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2014

Lirong
Huang

Resultados de multiplicidade para sistemas do tipo
Schrödinger-Poisson

Multiplicity results for some classes of
Schrödinger-Poisson systems



Universidade de Aveiro Departamento de Matemática,
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palavras-chave Sistemas de Schrödinger-Poisson; Métodos variacionais; Existência e mul-
ticiplidade de soluções; Soluções positivas e com mudança de sinal.

resumo Nesta tese, estudamos a existência e a multiplicidade de soluções da seguinte
classe de sistemas denominada de Schrödinger-Poisson:{

−∆u+ u+ l(x)φu = κ(x, u) in R3,
−∆φ = l(x)u2 in R3,

onde l ∈ L2(R3) ou l ∈ L∞(R3). Consideram-se não-linearidades κ que
satisfazem um dos seguintes casos:

(i) potências que envolvem um expoente sub-cŕıtico, da forma κ(x, u) =
k(x)|u|p−2u+ µh(x)u, (4 ≤ p < 2∗), sendo k uma função com sinal
indefinido e h uma função positiva;

(ii) caso geral de uma não-linearidade indefinida, da forma κ(x, u) =
k(x)g(u) + µh(x)u, sendo k uma função com sinal indefinido e h
uma função positiva;

(iii) potências que envolvem o expoente cŕıtico, da forma κ(x, u) =
k(x)|u|2∗−2u+ µh(x)|u|q−2u (2 ≤ q < 2∗).

Convém salientar que esta tese tem três principais inovações, as quais
ultrapassam dificuldades geradas pela natureza dos problemas estudados.
Primeiro, como um relator anónimo referiu, este é o primeiro trabalho em
que se trata a existência de várias soluções de sistemas de Schrödinger-
Poisson com não-linearidade indefinida.

Segundo, neste estudo encontrou-se um fenómeno interessante, ver
Caṕıtulos 2 e 3, nomeadamente, não ser necessária a condição∫
R3 k(x)ep1dx < 0 no caso indefinido e não-coercivo, sendo e1 a função

associada ao primeiro valor próprio de −∆ + id em H1(R3) com peso
h. Note-se que foi demonstrado que uma condição semelhante é condição
necessária e suficiente na existência de soluções positivas para equações
eĺıticas semilineares com não-linearidades indefinidas em doḿınios limita-
dos (ver e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439–475),
ou ser uma condição suficiente na existência de soluções positivas para
equações eĺıticas semilineares com não-linearidades indefinidas em RN (see
e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159–189). Adicional-
mente, o método utilizado pode ser utilizado para estudar outros aspetos
dos sistemas de Schrödinger-Poisson, permite também estudar sistemas de
Kirchhoff e sistemas de Schrödinger quasilineares.

Por fim, para obter soluções com mudança de sinal no Cap. 5, segue-
se a ideia de Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137
(2007), 333, mas o método utilizado é uma versão simplificada do método
apresentado no artigo referido.





keywords Non-autonomous Schrödinger-Poisson systems; Variational methods; Ex-
istence and multiplicity of solutions; Positive and sign changing solutions.

abstract In this thesis, we study the existence and multiplicity of solutions of the
following class of Schrödinger-Poisson systems:{

−∆u+ u+ l(x)φu = κ(x, u) in R3,
−∆φ = l(x)u2 in R3,

where l ∈ L2(R3) or l ∈ L∞(R3). And we consider that the nonlinearity κ
satisfies the following three kinds of cases:

(i) a subcritical exponent with κ(x, u) = k(x)|u|p−2u+ µh(x)u (4 ≤ p <
2∗) under an indefinite case;

(ii) a general indefinite nonlinearity with κ(x, u) = k(x)g(u) + µh(x)u;

(iii) a critical growth exponent with κ(x, u) = k(x)|u|2∗−2u +
µh(x)|u|q−2u (2 ≤ q < 2∗).

It is worth mentioning that the thesis contains three main innovations except
overcoming several difficulties, which are generated by the systems them-
selves. First, as an unknown referee said in his report, we are the first au-
thors concerning the existence of multiple positive solutions for Schrödinger-
Poisson systems with an indefinite nonlinearity.

Second, we find an interesting phenomenon in Chapter 2 and Chapter 3
that we do not need the condition

∫
R3 k(x)ep1dx < 0 with an indefinite non-

coercive case, where e1 is the first eigenfunction of −∆+id in H1(R3) with
weight function h. A similar condition has been shown to be a sufficient
and necessary condition to the existence of positive solutions for semilinear
elliptic equations with indefinite nonlinearity for a bounded domain (see
e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439–475), or to be
a sufficient condition to the existence of positive solutions for semilinear
elliptic equations with indefinite nonlinearity in RN (see e.g. Costa-Tehrani,
Calc. Var. PDE 13 (2001), 159–189). Moreover, the process used in
this case can be applied to study other aspects of the Schrödinger-Poisson
systems and it gives a way to study the Kirchhoff system and quasilinear
Schrödinger system.

Finally, to get sign changing solutions in Chapter 5, we follow the spirit of
Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but
the procedure is simpler than that they have proposed in their paper.
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Introduction

Variational methods and critical point theory are powerful tools in studying nonlin-

ear differential equations (see Ambrosetti-Malchiodi [5], Ambrosetti-Rabinowitz [6], Costa

[33], Ekeland [48], Mawhin-Willem [80], Rabinowitz [85], Struwe [96], Willem [103]), in

particular, in Hamiltonian systems (see also for instance Rabinowitz [84]) and elliptic equa-

tions (see for example Costa [34], Costa-Magalhaes [35], Figueiredo-Felmer [51], Yang-Yu

[104]). In the last years, there have been a great number of works dealing with equations

arising in Quantum Mechanics studied by means of variational tools. Indeed, this was

the author’s aim of study during the Doctoral Program in Mathematics and Applications

for the period 2010-2014 through the PhD scholarship SFRH/BD/51162/2010 by Por-

tuguese science foundation “Fundação para a Ciencia e Tecnodogia” (FCT). In the first

year (curriculum year), students in this program have a broad scientific preparation in-

cluding the broad band mandatory courses, optional courses, “Research Laboratory” and

thesis project preparation as well. While taking one of the Research Lab courses “Nonlin-

ear Analysis”, an optional course “Functional Space” and the thesis project preparation

in the second semester, the author was not only going over the knowledge related to

critical point theory, which the author has already studied during attaining the Master’s

degree, but also further studying the related tools and theory, where the author started

a paper about the Lorentz space tutored by Professor Eugénio A.M. Rocha, see Huang-

Murillo-Rocha [58]. In [58], the authors studied a nonlinear elliptic Dirichlet problem

involving a Leray-Lions type differential operator and proved the existence of solutions

in a Lorentz space as well as gave an apriori estimate for the solutions. It was at that

time that Professor Rocha, who became the author’s supervisor on the second year of

the PhD program, gave the author such a deep impression about his knowledge in this

scientific area and was relevant in the decision for the subject of investigation of this thesis.

In this thesis, we will focus on the following class of elliptic equations{
−∆u+ u+ l(x)φu = κ(x, u) in R3,

−∆φ = l(x)u2 in R3,
(SP)

where κ(x, u) satisfies the variational structure and the solutions (u, φ) will be searched

in H1(R3) × D1,2(R3). In (SP), if κ(x, u) is nonlinear with respect to u, then the first

equation is a nonlinear Schrödinger equation in which the potential φ satisfies a nonlinear

Poisson equation. For this reason, (SP) is referred to as a nonlinear Schrödinger-Poisson

(also called Schrödinger-Maxwell ) system, which arises from several interesting physical
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contexts. It is well known that (SP) has a strong physical meaning since it appears in

quantum mechanics models (see Benguria-Brézis-Lieb [19], Catto-Lions [25], Lieb [74] and

Lieb-Simon [75]) and in semiconductor theory (see Benci-Fortunato [16], Benci-Fortunato

[17], Lions [77] and Markowich [79]). As Arriola-Soler wrote in their paper [8], recent ad-

vances in technology design, in particular, the progressive tendency to fabricate semicon-

ductor devices with extremely small sizes, have obliged to account for quantum-mechanical

and numerical methods in order to describe quantum effects such as tunneling, size quanti-

zation or quantum interference. In this direction, Schrödinger-Poisson system constitutes,

since the early eighties, a quite extended mathematical framework to understand and

analyze mathematical aspects, which may prove relevant for the study of semiconductor

heterostructures modeling.

From the point view of quantum mechanics, system (SP) describes the mutual interac-

tions of many particles (see Ruiz [88] and Vaira [99]). Indeed, if the term κ(x, u) is replaced

with 0, then problem (SP) becomes the Schrödinger-Poisson system. This type of system

appears in semiconductor theory and it describes the behavior of a single particle. In

some recent works (see e.g. [3, 10, 26, 39, 59, 94, 101, 109]), different nonlinearities κ(x, u)

have been added to the Schrödinger-Poisson system, giving rise to the so-called nonlinear

Schrödinger-Poisson systems. These nonlinear terms have been traditionally used in the

Schrödinger equation to model the interaction among particles.

