∆∆,∇∇,∆∇,∇∆};

• ELPD – discrete Euler–Lagrange equations associated to problem PD, obtained from

the calculus of variations on time scales (see Corollary 7.3).

7.1.4 Standard versus time-scale discretizations: (ELP )D vs (ELPD)

The discrepancy between direct discretization of the classical optimality conditions and the

time-scale approach to the calculus of variations was discussed, from an embedding point of

view, in [32]. Here we compare the results obtained from direct and time-scale discretizations

for the more general problem (7.1)–(7.2), in concrete for the economic problem (P ) discussed

in Section 7.1.2. For illustrative purposes, the following values have been selected (borrowed

from [30]):

ρ = 0.05, c0 = 3, c1 = 0.5, c2 = 3, T = 3,

b = 4, λ =
1

2
, β =

1

4
, B = 2, y0 = 2, yT = 3.

Moreover, we fixed the time scale to be T = {0, 1, 2, 3}. In what follows we compare the can-

didates for solutions of the variational problems (P∆∇), (P∇∆), (P∆∆), and (P∇∇), obtained

100



7.1. A GENERAL DELTA-NABLA PROBLEM OF THE CALCULUS OF VARIATIONS
ON TIME SCALES

from the direct discretizations of the continuous Euler–Lagrange equation (Section 7.1.2) and

the discrete time-scale Euler–Lagrange equations (Section 7.1.3). All calculations were done

using the Computer Algebra System Maple, version 10 (see Appendix A). For problems (P∆∆)

and (P∇∇) the discretization of the continuous Euler–Lagrange equation and the discrete time-

scale Euler–Lagrange equations coincide. The Euler–Lagrange equation for problem (P∆∆)

is defined on Tκ2
= {0, 1} and we obtain a system of two equations with two unknowns y1

and y2 that leads to y1 = 2.322251304 and y2 = 2.679109437 with the cost functional value

K∆(T )a∆(T ) = −16.97843026. Similarly, the Euler–Lagrange equation for problem (P∇∇)

is defined on Tκ2 = {2, 3} and we obtain a system of two equations with two unknowns y1

and y2 that leads to y1 = 1.495415602 and y2 = 2.228040364 with the cost functional value

K∇(T )a∇(T ) = −13.20842214. As we show next, for hybrid delta-nabla discrete problems of

the calculus of variations, the time-scale results seem superior.

Problem (P∆∇)

The Euler–Lagrange equations for problem (P∆∇) are defined on Tκκ = {1, 2}. Therefore,

we obtain a system of equations with two unknowns y1 and y2. The discretized Euler–

Lagrange equation (ELP )∆∇ gives

y1 = 2.910488556, y2 = 2.970017180

with value of cost functional

K∆(T )a∇(T ) = −10.11399047.

A better result is obtained using the discrete time-scale Euler–Lagrange equation EL1
P∆∇

:

y1 = 2.901851949, y2 = 2.967442285

with cost

K∆(T )a∇(T ) = −10.30544712.

Problem (P∇∆)

The Euler–Lagrange equations for problem (P∇∆) are also defined on Tκκ = {1, 2} and

also lead to a system of two equations with the two unknowns y1 and y2. The discretized

Euler–Lagrange equation (ELP )∇∆ gives

y1 = 2.183517532, y2 = 2.446990272

with cost

K∇(T )a∆(T ) = −19.09167089.
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Our time-scale Euler–Lagrange equation EL2
P∇∆

gives better results:

y1 = 2.186742579, y2 = 2.457402400

with cost

K∇(T )a∆(T ) = −19.17699675.

The results are gathered in Table 7.1.

D
The value of the functional of (PD), ρ = 0.05, for candidates to minimizers obtained from:

(ELP )D EL1
PD

EL2
PD

∆∇ −10.11399047 −10.30544712 −0.1537986252× 10−5

∇∆ −19.09167089 1020.105142 −19.17699675

∆∆ -16.97843026

∇∇ -13.20842214

Table 7.1: The value of the functional associated to problem PD, D ∈ {∆∇,∇∆,∆∆,∇∇},
with ρ = 0.05, calculated using: (i) the direct discretization of the continuous Euler–Lagrange

equation, that is, (ELP )D; (ii) discrete Euler–Lagrange equations ELPD , obtained from the

calculus of variations on time scales with T = Z.

