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resumo Nesta tese consideramos códigos convolucionais a duas dimensões

(2D). Como acontece no caso unidimensional (1D) uma das questões

fundamentais neste contexto diz respeito à obtenção de realizações mí-

nimas de espaço de estados para estes códigos.

O problema da realizacão mínima de códigos não é equivalente ao pro-

blema da realizacão mínima de codificadores. Tal acontece uma vez que

um dado código admite diferentes codificadores com diferentes graus de

McMillan. Nesta tese, focamos a nossa atencão no estudo da minima-

lidade de realizações de códigos convolucionais 2D através de modelos

de Roesser separáveis. Tais modelos podem ser encarados como a

conexão em série de dois sistemas 1D.

Numa primeira fase propomos um procedimento que possibilita obter

realizações mínimas de um código convolutional 1D a partir de realiza-

ções mínimas de um codificador desse código. De seguida, restringimos

o nosso estudo a duas classes particulares de códigos convolucionais

2D. A primeira classe a ser considerada é a classe de códigos que admi-

te codificadores do tipo n × 1. Para estes códigos, são caracterizados

os codificadores mínimos (i.e. codificadores para os quais uma realiza-

ção mínima também é mínima enquanto realização do código), possibili-

tando a construção de realizações mínimas de códigos a partir dos seus

codificadores mínimos. A segunda classe a ser considerada é a classe

constituída por códigos a que demos o nome de "composition codes".

Para uma subclasse destes códigos, propomos um método de obtenção

de realizações mínimas através de modelos de Roesser separáveis.





keywords 2DConvolutional Codes, Minimal Realizations, Separable Roesser Mod-

els

abstract In this thesis we consider two-dimensional (2D) convolutional codes. As

happens in the one-dimensional (1D) case one of the major issues is ob-

taining minimal state-space realizations for these codes.

It turns out that the problem of minimal realization of codes is not equiv-

alent to the minimal realization of encoders. This is due to the fact that

the same code may admit different encoders with different McMillan de-

grees. Here we focus on the study of minimality of the realizations of 2D

convolutional codes by means of separable Roesser models. Such mod-

els can be regarded as a series connection between two 1D systems.

As a first step we provide an algorithm to obtain a minimal realization of a

1D convolutional code starting from a minimal realization of an encoder

of the code. Then, we restrict our study to two particular classes of 2D

convolutional codes. The first class to be considered is the one of codes

which admit encoders of type n × 1. For these codes, minimal encoders

(i.e., encoders for which a minimal realization is also minimal as a code

realization) are characterized enabling the construction of minimal code

realizations starting from such encoders. The second class of codes to

be considered is the one constituted by what we have called composition

codes. For a subclass of these codes, we propose a method to obtain

minimal realizations by means of separable Roesser models.
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Introduction

Information is one of the most valuable assets nowadays, and efficient and reliable digital

information transmission and data storage have become a major concern in the last decades.

The physical devices used to transmit and store information may be subject to noise, what

can result in the loss of important data with respect to the original information. Error cor-

recting codes are a key element to address this issue, which has been a subject of research in

areas related to information. For instance, the recovery of a scratched CD or secure commu-

nication over power-limited devices in spacecrafts are possible due to the use of codes which

enable the correction of errors and erasures that may occur in noisy transmission channels

and physical devices.

In order to achieve a secure transmission process, sophisticated mathematical techniques

have been implemented in such a way as to provide robust and time optimal coding and

decoding schemes.

For every different code, there is an encoding map (or encoder) from the set of informa-

tion messages to the set of all the codewords. This map adds to the information sufficient

but finite redundancy to allow detecting and correcting the errors that might happen after

channel transmission. An error is detected whenever the received message is not any of

the codewords. The decoding process assigns to any received message a codeword having

maximum probability of being the original sent one.

The origins of coding theory date back to the landmark work of Claude Shanon in his

1948 paper "A Mathematical Theory of Communication" [41]. The author showed that it

is always possible to encode a message so that it can be sent with maximal reliability and

minimal redundancy. In this way his main concerns were related to data representation

1



2 Introduction

and message transmission over a noisy channel. However the proof was not constructive

and codes with those capacities were not explicitly given. In turn, Hamming published in

[16] the first well known code construction. But the properties of his codes revealed to be

disappointing when compared with the stronger properties claimed by Shannon, and since

then intensive research has been done in order to find better codes.

The first class of linear codes obtained were the block codes [24]. The conceptual leap

to one dimensional (1D) convolutional codes was made by Peter Elias in 1955 [5], which

has significantly improved the research in coding theory. Such codes became popular after

the invention of attractive decoding algorithms such as sequential decoding by Wozencraft

[47], threshold decoding by Massey [25], and the Viterbi algorithm [44], as referred in [13].

Enforcement of 1D convolutional codes has proven to be most advantageous in diverse situa-

tions, and triggered some connections between systems theory and 1D convolutional coding

by describing a convolutional encoder as a transfer function of a linear, time-invariant system

over a (finite) field [26, 27]. A general algebraic theory for 1D convolutional codes was first

formalized by Forney [11] and then by Piret [32] and McEliece [28], greatly influenced by

the foundation work of Kalman [19] with respect to realization theory through state-space

models. In [11, 12] Forney showed that the algebraic theory of multivariable systems is the

natural setting for the algebraic theory of 1D convolutional codes. It should be noted that

Forney reformulated the work on 1D convolutional codes developed in [11] in the paper [12],

targeted for the systems theory community. Since then these two papers [11, 12] constitute

an essential tool in the context of multivariable linear system theory. A detailed review of

the literature on this subject can be found in [31].

However, while the classical approach to systems theory focuses on input/output rela-

tions, the interest of coding theory concerns the set of output sequences produced by the

encoder, since robustness of error correction and/or detection of errors introduced during

transmission only depends on properties of the set of codewords, i.e., of the code. This

difference leads to a new perspective on the subject.

The behavioral approach to dynamical systems, introduced by Willems [46] in the eight-

ies, views a system essentially as a set constituted by all trajectories that are compatible
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with the described phenomenon. Such admissible set of trajectories is known as the system

behavior.

This innovative approach is close to the coding situation, as a convolutional code can be

regarded as a linear, time-invariant behavior, whereas an encoder is a representation of this

behavior (code).

Concerning the 1D case, Fornasini and Pinto, [9], considered the behavioral approach to

systems theory to present a new definition of convolutional code over a finite field consti-

tuted by left compact sequences. In the analysis of the encoders of such codes, which are

rational matrices, they used Matrix Fraction Descriptions (MFD’s) and have characterized

some properties of the encoders and the structure of the code. These authors also studied the

problem of obtaining minimal state-space realizations of codes, via the minimal state-space

realization of encoders with minimal McMillan degree, called minimal encoders.

Meanwhile a very active area of research concerns the higher dimensional (nontrivial)

generalizations of one-dimensional (1D) convolutinal codes. In this thesis we focus on two-

dimensional (2D) convolutional codes. These codes may prove to be useful in transmission

and storage of 2D sequences of data such as images, pictures or video images. In order to

encode data recorded in two directions it is currently usual to transform it into arrays of 1D

sequences by means of scanning in one direction, and then apply 1D encoding techniques,

ignoring the interdependence in the other direction. However, it is possible and desirable

to work within a structure that takes advantages of the correlation of the data in the two

directions. Such structure leads to 2D convolutional codes, generalizing the notion of 1D

convolutional codes. Given the inherent differences between 1D and 2D cases, this gener-

alization is nontrivial. Although 1D convolutional codes have been widely understood, the

same does not happens for the 2D case. Fundamental issues related with the detection and

correction of errors or decoding algorithms that are well known for the 1D case have not yet

been exploited in the framework of 2D convolutional codes. Only recently, the first steps in

the construction of robust 2D convolutional codes were done by Climent et al. [3]. Most

of the existing research is focused on algebraic aspects and fundamental issues. The first at-

tempts to develop the general theory and the basic algebraic properties of 2D convolutional
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codes were proposed in [10] where Fornasini and Valcher introduced 2D convolutional codes

constituted by sequences indexed by Z2, and discussed issues as the characterization of such

codes in terms of their internal properties and input-output representations. Later, in [43],

the same authors considered 2D convolutional codes in which the codewords admit com-

pact support in Z2, and presented several properties of their encoders and syndrome formers

(parity-check matrices) under different hypotheses on the code structure.

In [45], Weiner studied for the first time the multidimensional (nD) convolutional codes

having finite support in Nn. In [15], Gluesing-Luerssen, Rosenthal and Weiner analyzed the

connections between (nD) convolutional codes and (nD) systems. More recently, for the

purpose of studying (nD) convolutional codes from a more practical point of view, R. Lobo

introduced in [22] the concept of locally invertible encoders and the Tail-Biting convolutional

codes with the aim of obtaining constructions of 2D convolutional codes with particular

decoding properties. Recently, Napp et al. [29] generalized to the 2D case the input-state-

output representations of 1D convolutional codes defined by Rosenthal and collaborators

[38, 40].

In this thesis we study 2D convolutional codes through mathematical techniques used in

systems theory for the 2D case. Concretely, following the approach already used by sev-

eral authors for the 1D case, we consider two-dimensional (2D) convolutional codes over

a field F, constituted by 2D bilateral sequences that are generated by a specific type of en-

coders, the polynomial ones. Both encoders and codes admit representations by means of

2D state-space models. Our main purpose is to study the code realization problem for the

2D case with special focus in obtaining realizations of minimal dimension. This is motivated

not only by a reduction of the computational costs, but also by the importance of the use of

minimal realizations in the search for convolutional codes with suitable properties, such as a

good distance. The construction of convolutional codes with good distance, i.e., with good

capability of error correction, is in general a hard problem. Minimal state-space realizations

have been used to construct 1D convolutional codes of a given rate and a prescribed distance

[37, 38, 40, 42]. Only recently, constructions of 2D convolutional codes with a designed dis-

tance were obtained [29, 30]. In [29] minimal realizations based on the Fornasini-Marchesini
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model were used to construct such codes. However, the minimality of such models is not

characterized, restricting its application in the search of new constructions.

Although one can choose among different state-space models for 2D processes [1, 7, 35],

we have opted to consider here separable Roesser models, due to the simplicity of their

updating scheme. Indeed, these models can be viewed as the series connection of two 1D

state-space models each of which evolves in a different direction. This special structure al-

lowed giving a characterization of minimality in terms of necessary and sufficient conditions

on the system matrices (similar to the 1D case) [17], which is not possible to achieve for other

types of models. Separable Roesser models do not realize all 2D-causal transfer-functions,

but only those which have a separable denominator, i.e., whose denominator is the product

of two 1D polynomials, each of which in a different variable. Fortunately, 2D polynomial

encoders (to which we restrict in this thesis) can be regarded as separable denominator trans-

fer functions, and hence admit a realization by means of separable Roesser models. In this

framework, we first consider the realization of 2D convolutional codes by a similar proce-

dure to the one used in [9] for the 1D case, i.e., by first finding a minimal 2D polynomial

encoder and then obtaining a minimal separable Roesser realization of that encoder. It turns

out that the characterization of minimal 2D encoders is a hard problem, that could not be

solved with full generality. Nevertheless, we provide a characterization of minimal encoders

for the particular class of 2D convolutional codes of rate 1/n.

As for the case of codes of general rate k/n, we consider a particular class of 2D convo-

lutional encoders and corresponding convolutional codes, that we respectively call composi-

tion encoders and composition codes, and show that, under certain conditions, composition

encoders are minimal. Moreover, for the encoders that satisfy these minimality conditions,

minimal 2D state-space realizations are obtained, yielding minimal realizations of the corre-

sponding 2D convolutional codes.

Although there is still much to be done in this topic, we believe that minimal realizations

via separable Roesser models constitute a good framework for the construction of optimal

2D convolutional codes.
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We next give a brief outline of the contents of each chapter of this thesis.

Chapter 1 - Preliminaries

This chapter contains some definitions and results about polynomial matrices in one and

two indeterminates. Particular classes of polynomial matrices will play a fundamental role

in the analysis of both polynomial 1D and 2D encoders and therefore further properties as

unimodularity and primeness are highlighted both for the 1D and the 2D cases.

Chapter 2 - Convolutional codes and their encoders

In this chapter we begin by introducing the notion of 1D convolutional codes, and some

necessary background such as properties of equivalent encoders are presented. Some of the

results on encoders that will be considered are well known, and are presented without proof,

together with the reference to the papers or standard textbook(s) where a proof is provided.

We opted to collect here these results for the sake of completeness. We introduce here a

class of encoders similar to the well known systematic encoders, which we have called quasi-

systematic encoders, as they are considered latter in this study. In a second stage a natural

extension of 1D convolutional codes and their encoders is considered for the 2D case.

Chapter 3 - The realization problem

The realization problem is considered, focusing on the study of the minimal realization

of 1D encoders and of the corresponding convolutional codes. Moreover this problem is

investigated in the light of Willems’s behavioral approach, and a procedure for obtaining a

minimal realization of a 1D encoder which is also a minimal realization of the corresponding

code is provided. Concerning the 2D case, Roesser state-space models are introduced, and

special attention is given to the separable case. The final part of this chapter is devoted to an

overview of the sufficient conditions for minimality of 2D convolutional codes derived from

results already available in the literature.

Chapter 4 - Minimal realization of 2D convolutional codes
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The minimality of 2D convolutional codes is characterized for a particular class of en-

coders, namely the ones of type n × 1 (rate 1/n), and some considerations on the generaliza-

tion of the presented results for encoders of type n × k (i.e., rate k/n), for k > 1 are made to

highlight the main achievements reached and the experienced difficulties.

Chapter 5 - Composition codes

A particular class of 2D convolutional codes (composition codes) whose encoders can

be decomposed as the product of two 1D encoders, each one in one direction/indeterminate

is introduced. We prove that under certain conditions, composition encoders are minimal.

Moreover, for the encoders that satisfy the minimality conditions, minimal 2D state-space

realizations are obtained, which are minimal realizations of the corresponding 2D convolu-

tional codes.

Chapter 6 - Conclusions

Finally, in the last chapter, we summarize the main results and discuss some future work

to be carried out.





Chapter 1

Preliminaries

Polynomial matrices constitute an essential tool in the study of problems such as model-

ing linear systems in the behavioral approach or concerning convolutional codes. Although

we present here well known results, that could have been given in an appendix, we opted to

collect them in this chapter due to their relevance for polynomial encoders to which we give

particular attention throughout this thesis. After presenting some definitions and results in

the 1D case, we consider the 2D case. For more details we refer to [6, 14, 18] for the 1D

case and to [10, 23, 33, 43] for the 2D case.

1.1 1D polynomial matrices

Let us consider a field F and denote, as usually, by F[d] and F(d) the ring of polynomials

in d and the field of rational functions with coefficients in F, respectively. Denote by F[d]n×k

the set of matrices of size n × k with elements in F[d].

We start by considering a very important class of polynomial matrices known as unimod-

ular matrices. Such matrices are those who admit a polynomial inverse as defined below.

Definition 1.1. A matrix U (d) ∈ F[d]k×k is unimodular if it is invertible in F[d]k×k , i.e., if

there exists V (d) ∈ F[d]k×k such that

V (d)U (d) = U (d)V (d) = Ik .

The next proposition characterizes the class of unimodular matrices.

9



10 1. Preliminaries

Proposition 1.2. Let U (d) ∈ F[d]k×k . The following are equivalent:

(i) U (d) is unimodular;

(ii) det U (d) = α, where α ∈ F \ {0}.

Unimodular matrices play the same role as the nonzero constants in polynomial factor-

ization.

The concepts of divisor (or factor) of a polynomial and common divisor of a pair of

polynomials can be extended to the matricial case. However, due to the non-commutativity

of the product of matrices is necessary to distinguish between left and right factors. In the

sequel, definitions and results are stated only for the "right" case as the "left" case is entirely

analogous.

Definition 1.3. Let G(d) ∈ F[d]n×k .

(i) ∆(d) ∈ F[d]k×k is a right-divisor of G(d) if

G(d) = Ḡ(d)∆(d), (1.1)

for some Ḡ(d) ∈ F[d]n×k .

(ii) ∆(d) ∈ F[d]k×k is called a right maximal divisor (rMD) of G(d) if (1.1) holds and

G(d) = Ḡ(d)∆̃(d),

with ∆̃(d) ∈ F[d]k×k and Ḡ(d) ∈ F[d]n×k , implies that there exist F (d) ∈ F[d]k×k

such that ∆(d) = F (d)∆̃(d).

Matrices without nonunimodular factors (divisors) play an important role on matrix fac-

torization and are called right-prime matrices. This class of matrices is defined and charac-

terized below.

Definition 1.4. A polynomial matrix G(d) ∈ F[d]n×k is right-prime if in all factorizations

G(d) = Ḡ(d)∆(d), ∆(d) ∈ F[d]k×k , Ḡ(d) ∈ F[d]n×k ,

the right-factor ∆(d) is unimodular.
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Further properties of right-prime matrices are stated in the following lemma.

Lemma 1.5. [18] Let G(d) ∈ F[d]n×k .

(i) ∆(d) ∈ F[d]k×k is a rMD of G(d) if and only if G(d) = Ḡ(d)∆(d), for some right-

prime matrix Ḡ(d) ∈ F[d]n×k .

(ii) If G(d) = Ḡ(d)U (d), with U (d) ∈ F[d]k×k unimodular and Ḡ(d) ∈ F[d]n×k right-

prime, then G(d) is also right-prime.

(iii) If G(d) is right-prime then it has full column rank.