If l ≡ 0, system (SP) becomes the standard Schrödinger equation

−∆u+ u = κ(x, u), (NLS)

which has been broadly investigated in the past several decades, see for example, Bartsch-

Wang [14], Benci-Cerami [18], Berestyeki-Lions [20], Del Pino-Felmer [44], Ding-Ni [46] and

the references therein. We wonder how the results obtained on (NLS) can be extended to

system (SP). To answer this question, let us take a look at the following results obtained

from the nonlinear Schrödinger-Poisson systems.

The literature on the nonlinear Schrödinger-Poisson systems in the presence of a pure

nonlinearity has been exhaustedly investigated. We mention [3, 7, 11, 26, 31, 38, 39, 40,

42, 43, 52, 57, 64, 65, 66, 70, 87, 88, 99, 101, 108] and the references therein. Also in [30, 32]

and [94, 95, 102, 110], the linear and the asymptotically linear cases have been studied,

respectively, whereas in [82, 83, 89] the problems have been studied in a bounded domain.

Recently, different general nonlinearities on the Schrödinger-Poisson systems as on the

Schrödinger equations are well studied, such as [10, 92] in the presence of Berestycki-

Lions type nonlinearity, [2, 29, 72, 106] involving the nonlinear terms with or without

Ambrosetti-Rabinoviz condition under additional assumptions, [81] in the presence of so

called “positive potentials”.

Among the above works listed on the Schrödinger-Poisson system, there are lots of

works in the literature not only on the subcritical cases such as [7, 26, 31, 38, 41, 42, 43,

68, 70, 71, 81, 88, 94, 99, 102, 108], and on the supercritical cases like [11], but also on the
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critical cases like [11, 39, 54, 107, 109].

But when it comes to autonomous cases, i.e. the weight function l ≡ 1 in system (SP),

or non-autonomous cases, we find works such as [7, 10, 11, 31, 38, 39, 42, 43, 55, 68, 88]

concerning the autonomous case, [3, 40, 70, 87, 101, 108] with the non-autonomous case,

the search of the so-called semi-classical states, and [26, 59, 72, 81, 93, 94, 99, 106, 109]

about other non-autonomous cases.

Above we have just briefly described the works in the literature. We now give further

details for some works concerning the non-autonomous cases.

Cerami and Vaira [26] study system (SP) in the case of κ(x, u) = a(x)|u|p−2u with

4 < p < 6 and a(x) being non-negative. They establish a global compactness lemma to

overcome the lack of compactness of embedding H1(R3) into the Lebesgue space Lp(R3),

p ∈ [2, 6), which prevents the use of variational techniques in a standard way. They

prove the existence of positive ground state and bound state solutions by minimizing the

associated functional restricted to the Nehari manifold, where they assume that l ∈ L2(R3)

and a : R3 → R are non-negative functions satisfying lim|x|→+∞ l(x) = 0, l ≥ 0 for all

x ∈ R3, l 6≡ 0, lim|x|→+∞ a(x) = a∞ > 0 and a(x)− a∞ ∈ L6/(6−p)(R3).

In Sun-Chen-Nieto [94], the authors consider another instance of k in system (SP)

κ(x, u) = a(x)f(u), where f is asymptotically linear at infinity, i.e., f(s)/s→ c as s→ +∞
with a suitable constant c. They establish a compactness lemma different from that in

Cerami-Vaira [26] and prove the existence of ground state solutions. The conditions on

the coefficient l in Sun-Chen- Nieto [94] are

l ∈ L2(R3), l(x) ≥ 0 for any x ∈ R3 and l 6≡ 0.

And in Zhao-Zhao [109] the authors study the case that l ≡ 1 in system (SP) with the

following form{
−∆u+ u+ φu = K(x)|u|2∗−2u+ µQ(x)|u|q−2u in R3,

−∆φ = u2 in R3,

where K,Q ∈ C1(R3,R) satisfy some suitable conditions. They obtain that when 4 < q <

6 the problem has at least a positive solution for each µ > 0 and when q = 4 the problem

has at least a positive solution for each µ sufficiently large. They also get a positive radial

solution for µ sufficiently large when 3 ≤ q < 4 under further assumptions. Note that

there was no information about the case q = 2.

The main aim in this thesis is to generalize some of the above results or attain some

results that have not been discussed in the previous works in the literature. Here, we

study the existence and multiplicity of solutions for system (SP) involving the following

nonlinearities

(i) a subcritical exponent in the form κ(x, u) = k(x)|u|p−2u+µh(x)u (4 ≤ p < 2∗), where
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k is sign changing in R3;

(ii) a general indefinite nonlinearity with κ(x, u) = k(x)g(u) + µh(x)u, where k is sign

changing in R3;

(iii) a critical growth exponent with κ(x, u) = k(x)|u|2∗−2u+ µh(x)|u|q−2u (2 ≤ q < 2∗),

where the weight functions l, k and h satisfy some suitable conditions like l ∈ L2(R3) or

l ∈ L∞(R3).

We are concerned with the existence of positive solutions and sign changing solutions

as well. As far as we know, we did not see any information of system (SP) with the above

three types of nonlinearities, which we will study in this work. It is worth mentioning

that, as an unknown referee said in his report, we are the first authors concerning the

existence of multiple positive solutions for Schrödinger-Poisson system with an indefinite

nonlinearity. Moreover, concerning sign changing solutions, there is little information in

the literature even for different classes of Schrödinger-Poisson systems. In the following,

we will mention other innovations of our work. But first let us give the reduced form of

system (SP).

As we shall see in Chapter 1, system (SP) can be reduced into a nonlinear Schrödinger

equation with a nonlocal term. Briefly, the Poisson equation is solved by using the Lax-

Milgram theorem, so, for every u in H1(R3), a unique φu ∈ D1,2(R3) is obtained such that

−∆φ = l(x)u2 and that, inserted into the first equation of (SP), gives

−∆u+ u+ l(x)φuu = κ(x, u) in R3. (NSN )

Since (NSN ) is variational in nature, there is a one to one correspondence between the

solutions of (NSN ) and the critical points of the functional defined in H1(R3) by

I(u) =
1

2
‖u‖2 +

1

4

∫
R3

l(x)φu(x)u2dx−
∫
R3

K(x, u)dx,

where K(x, u) =
∫ u

0 κ(x, s)ds. Hence if u ∈ H1(R3) is a critical point of I on H1(R3), then

(u, φu) is a solution of system (SP).

Let us summarize the techniques used throughout this thesis as well as how it is

organized. The main common difficulties in this thesis lie in the following two aspects.

On one hand, the equation (NSN ) is considered in the whole space R3, and the Sobolev

embedding H1(R3) ↪→ Ls(R3) (2 ≤ s ≤ 6) is not compact any more. Due to different

results, we use three different methods to restore the compactness in our work. We manage

to apply some techniques, motivated by Willem [103], to get the compactness “directly” in

some sense under suitable assumptions on the weight functions in Chapter 2 and Chapter 4.

We also try to apply concentration-compactness lemma of Lions in Chapter 3, motivated

by Costa-Tehrani [36]. However, in Chapter 5, we use a completely different method

to attain our goal, which involves neither the Palais-Smale sequence nor the Ekeland
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variational principle, following the idea of Hirano-Shioji [56], but our procedure is simpler

than that in Hirano-Shioji [56].

On the other hand, equation (NSN ) with a nonlocal term usually gives more difficul-

ties than the standard Schrödinger equation (NLS), because of the presence of nonlocal

term in (NSN ) compared with (NLS), which is the common difficulty while studying

the nonlinear Schrödinger-Poisson system. The details to overcome them can be seen in

above references on the Schrödinger-Poisson systems, and in our Chapter 2 to Chapter 5.

It seems that all the works in the literature on the Schrödinger-Poisson system show

the disadvantages of the involvement of Poisson equation, namely the nonlocal term.

But to our surprise, when we study system (SP) with an indefinite nonlinearity, i.e.

κ(x, u) = k(x)|u|p−2u+ µh(x)u with (4 ≤ p < 2∗)

and with a more general indefinite nonlinearity g behaving like |u|p−2u near zero in the

form

κ(x, u) = k(x)g(u) + µh(x)u,

an interesting phenomenon is that we succeed in making use of the nonlocal term to

technically help to deal with the key difficulty that the indefinite nonlinearity has created,

and we do not need the condition ∫
R3

k(x)ep1dx < 0, (∗)

where e1 > 0 is the eigenfunction of the eigenvalue problem

−∆u+ u = µ1h(x)u in R3,

with µ1 the associated first eigenvalue of −∆ + id in R3 with weight function h. We will

show the procedure why we do not need the condition (∗) in Chapter 2, also in Chapter

3.