For comparison purposes, we have used the same values for the parameters as the ones

available in [30]. We have, however, done simulations with other values of the parameters

and the conclusion persists: in almost all cases the results obtained from our time-scale

approach are better; hardly ever, they coincide with the classical method; never are worse. In

particular, we changed the value of the discount rate, ρ, in the set {0.01, 0.02, 0.03, . . . , 0.1}.
This is motivated by the fact that this value depends much on the economic and politic

situation. The case where the time-scale advantage is more visible is given in Table 7.2,

which corresponds to a discount rate of 2% (ρ = 0.02). The interested reader can easily do

his/her own simulations using the Maple code found in Appendix A.

7.2 The inflation and unemployment tradeoff

In this section we briefly recall the economic problem discussed in Chapter 2. The problem

describes a strict relation between rate of inflation, p, and rate of unemployment, u, which

entails a social loss. The Phillips tradeoff between p and u is defined as p := −βu+ π, β > 0,

where π is the expected rate of inflation. The government loss function, λ, is specified by

λ = u2 + αp2, α > 0. The problem is to find the optimal function π that minimizes the total
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D
The value of the functional of (PD), ρ = 0.02, for candidates to minimizers obtained from:

(ELP )D EL1
PD

EL2
PD

∆∇ −10.62044023 −10.70908681 0.00001078869584

∇∆ −21.05128963 3.014255571× 10−8 −264.5250742

∆∆ -19.03571446

∇∇ -14.19294557

Table 7.2: The value of the functional associated to problem PD, D ∈ {∆∇,∇∆,∆∆,∇∇},
with ρ = 0.02, calculated using: (i) the direct discretization of the continuous Euler–Lagrange

equation, that is, (ELP )D; (ii) discrete Euler–Lagrange equations ELPD , obtained from the

calculus of variations on time scales with T = Z.

social loss, in a finite time horizon T , subject to given boundary conditions π(0) = π0 and

π(T ) = πT , π0, πT > 0. For more details we invite the reader to see Chapter 2.

In the literature two types of inflation and unemployment models are available: the con-

tinuous model

ΛC(π) =

T∫
0

λ(π(t), π′(t))e−δtdt −→ min (7.31)

subject to given boundary conditions

π(0) = π0, π(T ) = πT , (7.32)

and the discrete model

ΛD(π) =
T−1∑
t=0

λ(π(t),∆π(t))(1 + δ)−t −→ min, (7.33)

also subject to the boundary conditions (7.32). In both cases, (7.31) and (7.33),

λ(t, π, υ) :=

(
υ

βj

)2

+ α

(
υ

j
+ π

)2

. (7.34)

Here we propose the more general time-scale model

ΛT(π) =

T∫
0

λ(t, π(t), π∆(t))e	δ(t, 0)∆t −→ min (7.35)

subject to boundary conditions (7.32) and with λ defined by (7.34). Clearly, the time-scale

model includes both the discrete and continuous models as special cases: our time-scale

functional (7.35) reduces to (7.31) when T = R and to (7.33) when T = Z.
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Let us consider the problem

L[π] =

T∫
0

L(t, π(t), π∆(t))∆t −→ min (7.36)

in the class of functions π ∈ C1
rd([0, T ]) subject to boundary conditions

π(0) = π0, π(T ) = πT . (7.37)

We are particularly interested in the situation where

L(t, π(t), π∆(t)) =

[(
π∆(t)

βj

)2

+ α

(
π∆(t)

j
+ π(t)

)2
]
e	δ(t, 0). (7.38)

For simplicity, along this section we use the notation [π](t) := (t, π(t), π∆(t)).

Theorem 7.6. If π̂ ∈ C2
rd([0, T ]) is a local minimizer to problem (7.36)–(7.37) and the

graininess function µ is a delta differentiable function on [0, T ]κT, then π̂ satisfies the Euler–

Lagrange equation

[Lv[π](t)]∆ =
(
1 + µ∆(t)

)
Ly[π](t) + µσ(t) [Ly[π](t)]∆ (7.39)

for all t ∈ [0, T ]κ
2

T .

Proof. If π̂ is a local minimizer to (7.36)–(7.37), then, by Theorem 3.8, π̂ satisfies the following

equation:

Lv[π](t) =

σ(t)∫
0

Ly[π](τ)∆τ + c.

Using the properties of the delta integral (Theorem 1.17), we can write that π̂ satisfies

Lv[π](t) =

t∫
0

Ly[π](τ)∆τ + µ(t)Ly[π](t) + c. (7.40)

Taking the delta derivative to both sides of (7.40), we obtain equation (7.39).