Note that, if G(d) ∈ F[d]n×k is a right-prime matrix, then k ≤ n.

In general, it is not easy to check by the definition whether a matrix is right-prime or not.

However, the next result (in particular condition (iv)) provides an easier way to check this

property.

Proposition 1.6. [6, 18] Let G(d) ∈ F[d]n×k , with n ≥ k. The following are equivalent:

(i) G(d) is right-prime.

(ii) There exists H (d) ∈ F[d]n× (n−k) such that
[
G(d) H (d)

]
is unimodular.

(iii) G(d) admits a polynomial left inverse.

(iv) The greatest common divisor (GCD) of the k-th order minors of G(d) is 1.

(v) For all û(d) ∈ F(d)k×1, G(d)û(d) ∈ F[d]n×1 implies û(d) ∈ F[d]n×1.

(vi) G(α) has rank k, for all α ∈ F̄, where F̄ denotes the algebraic closure of F.

The definitions and results related to the notion of factors of a polynomial matrix can be

extended in a similar way when we are dealing with a pair of polynomial matrices.

Definition 1.7. Let G1(d) ∈ F[d]n1×k and G2(d) ∈ F[d]n2×k . Then ∆(d) ∈ F[d]k×k is a

right common divisor of G1(d) and G2(d) if

G1(d) = Ḡ1(d)∆(d) and G2(d) = Ḡ2(d)∆(d), (1.2)

for some Ḡ1(d) ∈ F[d]n1×k and Ḡ2(d) ∈ F[d]n2×k .
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Note that if ∆(d) is a right common divisor of G1(d) and G2(d) then (1.2) is equivalent

to




G1(d)

G2(d)




=




Ḡ1(d)

Ḡ2(d)



∆(d),

and consequently, ∆(d) is a right-factor of



G1(d)

G2(d)



.

Definition 1.8. G1(d) ∈ F[d]n1×k and G2(d) ∈ F[d]n2×k are right-coprime if all their right

common factors are unimodular.

The next corollary follows from Proposition 1.6.

Corollary 1.9. [6] Let G1(d) ∈ F[d]n1×k and G2(d) ∈ F[d]n2×k . The following are equiva-

lent:

1. G1(d) and G2(d) are right-coprime.

2. The matrix



G1(d)

G2(d)




is right-prime.

3. There exist X1(d) ∈ F[d]k×n1 and X2(d) ∈ F[d]k×n2 such that the Bézout equation

X1(d)G1(d) + X2(d)G2(d) = Ik ,

holds.

Let us now introduce some definitions and results concerning the degree of a polynomial

matrix.

The degree of a polynomial row or column is defined as the maximum degree of its

entries. Taking this notion into account, let us state the following definition.

Definition 1.10. Let G(d) ∈ F[d]n×k with column degrees given by `1, . . . , `k .

(i) The external degree of G(d), ext deg(G(d)), is the sum of its column degrees, i.e.,

ext deg(G(d)) =

k∑
i=1

`i .
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(ii) The internal degree of G(d), int deg(G(d)), is the maximum degree of its k-th order

minors.

Since the computation of the k-th order minors may lead to the cancelation of the mono-

mials of highest degree, int deg(G(d)) ≤ ext deg(G(d)), for any G(d) ∈ F[d]n×k . The in-

ternal and external degrees of a polynomial matrix are associated with the notion of another

class of matrices, the column reduced matrices, which we define below.

Definition 1.11. A polynomial matrix G(d) ∈ F[d]n×k with rank k and column degrees

`1, . . . , `k is column reduced if at least one of its minors of order k has degree
∑k

i=1 `i, i.e., if

int deg(G(d)) = ext deg(G(d)). (1.3)

The next proposition concerns the reduction of polynomial matrices to column reduced

form and will play an important role in the next chapter.

Proposition 1.12. [18, 6]

(i) If G1(d),G2(d) ∈ F[d]n×k are column reduced and G1(d) = G2(d)U (d), for U (d) ∈

F[d]k×k unimodular, then, up to a permutation, the column degrees of G1(d) and

G2(d) are the same.

(ii) If G(d) ∈ F[d]n×k , there exists a unimodular matrix U (d) ∈ F[d]k×k such that

G(d)U (d) is column reduced and, by (i), the column degrees of G(d)U (d) are uniquely

determined, up to a permutation.

1.2 2D polynomial matrices

In this section similarly to what was done in the 1D case, some definitions and results

concerning 2D polynomial matrices are presented.

Let us denote by F[d1,d2] and F(d1,d2) the ring of polynomials in d1 and d2, and by

F[d1,d2]n×k the set of matrices of size n × k with elements in F[d1,d2].

As happens in the 1D case, the study of particular classes of matrices constitutes a fun-

damental tool for the analysis of 2D convolutional codes.
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Definition 1.13. A matrix U (d1,d2) ∈ F[d1,d2]k×k is unimodular if is invertible in F[d1,d2]k×k ,

i.e., if there exists V (d1,d2) ∈ F[d1,d2]k×k such that

V (d1,d2)U (d1,d2) = U (d1,d2)V (d1,d2) = Ik . (1.4)

Proposition 1.14. [33] Let U (d1,d2) ∈ F[d1,d2]k×k . The following are equivalent:

(i) U (d1,d2) is unimodular;

(ii) det U (d1,d2) = α, where α ∈ F \ {0}.

Definition 1.15. Let G(d1,d2) ∈ F[d1,d2]n×k .

(i) ∆(d1,d2) ∈ F[d1,d2]k×k is a right-divisor of G(d1,d2) if

G(d1,d2) = Ḡ(d1,d2)∆(d1,d2), (1.5)

for some Ḡ(d1,d2) ∈ F[d1,d2]n×k .

(ii) ∆(d1,d2) ∈ F[d1,d2]k×k is called a right maximal divisor (rMD) of G(d1,d2) if (1.5)

holds and

G(d1,d2) = Ḡ(d1,d2)∆̃(d1,d2),

with ∆̃(d1,d2) ∈ F[d1,d2]k×k and Ḡ(d1,d2) ∈ F[d1,d2]n×k , implies that there exist

F (d1,d2) ∈ F[d1,d2]k×k such that

∆(d1,d2) = F (d1,d2)∆̃(d1,d2).

Next we define an important class of 2D polynomial matrices, the right-factor prime

matrices.

Definition 1.16. A polynomial matrix, G(d1,d2) ∈ F[d1,d2]n×k , is said to be right-factor

prime (rFP) if for every factorization

G(d1,d2) = Ḡ(d1,d2)∆(d1,d2), (1.6)

Ḡ(d1,d2) ∈ F[d1,d2]n×k and ∆(d1,d2) ∈ F[d1,d2]k×k , with ∆(d1,d2) unimodular.
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Further properties of right-factor prime matrices are stated in the following lemma.

Lemma 1.17. Let G(d1,d2) ∈ F[d1,d2]n×k .

(i) ∆(d1,d2) ∈ F[d1,d2]k×k is a rMD of G(d1,d2) if and only if

G(d1,d2) = Ḡ(d1,d2)∆(d1,d2),

for some right-factor prime matrix Ḡ(d1,d2) ∈ F[d1,d2]n×k .

(ii) If G(d1,d2) = Ḡ(d1,d2)U (d1,d2), with U (d1,d2) ∈ F[d1,d2]k×k unimodular and

Ḡ(d1,d2) ∈ F[d1,d2]n×k right-factor prime, then G(d1,d2) is also right-factor prime.

(iii) If G(d1,d2) is right-factor prime then it has full column rank.

Consequently, if G(d1,d2) ∈ F[d1,d2]n×k is a right-factor prime matrix, then k ≤ n.

The following proposition characterizes the class of right-factor prime 2D polynomial

matrices.

Proposition 1.18. [20, 33] Let G(d1,d2) ∈ F[d1,d2]n×k , with n ≥ k. Then the following are

equivalent:

(i) G(d1,d2) is right-factor prime.

(ii) There exist polynomial matrices Xi (d1,d2) such that

Xi (d1,d2)G(d1,d2) = hi (di)Ik ,

with hi (di) ∈ F[di] \ {0}, for i = 1,2.

(iii) For all û(d1,d2) ∈ F(d1,d2)k , G(d1,d2)û(d1,d2) ∈ F[d1,d2]n implies û(d1,d2) ∈

F[d1,d2]k .

(iv) The k-order minors of G(d1,d2) have no common factor.

Corollary 1.19. [43] Let G(d1,d2) ∈ F[d1,d2]n×k , with column rank k̄. There exist two

polynomial matrices Ḡ(d1,d2) ∈ F[d1,d2]n× k̄ rFP, and T (d1,d2) ∈ F[d1,d2]k̄×k with full

row rank, such that

G(d1,d2) = Ḡ(d1,d2)T (d1,d2). (1.7)
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Note that in the case of 2D polynomial matrices, the property of being right-factor prime

is not equivalent to the property of admitting a left inverse. Indeed, this fact leads to another

notion that we define after the next example.

Example 1.20. Let us consider a polynomial matrix given by

G(d1,d2) =




d1 − 1

d2 − 1



.

Clearly, as d1 − 1 and d2 − 1 do not have common factors, the matrix G(d1,d2) is right-

factor prime. In case of G(d1,d2) admitted a left inverse, then there would exist P(d1,d2) ∈

F[d1,d2]1×2 such that

P(d1,d2)



d1 − 1

d2 − 1




= 1.

This would imply that, for d1 = d2 = 1,

P(d1,d2)



0

0




= 1,

which is absurd. ^

The subtlety lies in the fact that 2D polynomials do not admit common factors but can

admit common zeros. This motivates the following definition.

Definition 1.21. A polynomial matrix, G(d1,d2) ∈ F[d1,d2]n×k , is said to be right-zero

prime (rZP)if the ideal generated by the k-th order minors of G(d1,d2) is the ring F[d1,d2].

This stronger notion can be characterized as follows.

Proposition 1.22. [48] Let G(d1,d2) ∈ F[d1,d2]n×k , with n ≥ k. Then the following are

equivalent:

(i) G(d1,d2) is right-zero prime;

(ii) G(d1,d2) admits a polynomial left inverse;

(iii) rank G(λ1, λ2) = k, ∀(λ1, λ2) ∈ F̄ × F̄, where F̄ denotes the algebraic closure of F.



Chapter 2

Convolutional codes and their encoders

In this chapter, convolutional codes and convolutional encoders are defined for both 1D

and 2D cases. Since a given (1D or 2D) convolutional code can be encoded by many dif-

ferent encoders, it becomes crucial to distinguish code properties from encoder properties.

Although for the 1D case this subject is well documented in the literature, as for instance

in [6, 11, 31], we have opted to present it here in detail due to its fundamental importance

throughout this thesis. After this overview of known results concerning the 1D case, the 2D

case is presented.

2.1 1D convolutional codes and their encoders

In this section we introduce convolutional codes in one-dimension and analyze several

classes of encoders of such codes making use of the connections between systems theory

and coding theory.

Consider one-dimensional (bilateral) sequences indexed by Z, {w(i)}i∈Z, and taking val-

ues in Fn, i.e., w(i) ∈ Fn, where F is a field. For coding theory purposes, such sequences are

identified in several ways. These sequences can be seen as elements of the set of bilateral

formal power series over Fn, denoted by F n
1D, i.e.,

ŵ(d) =
∑
i∈Z

w(i)di .

17
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Note that F n
1D constitutes a module over the ring F[d] of 1D polynomials in d over F.

Given a subset C of the sequences indexed by Z, taking values on Fn, we denote by Ĉ

the subset of F n
1D defined by Ĉ = {ŵ | w ∈ C}.

Definition 2.1. A 1D convolutional code is a subset C of sequences indexed by Z such that

Ĉ is a submodule of F n
1D which coincides with the image of F k

1D (for some k ∈ N) by a

polynomial matrix G(d), i.e.,

Ĉ = Im G(d) = {ŵ(d) | ŵ(d) = G(d)û(d) with û(d) ∈ F k
1D};

where u and w are the input and the output, known as information sequences and codewords,

respectively; with some abuse of language we also write C = Im G(d), w instead of ŵ, and

the same for the other variables.

In the literature, convolutional codes constituted namely by Laurent series [11] or by

polynomials [39] are widely studied. In our study we consider convolutional codes consti-

tuted by bilateral sequences. In order to guarantee the completeness of our exposition, it

becomes fundamental to present here some already known results concerning our case.

Note that a 1D convolutional code can always be given as the image of a full column

rank polynomial operator G(d) ∈ F[d]n×k .

Definition 2.2. Any full column rank polynomial matrix G(d) ∈ F[d]n×k such that

C = Im G(d)

is called an encoder of C; in this case C is said to be of rate k/n.

In [26, 27], Massey and Sain recognized that two encoders can be considered equivalent

for coding purposes if they generate the same code. The following proposition characterizes

equivalent encoders of a convolutional code.

Proposition 2.3. [26, 32] Let C be a convolutional code of rate k/n and G1(d) ∈ F[d]n×k

and G2(d) ∈ F[d]n×k be equivalent 1D convolutional encoders. Then
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(i) There exist two square nonsingular matrices P1(d) ∈ F[d]k×k and P2(d) ∈ F[d]k×k

such that

G1(d)P1(d) = G2(d)P2(d). (2.1)

(ii) If G1(d) is right-prime, then

G2(d) = G1(d)P(d), (2.2)

for some matrix P(d) ∈ F[d]k×k .

(iii) If G1(d) and G2(d) are both right-prime, then

G2(d) = G1(d)U (d), (2.3)

for some unimodular matrix U (d) ∈ F[d]k×k .

Remark 2.4. The condition (i) of the last proposition implies that convolutional codes are

unique up to the post-multiplication by a square nonsingular rational matrix.

The next proposition collects some basic results about the family of encoders of a con-

volutional code C of rate k/n.

Proposition 2.5. [6] Let C be a convolutional code of rate k/n. Then

(i) Among all polynomial encoders of C, there always exist right-prime ones, called basic

encoders.

(ii) Among all polynomial encoders of C, there always exist column reduced ones, called

reduced encoders.

Moreover, all the polynomial encoders of a code can be obtained from a right-prime

one, by right multiplication by a polynomial matrix. Right-prime encoders are unique up to

unimodular right multiplication. A convolutional code always admits polynomial encoders

which are simultaneously right-prime and column reduced (cf. Definition 1.11). Such en-

coders are called canonical encoders and play an important role in coding theory specially

in what regards minimality issues as we shall see latter.



20 2. Convolutional codes and their encoders

Note that the column reduced encoders of C do not have all the same external degree. In

fact, consider two polynomial encoders G1(d) and G2(d) of C with internal degrees n1 and

n2, respectively, and such that G1(d) is right-prime but G2(d) is not. In this case one has

that n1 < n2. Moreover there exist suitable unimodular matrices U1(d) and U2(d) such that

G̃1(d) = G1(d)U1(d) and G̃2(d) = G2(d)U2(d)

are column reduced encoders, with the same internal degrees as the original ones, i.e., n1 and

n2, respectively, that coincide with the correspondent external degrees. Therefore, G1(d)

and G2(d) have different external degrees.

Moreover, since canonical encoders are also basic, then from Proposition 2.3 they differ

by a right unimodular factor which, by Proposition 1.12, implies that they have the same col-

umn degrees, up to a permutation. Therefore the column degrees of the canonical encoders

constitute a set of invariants of the code.

Among all polynomial encoders of a convolutional code C, the ones with minimal exter-

nal degree are the canonical encoders as the next proposition states.

Proposition 2.6. [6] Let C be a convolutional code of rate k/n and G(d) ∈ F[d]n×k a

polynomial encoder of C. Then G(d) is canonical if and only if it has minimal external

degree among all polynomial encoders of C.

Definition 2.7. Let C be a convolutional code of rate k/n. The (internal/external) degree of

an arbitrary canonical encoder of C is said to be the degree of the code C and is denoted by

degC. Moreover, the column degrees, φ1, . . . , φk , of any canonical encoder are known as

Forney indices of C and therefore their sum is the degree of the code C, degC =
∑k

i=1 φi.

The highest Forney index is said to be the memory of the code.

2.1.1 Quasi-systematic encoders

In [4], Costello noticed that there exist simple encoders that provide the information

sequences by selecting some components of the correspondent codewords. Such encoders

are called systematic encoders. In this thesis we present a similar definition.
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Definition 2.8. An encoder G(d) ∈ F[d]n×k is said to be a quasi-systematic encoder if it

can be reduced, up to a pre-multiplication by an invertible constant matrix, to the following

structure

G(d) = T



Ḡ(d)

Ik



, (2.4)

where T ∈ Fn×n is invertible and Ḡ(d) ∈ F[d](n−k)×k .

This definition is slightly different from the usual one as T is any invertible constant

matrix rather than a permutation matrix.

Note that not all convolutional codes admit quasi-systematic encoders. The next results

establish when a 1D convolutional code admits a systematic encoder.

Lemma 2.9. [31] Let C be a 1D convolutional code of rate k/n and let G(d) be a basic

encoder of C. Then C admits systematic encoders if and only if there exists a permutation

matrix P ∈ Fn×n such that
[
Ik 0

]
PG(d)

is unimodular.

An immediate consequence of this lemma is the following.

Corollary 2.10. Let C be a 1D convolutional code of rate k/n and let G(d) be a basic

encoder of C. Then C admits an encoder quasi-systematic if and only if there exists an

invertible matrix L ∈ Fn×n such that

[
Ik 0

]
LG(d)

is unimodular.