Condition (∗) has been shown to be a sufficient condition to the existence of positive

solutions for semilinear elliptic equations with indefinite nonlinearities with a bounded or

an unbounded domain, or even for the problem with critical exponent. Let us give some

examples. In [1], for a given bounded open set Ω ⊂ RN with smooth boundary ∂Ω, Alama

and Tarantello seek positive solutions for{
−∆u− λ̃u = W (x)f(u) in Ω,

u = 0 in ∂Ω,
(1)

where W changes sign in Ω and f behaves like |u|p−2u near zero. They prove that, for λ̃

in a small right neighborhood of λ̃1, that is, the first eigenvalue, the condition∫
R3

W (x)ẽp1dx < 0
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is sufficient for existence of a positive solution, which is shown to be necessary for homoge-

nous f , where ẽ1 is the first eigenfunction of the problem{
−∆ẽ = λ̃ẽ in Ω,

ẽ = 0 in ∂Ω.

For an unbounded domain RN , Costa and Tehrani [36] establish a similar result, where

they prove that ∫
R3

a(x)ēp1dx < 0

is sufficient condition for existence of a positive solution of the problem

−∆u− λ̄h̄(x)u = a(x)f(u),

where a is sign changing in RN and f behaves like |u|p−2u near zero. Here ē1 is the

first eigenfunction of the problem −∆u = λ̄1h̄(x)u, where λ̄1 is the first eigenvalue of

−∆ + id with weight function h̄. For the critical case like in Drábek-Huang [47], the

authors consider the problem

−∆pu = λ̂ĥ(x)|u|p−2u+ w(x)|u|p∗−2u in RN ,

where w is sign changing in RN and p∗ = Np
N−p is the critical Sobolev exponent. Let λ̂1 be

the principal eigenvalue of

−∆pu = λ̂ĥ(x)|u|p−2u

with ê1 the associated eigenfunction. To get a positive solution in the right neighborhood

of λ̂1, the authors also need to use the sufficient condition∫
R3

w(x)êp
∗

1 dx < 0.

In fact, we also find that similar condition (∗) was used earlier by a corresponding

necessary condition derived in Bandle-Pozio-Tesei [12] for a Neumann problem. It ap-

pears, however, that in the context of Neumann problem, conditions of the same type

were already introduced by Kazdan and Warner [67] as an obstruction to the solvability

of the prescribed scalar curvature problem for compact Riemannian manifolds (see also

Escobar-Schoen [49]).

This thesis is organized as follows. In Chapter 1, we provide some preliminaries fun-

damentally to our work. Chapter 2 is devoted to the kind of indefinite nonlinearity (i)

mentioned above, which is a combination of homogeneous indefinite nonlinearity and a

linear term. Furthermore, in Chapter 3, we generalize this nonlinearity to the form

κ(x, u) = k(x)g(u) + µh(x)u,



xi

where k is sign changing in R3 and g behaves like a power at zero and infinity. We mainly

prove the existence of at least two positive solutions in the case that µ > µ1 and near

µ1, where µ1 is the first eigenvalue of −∆ + id in H1(R3) with weight function h in these

two chapters. Except the common difficulties, for the indefinite nonlinearity, it is still

necessary to overcome another obstacle when we consider the “non-coercive” case µ > µ1,

that is, the linear part of (NSN ) is not coercive. Because in this situation we can not

use the standard methods to prove the boundedness of (PS)-sequence directly. Even if

in these two chapters the topics are both concerned with the indefinite problems and the

results we will seek are almost similar, the methods to be used to get the results are

completely different. A relatively “direct” method will be used to restore the compactness

for the former. In Chapter 3, we will apply concentration-compactness lemma of Lions to

get the compactness. Moreover, we extend the weight function l ∈ L2(R3) in Chapter 2

to l ∈ L∞(R3) in Chapter 3.

Meanwhile, Chapter 4 and Chapter 5 concern the critical case with a constant sign

nonlinearity. In Chapter 4 we prove the existence of at least one positive solution. In

comparison to Chapter 4, we use a completely different method in Chapter 5 mentioned

above to mainly seek sign changing solutions.

We finish the thesis by discussing some considerations and potential problems to be

studied in the future.
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Chapter 1

Variational approaches for elliptic

equations

In this chapter we will present some useful preliminaries related to variational methods,

which we will use throughout this thesis. The literature on variational methods is quite

extensive, but here we will just recall several fundamental theorems on this subject such as

Ekeland’s variational principle, one type of Mountain Pass Theorem and strong maximum

theorem. For more information, we refer the readers for instance to Ambrosetti-Malchiodi

[5], Costa [33], Rabinowitz [85] and Struwe [96]. Here we emphasize our preparation on

variational methods to be shared in the other parts in this thesis.

1.1 Some fundamental theorems

Let us start with the following particular case of Ekeland’s variational principle, which

was used in 1984 by Aubin and Ekeland in the construction of Palais-Smale sequences.

This principle has been a very useful tool in studying optimization problems in Control

Theory, Differential Geometry and Differential Equations.

1.1.1 Ekeland’s variational principle

Definition 1.1.1. Let (M,d) be a complete metric space and ψ : M → R ∪ {+∞}. We

say that ψ is a lower semicontinuous functional, if any sequence (vm)m∈N ⊂M such that

vm → v for some v ∈M satisfies

ψ(v) ≤ lim inf
m
ψ(vm).

Theorem 1.1.2. (see Aubin-Ekeland [9].) Let (M,d) be a complete metric space and

ψ : M → R ∪ {+∞} be a lower semicontinuous functional which is bounded from below.

Suppose ε > 0 and u ∈M are such that

ψ(u) ≤ inf
M
ψ + ε.

1
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Then, given any λ > 0, there exists v ∈M such that

(i) ψ(v) ≤ ψ(u);

(ii) d(u, v) ≤ λ;

(iii) ψ(v) ≤ ψ(w) + ε
λd(v, w) for any v 6= w.

Let E be a Banach space, E
′

be the dual of E, and ψ : E → R be a differentiable

functional bounded from below. Set

c := inf
E
ψ.

Ekeland’s variational principle implies the existence of a sequence (un)n∈N ⊂ E such that

ψ(un)→ c, ψ′(un)→ 0 in E
′
.

Such a sequence is called a Palais-Smale sequence at the level c. Let us see what the

definition is used for.

Definition 1.1.3. Let ψ : U → R where U is an open subset of a Banach space E.

The functional ψ is called Fréchet differentiable at u ∈ U if there exists a bounded linear

operator f ∈ E′ such that

lim
v→0

1

‖v‖E
[ψ(u+ v)− ψ(u)− 〈f, v〉] = 0 for any v ∈ E.

If the limit exists, we write ψ′(u) = f and call it the Fréchet derivative of ψ at u.

The functional ψ belongs to C1(U,R) if the Fréchet derivative of ψ exists and contin-

uous on U .

Definition 1.1.4. Let c ∈ R, E be a Banach space, and ψ ∈ C1(E,R). A Palais-Smale

sequence (un)n∈N for the functional ψ at the level c ((PS)c-sequence for short) is referred

to a sequence (un)n∈N such that ψ(un) → c and ψ′(un) → 0 in E′. The functional ψ

is said to satisfy Palais-Smale condition at the level c ((PS)c-condition for short) if any

(PS)c-sequence possesses a convergent subsequence in E, and to satisfy (PS)-condition if

ψ satisfies (PS)c-condition for every c ∈ R.

Definition 1.1.5. Let E be a Banach space and ψ ∈ C1(E,R). If the Fréchet derivative

ψ′(u) = 0 for u ∈ E, then we say that u ∈ E is a critical point of ψ. We call c ∈ R a

critical value, if there exists a critical point u ∈ E such that ψ(u) = c.

If ψ ∈ C1(E,R) is bounded from below and satisfies the (PS)c-condition at the level

c := infE ψ, then c is a critical value of ψ. Finding a critical point or a critical value of a

differentiable functional, which is usually the associated functional to some given equation,

is the main aim in the so-called variational methods. But in fact in the application the

associated functional is not always bounded from below. The following version of the
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Mountain Pass Theorem gives us an opportunity to overcome this problem, which is a

major contribution to variational methods and one of the most useful minimax theorems.

1.1.2 Mountain Pass Theorem

Theorem 1.1.6. (see Willem [103].) Let E be a real Banach space, and the functional

I ∈ C1(X,R). Suppose

(I0) I(0) = 0;

(I1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α; and

(I2) there is ū ∈ E \ B̄ρ such that I(ū) < 0.

Then, for each ε > 0, there exists u ∈ E such that

(a) c− 2ε ≤ I(u) ≤ c+ 2ε and

(b) ‖I ′(u)‖E′ < 2ε,

where

c = inf
g∈Γ

max
u∈g[0,1]

I(u) (1.1)

with

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = ū}.