Using Theorem 7.6, we can immediately write the classical Euler–Lagrange equations for

the continuous (7.31) and the discrete (7.33) models.

Example 7.7. Let T = R. Then, µ ≡ 0 and (7.39) with the Lagrangian (7.38) reduces to(
1 + αβ2

)
π′′(t)− δ

(
1 + αβ2

)
π′(t)− αjβ2 (δ + j) = 0. (7.41)

This is the Euler–Lagrange equation for the continuous model (7.31).
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Example 7.8. Let T = Z. Then, µ ≡ 1 and (7.39) with the Lagrangian (7.38) reduces to(
αjβ2 − αβ2 − 1

)
∆2π(t) +

(
αj2β2 + δαβ + δ

)
∆π(t) + αjβ2 (δ + j)π(t) = 0. (7.42)

This is the Euler–Lagrange equation for the discrete model (7.33).

Corollary 7.9. Let T = hZ, h > 0, π0, πT ∈ R, and T = Nh for a certain integer N > 2h.

The difference forward operator in T = hZ is defined as ∆hf(t) = f(t+h)−f(t)
h . If π̂ is a

solution to the problem

Λh(π) =

T−h∑
t=0

L(t, π(t),∆hπ(t))h −→ min,

π(0) = π0, π(T ) = πT ,

then π̂ satisfies the Euler–Lagrange equation

∆hLv[π](t) = Ly[π](t) + h ·∆hLy[π](t) (7.43)

for all t ∈ {0, . . . , T − 2h}.

Proof. Follows from Theorem 7.6 by choosing T to be the periodic time scale hZ, h > 0.

Example 7.10. The Euler–Lagrange equation for problem (7.35) with the Lagrangian (7.38)

on T = hZ, h > 0, is given by (7.43):

(1 + αβ2 − αβ2jh)∆2
hπ + (−δ − αβ2δ − αβ2j2h)∆hπ + (−αβ2δj − αβ2j2)π = 0. (7.44)

Assume that 1 + αβ2 − αβ2jh 6= 0. Then equation (7.44) is regressive and we can use the

theorems in the theory of dynamic equations on time scales (see Section 1.4), in order to find

its general solution. Introducing the quantities

Ω := 1 + αβ2 − αβ2jh, A := −
(
δ + αβ2δ + αβ2j2h

)
, B := αβ2j(δ + j), (7.45)

we rewrite equation (7.44) as

∆2
hπ +

A

Ω
∆hπ −

B

Ω
π = 0. (7.46)

The characteristic equation for (7.46) is

ϕ(λ) = λ2 +
A

Ω
λ− B

Ω
= 0

with determinant

ζ =
A2 + 4BΩ

Ω2
. (7.47)

In general, we have three different cases depending on the sign of the determinant ζ: ζ > 0,

ζ = 0 and ζ < 0. However, because π : T → R, the last case cannot occur. The two possible

cases are:
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1. If ζ > 0, then we have two different characteristic roots:

λ1 =
−A+

√
A2 + 4BΩ

2Ω
> 0 and λ2 =

−A−
√
A2 + 4BΩ

2Ω
< 0,

and by Theorems 1.42 and 1.41, and by using (1.8) we get that

π(t) = C1 (1 + λ1h)
t
h + C2 (1 + λ2h)

t
h

is the general solution to (7.46), where C1 and C2 are constants determined by using

the boundary conditions (7.37).

2. If ζ = 0 and 2Ω 6= Ah (or A+2hB 6= 0), then by Theorems 1.46 and 1.41, Example 1.18

and (1.8), we get that

π(t) = K1

(
1− A

2Ω
h

) t
h

+K2

(
1− A

2Ω
h

) t
h 2Ωt

2Ω−Ah

is the general solution to (7.46), where K1 and K2 are constants, determined by using

the boundary conditions (7.37).

In certain cases one can show that the Euler–Lagrange extremals are indeed minimizers.

In particular, this is true for the Lagrangian (7.38) under study. We recall the notion of

jointly convex function (see, e.g., [73, Definition 1.6]).

Definition 7.11. Function (t, y, v) 7→ L(t, y, v) ∈ C1
(
[a, b]T × R2;R

)
is jointly convex in

(y, v) if

L(t, y + y0, v + v0)− L(t, y, v) ≥ Ly(t, y, v)y0 + Lv(t, y, v)v0

for all (t, y, v), (t, y + y0, v + v0) ∈ [a, b]T × R2.