2.2 2D convolutional codes and their encoders

The concept of 2D convolutional code has been introduced by extending, in a natural

way, the notion of convolutional code for the 1D case.
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Let us consider 2D convolutional codes constituted by sequences indexed by Z2 and tak-

ing values in Fn, where F is a field. Such sequences {w(i, j)}(i,j)∈Z2 can be represented by

bilateral formal power series

ŵ(d1,d2) =
∑

(i,j)∈Z2

w(i, j)di
1d j

2.

For n ∈ N, the set of bilateral formal power series over Fn is denoted by F n
2D. This set is

a module over the ring F[d1,d2] of 2D polynomials over F.

Given a subset C of sequences indexed by Z2, taking values on Fn, we denote by Ĉ the

subset of F n
2D defined by Ĉ = {ŵ | w ∈ C}, w instead of ŵ, and the same for the other

variables.

Definition 2.11. A 2D convolutional code is a subset C of sequences indexed by Z2 such

that Ĉ is a submodule of F n
2D which coincides with the image of F k

2D (for some k ∈ N) by a

polynomial matrix G(d1,d2) ∈ F[d1,d2]n×k , i.e.,

Ĉ = Im G(d1,d2)

= {ŵ(d1,d2) | ŵ(d1,d2) = G(d1,d2)û(d1,d2) with û(d1,d2) ∈ F k
2D};

with some abuse of language we also write C = Im G(d1,d2).

It follows as a consequence of [Theorem 2.2, [23]] that a 2D convolutional code can al-

ways be given as the image of a full column rank polynomial matrix G(d1,d2) ∈ F[d1,d2]n×k .

Definition 2.12. Any full column rank matrix G(d1,d2) ∈ F[d1,d2]n×k such that C =

Im G(d1,d2) is called an encoder of C.

Note that this definition of encoder is slightly different from the one in [10] where non

full column rank 2D polynomial matrices are allowed as encoders. However, our definition

is motivated by the fact that only full column rank encoders are relevant for the purpose of

obtaining minimal realizations of a code.

As happens in the 1D case, a 2D convolutional code can be generated by different en-

coders.
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Definition 2.13. Two encoders, G1(d1,d2) ∈ F[d1,d2]n×k and G2(d1,d2) ∈ F[d1,d2]n×k ,

are said to be equivalent if they generate the same code, i.e., if

Im G1(d1,d2) = Im G2(d1,d2).

This means that two matrices G1(d1,d2) ∈ F[d1,d2]n×k and G2(d1,d2) ∈ F[d1,d2]n×k

are equivalent encoders if the F n
2D- modules generated by the columns of G1(d1,d2) and

G2(d1,d2) coincide. As a consequence it follows the next characterization of equivalent

encoders .

Proposition 2.14. [10] Let G1(d1,d2), G2(d1,d2) ∈ F[d1,d2]n×k be (equivalent) 2D con-

volutional encoders. Then

(i) There exist two square nonsingular matrices P1(d1,d2) ∈ F[d1,d2]k×k and P2(d1,d2) ∈

F[d1,d2]k×k , such that

G1(d1,d2)P1(d1,d2) = G2(d1,d2)P2(d1,d2).

(ii) If G1(d1,d2) is right-factor prime, then

G2(d1,d2) = G1(d1,d2)P(d1,d2),

for some 2D matrix P(d1,d2) ∈ F[d1,d2]k×k .

(iii) If G1(d1,d2) and G2(d1,d2) are both right-factor prime, then

G2(d1,d2) = G1(d1,d2)U (d1,d2),

for some 2D unimodular matrix U (d1,d2) ∈ F[d1,d2]k×k .

It follows from (i) in the previous proposition that

G1(d1,d2) = G2(d1,d2)U2(d1,d2) and G2(d1,d2) = G1(d1,d2)U1(d1,d2),

with U2(d1,d2) = P2(d1,d2)P−1
1 (d1,d2) and U1(d1,d2) = P1(d1,d2)P−1

2 (d1,d2), i.e., as

happens in the 1D case, the 2D convolutional encoders are unique up to the post-multiplication

by a square nonsingular 2D rational matrix.

As a consequence, a 2D convolutional code always admits right-factor prime encoders.

However, is not true that it always admits right-zero prime ones.
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Example 2.15. Recall the Example 1.20

G(d1,d2) =




d1 − 1

d2 − 1



.

Clearly, as d1 − 1 and d2 − 1 do not have common factors, the matrix G(d1,d2) is right-

factor prime. However, since its maximal order minors have a common zero for d1 = d2 = 1,

G(d1,d2) does not admit a left polynomial inverse and therefore is not right-zero prime. ^



Chapter 3

The realization problem

In this chapter we start by introducing the notions of realization of an encoder and of

the corresponding convolutional code. Moreover, it is our purpose to analyze the realization

problem for both one and two-dimensional convolutional codes starting from their encoders.

3.1 The one-dimensional case

In this section we consider state-space models. Depending on what type of situation

we are interested in, these models can be viewed from different perspectives, namely as re-

alizations of input/output relations (corresponding to encoders) or as realizations of output

behaviors (corresponding to codes). The minimality of such representations is also inves-

tigated and an algorithm to obtain a minimal realization of a code starting from a minimal

realization of one of its encoders is presented.

3.1.1 Realizations of 1D encoders

A discrete-time 1D state-space model is a description of a linear, discrete and time-

invariant 1D system through equations of the form:




σx(t) = Ax(t) + Bu(t)

w(t) = Cx(t) + Du(t),
(3.1)

25
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where A, B, C and D are matrices over F of size m ×m, m × k, n ×m and n × k, respectively;

σx(t) = x(t + 1), for all t ∈ Z, u is the input-variable, w is the output-variable and x is the

state-variable. The system described by (3.1) will be denoted by Σ1D (A,B,C,D), and its

dimension is defined to be the dimension of the state space, i.e., m.

Some relevant definitions and results concerning this type of models are given in the

Appendix A.

Definition 3.1. Σ1D (A,B,C,D) is said to be a realization of the 1D encoder G(d) ∈ F[d]n×k

if

G(d) = C(Im − Ad)−1Bd + D.

Under the light of the behavioral approach, this is equivalent to say that Σ1D (A,B,C,D)

is a realization of an encoder G(d) if the behavior

B(u,w) = {(u,w) | ŵ(d) = G(d)û(d)}

coincides with the set

{(u,w) | ∃ x such that (u, x,w) satisfies (3.1)}.

In this case we write Σ1D (A,B,C,D) = Σ1D (G).

Note that the set B(u,w) is what is known in the behavioral approach to systems and

control [46] as the (external) input/output behavior associated with (3.1).

3.1.1.1 Minimal realizations of 1D encoders

A polynomial encoder G(d) ∈ F[d]n×k admits many realizations with possibly different

dimensions. Efficiency leads to focusing on obtaining realizations of minimal dimension.

Definition 3.2. Let G(d) ∈ F[d]n×k . Σ1D (A,B,C,D) is said to be a minimal realization of

G(d) if no other realization of G(d) has smaller dimension, i.e., if the size of the state x is

minimal among all the realizations of G(d). The minimal dimension of a realization of G(d)

is called the McMillan degree of G(d) and is represented by µ(G).
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It is well known that the minimal realizations of an encoder G(d) ∈ F[d]n×k are charac-

terized by being simultaneously observable and controllable1 (see Appendix A).

The next proposition characterizes the McMillan degree of a general polynomial matrix,

and in particular of an encoder. A similar result has been proved in [9, 18], in a different

context, using different tools.

Proposition 3.3. Let G(d) ∈ F[d]n×k . Then the McMillan degree of G(d) is given by

µ(G) = int deg



G(d)

Ik



.

Proof. Let N (d) ∈ F[d]n×k and D(d) ∈ F[d]k×k invertible be such that G(d) = N (d)D(d)−1

with



N (d)

D(d)




(3.2)

right prime and column reduced. It is well known that the McMillan degree of G(d) is

ext deg



N (d)

D(d)



, see for example [9, 18]. Since




G(d)

Ik




and



N (d)

D(d)




are right prime and




G(d)

Ik




D(d) =




N (d)

D(d)



,

it follows that D(d) is unimodular and hence

int deg



N (d)

D(d)




= int deg



G(d)

Ik



.

1Recall that Σ(A,B,C,D) of dimension m is controllable if and only if rank
[
B | AB | · · · | Am−1B

]
= m,

or, equivalently, if and only if rank
[
λIm − A | B

]
= m, ∀λ ∈ F̄. Σ(A,B,C,D) is observable if and only

if rank




C

C A
...

C Am−1




= m, or, equivalently, if and only if rank



λIm − A

C




= m, ∀λ ∈ F̄. Here F̄ denotes the

algebraic closure of F.
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Because



N (d)

D(d)




is column reduced, we have that

ext deg



N (d)

D(d)




= int deg



G(d)

Ik



. �

Observe that, from the proposition above together with the definition of internal degree,

it follows that the McMillan degree of a polynomial matrix G(d) is the maximum degree of

its minors.

As we referred before, in general a realization of an encoder is not unique. Nevertheless,

a minimal one is unique up to a change of basis on the state-space as next proposition states.

Therefore we say that minimal realizations of an encoder (and equivalently of an input/output

behaviour) are equivalent.

Proposition 3.4. [19] Let Σ1D (A,B,C,D) and Σ̄1D ( Ā, B̄,C̄, D̄) be two minimal realizations

of an encoder G(d). Then, there exists a unique invertible matrix T such that

Ā = T−1 AT, B̄ = T−1B, C̄ = CT and D̄ = D. (3.3)

There exist several algorithms in the literature to obtain minimal realizations of poly-

nomial encoders [9, 18]. The following procedure is an example of an algorithm of this

type.

Algorithm 3.5. [9] Given a polynomial matrix G(d) ∈ F[d]n×k , let U (d) be a unimodular

matrix such that 


Ḡ(d)

U (d)




=




G(d)

Ik




U (d) (3.4)

is column reduced with column degrees given by `1, ..., `k , respectively.

Let us assume that `i > 0 for i = 1, . . . , k and let m = `1 + `2 + · · · + `k .

Step 1 Rewrite G(d) = Ḡ(d)U (d)−1 as

G(d) = Ḡ(0)U (0)−1 + G̃(d)U (d)−1, (3.5)

where G̃(d) = Ḡ(d) − Ḡ(0)U (0)−1U (d) and



G̃(d)

U (d)




is column reduced with the same

column degrees as the matrix in (3.4). In order to obtain a minimal realization of G(d),
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take

D = Ḡ(0)U (0)−1 (3.6)

and reduce the problem to finding a realization of G̃(d)U (d)−1.

Step 2 Denote by Mi the `i × `i nilpotent Jordan block matrix given by

Mi =




0

1 0
. . .

. . .

1 0




, (3.7)

and define the matrices

M = M`1 ⊕ M`2 ⊕ · · · ⊕ M`k ,

and

B =

[
e1 e1+`1 · · · e1+`1+···+`k−1

]
,

of dimension m × m and m × k, respectively, where the notation M ⊕ N represents the block

diagonal matrix with diagonal blocks M and N.

It is clear that the matrix X (d) = (Im − M̄d)−1B̄d admits the following structure:

X (d) =




d
d2

...

d`1

d
d2

...

d`2

. . .

d
d2

...

d`k




(3.8)

Therefore, each row of G̃(d) can be written as a linear combination of the rows of X (d).

Define C ∈ Fn×m such that

G̃(d) = CX (d). (3.9)
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Step 3 Note that as U (d) is unimodular and the column degrees are lower or equal that

`1, . . . , `k it is always possible to write U (d) = U (0)(Ik − ĀX (d)), for a suitable Ā ∈ Fk×m,

where Ik − ĀX (d) is nonsingular. Define

A = M̄ + B̄ Ā and B = B̄U (0)−1. (3.10)

It can be easily proven that (Im − Ad)X (d) = B̄d(Im − ĀX (d)) which implies

Ḡ(d)U (d)−1 = C(Im − Ad)−1Bd.

Thus (3.6), (3.9) and (3.10) provide an m-dimensional state-space realization of the G(d).

If `i = 0, for some i, the procedure is the same as above; however the ith column in B̄

and in X (d) has to be zero, and the ith diagonal block M`i is empty.

It is worth mentioning that canonical encoders have minimal McMillan degree among all

the encoders of a 1D convolutional code as the following proposition states.

Proposition 3.6. [9, 12] Canonical encoders of a 1D convolutional code C have minimal

McMillan degree among all encoders of the code.

Proof. Let G(d) be an encoder of C and Gc(d) an equivalent canonical encoder. Then

G(d) = Gc(d)∆(d),

for some ∆(d) ∈ F[d]k×k .

Let U (d) ∈ F[d]k×k be a unimodular matrix such that




G(d)

Ik




U (d),
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is column reduced. Then,

int deg



G(d)

Ik




= int deg



Gc(d)∆(d)

Ik




= int deg



Gc(d)∆(d)U (d)

U (d)




= ext deg



Gc(d)∆(d)U (d)

U (d)




≥ ext deg(Gc(d)∆(d)U (d))

≥ int deg(Gc(d)∆(d)U (d))

≥ int deg(Gc(d)) = ext deg(Gc(d))

= ext deg



Gc(d)

Ik




= int deg



Gc(d)

Ik



. �

From the proof of the proposition above, it follows immediately that if G(d) is an encoder

of a 1D convolutional code which is not right-prime, then its McMillan degree is greater than

the McMillan degree of an equivalent canonical encoder.

3.1.2 Realizations of 1D convolutional codes

In this section we consider realizations of 1D convolutional codes.

Definition 3.7. Σ1D (A,B,C,D) is said to be a realization of the 1D convolutional code C if

the corresponding w– behavior

Bw = {w | Z→ Fn : ∃ x,u such that (u, x,w) satisfies (3.1)}

coincides with C, that is, Bw = C.

This is denoted by Σ1D (A,B,C,D) = Σ1D (C).

It is not difficult to see that a realization of an encoder of a convolutional code is also a

realization of the corresponding code, however the converse is not true.

It turns out that a code C can be regarded as a behavior, the main object of study of

the already mentioned behavioral approach developed by J.C. Willems [46]. The behaviors

corresponding to 1D convolutional codes constitute a particular class of behaviors, known as
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controllable behaviors, that are precisely sets of trajectories (sequences) that constitute the

image of a polynomial shift-operator (in coding language, the encoder). Within the behav-

ioral approach, a particular type of state-space representations for a behavior B have been

introduced, called state/driving-variable (s/dv) representations, whose input is an auxiliary

variable (the driving-variable); the behavior B corresponds to the output behavior of the

s/dv model. Thus, the realizations of a code C are nothing else than s/dv realizations of the

controllable behavior B = C.

3.1.2.1 Minimal realizations of 1D convolutional codes

Definition 3.8. Σ1D (C) is said to be a minimal realization of the 1D convolutional code C

if the size of (x,u) is minimal among all the realizations of C. The minimal size of (x,u) is

denoted by η(C).

A complete characterization for the minimality of code realizations is given by the con-

ditions of minimality of 1D s/dv realizations for controllable behaviors that can be derived

from [Theorem 4.2, [46]], and are stated as follows using the terminology of codes.

Theorem 3.9. [Theorem 4.2, [46]] A realization Σ1D (A,B,C,D) of a convolutional code C

is minimal if and only if the following conditions are satisfied:

(i)



B

D




has full column rank;

(ii) (A,B) is a controllable pair;

(iii) ker D ⊆ ker B, i.e., there exists a matrix L ∈ Fm×n such that B = LD;

(iv) Let L be as in (iii), and let Λ ∈ F(n−k)×n be a minimal left-annihilator (mla)2 of D.

Then the pair (A − LC,ΛC) is observable.

Remark 3.10. Note that (i) and (iii) are equivalent to (i’) –D has full column rank– and (iii).

The next example shows that a minimal realization of an encoder G(d) of a code C is not

necessarily a minimal realization of the code C.

2Λ is a mla of D if ΛD = 0 and for all Λ∗ such that Λ∗D = 0 there exists Λ̃ satisfying Λ∗ = Λ̃Λ.
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Example 3.11. Consider the following 1D polynomial encoder of a code C

G(d) =




1 + d − d3 −1 + d3

d + d2 − d3 −1 − d2 + d3

d + d2 −1 − d − d2




.

It can be easily checked that Σ1D (A,B,C,D) with

A =




0 0 0

1 0 0

0 1 0




, B =




1 −1

0 0

0 −1




, C =




1 0 −1

1 1 −1

1 1 0




and D =




1 −1

0 −1

0 −1




is a realization of G(d) which is controllable and observable and therefore is minimal.

However Σ1D (A,B,C,D) is not a minimal realization of C, as not all the conditions of

Theorem 3.9 are satisfied. Indeed, condition (iii) is fulfilled for

L =




1 0 0

0 0 0

0 0 1




;

however, considering the minimal left-annihilator Λ =

[
0 1 −1

]
of D, we have that

A − LC =




−1 0 1

1 0 0

−1 0 0




and ΛC =

[
0 0 −1

]
,

are such that the pair (A − LC,ΛC) is not observable.

Let us consider an equivalent encoder

Ḡ(d) = G(d)U (d)−1,

where Ḡ(d) =




1 + d −d

d −d + 1

d 1




and U (d)−1 =




1 −1

d2 −1 − d2



. Then Σ̄1D ( Ā, B̄,C̄, D̄) with

Ā =




0 0

0 0



, B̄ =




1 0

0 1



, C̄ =




1 −1

1 −1

1 0




and D̄ =




1 0

0 1

0 1



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is a minimal realization of Ḡ(d). Moreover, it is easy to see that such realization satisfies

conditions (i), (ii) and (iii) for

L =




1 0 0

0 1 0



.