Remark 1.1.7. If a functional has the geometric conditions (I0), (I1) and (I2), we say

that the functional satisfies the “mountain pass geometry”. In general, the minimax level

c defined by (1.1) may be not a critical level. Let us see the following example, which was

given by Brézis-Nirenberger.

Example. Set F (x, y) = x2 + (1 − x3)y2 for (x, y) ∈ R2. Then F has a unique critical

point, which is (0, 0) and its value is equal to 0. In fact, we can prove that

(I0) F (0, 0) = 0;

(I1) (0, 0) is a strict local minimizer; and

(I2) F is not bounded from below, i.e. F (s, s) = s2 + (1− s3)s2 → −∞ as s→∞.

The problem here is that we know that F satisfies mountain pass geometry, and then,

by Theorem 1.1.6, we can just get a (PS)-sequence, which has not any convergent sub-

sequence. In sum, it does not satisfy (PS)-condition. From the following Mountain Pass

Theorem, we can find that (PS)-condition plays an important role in order to get a critical

value. In other words, to find a critical point, the key step is to prove the compactness

of the given functional. And usually this is the most difficult procedure to achieve, in

particular, for the subject with unbounded domain or critical Sobolev exponent.

Theorem 1.1.8. (see Ambrosetti-Rabinowitz [6].) Under the assumptions of Theorem

1.1.6, if I satisfies the (PS)c-condition, then I possesses a critical value c ≥ α.
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1.2 Maximum principle

The maximum principle presents a property of solutions to certain partial differential

equations. In the following, we give a version of the maximum principle from Struwe [96],

which is due to Walter [100].

Theorem 1.2.1. Suppose L is of elliptic type

Lu = − ∂

∂xi

(
aij

∂

∂xj
u

)
+ cu

on a domain Ω of RN with bounded coefficients aij ∈ C1,α(Ω), c ∈ Cα(Ω), and aij = aji

satisfying the ellipticity condition

aijξiξj ≥ λ|ξ|2

with a uniform constant λ > 0, for all ξ ∈ RN . And suppose u ∈ C2(Ω) ∩ C1(Ω) satisfies

Lu ≥ 0 in Ω, and u ≥ 0 on Ω.

Then either u > 0 in Ω, or u ≡ 0 in Ω,

1.3 Sobolev embedding and the best Sobolev constant

To apply variational methods, usually an important step is to establish that the object

functional has compactness. To achieve this goal, the common way is to apply the Sobolev

embedding theorem. Before presenting the theorem, let us first give some notation of

Sobolev spaces from Struwe [96].

Let Ω ⊂ RN be an open set. For u ∈ L1
loc(Ω) and any multi-index α =

∑N
i=1 αi, with

|α| = α1 + ...+ αN , define the distributional derivative

Dαu =
∂α1

∂xα1
1

· · · ∂
αN

∂xαN1

u

by letting

〈ϕ,Dαu〉 =

∫
Ω

(−1)|α|uDαϕdx,

for all ϕ ∈ C∞0 (Ω). We say Dαu ∈ Lp(Ω), if there is a function gα ∈ Lp(Ω) satisfying

〈ϕ,Dαu〉 = 〈ϕ, gα〉 =

∫
Ω
ϕgαdx,

for all ϕ ∈ C∞0 (Ω). In this case, we identify Dαu with gα ∈ Lp(Ω).

Hence, for k ∈ N0, 1 ≤ p ≤ ∞, we may define the space

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all α : |α| ≤ k}
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with norm

‖u‖p
Wk,p =

∑
|α|≤k

‖Dαu‖pLp , if 1 ≤ p <∞,

respectively, with norm

‖u‖Wk,∞ = max
|α|≤k
‖Dαu‖L∞ .

And W k,p
0 (Ω) is the closure of C∞0 (Ω) in W k,p(Ω). When k = 1 and p = 2, as usual

W k,p
0 (Ω) is denoted by H1

0 (Ω).

1.3.1 Sobolev embedding theorem

Theorem 1.3.1. (see Struwe [96].) Let Ω ⊂ RN be a bounded domain with Lipschitz

boundary, k ∈ N, 1 ≤ p ≤ ∞. Then the following holds:

(i) If kp < N, we have W k,p (Ω) ↪→Lq (Ω) for 1 ≤ q ≤ Np
N−kp ; the embedding is compact, if

1 ≤ q < Np
N−kp ;

(ii) If 0 ≤ m < k − N
p < m + 1, we have W k,p (Ω) ↪→Cm,α

(
Ω
)

for 0 ≤ α ≤ k −m − N
p ;

the embedding is compact for 0 ≤ α < k −m− N
p .

Remark 1.3.2. (see Struwe [96].) Theorem 1.3.1 is valid for W k,p
0 (Ω) space on arbitrary

bounded domain Ω.

Note that the domain Ω is a bounded domain in Theorem 1.3.1. If the domain Ω is

unbounded, then the embedding in Theorem 1.3.1 is only continuous but not compact any

more. We can see, for example, the following theorem.

Theorem 1.3.3. (see Willem [103].) The following embeddings are continuous:

H1(RN ) ⊂ Lp(RN ) for 2 ≤ p <∞, N = 1, 2;

H1(RN ) ⊂ Lp(RN ) for 2 ≤ p ≤ 2∗, N ≥ 3

D1,2(RN ) ⊂ L2∗(RN ) for N ≥ 3.

According to the Sobolev embedding theorem, if the domain is bounded and the object

one needs to study is subcritical, then one usually can directly apply the theorem to get the

compactness. But when it comes to unbounded domain or critical problem, one can not

apply the compactness of the Sobolev embedding theorem and should need to seek other

methods to restore the compactness. As we mentioned in the introduction, we use three

different methods to restore the compactness throughout the thesis, since the domain we

study is R3. Of course, besides the methods we use here, there are other variant versions

of concentration compactness method, for example, concentration compactness at infinity

in Bianchi-Chabrowski-Szulkin [21] and Chabrowski [27] to achieve the goal. During the

study of the restoration of compactness, we still use the following best Sobolev constant.
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1.3.2 The best Sobolev constant

Theorem 1.3.4. (see Willem [103].)

(i) Let N ≥ 3. The optimal constant in the Sobolev inequality is given by

S := inf
u∈D1,2(RN ) ‖u‖2∗=1

‖∇u‖22 > 0.

(ii) For every open subset Ω of RN ,

S(Ω) := inf
u∈D1,2

0 (Ω) ‖u‖2∗=1
‖∇u‖22 = S

and S(Ω) is never achieved except when Ω = RN .

(iii) Let N ≥ 2 and 2 < p < 2∗. The Sobolev theorem impies that

Sp := inf
u∈H1(RN ) ‖u‖p=1

‖u‖2 > 0.

The infimum Sp is achieved by a positive, radially symmetric function in H1(RN ).

1.4 Some preparation shared in all chapters of our original

work

1.4.1 Definition of solutions of system (SP)

We search solutions in H1(R3) × D1,2(R3) for problem (SP). Since H1(R3) and

D1,2(R3) are both Sobolev spaces, solutions of this kind are often referred to as weak

solutions with the following meaning.

Definition 1.4.1. The pair (u, φ) ∈ H1(R3) × D1,2(R3) is called a solution of problem

(SP) if for any (v, ψ) ∈ H1(R3)×D1,2(R3) there holds
∫
R3

(∇u∇v + uv + l(x)φuv) dx =

∫
R3

κ(x, u)vdx,∫
R3

∇φ∇ψdx =

∫
R3

l(x)u2ψdx.

And we say that a solution (u, φ) is positive if u > 0, φ > 0 for any x ∈ R3 and sign

changing if u is sign changing since φ is always nonnegative.

1.4.2 Variational setting of problem (SP)

In this section, we will construct an energy functional associated to system (SP). This

is a very basic but fundamental process to apply variational methods. But first let us
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start with the following well-known Lax-Milgram theorem. Usually, the basic existence

and uniqueness result for general elliptic differential equations is based on this theorem.

Let X be a real Hilbert space and X ′ its dual space. Denote by 〈· , ·〉 the dual product

between X and X ′.

Definition 1.4.2. Let a(u, v) be a bilinear form on the Hilbert space X,

(i) a(u, v) is said to be bounded, if there exists M > 0 such that

|a(u, v)| ≤M‖u‖X‖v‖X , for any u, v ∈ X.

(ii) a(u, v) is said to be coercive, if there exists δ > 0 such that

|a(u, u)| ≥ δ‖u‖2X , for any u ∈ X.

Theorem 1.4.3. (see Lax-Milgram [69].) Let a(u, v) be a bounded, coercive bilinear form

on X. Then for any f ∈ X ′, there exists a unique u ∈ X such that

a(u, v) = 〈f, v〉, for any v ∈ X,

and

‖u‖X ≤
1

δ
‖f‖X′ ,

where δ > 0 is shown in the Definition 1.4.2.