Theorem 7.12. Let (t, y, v) 7→ L(t, y, v) be jointly convex with respect to (y, v) for all t ∈
[a, b]T. If ŷ is a solution to the Euler–Lagrange equation (3.8), then ŷ is a global minimizer

to (3.6)–(3.7).

Proof. Since L is jointly convex with respect to (y, v) for all t ∈ [a, b]T,

L[y]− L[ŷ] =

b∫
a

[L(t, y(t), y∆(t))− L(t, ŷ(t), ŷ∆(t))]∆t

≥
b∫
a

[
Ly(t, ŷ(t), ŷ∆(t)) · (y(t)− ŷ(t)) + Lv(t, ŷ(t), ŷ∆(t)) · (y∆(t)− ŷ∆(t))

]
∆t
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for any admissible path y. Let h(t) := y(t)− ŷ(t). Using boundary conditions (3.7), we obtain

that

L[y]− L[ŷ] ≥
b∫
a

h∆(t)

− σ(t)∫
a

Ly(τ, ŷ(τ), ŷ∆(τ))∆τ + Lv(t, ŷ(t), ŷ∆(t))

∆t

+ h(t)

b∫
a

L2(t, ŷ(t), ŷ∆(t))∆t
∣∣∣b
a

=

b∫
a

h∆(t)

− σ(t)∫
a

Ly(τ, ŷ(τ), ŷ∆(τ))∆τ + Lv(t, ŷ(t), ŷ∆(t))

∆t.

From (3.8) it follows that

L[y]− L[ŷ] ≥
b∫
a

h∆(t)c∆t = 0

for some c ∈ R. Hence, L[y]− L[ŷ] ≥ 0.

Theorem 7.13 (Solution to the total social loss problem of the calculus of variations in the

time scale T = hZ, h > 0). Let us consider our economic problem

Λh(π) =
T−h∑
t=0

[(
∆hπ(t)

βj

)2

+ α

(
∆hπ(t)

j
+ π(t)

)2
](

1− hδ

1 + hδ

) t
h

h −→ min,

π(0) = π0, π(T ) = πT ,

(7.48)

with T = hZ, h > 0, and the delta derivative given by (1.1). More precisely, let T = Nh

for a certain integer N > 2h, α, β, δ, π0, πT ∈ R+, and 0 < j ≤ 1 be such that h > 0 and

1 + αβ2 − αβ2jh 6= 0. Let Ω, A and B be given as in (7.45).

1. If A2 + 4BΩ > 0, then the solution π̂ to problem (7.48) is given by

π̂(t) = C

(
1− A−

√
A2 + 4BΩ

2Ω
h

) t
h

+ (π0 − C)

(
1− A+

√
A2 + 4BΩ

2Ω
h

) t
h

, (7.49)

t ∈ {0, . . . , T − 2h}, where

C :=
πT − π0

(
2 Ω−hA−h

√
A2+4BΩ

2Ω

)T
h

(
2 Ω−hA+h

√
A2+4BΩ

2Ω

)T
h −

(
2 Ω−hA−h

√
A2+4BΩ

2Ω

)T
h

.

2. If A2 + 4BΩ = 0 and 2Ω 6= Ah (or A+ 2hB 6= 0), then the solution π̂ to problem (7.48)

is given by

π̂(t) =

(
1− A

2Ω
h

) t
h

π0 +

(
1− A

2Ω
h

) t
h

[
πT

(
2Ω

2Ω−Ah

)T
h

− π0

]
t

T
, (7.50)

107



CHAPTER 7. APPLICATIONS TO ECONOMICS

t ∈ {0, . . . , T − 2h}.

Proof. From Example 7.10, π̂ satisfies the Euler–Lagrange equation for problem (7.48). More-

over, the Lagrangian of functional Λh of (7.48) is a convex function because it is the sum of

convex functions. Hence, by Theorem 7.12, π̂ is a global minimizer.

7.3 State of the art

The results of Section 7.1 are submitted [40] and the results of Section 7.2 are published

in [35]. The original results of the paper [35] were presented in The International Conference

on Pure and Applied Mathematics, ICPAM’12, May 28-30, 2012, Guelma, Algeria; and at the

5th Podlasie Conference on Mathematics, June 25-28, 2012, in a contributed session entitled

“Applications of Mathematics in Economy and Finance”.
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This Ph.D. thesis had two major objectives: to develop the calculus of variations on an

arbitrary time scale and to present some applications of this theory in economics. We claim

that economics is an excellent area where the time-scale calculus can be useful.