With respect to condition (iv), considering the minimal left-annihilator Λ =

[
0 −1 1

]
of

D̄, we have that

Ā − LC̄ =




−1 1

−1 1




and ΛC̄ =

[
0 1

]
,

are such that the pair ( Ā − LC̄,ΛC̄) is observable. Hence, Σ̄1D (Ḡ) is a minimal realization

of the convolutional code C. ^

Minimal encoders are defined as the ones for which a minimal realization is also minimal

as a code realization; this is formalized in the following definition.

Definition 3.12. Let C ⊂ F n
1D be a convolutional code and G(d) ∈ F[d]n×k an encoder of

C. G(d) is said to be a minimal encoder of C if

µ(G) + k = η(C).

Note that it follows from Proposition 3.6 that canonical encoders are minimal.

Remark 3.13. The situation illustrated in the previous example is due to the fact that when

realizing an input/output operator (encoder) G(d) one has no freedom in performing trans-

formations in the input. This restriction is not present in the realization of the corresponding

output behavior (code), where the input-variables may be transformed. Therefore, given a

minimal realization of a non-minimal encoder G(d), it is still possible to reduce its dimen-

sion in order to have a minimal realization of the corresponding code.

The following procedure shows precisely how to obtain a minimal realization

Σ̃
1D (C) = Σ̃1D ( Ã, B̃,C̃, D̃)

of a code C by performing operations and reducing the number of variables in a minimal

realization Σ1D (G) = Σ1D (A,B,C,D) of a corresponding encoder G(d).
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Let us consider Σ1D (A,B,C,D) a minimal realization of G(d). Then

G(d) = C(Im − Ad)−1Bd + D

=

[
C(Im − Ad)−1d In

] 


B

D



.

Since encoders have full column rank, clearly



B

D




must have full column rank and hence

condition (i) of Theorem 3.9 is satisfied. Moreover, the minimality of Σ1D (A,B,C,D) as

realization of the encoder G(d) implies the controllability of the pair (A,B). Thus, a minimal

realization of the encoder G(d) satisfies condition (ii) of Theorem 3.9.

Suppose now that condition (iii) of the Theorem 3.9 is not satisfied i.e., ker D * ker B.

Then we can suppose, without loss of generality, that

D =




Ir 0

0 0




and B =

[
B1 B2

]
, (3.11)

with B2 =




0

S




full column rank of size m × (k − r), where S is a square invertible matrix of

size k − r , and B1 =




B11

B21




of size3 m × r .

Therefore, (3.1) is of the form:




σx1 = A11x1 + A12x2 + B11u1 (3.12a)

σx2 = A21x1 + A22x2 + B21u1 + Su2 (3.12b)

w1 = C11x1 + C12x2 + Iu1 (3.12c)

w2 = C21x1 + C22x2, (3.12d)

where the variables x, u and w have been partitioned according to the given matrix partitions.

3If this is not the case, changes of coordinates in the u, x, w spaces allow bringing D and B to the desired

form. The coordinate change in the w space modifies the code under consideration, but can be reversed at the

end of the reasoning that will be presented.
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Equations (3.12a)–(3.12d) show that x2 is a free variable. Indeed, given x2 and u1, it is

possible to find x1, w1 and w2 such that equations (3.12a), (3.12c) and (3.12d) are satisfied.

Moreover, since S is invertible, there exists u2 such that (3.12b) holds. Therefore, this latter

equation can be eliminated from the description of the code C, and x2 can assume the role

of a driving variable. This means that




σx1 = A11x1 + B̄ū

w = C1x1 + D̄ū,
(3.13)

with B̄ =

[
A12 B11

]
, ū =




x2

u1



, C1 =




C11

C21




and D̄ =




C12 I

C22 0




is still a realization of

the code with smaller dimension than the initial one (recall that the dimension of a code

realization is defined as the size of the joint state and driving-variable vector).

Note that the new system obtained in (3.13) still satisfies the condition (ii) of Theorem

3.9 since if the pair

(A,B) =







A11 A12

A21 A22



,




B11 0

B21 S







is controllable, then the pair

(A11, B̄) =

(
A11,

[
A12 B11

])
is also controllable. Indeed the controllability condition

rank
[
λIm − A B

]
= m, ∀λ ∈ F̄,

becomes

rank



λIm1 − A11 −A12 B11 0

−A21 λIm2 − A22 B21 S




= m1 + m2 = m, ∀λ ∈ F̄,

where m1 = m − (k − r) and m2 = k − r , which implies that

rank
[
λIm1 − A11 A12 B11

]
= rank

[
λIm1 − A11 −A12 B11

]
= m1,
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meaning that (A11, B̄) is a controllable pair.

Moreover, in case



B̄

D̄




is not full column rank, there exists an invertible matrix T such

that




B̄

D̄




T =




¯̄B 0
¯̄D 0



,

with



¯̄B
¯̄D




full column rank. Partitioning T−1ū accordingly as T−1ū =




¯̄u

ũ



, equations (3.13)

become



σx1 = A11x1 + ¯̄B ¯̄u

w = C1x1 + ¯̄D ¯̄u,
(3.14)

which again yields a realization of the code C with smaller dimension as the previous one,

that satisfies again condition (i) of Theorem 3.9.

Since

[
λIm1 − A11

¯̄B 0
]

=

[
λIm1 − A11 B̄T

]
=

[
λIm1 − A11 B̄

] 


I 0

0 T



,

where I denotes the identity matrix of suitable size, and

rank
[
λIm1 − A11

¯̄B
]

= rank
[
λIm1 − A11

¯̄B 0
]

= rank
[
λIm1 − A11 B̄

]
,

the controllability of the pair (A11, B̄) implies that the pair (A11,
¯̄B) is controllable, and the

realization (3.14) also satisfies condition (ii) of Theorem 3.9.

In case this realization does not satisfy condition (iii) of Theorem 3.9, the procedure can

be restarted and repeated, yielding successive realizations of the code with smaller dimen-

sion, till a realization of the code is obtained that simultaneously satisfies conditions (i), (ii)

and (iii). To avoid introducing too much notation, this realization will be again denoted by

Σ1D (A,B,C,D) (as the original one).



38 3. The realization problem

Suppose now that Σ1D (A,B,C,D) does not satisfy condition (iv) of Theorem 3.9. From

(3.1) and since the condition (iii) is satisfied we have that




σx = Ax + LDu

w = Cx + Du,
(3.15)

Since Du = w − Cx implies LDu = Lw − LCx, (3.15) is equivalent to




σx = (A − LC)x + Lw

w = Cx + Du,
(3.16)

Let Λ be a mla of D. Then, there exists a matrix X such that V =




X

Λ




is invertible

and V D =




X

Λ




D =




Ik

0



. Let w̄ = Vw =




X

Λ



w be partitioned in the obvious way as

w̄ =




w̄1

w̄2




=




Xw

Λw



. It follows from (3.16) that




σx = (A − LC)x + LV−1w̄

w̄1 = XCx + u

w̄2 = ΛCx,

(3.17)

The second equation of (3.17) shows that w̄1 is a free variable, which may be taken as a new

driving-variable, replacing u. Letting V−1 be suitably partitioned as
[
R Q

]
, this yields




σx = (A − LC)x + LRw̄1 + LQw̄2

w̄2 = ΛCx.
(3.18)

Since Σ1D (A,B,C,D) does not satisfy condition (iv) of Theorem 3.9, the pair (A−LC,ΛC) is

not observable; thus by reducing equations (3.18) to the Kalman observability decomposition

form through a coordinate change in the state-space, and eliminating the nonobservable states

(see Appendix A) we obtain a description




σ x̄ = Āx̄ + B̄1w̄1 + B̄2w̄2

w̄2 = C̄ x̄,
(3.19)
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for the same set of (w̄1, w̄2) trajectories as (3.18), where the size of the state x̄ is smaller than

the one of x. Equations (3.19) can still be written as




σ x̄ = ( Ā + B̄2C̄) x̄ + B̄1ū1

w̄1 = ū1

w̄2 = C̄ x̄,

(3.20)

which, by noting that

w = V−1w̄ =

[
R Q

] 


w̄1

w̄2




= Rw̄1 + Qw̄2 = Rū1 + QC̄x̄

finally yields:



σ x̄ = ¯̄Ax̄ + B̄1ū1

w = ¯̄Cx̄ + D̄ū1,

(3.21)

with ¯̄A = Ā + B̄2C̄, ¯̄C = QC̄ and D̄ = R.

This is a state-space realization for the same code as Σ1D(A,B,C,D), but with smaller

dimension.

If one of the conditions of Theorem 3.9 is not satisfied by the realization Σ1D ( ¯̄A, B̄, ¯̄C, D̄),

then one can perform the relevant steps described above, reducing each time the dimension

of the code realization. In this way a minimal state/driving-variable realization of the initial

code is obtained in a finite number of steps.

It is however worth mentioning the following. As we have just seen, the state-space

system that satisfies all conditions of Theorem 3.9 obtained by this procedure (and that we

once more denoted by Σ1D (A,B,C,D), with dimension m, by resetting the notation) is a

minimal realization of C. Nevertheless it can happen that C(Im − Ad)−1Bd + D is no longer

polynomial and hence is not an encoder of C. In that case, due to the controllability of

the pair (A,B), there exists a matrix K of suitable size such that A − BK has only zero

eigenvalues, and is therefore nilpotent. This implies that the square (m × m) polynomial

matrix M (d) = Im − (A − BK )d is such that

rank M (λ) = m ∀λ ∈ F̄,
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meaning that det M (d) must be a nonzero constant, or equivalently, that M (d) is unimodular.

Therefore, when we apply the feedback u = ū − K x to the system




σx = Ax + Bu

w = Cx + Du,
(3.22)

we obtain



σx = (A − BK )x + Bū

w = (C − DK )x + Dū.
(3.23)

Note that Σ1D (A − BK,B,C − DK,D) is still a minimal realization of the code, as it

satisfies the conditions of Theorem 3.9. Indeed, the matrices B and D remain the same and

hence



B

D




has full column rank, meaning that conditions (i) and (iii) still hold. Since con-

trollability is not spoiled the state feedback, (A− BK,B), is controllable and hence condition

(ii) holds. Finally, taking L and Λ such that B = LD and Λ is a minimal left-annihilator of

D, we have that the pair

(A − BK − L(C − DK ),Λ(C − DK ))

is given by

(A − BK − LC + LDK,ΛC − ΛDK ) = (A − BK − LC + BK,ΛC − 0K )

= (A − LC,ΛC)

which is an observable pair, meaning that the new realization also satisfies condition (iv) of

Theorem 3.9 and is therefore minimal.

Moreover, the polynomial matrix

G(d) = (C − DK )(I − d(A − BK ))−1Bd + D

is polynomial and hence a (minimal) encoder of the code.

Next example illustrates the implementation of the procedure described above.
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Example 3.14. Recalling Example 3.11 one has come to the conclusion that Σ(A,B,C,D)

is not a minimal realization of the convolutional code C. Moreover, all conditions of The-

orem 3.9 are satisfied except condition (iv), i.e. the pair (A − LC,ΛC) is not observable.

The invertible matrix S =




1 0 0

0 0 1

0 1 0




reduces Σ(A,B,C,D) to the Kalman observability de-

composition, i.e., it is such that Σ(A,B,C,D) = Σ(SAS−1,SB,CS−1,D) has the following

structure

A =




−1 1 0

−1 0 0

1 0 0




, B =




1 −1 1

0 −1 0

0 0 0




, C =

[
0 −1 0

]
and D = D,

where the pair







−1 1

−1 0



,

[
0 −1

]

 is observable (cf Theorem A.7 of Appendix A).

Thus, performing the coordinate change x̄ = Sx in the state-space, and eliminating the

non observable states, the equations




σx = Ax + Bu

w = Cx + Du,

become:




σ x̄ = ¯̄Ax̄ + B̄1ū1

w = ¯̄Cx̄ + D̄ū1,

with

¯̄A =




−1 0

−1 0



, B̄1 =




1 −1

0 −1



, ¯̄C =




0 −1

0 −1

0 0




and D̄ =




1 −1

0 −1

0 −1




.
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This is a state-space realization for the same code as Σ(A,B,C,D) but with smaller di-

mension. Moreover it can be checked that all the conditions of Theorem 3.9 are satisfied,

and therefore, Σ̄( ¯̄A, B̄1,
¯̄C, D̄) is a minimal realization of the code C. ^

3.2 The two-dimensional case

When considering the realization problem of 2D convolutional codes, one can choose

among different state-space models for two-dimensional processes [1, 7, 35].

In this study, we consider the Roesser model [35]. Similar to what happens with other

well-known 2D state-space models, such as the Fornasini-Marchesini model [7], this model

generalizes, in the two-dimensional domain, the state-space models for dynamic systems

with evolution over the discrete time set (1D systems). Therefore, a state at a certain point

is updated based on the state and the input values in the two nearest points in its past (the

point immediately below and the point immediately on its left). However, contrary to what

happens in the Fornasini-Marchesini model, in the Roesser model the state is divided into

two sub-states: one which is updated in the horizontal direction and another one which is

updated in the vertical direction, as we shall next see.

A very important difference between the 1D and the 2D cases has to do with the min-

imality of the dimension of a state-space model. Indeed, while in 1D case, minimality is

characterized through properties of the model matrices, in the 2D case conditions on the ma-

trices of a given model only allow, in general, to establish necessary or sufficient conditions

for the minimality of such model [8].
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3.2.1 The Roesser model

Definition 3.15. A Roesser state-space model is a description of a discrete time-invariant

2D system through equations of the form




σ1x1(i, j) = A11x1(i, j) + A12x2(i, j) + B1u(i, j)

σ2x2(i, j) = A21x1(i, j) + A22x2(i, j) + B2u(i, j)

w(i, j) = C1x1(i, j) + C2x2(i, j) + Du(i, j),

(3.24)

where A11, A12, A21, A22, B1, B2, C1, C2 and D are matrices over F, with suitable dimensions,

σ1x1(i, j) = x1(i +1, j) and σ2x2(i, j) = x2(i, j +1), for all (i, j) ∈ Z2, u is the input-variable

and w is the output-variable. The variable x =




x1

x2




is the state-variable, and x1 and x2 are

the horizontal and the vertical state-variables, respectively. The sizes of the vectors x1 and

x2 are respectively denoted by m1 and m2 and the size of x by m = m1 + m2. The system

described by (3.24) will be denoted by Σ2D (A11, A12 A21, A22,B1,B2,C1,C2,D).

Note that the initial state conditions to propagate the state and output values for i, j ≥ 0

are given by x1(0, j) for j = 0,1,2, . . . and x2(i,0) for i = 0,1,2, . . ..

Next we present the solutions of (3.24) for zero initial conditions, i.e., x1(0, j) = 0 and

x2(i,0) = 0 for i, j = 0,1,2, . . . [36]. For that purpose let us consider the state updating

equation,

x(i, j) = A(1,0) x(i − 1, j) + A(0,1) x(i, j − 1) + B(1,0)u(i − 1, j) + B(0,1)u(i, j − 1),

where

A(1,0) =




A11 A12

0 0



, A(0,1) =




0 0

A21 A22



, B(1,0) =




B1

0




and B(0,1) =




0

B2



.

Moreover, consider the following notations

A(i,j) = A(1,0) A(i−1,j) + A(0,1) A(i,j−1), for i, j ≥ 0;

A(i,j) = 0, for i < 0 or j < 0; A(0,0) = Im1+m2; (3.25)

M (i, j) = A(i−1,j) B(1,0) + A(i,j−1) B(0,1), for i, j ≥ 0.
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Then, upon defining the partial order relation

(k,r) ≤ (i, j) ⇔ k ≤ i ∧ r ≤ j,

for zero initial conditions and an input sequence u(·, ·) defined in the positive quadrant of Z2,

the state and the output sequences are given by

x(i, j) =
∑

0<s≤i
0<r≤ j

M (s,r)u(i − s, j − r)

and

w(i, j) =
∑

0<s≤i
0<r≤ j

CM (s,r)u(i − s, j − r) + Du(i, j), (3.26)

where C =

[
C1 C2

]
.

The following notions, defined as in [35] and [21], are fundamental to establish a neces-

sary and sufficient condition for the minimality of a specific class of 2D Roesser models.

Definition 3.16. The 2D state-space model (3.24) is said to be:

1. locally controllable if, upon assuming zero initial conditions for the state, and given an

arbitrary state vector x∗ of Fm1+m2 , there exist integers N,Q > 0, and an input sequence

u(·, ·) such that x(N,Q) = x∗;

2. locally unobservable if there exists a nonzero initial state, x(0,0), such that when the

remaining state initial conditions x1(0, j), x2(i,0) are zero for i > 0 and j > 0 and the

input is zero, i.e., u(·, ·) ≡ 0, then w(·, ·) ≡ 0.

Defining the controllability and observability matrices as

Cm1,m2 =

[
M (1,0) M (2,0) . . . M (m1,0)

M (0,1) M (1,1) · · · M (m1,1)

. . . M (0,m2) M (1,m2) . . . M (m1,m2)
]

(3.27)
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and

Om1,m2 =

[ (
C A(0,0))T (

C A(0,1))T . . .
(
C A(0,m2))T

. . .
(
C A(m1−1,0))T (

C A(m1−1,1))T
· · ·

(
C A(m1−1,m2))T

(
C A(m1,0))T (

C A(m1,1))T . . .
(
C A(m1,m2−1))T

]T
, (3.28)

respectively, we can state the following characterization of controllability and observability

for a 2D Roesser state-space model.