Example. The following elliptic partial differential equation in D1,2(R3)

−∆φ = l(x)u2 in R3

for every fixed u ∈ H1(R3), which is the second equation in system (SP), where l ∈ L∞(R3)

or l ∈ L2(R3), may be solved using the above result.

In fact, for any fixed u ∈ H1(R3), let

a(φ, v) =

∫
R3

∇φ∇vdx

and

f(v) =

∫
R3

l(x)u2vdx.

We know that f is a bounded linear functional on D1,2(R3). And it is obvious that a is a

bilinear functional on D1,2(R3). Moreover one has that

|a(φ, v)| ≤ ‖φ‖D1,2‖v‖D1,2



8 1.4. Some preparation shared in all chapters of our original work

and

|a(φ, φ)| = ‖φ‖2D1,2 , for any φ ∈ D1,2(R3).

Therefore the problem satisfies the conditions of Lax-Milgram theorem and then there

exists, for every fixed u ∈ H1(R3), a unique φu satisfying∫
R3

∇φu∇vdx =

∫
R3

l(x)u2vdx, for every v ∈ D1,2(R3),

that is, the problem is solved.

As we have pointed out in the introduction, system (SP) can be reduced to a single

equation with a non-local term. Here we assume that l ∈ L∞(R3) or l ∈ L2(R3), which

will be used in our work. Actually, considering for any u ∈ H1(R3), denote Lu(v) the

linear functional in D1,2(R3) by

Lu(v) =

∫
R3

l(x)u2vdx.

If l ∈ L∞(R3), one may deduce from Hölder and Sobolev inequalities that

|Lu(v)| ≤ ‖l‖∞‖u‖212/5‖v‖6 ≤ C‖l‖∞‖u‖
2
12/5‖v‖D1,2 . (1.2)

And one may get a similar result with l ∈ L2(R3) that

|Lu(v)| ≤ ‖l‖2‖u2‖3‖v‖6 ≤ C‖l‖2‖u‖26‖v‖D1,2 . (1.3)

Hence, for any u ∈ H1(R3), the Lax-Milgram theorem implies that there exists a unique

φu ∈ D1,2(R3) such that∫
R3

∇φu∇v =

∫
R3

l(x)u2vdx for any v ∈ D1,2(R3),

i.e.,

φu is the unique weak solution of −∆φ = l(x)u2. (1.4)

We will prove the representation of φu. By taking u ∈ H1(R3), we set

φ =
1

4π

(
1

|x|
∗ (lu2)

)
=

1

4π

∫
R3

l(y)u2(y)

|x− y|
dy.

Then
∂

∂xi
φ = − 1

4π

(
xi
|x|3
∗ (lu2)

)
= − 1

4π

∫
R3

(xi − yi)l(y)u2(y)

|x− y|3
dy

and so ∣∣∣∣ ∂∂xiφ
∣∣∣∣ ≤ 1

4π

∣∣∣∣( 1

|x|2
∗ (lu2)

)∣∣∣∣ =
1

4π

∫
R3

|l(y)|u2(y)

|x− y|2
dy.
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It follows from the Hardy-Littlewood-Sobolev inequality (see Lieb-Loss [76]) that if f ∈
Lp(R3) and λ > 0, then ∥∥∥∥ 1

|x|λ
∗ f
∥∥∥∥
r

≤ C‖f‖p, (1.5)

where
1

p
+
λ

3
= 1 +

1

r
.

Thus, if l ∈ L2(R3), for λ = 1 and λ = 2, by (1.5) we have∥∥∥∥ 1

|x|
∗ lu2

∥∥∥∥
6

≤ C‖lu2‖ 6
5
≤ C‖l‖2‖u‖26 ≤ C‖l‖2‖u‖2

and ∥∥∥∥ 1

|x|2
∗ lu2

∥∥∥∥
2

≤ C‖lu2‖ 6
5
≤ C‖l‖2‖u‖26 ≤ C‖l‖2‖u‖2,

respectively. If l ∈ L∞(R3), for λ = 1 and λ = 2, by (1.5) we have∥∥∥∥ 1

|x|
∗ lu2

∥∥∥∥
6

≤ C‖lu2‖ 6
5
≤ C‖l‖∞‖u2‖ 6

5
≤ C‖l‖∞‖u‖2

and ∥∥∥∥ 1

|x|2
∗ lu2

∥∥∥∥
2

≤ C‖lu2‖ 6
5
≤ C‖l‖∞‖u2‖26

5

≤ C‖l‖∞‖u‖2,

respectively. Then, for l ∈ L∞(R3) or l ∈ L2(R3), we obtain that φ ∈ L6(R3) and
∂
∂xi
φ ∈ L2(R3) and so

φ ∈ D1,2(R3). (1.6)

Moreover, from Evans’ book [50], we know that

φ =
1

4π

(
1

|x|
∗ (lu2)

)
solves

−∆φ = l(x)u2

in the sense of distributions

1

4π

∫
R3

(
1

|x|
∗ (lu2)

)
∆v =

∫
R3

l(x)u2vdx for any v ∈ D1,2(R3), (1.7)

Combining (1.6) and (1.7), we get

φ =
1

4π

(
1

|x|
∗ (lu2)

)
is the solution of −∆φ = l(x)u2. (1.8)

Therefore, by (1.4) and (1.8), we know that for every fixed u ∈ H1(R3) the unique solution
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φu has the following representation

φu(x) =
1

4π

∫
R3

l(y)u2(y)

|x− y|
dy.

Clearly φu(x) ≥ 0 for any x ∈ R3 if l is a nonnegative function. We also, in particular,

have that

‖φu‖2D1,2 =

∫
R3

|∇φu|2dx =

∫
R3

l(x)φuu
2dx. (1.9)

Using (1.2) (or (1.3)), (1.9) and Sobolev inequalities, we obtain that

‖φu‖6 ≤ C‖φu‖D1,2 ≤ C‖u‖212/5 ≤ C‖u‖
2 if l ∈ L∞(R3) (1.10)

or

‖φu‖6 ≤ C‖φu‖D1,2 ≤ C‖u‖26 ≤ C‖u‖2 if l ∈ L2(R3).

Then we arrive at ∫
R3

l(x)φu(x)u2(x)dx ≤ C‖u‖4. (1.11)

Thus F : H1(R3)→ R is well defined with

F (u) =

∫
R3

l(x)φu(x)u2(x)dx. (1.12)

We know from (1.10) and (1.11) that the functional F ∈ C2(H1(R3),R) (see for instance

[26]). In fact, in our work, we only need that F ∈ C1(H1(R3),R), and we give a detailed

proof of this result for l ∈ L∞(R3) by Lemma 4.1.2.

Let us introduce the following Euler functional of problem (NSN ) as I : H1(R3)→ R
defined by

I(u) =
1

2
‖u‖2 +

1

4
F (u)−

∫
R3

K(x, u)dx, (1.13)

where K(x, u) =
∫ u

0 κ(x, s)ds. Hence the functional I ∈ C1(H1(R3),R) under the assump-

tion that κ(x, u) has the variational structure. Moreover,

〈I ′(u), v〉 =

∫
R3

(∇u∇v + uv) dx+

∫
R3

l(x)φuuvdx−
∫
R3

κ(x, u)vdx (1.14)

for any v ∈ H1(R3). Hence if u ∈ H1(R3) is a critical point of I on H1(R3), then (u, φu)

is a solution of system (SP). Noting that φu is always nonnegative if the weight function

l ≥ 0 and l 6≡ 0 in R3, in particular, if u > 0, then φu > 0. Therefore, to find the posi-

tive and sign changing solutions of system (SP), it suffices to study the positive and sign

changing critical points of I in H1(R3), respectively.
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1.4.3 One weakly continuous condition

To end this chapter, we prove a basic lemma, which will be used throughout the

following four chapters in our work.

Definition 1.4.4. Let E be a Banach space. We call a functional ψ : E → R weakly

continuous if, for any sequence (un)n∈N such that un ⇀ u in E, there holds

ψ(un)→ ψ(u).

Lemma 1.4.5. (see Willem [103].) Let Ω be a open subset of RN . Denote D1,2
0 (Ω) as the

closure of C∞0 (Ω) in D1,2(RN ). If N ≥ 3 and a ∈ LN/2(Ω), then the functional

ψ : D1,2
0 (Ω)→ R : u 7→

∫
Ω
a(x)u2dx

is weakly continuous.

From a similar proof as Lemma 1.4.5, we obtain the following result. For the conve-

nience, we give the proof as following.