We started with two inverse problems of the calculus of variations, which have not been

studied before in the time-scale framework. First we derive a general form of a variational

functional having an extremum at a given function y0 under the assumption of Euler–Lagrange

and strengthened Legendre conditions (Theorem 4.2). Next we considered a new approach

to the inverse problem of the calculus of variations using an integral perspective instead of

the classical differential point of view. In order to deal with this problem, we introduced new

definitions of self-adjointness of an integro-differential equation and its equation of variation.

We proved a necessary condition for an integro-differential equation to be an Euler–Lagrange

equation on an arbitrary time scale T (Theorem 4.12). Next we turn to the nabla approach of

the calculus of variations, and we proved an Euler–Lagrange type equation and a transversality

condition for generalized infinite horizon problems (Theorem 5.6). The Lagrangian depends

on the independent variable, an unknown function and its nabla derivative, as well as a nabla

indefinite integral that depends on the unknown function. Next we develop the calculus

of variations for a functional that is a composition of a certain scalar function with the

delta and nabla integrals of a vector valued field. For this problem we obtain delta-nabla

Euler–Lagrange equations in integral (Theorem 6.3) and differential (Theorem 7.1) forms,

and necessary optimality conditions for isoperimetric problems (Theorem 6.10).

With respect to applications to economics, we investigate the process of discretization of

economic models. Firstly, we work on a model that describes the market policy of a firm. We

consider two discrete minimization delta-nabla problems (P∆∇ and P∇∆) for which the time-

scale approach leads to better results (smaller values for the respective objective functional)

than the ones obtained by a direct discretization of the continuous necessary optimality

condition. It might be concluded that the time-scale theory of the calculus of variations leads

to more precise results than the standard methods of discretization. The latter economic

problem describes the relation between inflation and unemployment and its inflict to social

109



CONCLUSIONS AND FUTURE WORK

loss. This tradeoff is also presented by Phillips curve.

Some of the possible directions of future research are:

• We would like to generalize our mixed delta-nabla results, in particular Theorem 7.1,

for infinite horizon variational problems on time scales.

• We can consider an economic model with infinite time horizon and compare the values

of the functional in different time scales (including the classical ones, i.e., R and Z).

• With respect to our time-scale model describing the tradeoff between inflation and

unemployment, it is interesting to work on a set of real data and check whether it

is possible, or not, to find a time scale for which our functional approximates reality

sufficiently well.

We end this Ph.D. thesis with a list of author’s publications done during the Ph.D. stud-

ies: [35–40]. We are grateful to the Awarding Committee of the Symposium on Differential

Equations and Difference Equations (SDEDE 2014), Homburg/Germany, 5th-8th September

2014, for awarding us with the Bernd Aulbach Prize 2014 for students.
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Appendix A

Appendix: Maple Code

We provide here all the definitions and computations done in Maple for the problems

considered in Section 7.1.4. The definitions follow closely the notations introduced along

Section 7.1, and should be clear even for readers not familiar with the Computer Algebra

System Maple.

> restart:

> rho := 5/100:

> c0 := 3:

> lambda := 1/2:

> c1 := 1/2:

> c2 := 3:

> p0 := 1:

> y0 := 1:

> b := 4:

> beta := 1/4:

> B := 2:

> T := 3:

> y(0) := 2:

> y(T) := 3:

> TimeScale := [seq(i,i=0..T)];

TimeScale := [0, 1, 2, 3]

> Sigma := t-> piecewise(t < T, t+1, t):

> Rho := t -> piecewise(t > 0, t-1, t):

> Delta := f -> f@Sigma-f:

> Nabla := f -> f-f@Rho:

> KDelta := sum((1+rho)^(t-T)*(c0+c1*(y@Sigma)(t)+c2*(Delta(y)(t))^2

-(y@Sigma)(t)*p0-(B*(y@Sigma)(t))/((y@Sigma)(t)-y0)),t=0..T-1):

> KNabla := sum((1-rho)^(T-t)*(c0+c1*(y@Rho)(t)+c2*(Nabla(y)(t))^2
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-(y@Rho)(t)*p0-(B*(y@Rho)(t))/((y@Rho)(t)-y0)),t=1..T):