Proposition 3.17. [21, 35] The 2D state-space model (3.24) is:

1. locally controllable if and only if rank Cm1,m2 = m1 + m2;

2. locally observable if and only if rankOm1,m2 = m1 + m2.

The partition of the state in its horizontal and vertical components motivates the partition of

the controllability and observability matrices as follows [35].

Cm1,m2 =




Ch
m1,m2

Cv
m1,m2




and Om1,m2 =

[
Oh

m1,m2
Ov

m1,m2

]
, (3.29)

where

Ch
m1,m2

∈ Rm1×
[(

(m1+1)(m2+1)−1
)

k
]
, Oh

m1,m2
∈ R

[(
(m1+1)(m2+1)−1

)
n
]
×m1 ,

Cv
m1,m2

∈ Rm2×
[(

(m1+1)(m2+1)−1
)

k
]

and Ov
m1,m2

∈ R
[(

(m1+1)(m2+1)−1
)

n
]
×m2

denote the controllability and observability matrices associated with vertical and horizon-

tal components, respectively. The sets X c
h = Im Ch

m1,m2
⊆ Fm

1 , X c
v = Im Cv

m1,m2
⊆ Fm

2 ,

Xu
h = kerOh

m1,m2
⊆ Fm

1 and Xu
v = kerOv

m1,m2
⊆ Fm

2 are called horizontal controllable state-

space, vertical controllable state-space, horizontal unobservable state-space and vertical un-

observable state-space, respectively.

3.2.2 The separable Roesser model

In the sequel we consider a special type of Roesser models known as the separable

Roesser models. In these models the state updating in one of two directions can be done



46 3. The realization problem

separately from the other direction [35]. Thus, the dynamics along the direction with separate

updating coincides with a one-dimensional dynamics.

More concretely, such models are characterized by one of the matrices A12 or A21 in

(3.24) being zero. From now on we shall consider Roesser models with A12 = 0 (the study

for A21 = 0 is similar), i.e., models described through equations of the form:




σ1x1(i, j) = A11x1(i, j) + B1u(i, j)

σ2x2(i, j) = A21x1(i, j) + A22x2(i, j) + B2u(i, j)

w(i, j) = C1x1(i, j) + C2x2(i, j) + Du(i, j),

(3.30)

where the notation is the same as in (3.24). For simplicity we denote equations (3.30) by

Σ2D (A11, A21, A22,B1,B2,C1,C2,D).

As we shall latter see in Theorem 3.26, 2D separable Roesser models are particularly

nice since they admit a necessary and sufficient condition for minimality that can easily be

expressed in terms of the matrices of the system. Such conditions are stated in terms of

special local controllability and observability properties.

In order to study local controllability and observability properties for the separable case

note that, in this case, the following relations hold from (3.25), see [17].

A(i,0) =
{
A(1,0)}i

=




Ai
11 0

0 0




;

A(0,j) =
{
A(0,1)} j

=




0 0

A j−1
22 A21 A j

22




; (3.31)

A(i,j) =




0 0

A j−1
22 A21 Ai

11 0



, for i, j ≥ 1;

and

M (i,0) =




Ai−1
11 B1

0




; M (0, j) =




0

A j−1
22 B2




;

M (i, j) =




0

A j−1
22 A21 Ai−1

11 B1



, for i, j ≥ 1. (3.32)
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Thus, for separable systems we obtain a specific structure for the controllability and observ-

ability matrices as follows

Cm1,m2 =




Pm1 0

0 Pm1,m2



, Om1,m2 =




Lm1,m2

Cm2−1 Am1
11

Qm2+1

0




, (3.33)

where, for i, j ≥ 1,

Pi =

[
B1 A11B1 · · · Ai−1

11 B1

]
∈ Fm1×ki, (3.34)

Pi,j =

[
Bi A22Bi · · · A j−1

22 Bi

]
∈ Fm2× j k (i+1), (3.35)

with Bi =

[
B2 A21Pi

]
∈ Fm2×k (i+1) and

Q j =

[
(C2)T · · ·

(
C2 A j−1

22
)T

]T
∈ Fn j×m2 , (3.36)

Li,j =

[
(C j )T · · ·

(
C j Ai−1

11
)T

]T
∈ Fin( j+1)×m1 , (3.37)

with C j =

[
CT

1 (Q j A21)T
]T
∈ Fn( j+1)×m1 .

Since rank Ch
m1,m2

= rank Pm1 and rank Cv
m1,m2

= rank Pm1,m2 , we will call suggestively

Pm1 and Pm1,m2 by horizontal controllability matrix and vertical controllability matrix, re-

spectively. Similarly, since rank Oh
m1,m2

= rank Lm1,m2 and rank Ov
m1,m2

= rank Qm2 , we will

call Lm1,m2 and Qm2 by horizontal observability matrix and vertical observability matrix,

respectively.

In the separable case, we define separable controllability and separable observability as

follows.

Definition 3.18. A 2D separable Roesser model is said to be:

1. separately locally controllable if X c
h = Fm1 and X c

v = Fm2;

2. separately locally unobservable if Xu
h = {0m1 } and Xu

v = {0m2 }.
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These properties can be characterized in terms of the matrices previously defined by

means of the next proposition.

Proposition 3.19. [21] The 2D state-space model (3.24) is:

1. separately locally controllable if and only if rank Ch
m1,m2

= m1 and rank Cv
m1,m2

= m2.

2. separately locally observable if and only if rankOh
m1,m2

= m1 and rankOv
m1,m2

= m2.

From (3.33) it follows that a separable system is separately locally controllable if and

only if it is locally controllable. The same cannot be concluded for the observability. In fact,

local observability implies separable local observability but the opposite is not true [17].

Example 3.20. Let us consider Σ2D (A11, A21, A22,B1,B2,C1,C2,D), where A11 = A21 =

A22 = D = 0 and B1 = B2 = C1 = C2 = 1 corresponding the following equations:




xh(i + 1, j) = u(i, j)

xv (i, j + 1) = u(i, j)

y(i, j) = xh(i, j) + xv (i, j),

(3.38)

Taking into account the observability matrix of the system, given by

O1,1 =




1 1

0 0

0 0




,

we have that rank O1,1 = 1 , 2 = 1 + 1 = m1 + m2. Thus, by Proposition 3.17 we conclude

that Σ2D is not locally observable.

However, partitioning the observability matrix in it horizontal and vertical components

we have that

rank Oh
1,1 = rank




1

0

0




= 1 and rank Ov
1,1 = rank




1

0

0




= 1.

Consequently, by Proposition 3.19, Σ2D is separately locally observable. ^



3.2 The two-dimensional case 49

3.2.3 Realizations of 2D encoders via separable Roesser models

Definition 3.21. Σ2D (A11, A21, A22,B1,B2,C1,C2,D) is said to be a realization of an encoder

G(d1,d2) ∈ F[d1,d2]n×k if

G(d1,d2) = C̄ Ā(d1,d2)−1B̄(d1,d2) + D,

where

C̄ =

[
C1 C2

]
, Ā(d1,d2) =




Im1 − A11d1 0

−A21d2 Im2 − A22d2




and

B̄(d1,d2) =




B1

0




d1 +




0

B2




d2.

Similarly to what happens in the 1D case, under the light of the behavioral approach, this

is equivalent to say that Σ2D (A11, A21, A22,B1,B2,C1,C2,D) is a realization of an encoder

G(d1,d2) ∈ F[d1,d2]n×k if the behavior

B(u,w) = {(u,w) | ŵ(d1,d2) = G(d1,d2)û(d1,d2)}

coincides with the set

{(u,w) | ∃ x = (x1, x2) such that (u, x,w) satisfies(3.30)}.

In the sequel, this fact is expressed by the equality

Σ
2D (A11, A21, A22,B1,B2,C1,C2,D) = Σ2D (G).

In [34] it was shown (although in a different context) that every 2D encoder G(d1,d2)

can be realized by a 2D separable Roesser model.

Definition 3.22. Σ2D (G) is said to be a minimal realization of G(d1,d2) if the size of the

state x = (x1, x2) is minimal among all the realizations of G(d1,d2). Moreover, given a

polynomial matrix G(d1,d2) we define the Roesser McMillan degree of G(d1,d2), µR(G),

as the minimal dimension of a realization as in (3.30) of G(d1,d2).
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Note that different polynomial encoders of a 2D convolutional code may have different

Roesser McMillan degrees.

The next theorem provides a procedure for obtaining a minimal realization for an arbi-

trary polynomial matrix G(d1,d2) ∈ F[d1,d2]n×k .

Theorem 3.23. [17] Let G(d1,d2) ∈ F[d1,d2]n×k . Write

G(d1,d2) = G2(d2)G1(d1), (3.39)

with

G2(d2) =

[
In | Ind2 | · · · | Ind`2

2

]
N2, (3.40)

where N2 is a full column rank constant matrix and `2 is the highest exponent of d2 appearing

in G(d1,d2) and

G1(d1) = N1




Ik

Ik d1
...

Ik d`1
1




, (3.41)

where N1 is a full row rank constant matrix and `1 is the highest exponent of d1 appearing

in G(d1,d2).

Let Σ1D (A11,B1,C̄1, D̄1) and Σ1D (A22, B̄2,C2, D̄2) be 1D minimal realizations of G1(d1)

and G2(d2) of dimensions m1 and m2, respectively. Then Σ2D (A11, A21, A22,B1,B2,C1,C2,D),

where A21 = B̄2C̄1, B2 = B̄2D̄1, C1 = D̄2C̄1 and D = D̄2D̄1 is a 2D minimal realization of

G(d1,d2) of dimension m = m1 + m2.

Example 3.24. Consider the right-factor prime encoder
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G(d1,d2) =




1 + d2
1 + d1d2 + d2d2

1

1 + 2d1 + 3d2
1 + 2d2

1d2 + d1d2 + d2




=




1 0 d2 0

0 1 0 d2







1 0 1

1 2 3

0 1 1

1 1 2







1

d1

d2
1




.

Note that




1 0 1

1 2 3

0 1 1

1 1 2




=




1 0

1 2

0 1

1 1







1 0 1

0 1 1



, with N2 =




1 0

1 2

0 1

1 1




full column rank and

N1 =




1 0 1

0 1 1




full row rank.

Let us now consider G(d1,d2) factorized as G(d1,d2) = G2(d2)G1(d1), with

G2(d2) =




1 0 d2 0

0 1 0 d2




N2 and G1(d1) = N1




1

d1

d2
1




. Then, Σ1D (A22, B̄2,C2, D̄2), where

A22 =




0 0

0 0



, B̄2 =




1 0

0 1



, C2 =




0 1

1 1




and D̄2 =




1 0

1 2




and Σ1D (A11,B1,C̄1, D̄1), where

A11 =




0 0

1 0



, B1 =




1

0



, C̄1 =




0 1

1 1




and D̄1 =




1

0




are minimal 1D realizations of

G2(d2) =




1 d2

1 + d2 2 + d2




and G1(d1) =




1 + d2
1

d1 + d2
1



,
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respectively, both with dimension 2. Thus Σ2D (A11, A21, A22,B1,B2,C1,C2,D), where

A11 =




0 0

1 0



, A21 =




0 1

1 1



, A22 =




0 0

0 0



, B1 =




1

0



, B2 =




1

0




C1 =




0 1

2 3



, C2 =




0 1

1 1




and D =




1

1



,

obtained by applying Theorem 3.23, is a minimal realization of G(d1,d2), of dimension

4. ^

Remark 3.25. Note that the factorization presented in (3.39), (3.40) and (3.41) in the above

theorem, can be easily determined by writing

G(d1,d2) =

[
In Ind2 · · · Ind`2

2

]
N




Ik

Ik d1
...

Ik d`1
1




, (3.42)

where N is a constant matrix. If N has rank p, there exists a full column rank constant

matrix N2 with p columns, and a full row rank constant matrix N1 with p rows such that

N = N2N1. Note that the decomposition (3.42) is not unique. Nevertheless, there exists a

relation between all the possible factorizations. For instance, suppose now that G(d1,d2)

can also be factorized in another way, let is say

G(d1,d2) = Ḡ2(d2)Ḡ1(d1), (3.43)

with

Ḡ2(d2) =

[
In Ind2 · · · Ind`2

1

]
N̄2, (3.44)

where N̄2 is a full column rank constant matrix, with rank r ≤ p, and

Ḡ1(d1) = N̄1




Ik

Ik d1
...

Ik d`1
2




, (3.45)
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where N̄1 is a full row rank constant matrix, with rank r. Then,

N2N1 = N̄2N̄1. (3.46)

Since N2 and N1 are full column and full row rank, respectively, they admit left and right

inverses, say M2 and M1, respectively. Thus, (3.46) yields

N1 = T N̄1, (3.47)

where T = M2N̄2 is an invertible matrix of adequate size. Replacing (3.47) in (3.46), we get

N2 = T−1N̄2. (3.48)

From (3.47) and (3.48) we can conclude that there exists a unique factorization of G(d1,d2)

of the form (3.39) up to a constant invertible matrix T. Consequently, if Σ1D (A2,B2,C2,D2)

and Σ1D (A1,B1,C1,D1) are realizations of G2(d2) and G1(d1), respectively, then Ḡ2(d2)

and Ḡ1(d1) are realized by Σ̄1D (A2,B2T,C2,D2T ) and Σ̄1D (A1,B1,T−1C1,T−1D1), respec-

tively.

Concerning the separable Roesser model, in [17], a necessary and sufficient condition for

minimality was presented, as stated in the next result using the language of codes.

Theorem 3.26. [17] Let G(d1,d2) ∈ F[d1,d2]n×k be an encoder of a convolutional code C.

Then Σ2D (A11, A21, A22,B1,B2,C1,C2,D) is a minimal realization of the encoder G(d1,d2)

if and only if is separately locally controllable and separately locally observable.

Remark 3.27. Note that a polynomial matrix G(d1,d2) ∈ F[d1,d2]n×k can also be factor-

ized as Ḡ1(d1)Ḡ2(d2), for some polynomial matrices Ḡ2(d2) and Ḡ1(d1) of suitable sizes.

However, here we have considered the factorization G(d1,d2) = G2(d2)G1(d1), since this

is the one that corresponds to the form that we have considered for the separable Roesser

model (with A12 = 0).
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3.2.4 Realizations of 2D convolutional codes via separable Roesser mod-

els

Definition 3.28. Σ2D (A11, A21, A22,B1,B2,C1,C2,D) is said to be a (separable Roesser model)

realization of the 2D convolutional code C if the corresponding w–behavior

Bw = {w | Z2 → Fn : ∃ x1, x2,u such that (u, x1, x2,w) satisfies (3.30)}

coincides with C, that is, Bw = C.

This is denoted by Σ2D (A11, A21, A22,B1,B2,C1,C2,D) = Σ2D (C).

From now on separable Roesser model realizations will be simply referred as "realiza-

tions".

Definition 3.29. Σ2D (C) is said to be a minimal realization of the 2D code C if the size

of (x1, x2,u) is minimal among all the realizations of C. Moreover, we define the Roesser

McMillan degree of C, µ∗R(C), as the minimum of the Roesser McMillan degrees of all

polynomial encoders of C. The polynomial encoders G(d1,d2) ∈ F[d1,d2]n×k with Roesser

McMillan degree µR(G) such that

µ∗R(C) = µR(G) + k

are called Roesser minimal (R-minimal) encoders of C.

Contrary to what happens in the 1D case, it seems hard to obtain necessary and sufficient

conditions for the minimality of realizations of a 2D convolutional code.

As shown in [34], every 2D convolutional code can be realized by means of a model of

the type (3.30) taking advantage of the factorization given in Theorem 3.23. However, it

still seems hard to obtain necessary and sufficient conditions for the minimality of the 2D

realizations.

We next present the part of the result obtained in [34] concerning the sufficient conditions

for minimality of separable Roesser models realizations of 2D codes, and redo its proof with

more detail since it was originally presented only in a very succinct way.
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Proposition 3.30. Let C be a 2D convolutional code and let

Σ
2D (A11, A21, A22,B1,B2,C1,C2,D) = Σ2D (C)

be a realization of C. Denote

Σ
1D
1 = Σ1D


A11,B1,




A21

C1



,




B2

D







and

Σ
1D
2 = Σ1D

(
A22,

[
A21 B2

]
,C2,

[
C1 D

])
and suppose that Σ1D

1 and Σ1D
2 are both minimal realizations of the corresponding output

behaviors. Then Σ2D (C) is a minimal realization for C.

Proof. We first prove that Σ1D
2 is a (minimal) realization of the 1D code

C |Li= {w̄ | ∃ w ∈ C such that w |Li= w̄}

, where Li = {(i, j), j ∈ Z}, for i ∈ Z. For this purpose we have to show that the output

behavior of Σ1D
2 coincides with C |Li . We only prove the result for i = 0. Due to shift-

invariance, the result also holds for other i’s.

i) Firstly suppose that (w̄, x̄1, x̄2, ū) satisfy the following equations:




σ x̄2 = A22 x̄2 +

[
A21 B2

] 


x̄1

ū




w̄ = C2 x̄2 +

[
C1 D

] 


x̄1

ū




,

(3.49)

In order to prove that w̄ ∈ C|L0 we shall construct a 2D trajectory, (w, x2, (x1,u)),

which satisfies the equations of Σ2D (C) and such that w(0, ·) = w̄(·).