Lemma 1.4.6. If h ∈ L6/(6−q)(R3) and 2 ≤ q < 6, then the functional

ψh : H1(R3)→ R : u 7→
∫
R3

h(x)|u|qdx

is weakly continuous. And if h ∈ L3/2(R3), for each v ∈ H1(R3), the functional

Ψh : H1(R3)→ R : u 7→
∫
R3

h(x)uvdx

is weakly continuous.

Proof. It follows from the Sobolev and Hölder inequalities that

|ψh(u)| =
∣∣∣∣∫

R3

h(x)|u|qdx
∣∣∣∣ ≤ ‖h‖ 6

6−q
‖u‖q6 ≤ C‖h‖ 6

6−q
‖u‖q,

and

|Ψh(u)| =
∣∣∣∣∫

R3

h(x)uvdx

∣∣∣∣ ≤ ‖h‖ 3
2
‖u‖6‖v‖6 ≤ C‖h‖ 3

2
‖u‖‖v‖,

which imply that the functionals ψh and Ψh are well defined, respectively. Assume that

un ⇀ u in H1(R3). Going if necessary to a subsequence (still denoted by (un)n∈N), we

may assume that

un → u a.e. in R3 and |un| → |u| a.e. in R3.

Since we get, by Sobolev inequality, that (un)n∈N is bounded in L6(R3), (|un|q)n∈N is
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bounded in L6/q(R3), and we have

|un|q ⇀ |u|q in L6/q(R3)

and

un ⇀ u in L6(R3).

Thus by h ∈ L6/(6−q)(R3) we arrive at∫
R3

h(x)|un|qdx→
∫
R3

h(x)|u|qdx.

Moreover, for every v ∈ H1(R3), we deduce that h(x)v ∈ L6/5(R3) from∫
R3

|h(x)v|6/5dx ≤ ‖h‖
6
5
3
2

‖v‖
6
5 ,

since h ∈ L3/2(R3). Then we conclude that∫
R3

h(x)unvdx→
∫
R3

h(x)uvdx

because un ⇀ u in L6(R3), which finishes the proof of this lemma. �



Chapter 2

Two positive solutions of a class of

Schrödinger-Poisson systems with

an indefinite nonlinearity

In this chapter, we consider the case that κ(x, u) = k(x)|u|p−2u+ µh(x)u, that is, the

following non-autonomous nonlinear Schrödinger-Poisson system with the form{
−∆u+ u+ l(x)φu = k(x)|u|p−2u+ µh(x)u in R3,

−∆φ = l(x)u2 in R3,
(Pµ)

where 4 < p < 6 and µ > 0. We are interested in the case that k is sign changing in R3

and lim|x|→∞ k(x) = k∞ < 0, which is why we call it an indefinite nonlinearity. We are

concerned with the two situations: (a) 0 < µ < µ1 and (b) µ ≥ µ1 but near µ1, where µ1 is

the first eigenvalue of −∆ + id in H1(R3) with weight function h. It is worth mentioning

that, in the case when µ is contained in a small right neighborhood of µ1, the question

of existence of positive solutions to the problem with indefinite nonlinearity is even more

interesting. We will explain it in detail later on in this section.

Assume the following hypotheses (H):

(Hh) h ∈ L3/2(R3), h(x) ≥ 0 for any x ∈ R3 and h 6≡ 0;

(Hk1) k ∈ C(R3) and k changes sign in R3;

(Hk2) lim|x|→∞ k(x) = k∞ < 0;

(Hl1) l ∈ L2(R3), l(x) ≥ 0 for any x ∈ R3 and l 6≡ 0;

(Hl2) l = 0 a.e. in Ω0, where Ω0 = {x ∈ R3 : k(x) = 0} and Ω0 coincides with the

closure of its interior.

Then with the above assumptions in this chapter we mainly prove the following result.

Theorem 2.0.7. Assume the hypotheses (H) hold and 4 < p < 6. Then

13
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2. Two positive solutions of a class of Schrödinger-Poisson systems with an indefinite

nonlinearity

(1) for 0 < µ ≤ µ1 problem (Pµ) has at least one positive solution in H1(R3)×D1,2(R3);

(2) there exists ε̄ > 0 such that, for µ1 < µ < µ1 + ε̄, problem (Pµ) has at least two

positive solutions in H1(R3)×D1,2(R3).

To study Theorem 2.0.7, we use the variational method. For system (Pµ), the equation

(NSN ) becomes

−∆u+ u+ l(x)φuu = k(x)|u|p−2u+ µh(x)u in R3. (2.1)

In the case 0 < µ < µ1, the linear part of (2.1) is coercive, i.e.∫
R3

(
|∇u|2 + u2 − µh(x)u2

)
dx→∞ as ‖u‖ → ∞

and one may use standard variational techniques to get a positive solution, provided

that the (PS)-condition is satisfied. It should be pointed out, however, that the (PS)-

condition is a difficult issue here, since the system is considered in the whole space R3

and the Sobolev embedding H1(R3) ↪→ Ls(R3) (2 ≤ s ≤ 6) is not compact any more.

We manage to restore the compactness by some techniques, motivated by Willem [103],

under some or under the above assumptions on l, k and h. For the case that µ ≥ µ1

and near µ1, in which the linear part of (2.1) is not coercive any more, the situation is

more delicate. We need to face two more difficulties than in the case 0 < µ < µ1. One

is to prove the boundedness of the (PS)-sequence, since in this situation with indefinite

nonlinearity, the standard method of getting bounded (PS)-sequence is not applicable. We

have to analyze the (PS)-sequence carefully and prove the boundedness of (PS)-sequence

indirectly. The other is to verify the mountain pass geometry. Usually one may find that

zero is a local minimizer of the associated functional to the equation (2.1) and then use

the Mountain Pass Theorem to find a nontrivial solution. However, for the case µ ≥ µ1,

the principal part of the associated functional to the equation (2.1) is non-coercive which

makes it difficult to prove the geometry. To explain our strategy and new phenomenon of

dealing with (Pµ) in the case µ ≥ µ1, we recall some known results for semilinear elliptic

equations.

Costa and Tehrani [36] studied the existence of positive solutions to the following

elliptic equation with indefinite nonlinearity

−4u = a(x)g(u) + λ̄h̄(x)u, u ∈ D1,2(RN ),

where a is sign changing in RN , lim|x|→∞ a(x) = a∞ < 0 and g(s) ∼ O(sp−1) as |s| →
0 with suitable assumptions on p. Besides some other assumptions, they assume the

condition
∫
RN a(x)ēp1dx < 0 and λ̄ is contained in a small right neighborhood of λ̄1, where

λ̄1 is the first eigenvalue of the eigenvalue problem −4u = λ̄h̄(x)u in D1,2(RN ) and
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ē1 ∈ D1,2(RN ) is the eigenfunction corresponding to λ̄1. In [36] the condition∫
RN

a(x)ēp1dx < 0 (2.2)

is a sufficient condition to get the existence of multiple positive solutions. Alama and

Tarantello [1] studied the existence of multiple positive solutions of

−4u− λ̃u = W (x)f(u), u ∈ H1
0 (Ω)

with Ω being a smooth bounded domain of RN , where W (x) ∈ C(Ω̄) is sign changing.

Denoted by λ̃1 the first eigenvalue of the eigenvalue problem −4u = λ̃u, H1
0 (Ω). The

corresponding eigenfunction is denoted by ẽ1. Alama and Tarantello have shown that, for

f behaving like |u|q−2u near zero with suitable assumptions on q,∫
Ω
W (x)ẽq1dx < 0 (2.3)

is a sufficient condition to the existence of multiple positive solutions of the equation,

which is also shown to be necessary for homogenous f . To our best knowledge, we know

that, for the semilinear elliptic equations with indefinite nonlinearity, it needs a similar

condition (2.2) to get positive solutions, also see e.g. Drábek-Huang [47]. However, in

the present chapter we show a new phenomenon that, for the Schrödinger-Poisson system

with indefinite nonlinearity, this kind of condition is not necessary.

We emphasize here that the condition (2.2) in [36] or the condition (2.3) in [1] is

technically used to overcome the obstacle of verifying the mountain pass geometry in the

non-coercive case with sign changing nonlinearity. But in our case, we delicately analyze

the behavior of the non-local term and find that, in the competing of the non-local term

with the indefinite nonlinear term, the former may dominate the situation, which implies

that it is not necessary to involve a similar condition (2.2) any more.

This chapter is organized as follows. In Section 1, we mainly prove that the (PS)c-

condition holds at any level c for the associated functional to the equation (2.1), where

the assumptions (Hl1), (Hl2) and (Hk2) play an important role. Section 2 is devoted to

the proof of Theorem 2.0.7, where we get two positive solutions of the problem. One is

a mountain-pass type solution, the other is a local minimizer. Hence we get two positive

solutions of (Pµ).

The results of this chapter are published in [60].