> aDelta := sum((1+rho)^(t-T)*(lambda*(y@Sigma)(t)

+beta*sqrt(Delta(y)(t)+b)),t=0..T-1):

> aNabla := sum((1-rho)^(T-t)*(lambda*(y@Rho)(t)

+beta*sqrt(Nabla(y)(t)+b)),t=1..T):

> Functional_PDN := subs({y(1)=y1,y(2)=y2},KDelta*aNabla):

> Functional_PND := subs({y(1)=y1,y(2)=y2},KNabla*aDelta):

> Functional_PDD := subs({y(1)=y1,y(2)=y2},KDelta*aDelta):

> Functional_PNN := subs({y(1)=y1,y(2)=y2},KNabla*aNabla):

> gamma1delta := t -> (1+rho)^(t-T)*(((c1-p0+(B*y0)/(((y@Sigma)(t)-y0)^2)))

-2*c2*(rho*Delta(y)(t)+(1+rho)*Delta(Delta(y))(t))):

> gamma1nabla := t -> (1-rho)^(T-t)*((c1-p0+(B*y0)/(((y@Rho)(t)-y0)^2))

-2*c2*(rho*Nabla(y)(t)+(1-rho)*Nabla(Nabla(y))(t))):

> gamma2delta := t -> (1+rho)^(t-T)*(lambda-(beta*(rho*sqrt(Delta(y)(t)+b)

-(Delta(unapply(sqrt(Delta(y)(s)+b),s))(t))))/(2*sqrt(Delta(y)(t)+b)

*sqrt((Delta(y)@Sigma)(t)+b))):

> gamma2nabla := t -> (1-rho)^(T-t)*(lambda

-(beta*(rho*sqrt(Nabla(y)(t)+b)-Nabla(unapply(sqrt(Nabla(y)(s)+b),s))(t)))

/(2*sqrt(Nabla(y)(t)+b)*sqrt((Nabla(y)@Rho)(t)+b))):

> # now we define the 4 problems that are considered in the paper

> # discretization of the continuous E-L equations

> # Problem Delta Nabla PDN

> # domain T_{kappa}^{kappa}

> PDN := t -> aNabla*gamma1delta(t)+KDelta*gamma2nabla(t):

> # Problem Nabla Delta PND

> # domain T_{kappa}^{kappa}

> PND := t -> aDelta*gamma1nabla(t)+KNabla*gamma2delta(t):

> # Problem Delta Delta PDD

> # domain T^{kappa^2}

> PDD := t -> aDelta*gamma1delta(t)+KDelta*gamma2delta(t):

> # Problem Nabla Nabla PNN

> # domain T_{kappa^2}

> PNN := t -> aNabla*gamma1nabla(t)+KNabla*gamma2nabla(t):

> eqPDN := subs({y(1)=y1,y(2)=y2},{PDN(1)=0,PDN(2)=0}):

> SolutionPDN := fsolve(eqPDN,{y1,y2});

SolutionPDN := {y1 = 2.910488556, y2 = 2.970017180}

> subs(SolutionPDN,Functional_PDN);

−10.11399047

> eqPND := subs({y(1)=y1,y(2)=y2},{PND(1)=0,PND(2)=0}):
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> SolutionPND := fsolve(eqPND,{y1,y2});

SolutionPND := {y1 = 2.183517532, y2 = 2.446990272}

subs(SolutionPND,Functional_PND);

−19.09167089

> eqPDD := subs({y(1)=y1,y(2)=y2},{PDD(0)=0,PDD(1)=0}):

> SolutionPDD := fsolve(eqPDD,{y1,y2});

SolutionPDD := {y1 = 2.322251304, y2 = 2.679109437}

> subs(SolutionPDD,Functional_PDD);

−16.97843026

> eqPNN := subs({y(1)=y1,y(2)=y2},{PNN(2)=0,PNN(3)=0}):

> SolutionPNN := fsolve(eqPNN,{y1,y2});

SolutionPNN := {y1 = 1.495415602, y2 = 2.228040364}

> subs(SolutionPNN,Functional_PNN);

−13.20842214

> # discretization of the time scale Euler-Lagrange equations

> # domain T_{kappa}^{kappa}

> part1 := t -> lambda*(1-rho)^(T-Sigma(t)):