Define x̄ (1)
1 = A11 x̄1 + B1ū. Take an arbitrary ū(1) and define x̄ (1)

2 such that

σ x̄ (1)
2 = A22 x̄ (1)

2 +

[
A21 B2

] 


x̄ (1)
1

ū(1)




and w̄(1) = C2 x̄ (1)
2 +

[
C1 D

] 


x̄ (1)
1

ū(1)



.
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Define also

w(0, ·) = w̄, x2(0, ·) = x̄2, x1(0, ·) = x̄1, u(0, ·) = ū

and

w(1, ·) = w̄(1), x2(1, ·) = x̄ (1)
2 , x1(1, ·) = x̄ (1)

1 , u(1, ·) = ū(1) .

Consider now x̄ (−1)
1 and ū(−1) such that x̄1 = A11 x̄ (−1)

1 + B1ū(−1). Note that, since Σ1D
1

is a minimal 1D code realization,
[
A11 B1

]
has full row rank (because (A11,B1) is

controllable) and therefore there exist such x̄ (−1)
1 and ū(−1).

Define x̄ (−1)
2 such that




σ x̄ (−1)
2 = A22 x̄ (−1)

2 +

[
A21 B2

] 


x̄ (−1)
1

ū(−1)




w̄(−1) = C2 x̄ (−1)
2 +

[
C1 D

] 


x̄ (−1)
1

ū(−1)




,

and

w(−1, ·) = w̄(−1), x2(−1, ·) = x̄ (−1)
2 , x1(−1, ·) = x̄ (−1)

1 , u(−1, ·) = ū(−1)

Continuing in this way we define a trajectory (w, x1, x2,u) which satisfies the equations

of Σ2D (C) and such that w(0, ·) = w̄(·). Since, by assumption, Σ2D (C) is a realization

of C, w ∈ C. Moreover, since w(0, ·) = w̄(·), this implies that w̄ ∈ C|L0 . Consequently

the output behavior of Σ1D
2 is contained in C|L0 .

ii) In order to prove that C|L0 is contained in the output behavior of Σ1D
2 , take w̄ ∈ C|L0 .

Then there exists w ∈ C such that w̄(·) = w(0, ·). Since Σ2D (C) is a (separable)

realization of C there exists x2, x1 and u such that




σ1x1 = A11x1 + B1u

σ2x2 = A21x1 + A22x2 + B2u

w = C1x1 + C2x2 + Du.
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Consequently,




x2(0, j + 1) = A21x1(0, j) + A22x2(0, j) + B2u(0, j)

w(0, j) = C1x1(0, j) + C2x2(0, j) + Du(0, j),

where w(0, j) = w̄( j).

Therefore, defining x̄2(·) = x2(0, ·), x̄1(·) = x1(0, ·) and ū(·) = u(0, ·), we obtain




x̄2( j + 1) = A21 x̄1( j) + A22 x̄2( j) + B2ū( j)

w̄( j) = C1 x̄1( j) + C2 x̄2( j) + Dū( j).

Hence, C|L0 is contained in the output behavior of Σ1D
2 .

From i) and ii) we conclude that Σ1D
2 is a (minimal) realization of the 1D code C|L0 .

Now, this means that the sizes of the variables x̄1, x̄2 and ū cannot be decreased in Σ1D
2 ,

which implies that the size of x1, x2 and u cannot be decreased in Σ2D (C) if one wishes

that this is a realization of C. Consequently, the assumptions of the proposition imply that

Σ2D (C) is a minimal (separable Roesser model) realization of the code C. �

The result of Proposition 3.30 will be useful for the minimal realization of composition

codes, to be considered in Chapter 5 of this thesis.





Chapter 4

Minimal realizations of 2D convolutional

codes

As shown in section 3.1.2.1, it is possible to obtain a minimal realization of a 1D code

C by eliminating superfluous variables from a minimal realization of an encoder G(d) of

C. However, an alternative approach has been considered in [9, 11, 12] that consists in

first selecting a minimal encoder G∗(d) of C and then performing a minimal realization

of that encoder G∗(d). This presupposes a characterization of minimal encoders. Such

characterization has been given in [9, 11, 12]. In particular, it turns out that 1D canonical

(i.e., right-prime and reduced) encoders are among the minimal ones.

In this chapter we make an attempt to obtain similar results regarding the characterization

of minimal 2D encoders having in mind the construction of minimal code realizations.

We start by considering the class of 2D convolutional codes of rate 1/n. Then some con-

siderations about the difficulties on the generalization of the obtained results to convolutional

codes of rate k/n, for k > 1 are presented.
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4.1 Minimal 2D realizations of 2D convolutional codes of

rate 1/n

In this section we restrict our study to two-dimensional convolutional codes with rate 1/n

and investigate the problem of obtaining minimal realizations of such codes by separable

Roesser models. For this purpose we first characterize the minimal encoders with respect to

this type of model (i.e., the R-minimal encoders).

The 2D convolutional codes with rate 1/n are the ones which admit encoders of size

n × 1. In the 1D case, the minimal encoders of a convolutional code of rate 1/n are the right-

prime encoders [9]. The next result proves that this also holds in the 2D case for R-minimal

encoders.

Theorem 4.1. Let C be a 2D convolutional code of rate 1/n. Then the R-minimal encoders

of C are the right-factor prime encoders of C.

Proof. Let C be a 2D convolutional code of rate 1
n , i.e., that admits encoders of size n×1. Let

us consider two equivalent polynomial encoders of C, G(d1,d2) and G̃(d1,d2) (of size n×1).

According to the properties of equivalent encoders, observe that if G(d1,d2) and G̃(d1,d2)

are both right-factor prime encoders, then they differ by a nonzero constant and thus minimal

2D realizations as in (3.30) of G(d1,d2) and G̃(d1,d2) have the same dimension.

Let us consider now that Ḡ(d1,d2) is an equivalent encoder of G(d1,d2) such that

Ḡ(d1,d2) = G(d1,d2)p(d1,d2), (4.1)

for some polynomial p(d1,d2) ∈ F[d1,d2] and let us see that the Roesser McMillan degree

of Ḡ(d1,d2) is equal to or greater than the Roesser McMillan degree of G(d1,d2), i.e.,

µR(Ḡ) ≥ µR(G).

The polynomial p(d1,d2) can be regarded as a polynomial in d1 with coefficients over

F[d2], i.e., for some ν1 ∈ N

p(d1,d2) = p0(d2) + p1(d2)d1 + · · · + pν1 (d2)dν1
1 , (4.2)
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where pi (d2) ∈ F[d2], for i = 0, · · · , ν1, with pν1 (d2) , 0.

Let G(d1,d2) be factorized as

G(d1,d2) = G2(d2)G1(d1),

with

G2(d2) =

[
In Ind2 · · · Ind`2

2

]
N,

where N is a constant matrix and

G1(d1) =

[
1 · · · d`1

1

]T
,

for some `1, `2 ∈ N as in Theorem 3.23. Let us consider two cases:

Case 1 N is full column rank

Write G2(d2) =

[
C0(d2) C1(d2) · · · C`1 (d2)

]
, where Ci (d2) ∈ F[d2]n are the columns

of G2(d2), for i = 0, . . . , `1. Then

G(d1,d2)p(d1,d2) =

[
C0(d2) C1(d2) · · · C`1 (d2)

]



1
...

d`1
1




p(d1,d2)

=

[
C0(d2) C1(d2) · · · C`1 (d2)

]
P(d2)




1

d1
...

d`1+ν1
1




,

where

P(d2) =




p0(d2) p1(d2) pν1 (d2) 0

p0(d2) p1(d2) pν1 (d2)
. . .

. . .
. . .

0 p0(d2) p1(d2) pν1 (d2)



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has dimension (`1 + 1) × (`1 + ν1 + 1). Therefore Ḡ(d1,d2) can be factorized as follows

G(d1,d2)p(d1,d2) = Ḡ2(d2)Ḡ1(d1),

where

Ḡ2(d2) =

[
C0(d2) · · · C`1 (d2)

]
P(d2)

and

Ḡ1(d1) =

[
1 d1 · · · d`1+ν1

1

]T
,

Let us see now that there exists a minor of Ḡ2(d2) with degree equal to or greater than

int deg



G2(d2)

I`1+1



.

Consider i1 < i2 < · · · < is and j1 < j2 < · · · < js nonnegative integers. We say that

(i1, i2, · · · , is) < ( j1, j2, · · · , js) if there exists r ∈ {1, . . . , s} such that ir < jr and iα = jα, for

α = 1, . . . ,r − 1. Let r1 < r2 < · · · < rs and t1 < t2 < · · · < ts, for some s ≤ `1 + 1, such that

the submatrix of G2(d2) constituted by the rows r1,r2, . . . ,rs and the columns t1, t2, . . . , ts

has determinant of degree int deg



G2(d2)

I`1+1




and any other minor constituted by the same

rows an by columns t̃1, t̃2, . . . , t̃s with (t̃1, t̃2, . . . , t̃s) < (t1, t2, . . . , ts), has lower degree than

the previous one. Moreover, let j∗ be such that

deg p j∗ (d2) = max{deg p j (d2) | j = 0, . . . , ν1}

and deg p j (d2) < deg p j∗ (d2), for j < j∗.

Consider now the matrix M (d2) constituted by the rows r1,r2, . . . ,rs and by the columns

t1 + j∗, t2 + j∗, . . . , ts + j∗ of Ḡ2(d2). Since the i-th column of Ḡ2(d2) is equal to∑
{ f , g∈N| f ≤`1, g≤ν1, f +g=i−1}

C f (d2)pg (d2),

for i = 1, . . . , `1 + ν1 + 1, we have that det M (d2) can be written as a sum of minors of the

form
s∏

i=1

pyi (d2) det
[
C̃t1+ j∗−1−y1 (d2) C̃t2+ j∗−1−y2 (d2) · · · C̃ts+ j∗−1−ys (d2)

]
, (4.3)
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where yi ∈ {0, . . . , ν1} and C̃ti+ j∗−1−yi (d2) is the submatrix of Cti+ j∗−1−yi (d2) constituted by

the rows r1,r2, . . . ,rs, if 0 ≤ ti + j∗ − 1 − yi ≤ `1, and C̃ti+ j∗−1−yi (d2) = 0 otherwise.

Note that, for i ∈ {1, . . . , s}, if 0 ≤ ti + j∗ − 1 − yi ≤ `1, then

det
[
C̃t1+ j∗−1−y1 (d2) C̃t2+ j∗−1−y2 (d2) · · · C̃ts+ j∗−1−ys (d2)

]

can be a minor (or the symmetric of a minor) of G2(d2), or zero, if it has two identical

columns. Moreover,

ps
j∗ (d2) det

[
C̃t1−1(d2) C̃t2−1(d2) · · · C̃ts−1(d2)

]
(4.4)

is a minors in (4.3) and since deg ps
j∗ (d2) ≥ deg py1 (d2)py2 (d2) · · · pys (d2) for any yi ∈

{0, . . . , ν1} and the degree of

det
[
C̃t1−1(d2) C̃t2−1(d2) · · · C̃ts−1(d2)

]

is equal to int deg



G2(d2)

I`1+1



, then (4.4) has maximum degree among all minors of the form

(4.3). We show now that (4.4) has greater degree than the other minors of the form (4.3). In

order to do so, we divide the minors (4.3) in two different classes:

1) First we consider the minors (4.3) which are such that there exists i ∈ {1, . . . , s} such

that yi < j∗. In this case, deg pyi (d2) < deg p j∗ (d2), and therefore the degree of (4.3)

is smaller than the degree of (4.4).

2) Second we consider the minors (4.3) which are such that yi ≥ j∗ for all i ∈ {1, . . . , s}

and there exists i∗ ∈ {1, . . . , s} such that yi∗ > j∗ and yi = j∗, for i < i∗. In this case,

ti + j∗ − 1 − yi = ti − 1, for i < i∗ and ti∗ + j∗ − 1 − yi∗ < ti∗ − 1 which means that

(t1 + j∗ − 1 − y1, . . . , ts + j∗ − 1 − ys) < (t1 − 1, . . . , ts − 1)

and therefore

deg det
[
Ct1+ j∗−1−y1 (d2) . . . Cts+ j∗−1−ys (d2)

]
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is smaller then

deg det
[
Ct1−1(d2) · · · Cts−1(d2)

]

and consequently (4.3) has degree smaller than (4.4). Thus

deg det M (d2) ≥ int deg



G2(d2)

I`1+1



.

To see that µR(Ḡ) ≥ µR(G) let us factorize

G(d1,d2)p(d1,d2) = Ĝ2(d2)Ĝ1(d1)

as in Theorem 3.23 in such a way that M (d2) is a submatrix of Ĝ2(d2). Write

Ḡ2(d2) =

[
In Ind2 · · · Ind`2+ν2

2

]
N̄ ,

where N̄ is a constant matrix.

Note that since the columns t1 + j∗, t2 + j∗, . . . , ts + j∗ of Ḡ2(d2) are linearly independent

over F[d1,d2], then also the columns t1 + j∗, t2 + j∗, . . . , ts + j∗ of N̄ are linearly independent

over F, which means that there exists a full column rank constant matrix N̂2 which has the

t1 + j∗, t2 + j∗, . . . , ts + j∗ columns of N̄ as a submatrix and a full row rank constant matrix

N̂1 such that N̄ = N̂2N̂1. Thus

G(d1,d2)p(d1,d2) = Ĝ2(d2)Ĝ1(d1),

where

Ĝ2(d2) =

[
In Ind2 · · · Ind`2+ν2

2

]
N̂2

and

Ĝ1(d1) = N̂1

[
1 d1 · · · d`1+ν1

1

]T

are such that
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µR(Ḡ) = int deg



Ĝ2(d2)

I`1+ν1+1




+ int deg(Ĝ1(d1))

and M (d2) is a submatrix of Ĝ2(d2). Thus, since det M (d2) is a minor of Ĝ2(d2) and

int deg(Ĝ1(d1)) = int(deg G1(d1)) + ν1,

we have that

µR(Ḡ) ≥ int deg



G2(d2)

I`1+1




+ int deg(G1(d1)) = µR(G).

Case 2 N is not full column rank.

Then there exists an upper triangular matrix T with 1’s in the diagonal such that N = Ñ2T ,

where Ñ2 is obtained from N by substituting a column i by zero if it is linear combination

of the columns 1, . . . , i − 1. Let i1 < i2 < · · · < ip be the nonzero columns of Ñ2, where

p = rank Ñ2. Then N = N2N1 where N2 is the full column rank constituted by the columns

i1, i2, . . . , ip of Ñ2 and N1 is the full row rank matrix constituted by the rows i1, i2, . . . , ip of

T . Thus G(d1,d2) = G2(d2)G1(d1) where

G2(d2) =

[
In Ind2 · · · Ind`2

2

]
N2

and

G1(d1) =




di1−1
1

(
1 + a1

1d1 + a1
2d2

1 + · · · + a1
`1−(i1−1)d

`1−(i1−1)
1

)
di2−1

1

(
1 + a2

1d1 + a2
2d2

1 + · · · + a2
`1−(i2−1)d

`1−(i2−1)
1

)
...

dip−1
1

(
1 + ap

1 d1 + ap
2 d2

1 + · · · + a1
`1−(ip−1)d

`1−(ip−1)
1

)




,

for some at
j ∈ F, for t = 1, . . . ,p, j = 1, . . . , `1 − (it − 1). Then

G(d1,d2)p(d1,d2) = Ḡ2(d2)Ḡ1(d1),

where Ḡ2(d2) = G2(d2)P(d2), with P(d2) a p × (`1 + ν1 + 1) matrix such that the j-th row

is given by [
01× (i j−1) p j

0(d2) p j
1(d2) · · · p j

`1+ν1−(i j−1) (d2)
]
,
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where p j
r (d2) = pr (d2) +

∑r
s=1 a j

s pr−s (d2), considering pr (d2) = 0 if r > ν1, a j
s = 0 if s >

`1− (i j −1) and pr−s (d2) = 0 if r− s > ν1, for j = 1, . . . ,p; and Ḡ1(d1) =

[
1 · · · d`1+ν1

1

]T
.

Similarly to Case 1 there also exits a minor of Ḡ2(d2) with degree greater or equal than

int deg



G2(d2)

Ip



. Moreover, in this case, the matrix M (d2) to be considered is constituted

by the rows r1, . . . ,rs and the columns it1 + j∗, . . . , its + j∗ of Ḡ2(d2).

Note that if j∗ is such that

deg p j∗ (d2) = max{deg pi (d2) | i = 0, . . . , ν1}

and deg pi (d2) < deg p j∗ (d2), for i < j∗ then deg p j
j∗ (d2) = max{deg p j

i (d2) | i = 0, . . . , ν1}

and deg p j
i (d2) < deg p j

j∗ (d2), for i < j∗.

Applying a similar reasoning as in Case 1, we conclude that also in this case µR(Ḡ) ≥

µR(G). �

The following corollary follows immediately from the proof of Theorem 4.1.

Corollary 4.2. Let G(d1,d2) ∈ F[d1,d2]n×1 be an encoder of a 2D convolutional code with

a minimal realization of dimension m, and p(d1,d2) ∈ F[d1,d2] such that, for some r1 ∈ N,

p(d1,d2) = p0(d2) + p1(d2)d1 + p2(d2)d2
1 + · · · + pr1 (d2)dr1

1 ,

with pi (d2) ∈ F[d2], i = 0, . . . ,r1 and pr1 (d2) , 0. Define r2 = max0≤i≤r1 deg pi (d2). Then

the minimal dimension of the realization of Ḡ(d1,d2) = G(d1,d2)p(d1,d2) is equal to or

greater than m + r1 + r2. Moreover, consider G(d1,d2) = G2(d2)G1(d1) a factorization

of G(d1,d2) as in Theorem 3.23. If G2(d2) is row reduced, then a minimal realization of

Ḡ(d1,d2) has dimension m + nr2 + r1.