2.1 The proof of Palais-Smale condition

In this section, our main objective is to prove the (PS)-condition. But first let us

introduce some notations. Define the sets Ω+ = {x ∈ R3 : k(x) > 0}, Ω− = {x ∈ R3 :

k(x) < 0} and Ω0 = {x ∈ R3 : k(x) = 0}. Let σ(−∆ + id,Ω0, h) denote the collection of
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eigenvalues of −∆ + id in H1
0 (Ω0) with the weight function h. If the Lebesgue measure of

Ω0 is zero, i.e., |Ω0| = 0, then σ(−∆ + id,Ω0, h(x)) = ∅.
Denote the functional I defined by (1.13) corresponding to the equation (2.1) in this

chapter as Iµ with

Iµ(u) =
1

2
‖u‖2 +

1

4

∫
R3

l(x)φu(x)u2(x)dx−
∫
R3

(
1

p
k(x)|u|p +

µ

2
h(x)u2

)
dx.

Therefore one has that the functional Iµ is of class C2 in H1(R3), moreover,

〈I ′µ(u), ϕ〉 =

∫
R3

(∇u∇ϕ+ uϕ) dx+

∫
R3

l(x)φuuϕdx−
∫
R3

(
k(x)|u|p−2uϕ+ µh(x)uϕ

)
dx

for any ϕ ∈ H1(R3).

Lemma 2.1.1. (see [26, Lemma 2.1].) Let the operator Φ : H1(R3)→ D1,2(R3) be defined

by Φ(u) := φu, that is, the solution in D1,2(R3) of −∆φ = l(x)u2. If the hypothesis (Hl1)

holds and a sequence (un)n∈N satisfies un ⇀ u in H1(R3), then Φ(un) ⇀ Φ(u) in D1,2(R3).

Now we are in a position to prove (PS)-condition for the functional Iµ.

Lemma 2.1.2. Suppose that the hypotheses (Hl1), (Hl2), (Hk1) and (Hh) hold, and 4 <

p < 6. If µ 6∈ σ(−∆ + id,Ω0, h), then for every c ∈ R, the (PS)c-sequence is bounded in

H1(R3).

Proof. Let (un)n∈N ⊂ H1(R3) be a (PS)c-sequence for Iµ at the level c, i.e.,

Iµ(un) =
1

2
‖un‖2 +

1

4
F (un)− 1

p

∫
R3

k(x)|un|pdx−
µ

2

∫
R3

h(x)|un|2dx→ c (2.4)

and

〈I ′µ(un), ϕ〉 =

∫
R3

(∇un∇ϕ+ unϕ) dx+

∫
R3

l(x)φununϕ

−
∫
R3

k(x)|un|p−2unϕdx− µ
∫
R3

h(x)unϕdx→ 0
(2.5)

for any ϕ ∈ H1(R3) as n→∞. Arguing by contradiction, we assume that tn := ‖un‖ and

tn →∞ as n→∞. Denote vn := un/tn. Then we have that

‖vn‖ =
1

tn
‖un‖ = 1

for each n ∈ N. Going if necessary to a subsequence, we may assume that there is v ∈
H1(R3) such that for each bounded domain Ω ⊂ R3,

vn ⇀ v in H1(R3),

vn(x)→ v(x) a.e. in R3,

vn → v in Ls(Ω) for 2 < s < 6,

|vn(x)| ≤ wΩ(x) for some wΩ ∈ Ls(Ω).

(2.6)
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Hence, for any ϕ ∈ H1(R3), we have that∫
R3

(∇vn∇ϕ+ vnϕ) dx→
∫
R3

(∇v∇ϕ+ vϕ) dx. (2.7)

In the first place, we claim that v(x) = 0 a.e. in R3. In fact, since un = tnvn, (2.5)

becomes ∫
R3

(∇vn∇ϕ+ vnϕ) dx+ t2n

∫
R3

l(x)φvnvnϕdx

−tp−2
n

∫
R3

k(x)|vn|p−2vnϕdx− µ
∫
R3

h(x)vnϕdx→ 0
(2.8)

as n → ∞. In the following we will prove the claim for x contained in Ω+,Ω− and Ω0,

respectively. Hypothesis (Hk1) implies that Ω+ 6= ∅ and Ω− 6= ∅. First, we consider the

case of x ∈ Ω+. Since k ∈ C(R3), there exists δ > 0 such that

k(y) > 0 for any y ∈ Bδ(x). (2.9)

Define ζm ∈ C1(R3) (m > 2) such that ζm(y) ≥ 0 for any y ∈ R3 and

ζm(y) =

 1, y ∈ B(
1
2
− 1
m2

)
δ
(x),

0, y ∈ R3 \Bδ/2(x).

Taking ϕ = vζm in (2.8), we know that suppϕ ⊂ Bδ/2(x) for any m ∈ N and m > 2. It is

deduced from (2.6) that

k(y)|vn(y)|p−2vn(y)ϕ(y)→ k(y)|v(y)|p−2v(y)ϕ(y), for y ∈ Bδ/2(x),

and

|k(y)|vn(y)|p−2vn(y)ϕ(y)| ≤ C|wΩ(y)|p−1|ϕ(y)| ∈ L1(Bδ/2(x)).

Therefore, by the Lebesgue dominated convergent theorem, we achieve that∫
Bδ/2(x)

k(y)|vn|p−2vnϕdy →
∫
Bδ/2(x)

k(y)|v|p−2vϕdy. (2.10)

Dividing (2.8) by tp−2 and passing to the limit as n→∞, by the boundedness of vn and

(1.10), we get that

0 = lim
n→∞

∫
R3

k(y)|vn|p−2vnϕdy

=

∫
Bδ/2(x)

k(y)|v|p−2vϕdy

=

∫
B( 1

2−
1
m2 )δ(x)

k(y)|v|pdy +

∫
B δ

2
(x)\B( 1

2−
1
m2 )δ(x)

k(y)|v|pζmdy

(2.11)
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for any m ∈ N and m > 2. Passing to the limit in (2.11) as m→∞, we obtain∫
Bδ/2(x)

k(y)|v|pdy = 0,

which, with (2.9), implies that v = 0 a.e. in Bδ/2(x). Since x ∈ Ω+ is chosen arbitrarily,

we get that v = 0 a.e. in Ω+. In a similar way, we can get that v = 0 a.e. in Ω−. Next,

to finish the proof of the claim, it is sufficient to prove that v = 0 a.e. in Ω0. If |Ω0| = 0,

we finish the proof of the claim. If |Ω0| 6= 0, take ϕ ∈ C1(R3) with suppϕ ⊆ Ω0 in (2.8).

Hence, by the definition of Ω0 and the assumption that l = 0 a.e. in Ω0 respectively, we

obtain that ∫
R3

k(y)|vn|p−2vnϕdy =

∫
suppϕ

k(y)|vn|p−2vnϕdy = 0 (2.12)

and ∫
R3

l(y)φvnvnϕdy =

∫
suppϕ

l(y)φvnvnϕdy = 0 (2.13)

for any n ∈ N. Using (2.7), (2.12), (2.13), Lemma 1.4.6 and passing to the limit in (2.8)

as n→∞, we arrive at ∫
R3

(∇v∇ϕ+ vϕ) dx = µ

∫
R3

h(x)vϕdx.

Combining this with the fact that v = 0 a.e. in Ω+ ∪ Ω−, we deduce that∫
Ω0

(∇v∇ϕ+ vϕ) dx = µ

∫
Ω0

h(x)vϕdx.

Since µ 6∈ σ(−∆ + id,Ω0, h), one obtains that v = 0 a.e. in Ω0. The proof of the claim is

complete. Hence, vn ⇀ 0 in H1(R3). Lemma 1.4.6 implies that

lim
n→∞

∫
R3

h(x)v2
ndx = 0. (2.14)

In the second place, choosing ϕ = vn in (2.5), dividing (2.4) by t2n = ‖un‖2 and dividing

(2.5) by tn = ‖un‖, we get that

1

2
+
t2n
4
F (vn)− 1

p

∫
R3

k(x)|un|p−2v2
ndx−

µ

2

∫
R3

h(x)v2
ndx→ 0 (2.15)

and

1 + t2nF (vn)−
∫
R3

k(x)|un|p−2v2
ndx− µ

∫
R3

h(x)v2
ndx→ 0 (2.16)

as n→∞. With the help of (2.14), we can obtain from (2.15) that as n→∞,

1

2
+
t2n
4
F (vn)− 1

p

∫
R3

k(x)|un|p−2v2
ndx→ 0. (2.17)
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Similarly, we deduce from (2.16) that as n→∞,

1 + t2nF (vn)−
∫
R3

k(x)|un|p−2v2
ndx→ 0. (2.18)

Combining (2.17)–(2.18) with the assumption of 4 < p < 6, we deduce that

lim
n→∞

∫
R3

k(x)|un|p−2v2
ndx =

p

4− p
< 0.