> part2 := t ->(beta*(1-rho)^(T-Sigma(t))*((rho*sqrt(Nabla(y)(t)+b))

-(1-rho)*(Delta(unapply(sqrt(Nabla(y)(s)+b),s))(t))))

/(2*sqrt(Nabla(y)(t)+b)*sqrt(Delta(y)(t)+b)):

> part3 := t -> (1+rho)^(Rho(t)-T)*(c1-p0+(B*y0)/((y(t)-y0)^2)):

> part4 := t -> 2*c2*(1+rho)^(Rho(t)-T)

*(rho*Delta(y)(t)+(y@Sigma)(t)-2*y(t)+(y@Rho)(t)):

> partDelta := Delta(unapply(KDelta*gamma2nabla(t),t))@Sigma:

> partNabla := Nabla(unapply(aNabla*gamma1delta(t),t))@Rho:

> # E-L equation (7.8) for Problem Delta Nabla

> EL_delta := t -> aNabla*gamma1delta(t)+KDelta*(part1(t)-part2(t))+partDelta(t):

> # E-L equation (7.9) for Problem Delta Nabla

> EL_nabla := t -> aNabla*(part3(t)-part4(t))+KDelta*gamma2nabla(t)-partNabla(t):

> # systems of E-L equations for Problem Delta Nabla

> EL_delta_system := subs({y(1)=y1,y(2)=y2},{EL_delta(1)=0,EL_delta(2)=0}):

> Solution_EL_eqs_system_delta_version := fsolve(EL_delta_system,{y1,y2});
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SolutionELeqssystemdeltaversion := {y1 = 2.901851949, y2 = 2.967442285}

> subs(Solution_EL_eqs_system_delta_version,Functional_PDN);

−10.30544712

> EL_nabla_system := subs({y(1)=y1,y(2)=y2},{EL_nabla(1)=0,EL_nabla(2)=0}):

> Solution_EL_eqs_system_nabla_version := fsolve(EL_nabla_system,{y1,y2});

{y1 = 0.5930298703, y2 = 1.090438395}

subs(Solution_EL_eqs_system_nabla_version,Functional_PDN);

−0.000001537986252

> # E-L equations for Problem Nabla Delta

> part5 := t -> (1-rho)^(T-Sigma(t))*(c1-p0+(B*y0)/((y(t)-y0)^2)):

> part6 := t -> 2*c2*(1-rho)^(T-Sigma(t))*(rho*(Nabla(y)(t))+(Delta(Nabla(y))(t))):

> part7 := t -> lambda*(1+rho)^(Rho(t)-T):

> part8 := t -> (1+rho)^(Rho(t)-T)*((beta*(rho*sqrt(Delta(y)(t)+b)

-(1+rho)*Nabla(unapply(sqrt(Delta(y)(s)+b),s))(t)))

/(2*sqrt(Delta(y)(t)+b)*sqrt(Nabla(y)(t)+b))):

> partDelta2 := Delta(unapply(aDelta*gamma1nabla(t),t))@Sigma:

> partNabla2 := Nabla(unapply(KNabla*gamma2delta(t),t))@Rho:

> # E-L equation (7.8) for Problem Nabla Delta

> EL_delta2 := t -> KNabla*gamma2delta(t)+aDelta*(part5(t)-part6(t))+partDelta2(t):

> # E-L equation (7.9) for Problem Nabla Delta

> EL_nabla2 := t -> KNabla*(part7(t)-part8(t))+aDelta*gamma1nabla(t)-partNabla2(t):

> # systems of E-L equations for Problem Nabla Delta

> EL_delta2_system := subs({y(1)=y1,y(2)=y2},{EL_delta2(1)=0,EL_delta2(2)=0}):

> Solution_EL_eqs_system_delta2_version := fsolve(EL_delta2_system,{y1,y2});

SolutionELeqssystemdelta2version := {y1 = 7.879260741, y2 = 4.775003718}

> subs(Solution_EL_eqs_system_delta2_version,Functional_PND);

1020.105142

> EL_nabla2_system := subs({y(1)=y1,y(2)=y2},{EL_nabla2(1)=0,EL_nabla2(2)=0}):

> Solution_EL_eqs_system_nabla2_version := fsolve(EL_nabla2_system,{y1,y2});

SolutionELeqssystemnabla2version := {y1 = 2.186742579, y2 = 2.457402400}

> subs(Solution_EL_eqs_system_nabla2_version,Functional_PND);

−19.17699675
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