Example 4.3. Let

G(d1,d2) =




1 + d2
1 + d1d2 + d2d2

1

1 + 2d1 + 3d2
1 + 1d2

1d2 + d1d2 + d2




be the encoder presented in Example 3.24 which minimal realizations have dimension 4 and

consider the equivalent encoder Ḡ(d1,d2) = G(d1,d2)(1+d2
1 +d1d2). Since G2(d2) obtained
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in Example 3.24 is row reduced, by Corollary 4.2 we conclude that

µR(Ḡ) = 8 = 4 + nr2 + r1,

where r2 = 1 and r1 = 2. ^

4.2 On minimal realizations of 2D convolutional codes of

rate k/n , k > 1

Generalizing the result presented in the previous section for 2D convolutional codes of

rate k/n, for k > 1, appears to be a very difficult problem.

It is not possible to apply a similar reasoning as considered in the previous section to the

case k > 1. In fact, as happens in the 1D case, and contrary to what happens in the case

k = 1, post-multiplication of an encoder G(d1,d2) by a nonsingular matrix P(d1,d2) can

decrease the McMillan degree as next example shows.

Example 4.4. Let us consider the following right-factor prime 2D encoder

G(d1,d2) =




1 + d1 − d4
1 + d2 + d1d2 − d2d4

1 −1 − d4
1 − d2 − d2d4

1

d1 + d3
1 − d4

1 + d1d2 + d2d3
1 − d2d4

1 −1 − d3
1 + d4

1 − d2 − d2d3
1 + d2d4

1

d1 + d3
1 −1 − d1 − d3

1




.

Rewriting G(d1,d2) = G2(d2)G1(d1) as in Theorem 3.23 , with

G2(d2) =




1 + d2 0 0

0 1 + d2 0

0 0 1




and

G1(d1) =




1 + d1 − d4
1 −1 + d4

1

d1 + d3
1 − d4

1 −1 − d3
1 + d4

1

d1 + d3
1 −1 − d1 − d3

1



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it is easy to check that the McMillan degrees of G2(d2) and of G1(d1) are 2 and 4, respec-

tively.

Moreover, post-multiplying G(d1,d2) by a nonsingular matrix P(d1) =




d3
1 + 1 −d1

d3
1 −d1




we obtain an equivalent encoder of G(d1,d2) given by

Ḡ(d1,d2) = G(d1,d2)P(d1)

=




1 + d1 + d2 + d1d2 −d2
1 − d2

1d2

d1 + d1d2 d1 − d2
1 − d2

1d2 + d1d2

d1 d1




,

which is not right-factor prime. Rewriting Ḡ(d1,d2) = Ḡ2(d2)Ḡ1(d1) as in Theorem 3.23,

with

Ḡ2(d2) = G2(d2) and Ḡ1(d1) =




d1 + 1 −d2
1

d1 −d2
1 + d1

d1 d1




it is easy to check that the McMillan degree of Ḡ1(d1) is 3. Therefore

µR(Ḡ) = µ(Ḡ2) + µ(Ḡ1) < µ(G2) + µ(G1) = µR(G).

^

The previous example also allows to conclude that extracting a factor (P) to a non right-

factor prime encoder (Ḡ), in order to make it a right-factor prime one (G), does not neces-

sarily decrease the R-McMillan degree.

However in some cases, given an encoder of a 2D convolutional code C it is possible to

obtain an equivalent encoder of smaller McMillan degree. The next result is a first step in

that direction.

Lemma 4.5. Let G(d1,d2) ∈ F[d1,d2]n×k be a polynomial encoder of a convolutional code

of rate k/n, with R-McMillan degree µR(G). Let also G(d1,d2) = G2(d2)G1(d1) be a

factorization of G(d1,d2) as in Theorem 3.23. Consider an equivalent encoder of G(d1,d2),

Ḡ(d1,d2), such that

Ḡ(d1,d2) = G2(d2)G1(d1)P(d1), (4.5)
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where P(d1) is an arbitrary nonsingular polynomial matrix only in the indeterminate d1, i.e.,

P(d1) = P0 + P1d1 + · · · + Pδdδ1 ∈ F[d1]k×k , for some δ ∈ N and Pi ∈ F
k×k , i = 0,1, . . . , δ.

Then the Roesser McMillan degree of Ḡ(d1,d2) is given by µR(Ḡ) = µ(G2) + µ(G1P).

Proof. Let G(d1,d2) = G2(d2)G1(d1) ∈ F[d1,d2]n×k be a polynomial matrix factorized as

in (3.39) and P(d1) a nonsingular polynomial matrix such that P(d1) = P0 + P1d1 + · · · +

Pδdδ1 ∈ F[d1]k×k for some δ ∈ N and Pi ∈ F
k×k , i = 0,1, . . . , δ. Consider now the equivalent

encoder Ḡ(d1,d2) = G(d1,d2)P(d1). Note that Ḡ(d1,d2) can be rewritten as follows,

Ḡ(d1,d2) = G(d1,d2)P(d1)

= G2(d2)G1(d1)P(d1)

= G2(d2)N1




Ik

Ik d1
...

Ik d`1
1




P(d1)

= G2(d2)N1




P(d1)

P(d1)d1
...

P(d1)d`1
1




= G2(d2)N1




P0 + P1d1 + · · · + Pδdδ1
P0d1 + P1d2

1 + · · · + Pδdδ+1
1

...

P0d`1
1 + P1d`1+1

1 + · · · + Pδd`1+δ
1




= G2(d2)N1P




Ik

Ik d1
...

Ik d`1+δ
1




,
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where

P =




P0 · · · Pδ 0
. . .

. . .

0 P0 · · · Pδ




,

and G1(d1) as in (3.41).

Thus

Ḡ(d1,d2) = G2(d2)Ḡ1(d1), (4.6)

with G2(d2) as in (3.40) and

Ḡ1(d1) = G1(d1)P(d1) = N1P




Ik

Ik d1
...

Ik d`1+δ
1




. (4.7)

In order to prove that µR(Ḡ) = µ(G2) + µ(Ḡ1), we have to prove that the decomposition

(4.6) is as in Theorem 3.23. For that purpose it is enough to prove that N1P is a full row

rank constant matrix. To this end, let us now consider the following cases:

(i) P(d1) is unimodular

If P(d1) = P0 + P1d1 + · · ·+ Pδdδ1 is unimodular then P0 is a k × k invertible constant

matrix which implies immediately that P has full row rank and consequently, as N1

has also full row rank, N1P has full row rank, as we wish to prove.

(ii) P(d1) is not unimodular

If P(d1) is but not unimodular but still invertible, then there exists a k × k rational

matrix Q(d1) such that

P(d1)Q(d1) = Ik , (4.8)

with Q(d1) =
S(d1)
m(d1) , where S(d1) = S0 + S1d1 + · · · + Sζdζ1 , for some ζ ∈ N and

Si ∈ F
k×k , for i ∈ {0, . . . , ζ }, and m(d1) = mt dt

1 + mt+1dt+1
1 + · · · + mt+r dt+r

1 , with

mt , 0, for some t,r ∈ N and mi ∈ F, i = t, . . . t + r . Consider, without loss of

generality, δ = ζ .
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Therefore,

P(d1)S(d1) = Ik m(d1), (4.9)

Hence, we conclude that it is always possible to find a polynomial matrix S(d1), such

that post-multiplying P(d1) by S(d1) yields a polynomial matrix which has the first

nonzero coefficient matrix invertible, i.e., the product




P0 · · · Pδ 0
. . .

. . .

0 P0 · · · Pδ







Sδ 0
...

. . .

S0 Sδ
. . .

...

0 S0




=




Ik ∗

Ik
. . .

Ik

0 Ik




This implies that P has full row rank. Consequently, as N1 has full row rank, N1P has

also full row rank.

Thus the McMillan degree of Ḡ(d1,d2) is given by µ(G2) + µ(Ḡ1), as we wish to prove. �

Now, if G1(d1) in (4.5) is already a 1D minimal encoder, it is not possible to reduce

its McMillan degree any further and we conclude that µ(G1) ≤ µ(G1P), for any P(d1) ∈

F[d1]k×k .

In case G(d1,d2) = G2(d2)G1(d1) is such that G1(d1) is not a minimal encoder, if there

exists P(d1) ∈ F[d]k×k such that Ḡ1(d1) = G1(d1)P(d1) is a canonical encoder equivalent

to G1(d1), it follows that

Ḡ(d1,d2) = G(d1,d2)P(d1) = G2(d2)Ḡ1(d1)

is an equivalent encoder to G(d1,d2) such that

µR(Ḡ) = µ(G2) + µ(Ḡ1) = µ(G2) + µ(G1P1) < µ(G2) + µ(G1) = µR(G).

These considerations allow us to conclude that in some cases we can obtain encoders

with lower R-McMillan degree than a given encoder G(d1,d2), by post-multiplying it by a

suitable 1D polynomial matrix P(d1) such that

µ(G1P) < µ(G1), (4.10)
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where G1(d1) is the right-factor in the decomposition of G(d1,d2) = G2(d2)G1(d1), given

by Theorem 3.23. The inequality (4.10) is strict unless G1(d1) is itself already a minimal

encoder of the corresponding code.

Example 4.6. Let us consider an encoder G(d1,d2) of a 2D convolutional code C given by

G(d1,d2) =




d2d1(d1 + 1) −d2(1 + d1 + d2
1)

d2d1 − d2d3
1 + d2d2

1 + d1 + d2
1 −1 + d2d3

1 − d2d2
1 − d2 − d1 − d2

1

1 + d1 + d2d1 − d3
1 − d2d3

1 + d2d2
1 −1 − d2 − d3

1 + d2d3
1 − d2d2

1




such that it admits a factorization as in Theorem 3.23 given by G(d1,d2) = G2(d2)G1(d1)

where

G2(d2) =




0 0 d2

0 d2 1

1 d2 0




and

G1(d1) =




1 + d1 − d3
1 −1 + d3

1

d1 + d2
1 − d3

1 −1 − d2
1 + d3

1

d1 + d2
1 −1 − d1 − d2

1




such that µ(G1) = 3.

Consider now an equivalent encoder of G(d1,d2) given by

Ḡ(d1,d2) = G(d1,d2)P(d1) = Ḡ2(d2)Ḡ1(d1),

where P(d1) =




d2
1 + 1 −1

d2
1 −1



, Ḡ2(d2) = G2(d2) and

Ḡ1(d1) =




d1 + 1 −d1

d1 −d1 + 1

d1 1




,

with Ḡ1(d1) 1D canonical and such that µ(Ḡ1) = 2. Then, it follows that

µR(Ḡ) = µ(G2) + µ(Ḡ1) < µ(G2) + µ(G1) = µR(G).

^
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As illustrated in the previous example, in case G1(d1) is right-prime, post-multiplication

by a unimodular matrix P(d1) does transform it into a column reduced, and hence into a

canonical encoder, decreasing the corresponding McMillan degree in case G1(d1) is not

minimal. This is stated in the following corollary.

Corollary 4.7. Let C be a 2D convolutional code and G(d1,d2) ∈ F[d1,d2]n×k be an en-

coder of C. Moreover, let G(d1,d2) = G2(d2)G1(d1) be factorized as in Theorem 3.23, and

assume that G(d1,d2) is a 2D right-factor prime (rFP) encoder of C and G1(d1) is not a

minimal encoder. Then there exists a unimodular matrix U1(d1) such that

µR(GU1) < µR(G).

Proof. Take U1(d1) unimodular such that

Ḡ1(d1) = G1(d1)U1(d1)

is column reduced. Clearly G1(d1) is right-prime because, by assumption, G(d1,d2) is rFP

and therefore Ḡ1(d1) is canonical. Then, by Lemma 4.5

µR(GU1) = µ(G2) + µ(G1U1) < µ(G2) + µ(G1) = µR(G).

�

However the procedure illustrated in the Example 4.6 cannot always be applied, as there

exist 1D encoders G1(d1) that are not reducible to canonical ones by post-multiplication by

a polynomial matrix P(d1).





Chapter 5

Composition codes

In this chapter we consider a particular class of 2D polynomial encoders and correspond-

ing 2D convolutional codes that we call composition encoders and composition codes. These

encoders are obtained through the composition of two 1D encoders, each one in one di-

rection/indeterminate. We prove that under certain conditions, composition encoders are

minimal. Moreover, for the encoders that satisfy these minimality conditions, minimal 2D

state-space realizations are obtained, which are minimal realizations of the corresponding

2D convolutional codes.

5.1 Composition encoders and composition codes

The formal definition of composition encoders is as follows.

Definition 5.1. An encoder G(d1,d2) ∈ F[d1,d2]n×k such that

G(d1,d2) = G2(d2)G1(d1),

where G1(d1) ∈ F[d1]p×k and G2(d2) ∈ F[d2]n×p are 1D encoders, is said to be a composi-

tion encoder.

Note that the requirement that Gi (di), for i = 1,2, is a 1D encoder is equivalent to the

condition that Gi (di) is a full column rank matrix. Moreover this requirement clearly implies

75
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that G2(d2)G1(d1) has full column rank, hence the composition G2G1 of two 1D encoders

is indeed a 2D encoder.

The 2D composition code C associated with G(d1,d2) = G2(d2)G1(d1) is given as

C = Im G(d1,d2) = G2(d2)(Im(G1(d1)))

= {ŵ(d1,d2) ∈ F n
2D : ∃ ẑ(d1,d2) ∈ Im (G1(d1)) such that

ŵ(d1,d2) = G2(d2) ẑ(d1,d2)}.

Next we restrict our study to 2D composition encoders that admit a special structure,

namely, in which G2(d2) is a quasi-systematic encoder, (cf. Definition 2.8).

Observe that quasi-systematic encoders are right-prime, but not necessarily column re-

duced, and hence they are not necessarily canonical. However as stated in the following

proposition they are minimal encoders. Although this is a well-known result [9, 11], we

present here a different proof that uses the results and tools from Chapter 3.

Proposition 5.2. Let G(d) ∈ F[d]n×k be a polynomial encoder. If G(d) is quasi-systematic

then every minimal realization of G(d) is a minimal realization of C = Im G(d).

Before proving the proposition we state some auxiliary results.

Lemma 5.3. If Σ̄1D ( Ā, B̄,C̄, D̄) is a minimal realization of an encoder Ḡ(d) ∈ F[d](n−k)×k

then Σ1D


Ā, B̄,




C̄

0



,




D̄

Ik





 is a minimal realization of the encoder




Ḡ(d)

Ik



∈ F[d]n×k .

Proof. Clearly, if the pair ( Ā,C̄) is observable then


Ā,




C̄

0





 is observable. Since the mini-

mality of an encoder realization is equivalent to its controllability and observability, and the

pair ( Ā, B̄) is the same for both realizations, the result follows immediately. �

Lemma 5.4. (Corollary of Lemma 5.3) Every minimal realization of an encoder



Ḡ(d)

Ik



∈

F[d]n×k is of the form Σ1D


Ã, B̃,




C̃

0



,




D̃

Ik





 , where Σ̃1D ( Ã, B̃,C̃, D̃) is a minimal realization

of Ḡ(d) ∈ F[d](n−k)×k .
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Proof. Let Σ̄1D ( Ā, B̄,C̄, D̄) be a minimal realization of Ḡ(d). Then, by Lemma 5.3,

Σ
1D
∗


Ā, B̄,




C̄

0



,




D̄

Ik







is a minimal realization of



Ḡ(d)

Ik



. Since all the minimal realizations of Ḡ(d) are equivalent,

these realizations are of the form:

Σ
1D
S


SĀS−1,SB̄,




C̄

0




S−1,




D̄

Ik





 = Σ1D

S


Ã, B̃,




C̃

0



,




D̃

Ik





 ,

where Ã = SĀS−1, B̃ = SB̄, C̃ = C̄S−1, D̃ = D̄ with S an invertible constant matrix.

Clearly Σ̃1D ( Ã, B̃,C̃, D̃) is a minimal realization of Ḡ(d), proving that every minimal

realization of



Ḡ(d)

Ik




has the desired form. �

Proof of Proposition 5.2.

Proof. Let G(d) be a quasi-systematic encoder. Without loss of generality assume that

G(d) =




Ḡ(d)

I




(otherwise multiply G(d) by a suitable invertible matrix T−1, and then

multiply the output matrices of the realization by T .)

Let Σ1D (A,B,C,D) be a minimal realization of G(d) of dimension m. Then by Lemma

5.4, C =




C̄

0




and D =




D̄

Ik



, where Σ̄1D (A,B,C̄, D̄) is a minimal realization of Ḡ(d) (also of

dimension m). This means that (A,B) is controllable and (A,C̄) is observable.

Next we show that Willems’s conditions given in Theorem 3.9 for the minimality of

Σ1D (A,B,C,D) as a realization of C = Im G(d) are satisfied.

Condition (i) is obviously satisfied because D =




D̄

Ik




and therefore



B

D




has full column

rank.

Regarding the condition (ii), this condition is clearly satisfied due to the controllability

of (A,B).
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As for conditions (iii) and (iv), note that B = LD, with L =

[
0 B

]
, and that Λ =

[
In−k −D̄

]
is a mla of D. Thus, recalling that C =




C̄

0



:

A − LC = A −
[
0 B

] 


C̄

0




= A

and

ΛC =

[
I −D̄

] 


C̄

0




= C̄,

i.e.,

(A − LC,ΛC) = (A,C̄),

which is clearly observable due to the fact that Σ̄1D (A,B,C̄, D̄) is a minimal realization.

Therefore we conclude that Σ1D (A,B,C,D) is also a minimal realization of C = Im G(d).

�

Example 5.5. Consider the polynomial encoder given by

G(d) =




d 1 d 0

0 d2 0 d2

d + 1 0 d + 1 0

0 d2 + 1 0 d2 + 1

1 1 0 0

d d2 d d2




.

G(d) is a quasi-systematic encoder since

G(d) = T



Ḡ(d)

I4



,
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with T =




1 0 0 1 0 0

0 1 0 0 0 0

1 0 1 0 1 0

0 1 0 1 0 1

0 0 1 1 0 0

1 1 0 0 0 0




invertible and Ḡ(d) =




d 0 d 0

0 d2 0 d2



.

Since

Σ
1D







0 0 0

0 0 0

0 1 0




,




1 0 1 0

0 1 0 1

0 0 0 0




,




1 0 0

0 1 0

1 0 0

0 0 1

0 0 0

1 0 1




,




0 1 0 0

0 0 0 0

1 0 1 0

0 1 0 1

1 1 0 0

0 0 0 0







is a 1D minimal realization of G(d), it is a minimal realization of the corresponding code as

well. This can also be confirmed by checking the conditions of Theorem 3.9. ^

5.2 Minimal realizations of composition codes

In this section we consider composition codes generated by composition encoders

G(d1,d2) = G2(d2)G1(d1),

where G2(d2) is quasi-systematic. We prove that, in this case, the composition code Im G(d1,d2)

has a minimal 2D state-space realization by means of a separable Roesser model that can be

obtained from minimal state-space realizations of the 1D convolutional codes Im G1(d1) and

Im G2(d2) .

Let then C be a composition code generated by a composition encoder G(d1,d2) ∈

F[d1,d2]q×k such that

G(d1,d2) = G2(d2)G1(d1), (5.1)

where G2(d2) ∈ F[d2]n×p, for some p ∈ N, is a quasi-systematic encoder, and G1(d1) ∈

F[d1]p×k is a minimal encoder. Note that the minimality assumption on G1(d1) is not restric-
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tive, as G1(d1) can be taken to be right-prime and post-multiplying G(d1,d2) by a suitable

unimodular matrix U (d1) allows putting G1(d1) in the column reduced form, without chang-

ing the corresponding code. Let Σ1D (A11,B1,C̄1, D̄1) and Σ1D (A22, B̄2,C2, D̄2) be minimal

realizations of G1(d1) and G2(d2), respectively. Observe that, since G1(d1) is a minimal

encoder, Σ1D (A11,B1,C̄1, D̄1) is a minimal realization of the 1D code C1 = Im G1(d1).

Moreover, by Proposition 5.2, because G2(d2) is quasi-systematic, Σ1D (A22, B̄2,C2, D̄2) is a

minimal realization of the 1D convolutional code C2 = Im G2(d2).

Connecting in series Σ1D (A11,B1,C̄1, D̄1) and Σ1D (A22, B̄2,C2, D̄2) yields the following

2D realization of G(d1,d2):




σ1x1 = A11x1 + B1u

σ2x2 = A21x1 + A22x2 + B2u

w = C1x1 + C2x2 + Du,

(5.2)

where A21 = B̄2C̄1, B2 = B̄2D̄1, C1 = D̄2C̄1 and D = D̄2D̄1.

As we shall see, under the assumption that
[
C̄1 D̄1

]
is invertible, the minimality of

Σ1D (A11,B1,C̄1, D̄1) and Σ1D (A22, B̄2,C2, D̄2) implies that the realizations Σ1D (A11,B1,E,F)

and Σ1D (A22, J,C2,H), with

E =




A21

C1




=




B̄2

D̄2




C̄1, F =




B2

D




=




B̄2

D̄2




D̄1

and

J =

[
A21 B2

]
= B̄2

[
C̄1 D̄1

]
, H =

[
C1 D

]
= D̄2

[
C̄1 D̄1

]
,

are minimal code realizations that satisfy the sufficient conditions for minimality of Theorem

3.9.

By Theorem 3.30, this in turn allows to conclude that the realization

Σ
2D (A11, A21, A22,B1,B2,C1,C2,D)
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given by (5.2) is a minimal realization of the composition code C, as stated in the following

result.

Theorem 5.6. Let G(d1,d2) ∈ F[d1,d2]n×k be a composition encoder such that

G(d1,d2) = G2(d2)G1(d1),

where G2(d2) ∈ F[d2]n×p is quasi-systematic and G1(d1) ∈ F[d1]p×k , for some p ∈ N, is

a minimal 1D encoder. Moreover, let Σ1D (A11,B1,C̄1, D̄1) and Σ1D (A22, B̄2,C2, D̄2) be two

1D minimal realization of G2(d2) and G1(d1), respectively, and assume that
[
C̄1 D̄1

]
is

square and invertible.

Then Σ2D (A11, A21, A22,B1,B2,C1,C2,D), where A21 = B̄2C̄1, B2 = B̄2D̄1, C1 = D̄2C̄1

and D = D̄2D̄1 is a minimal realization of C.

Proof. Let Σ1D (A11,B1,C̄1, D̄1) and Σ1D (A22, B̄2,C2, D̄2) be both 1D minimal realizations

of Im G1(d1) and Im G2(d2), respectively. By Theorem 3.9 (and the remark thereafter) this

means that:

Condition 1: D̄1 and D̄2 have full column rank.

Condition 2: (A11,B1) and (A22, B̄2) are both controllable pairs.

Condition 3: ker D̄1 ⊆ ker B1 and ker D̄2 ⊆ ker B̄2 (i.e, there exist matrices L1 and L2

such that B1 = L1D̄1 and B̄2 = L2D̄2 ).

Condition 4: Let L1 and L2 be defined as in Condition 3, and let Λ1 and Λ2 be minimal

left-annihilators (mla) of D̄1 and D̄2, respectively. Then the pairs (A11 − L1C̄1,Λ1C̄1) and

(A22 − L2C2,Λ2C2) are both observable.

Firstly we show that the conditions of Theorem 3.9 for the minimality of Σ1D (A11,B1,E,F)

as a code realization are satisfied. For this purpose we prove that:

(i) F has full column rank

Since Condition 1 and Condition 3 hold,

F =




B̄2

D̄2




D̄1 =




L2

I




D̄2D̄1
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has full column rank as its factors D̄1, D̄2 and



L2

I




have full column rank.

(ii) (A11,B1) is controllable

This condition trivially holds due to Condition 2, i.e., (A11,B1) is a controllable pair.

(iii) There exists a matrix L̄1 such that B1 = L̄1F

Taking into account that

F =




B2

D



, D = D̄2D̄1 and B2 = B̄2D̄1, (5.3)

the claim to be shown is equivalent to the existence of a matrix L̄1 such that

B1 = L̄1




B̄2D̄1

D̄2D̄1




= L̄1




B̄2

D̄2




D̄1. (5.4)

Since, by Conditions 1 and 3, B̄2 = L2D̄2 and D̄2 has full column rank, respectively,



L2

I




D̄2 has full column rank and then, there exists a left inverse, U, such that

U



L2

I




D̄2 = I . (5.5)

On the other hand, there exists L1 such that B1 = L1D̄1. Therefore, from (5.3), (5.4)

and (5.5) we obtain that

B1 = L̄1F, (5.6)

where L̄1 = L1U.

(iv) (A11 − L̄1E,Λ̄1E) is observable, with L̄1 s.t. B1 = L̄1F and Λ̄1 is a mla of F

To prove this, consider L̄1 = L1U, as defined above. Moreover note that
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Λ1UF = Λ1U



B̄2

D̄2




D̄1 = Λ1U



L2

I




D̄2D̄1 = Λ1D̄1 = 0

due to (5.5) and to the fact that Λ1 is, by definition, a mla of D̄1.

This implies that a mla of F can be obtained by (if necessary) adding extra rows to

Λ1U.

Let then Λ̄1 =




Λ1U

T



, for a suitable matrix T , be a mla of F. Now,

(A11 − L̄1E,Λ̄1E) =


A11 − L̄1




L2

I




D̄2C̄1,Λ̄1




L2

I




D̄2C̄1




=


A11 − L1U




L2

I




D̄2C̄1,




Λ1U

T







L2

I




D̄2C̄1




=


A11 − L1C̄1,




Λ1C̄1

M





 ,

where M = T



L2

I




D̄2C̄1.

Since, by Condition 4, the pair (A11 − L1C̄1,Λ1C̄1) is observable, then the pair


A11 − L1C̄1,




Λ1C̄1

M







is also observable. In this way we conclude that (A11 − L̄1E,Λ̄1E) is observable, as

desired.

Therefore all the conditions of Theorem 3.9 are satisfied and Σ1D (A11,B1,E,F) is mini-

mal as a code realization.

Finally, note that

Σ
1D (A22, J,C2,H) = Σ1D

(
A22, B̄2

[
C̄1 D̄1

]
,C2, D̄2

[
C̄1 D̄1

])
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corresponds to making an invertible input transformation, associated to
[
C̄1D̄1

]
, in

Σ
1D (A22, B̄2,C2, D̄2).

Thus it is clear that the former model realizes the same code as the latter, with the same

dimension. So Σ1D (A22, J,C2,H) is a minimal code realization. �

Example 5.7. Consider the following composition encoder

G(d1,d2) =




d2 + d1d2 1

0 d2
2 + d1d2

2

d2 + d1d2 + d1 + 1 0

0 d2
2 + d1d2

2 + d1 + 1

1 1

d2 + d1d2 d2
2 + d1d2

2




.

It is easy to factorize G(d1,d2) as in (5.1) where

G2(d2) =




d2 1 d2 0

0 d2
2 0 d2

2

d2 + 1 0 d2 + 1 0

0 d2
2 + 1 0 d2

2 + 1

1 1 0 0

d2 d2
2 d2 d2

2




and G1(d1) =




1 0

0 1

d1 0

0 d1




,

which is canonical and therefore minimal. G2(d2) is a quasi-systematic encoder since

G2(d2) = T



Ḡ2(d2)

I4



,

with T =




1 0 0 1 0 0

0 1 0 0 0 0

1 0 1 0 1 0

0 1 0 1 0 1

0 0 1 1 0 0

1 1 0 0 0 0




invertible and Ḡ2(d2) =




d2 0 d2 0

0 d2
2 0 d2

2



.



5.2 Minimal realizations of composition codes 85

Moreover, Σ1D (A22, B̄2,C2, D̄2), where

A22 =




0 0 0

0 0 0

0 1 0




, B̄2 =




1 0 1 0

0 1 0 1

0 0 0 0




, C2 =




1 0 0

0 0 1

1 0 0

0 0 1

0 0 0

1 0 1




and D̄2 =




0 1 0 0

0 0 0 0

1 0 1 0

0 1 0 1

1 1 0 0

0 0 0 0




and Σ1D (A11,B1,C̄1, D̄1), where

A11 =




0 0

0 0



, B1 =




1 0

0 1



, C̄1 =




0 0

0 0

1 0

0 1




and D̄1 =




1 0

0 1

0 0

0 0




are both 1D minimal realizations of G2(d2) and G1(d1), respectively, and
[
C̄1 D̄1

]
= I4 is

invertible. Thus, by Theorem 5.6,

Σ2D = (A11, A21, A22,B1,B2,C1,C2,D) ,

where

A11 =




0 0 0

0 0 0

0 1 0




, A21 =




1 0

0 1

0 0




, A22 =




0 0 0

0 0 0

0 1 0




B1 =




1 0

0 1



, B2 =




1 0

0 1

0 0




, C1 =




0 0

0 0

1 0

0 1



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C2 =




1 0 0

0 1 0

1 0 0

0 0 1

0 0 0

1 0 1




and D =




0 1

0 0

1 0

0 1

1 1

0 0




is a minimal realization of the 2D convolutional code generated by G(d1,d2). ^



Chapter 6

Conclusions

Similarly to what happens for the 1D case, the interconnection between convolutional

coding and systems theory is fundamental in order to better understand the issues related

with the minimality of 2D convolutional codes.

The ambitious objective of this thesis concerns the characterization of 2D polynomial

encoders with minimal McMillan degree and the subsequent construction of minimal 2D

code realizations.

Although this has revealed to be a very hard problem, we were able, on the one hand,

to generalize some results obtained in [31] and, on the other hand, to apply results from the

behavioral approach to 2D convolutional codes achieving some conclusions for particular

types of codes.

In Chapter 3 we provided a procedure to obtain a minimal realization of a 1D convolu-

tional code from a minimal realization of an arbitrary encoder of the code.

In Chapters 4 and 5 we have studied the minimality of the realizations of 2D convolu-

tional codes by separable Roesser models. In Chapter 4 we have shown that, similarly to the

1D case, the minimal encoders (i.e., encoders for which a minimal realization is also mini-

mal as a code realization) of a 2D convolutional code of rate 1/n are the right factor prime

encoders.

In Chapter 5 we introduced a special class of 2D convolutional codes and encoders,

namely composition codes and composition encoders. Such codes are characterized by be-
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ing generated by encoders that are obtained through the composition of two 1D encoders.

Moreover we have analyzed the minimality of realizations for a particular class of com-

position codes. Concretely we proved that composition encoders are minimal if they can

be factorized as a product of a systematic encoder in one indeterminate and a suitable 1D

minimal encoder in the other indeterminate.

An interesting problem that we would like to consider in the future is the extension of

these results to all composition codes in order to provide a more comprehensive framework

on minimality. We believe that the decomposition of 2D convolutional codes into two 1D

convolutional codes can increase their impact by allowing to apply known approaches for

the 1D case.

Minimal realizations have been widely used in 1D convolutional codes, not only for con-

struction of good codes, but also for the implementation of efficient decoding algorithms.

Since the separable Roesser models can be obtained from two 1D realizations, we think that

1D constructions of good convolutional codes can be used to construct good 2D convolu-

tional codes. The construction of optimal 2D convolutional codes of rate 1/n was solved

in [29] for a very particular case. The general construction of such codes with optimal dis-

tance is still an open problem. Similarly, 1D decoding algorithms can be used to implement

decoding algorithms for 2D convolutional codes. As far as we know, there is no decoding

algorithm available for 2D convolutional codes. This issues constitute a challenging work to

be done in the future.



Appendix A

In this appendix we summarize some basic definitions and results concern the properties

of controllability and observability of 1D systems. For more detail we refer to [2, 18].

Let Σ1D (A,B,C,D) denote the state-space model




σx(t) = Ax(t) + Bu(t)

w(t) = Cx(t) + Du(t),
(A.1)

where the matrices A, B, C and D are, respectively, of sizes m × m, m × k, n × m and n × k.

Definition A.1. The pair (A,B) is said to be controllable if

rank
[
B AB · · · Am−1B

]
= m.

Theorem A.2. (A,B) is a controllable pair if and only if

rank
[
λIm − A B

]
= m, ∀λ ∈ F̄,

where F̄ denotes the algebraic closure of the field F.

Theorem A.3. If (A,B) is a controllable pair, for every polynomialΠ(λ) = λm+Πm−1λ
m−1+

· · · + Π0, there exists a matrix K of size k × m such that the characteristic polynomial of

A − BK coincides with Π(λ), i.e., such that

det(λIm − (A − BK )) = Π(λ).

Corollary A.4. (Pole placement) If (A,B) is a controllable pair, for every list (λ1,m1), . . . , (λr ,mr )

such that λ j ∈ F̄, m j ∈ N, j = 1, . . . ,r and m1 + · · ·+ mr = m, there exists a matrix K of size
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k × m such that A − BK has eigenvalues λ1, . . . , λr with multiplicities m1, . . . ,mr , respec-

tively.

Definition A.5. The pair (A,C) is said to be observable if

rank




C

C A
...

C Am−1




= m.

Theorem A.6. (A,C) is an observable pair if and only if

rank



λIm − A

C




= m, ∀λ ∈ F̄.

Theorem A.7. (Kalman observability decomposition) Assume that the pair (A,C) is not

observable, and that rank




C

C A
...

C Am−1




= p < m. Then, there exists an invertible matrix S such

that Ā = SAS−1 and C̄ = CS−1 are of the form:

Ā =




A11 0

A21 A22




and C̄ =

[
C1 0

]
,

where A11 has size p × p, C1 has size n × p, the remaining matrices have compatible sizes,

and the pair (A11,C1) is observable.

Remark A.8. Defining moreover, x̄ = Sx, Ā = SAS−1, B̄ = SB, C̄ = CS−1, equations (A.1)

can be written as




σ x̄(t) = Āx̄(t) + B̄u(t)

w(t) = C̄ x̄(t) + Du(t),

which, partitioning x̄ =




x̄1

x̄2




and B̄ =




B̄1

B̄2




in the obvious way, yields
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


σ x̄1(t) = A11 x̄1(t) + B̄1u(t)

σ x̄2(t) = A21 x̄1(t) + Ā22 x̄2(t) + B̄2u(t)

w(t) = C̄1 x̄1(t) + Du(t).

It is clear from these equations that equation σ x̄2(t) = A21 x̄1(t) + Ā22 x̄2(t) + B̄2u(t) is

superfluous, both for the description of the input-output relation between u and w and for

the description of the corresponding output behavior (i.e., the behavior of the variable w).

This yields an alternative description (of smaller state dimension):




σ x̄1(t) = A11 x̄1(t) + B̄1u(t)

w(t) = C̄1 x̄1(t) + Du(t).
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