On the other hand, (2.17) implies that

lim
n→∞

∫
R3

k(x)|un|p−2v2
ndx > 0,

which is a contradiction. Hence (un)n∈N is bounded in H1(R3). �

Lemma 2.1.3. Suppose that the hypotheses (H) hold and 4 < p < 6. If µ 6∈ σ(−∆ +

id,Ω0, h), then the functional Iµ satisfies (PS)c-condition for any c ∈ R.

Proof. We have to prove that any sequence (un)n∈N ⊂ H1(R3) for which Iµ(un) → c

and I ′µ(un) → 0 in H−1(R3) contains a convergent subsequence. According to Lemma

2.1.2, (un)n∈N is bounded in H1(R3). Going if necessary to a subsequence (still denoted

by (un)n∈N), we may assume that

un ⇀ u in H1(R3),

un → u a.e. in R3,

∇un ⇀ ∇u in L2(R3)

and

un ⇀ u in L2(R3).

Define wn = k(x)|un|p−2un and w = k(x)|u|p−2u. Then wn → w a.e. in R3. Since

(un)n∈N is bounded in Lp(R3) for 4 < p < 6 and k is bounded in R3, then wn is bounded

in Lp/(p−1)(R3) and so wn ⇀ w in Lp/(p−1)(R3) with 4 < p < 6. Note that, for any

ψ ∈ H1(R3), one has that∫
R3

k(x)|un|p−2unψdx→
∫
R3

k(x)|u|p−2uψdx (2.19)

and ∫
R3

(∇un∇ψ + unψ) dx→
∫
R3

(∇u∇ψ + uψ) dx (2.20)

as n→∞. By Lemma 1.4.6, we also have that∫
R3

h(x)unψdx→
∫
R3

h(x)uψdx. (2.21)



20 2.1. The proof of Palais-Smale condition

Moreover from the hypothesis (Hl1) one deduces that∫
R3

l(x)φun(x)u2
n(x)dx =

∫
R3

l(x)φu(x)u2(x)dx+ o(1) (2.22)

for n large and that for all ψ ∈ H1(R3),∫
R3

l(x)φun(x)un(x)ψ(x)dx =

∫
R3

l(x)φu(x)u(x)ψ(x)dx+ o(1). (2.23)

For the proof of (2.22) and (2.23), we borrow the strategy from Cerami-Vaira [26]. In fact,

in view of the Sobolev embedding theorems and Lemma 2.1.1, one obtains from un ⇀ u

in H1(R3) that

(a) un ⇀ u in L6(R3),

(b) u2
n → u2 in L3

loc(R3),

(c) φun ⇀ φu in D1,2(R3),

(d) φun → φu in L3
loc(R3).

(2.24)

Thus, given ε > 0, using (2.24) (c), we have that, for large n∣∣∣∣∫
R3

l(x)u2(x)(φun − φu)(x)dx

∣∣∣∣ ≤ ε (2.25)

and, for any fixed ψ, using (2.24) (a),∣∣∣∣∫
R3

l(x)φu(x)ψ(x)(un − u)(x)dx

∣∣∣∣ < ε. (2.26)

Furthermore, considering (2.24) (b) and (2.24) (d) respectively, we can assert that for any

choice of ε and ρ > 0, the relations

(∫
Bρ(0)

|u2
n − u2|3dx

) 1
3

< ε (2.27)

and (∫
Bρ(0)

|φun − φu|6dx

) 1
6

< ε (2.28)

hold true for large n. On the other hand, being (un)n∈N bounded in H1(R3), (φun)n∈N is

bounded in D1,2(R3) and in L6(R3), because of (1.10) and the continuity of the Sobolev

embedding of D1,2(R3) in L6(R3). Moreover, l ∈ L2(R3) implies that lu2
n and lu2 belong

to L
6
5 (R3) and that to any ε > 0 there corresponds ρ̄ = ρ̄(ε) such that

(∫
R3\Bρ(0)

|l(x)|2 dx

) 1
2

< ε for ρ ≥ ρ̄. (2.29)

Hence, by using (2.25), (2.27), and (2.29), we deduce that for large n
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∣∣∣∣∫
R3

l(x)φun(x)u2
n(x)dx−

∫
R3

l(x)φu(x)u2(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R3

l(x)φun(x)
(
u2
n − u2

)
(x)dx

∣∣∣∣+

∣∣∣∣∫
R3

l(x) (φun(x)− φu(x))u2(x)dx

∣∣∣∣
≤ ‖φun‖6 ·

(∫
R3

|l(x)
(
u2
n − u2

)
(x)|

6
5dx

) 5
6

+ ε

≤ C

(∫
R3\Bρ(0)

|l(x)
(
u2
n − u2

)
(x)|

6
5dx+

∫
Bρ(0)

|l(x)
(
u2
n − u2

)
(x)|

6
5dx

) 5
6

+ ε

≤ C

(∫
R3\Bρ(0)

|l(x)|2dx

) 3
5 ∣∣u2

n − u2
∣∣ 6

5

3
+ |l|

6
5
2

(∫
Bρ(0)

∣∣u2
n − u2

∣∣3 dx) 2
5


5
6

+ ε

≤ Cε,

proving (2.22). Analogously, by using (2.26), (2.28), and (2.29), we infer for large n∣∣∣∣∫
R3

l(x)φun(x)un(x)ψ(x)dx−
∫
R3

l(x)φu(x)u(x)ψ(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R3

l(x)φu(x) (un(x)− u(x))ψ(x)dx

∣∣∣∣+

∣∣∣∣∫
R3

l(x) (φun(x)− φu(x))un(x)ψ(x)dx

∣∣∣∣
≤ ‖un‖6‖ψ‖6 ·

(∫
R3

|l(x) (φun − φu) (x)|
3
2dx

) 2
3

+ ε

≤ Cε

proving (2.23). Combining (2.19)–(2.21) with (2.22), we obtain that

〈I ′µ(un), ψ〉 =

∫
R3

(∇un∇ψ + unψ)dx+

∫
R3

l(x)φununψdx

−
∫
R3

k(x)|un|p−2unψdx− µ
∫
R3

h(x)unψdx

→
∫
R3

(∇u∇ψ + uψ)dx+

∫
R3

l(x)φuuψdx

−
∫
R3

k(x)|u|p−2uψdx− µ
∫
R3

h(x)uψdx

= 〈I ′µ(u), ψ〉.

On the other hand, from I ′µ(un) → 0 in H−1(R3), we get that 〈I ′µ(un), ψ〉 → 0 for any

ψ ∈ H1(R3). Therefore 〈I ′µ(u), ψ〉 = 0 for any ψ ∈ H1(R3). In particular,

〈I ′µ(u), u〉 = 0. (2.30)

Denote vn = un − u. Then vn ⇀ 0 in H1(R3), which implies, by (2.22) and Lemma 1.4.6,

that

lim
n→∞

F (vn) = 0 and lim
n→∞

∫
R3

h(x)v2
n(x)dx = 0. (2.31)

Furthermore, it is deduced from the Brézis-Lieb lemma [22] and Lemma 1.4.6 respectively
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that, for n large,

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1),∫
R3

k(x)|un|pdx =

∫
R3

k(x)|vn|pdx+

∫
R3

k(x)|u|pdx+ o(1)

and ∫
R3

h(x)u2
ndx =

∫
R3

h(x)v2
ndx+

∫
R3

h(x)u2dx+ o(1).

Therefore, with the help of (2.22), we get that

〈I ′µ(un), un〉 = 〈I ′µ(u), u〉+ ‖vn‖2 + F (vn)

−
∫
R3

k(x)|vn|pdx− µ
∫
R3

h(x)v2
ndx+ o(1),

which, together with (2.30) and (2.31), implies

lim
n→∞

(
‖un − u‖2 −

∫
R3

k(x)|un − u|pdx
)

= 0 (2.32)

since I ′µ(un)→ 0 in H−1(R3) and (un)n∈N is bounded in H1(R3).

Next, without loss of generality, we may assume that k∞ < −1. Then (Hk2) implies

that there is R0 > 0 such that

k(x) < −1 if |x| > R0. (2.33)

Moreover, since k ∈ C(R3) and 4 < p < 6, we arrive at∫
|x|≤R0

k(x)|un − u|pdx→ 0 (2.34)

as n→∞. It is now deduced from (2.32)–(2.34) that

0 ≤ lim sup
n→∞

‖un − u‖2

= lim inf
n→∞

∫
R3

k(x)|un − u|pdx

≤ lim
n→∞

∫
|x|≤R0

k(x)|un − u|pdx = 0.

This proves that un → u in H1(R3). �

2.2 Existence of two positive solutions

In this section, we will prove the existence and multiplicity of positive critical points of

Iµ on H1(R3). Our main strategy is to study suitable minimization problem and minimax

procedure. We emphasize that, with the help of Lemma 2.1.3, an important thing is to

study the geometrical structure of Iµ. Let us start with the following well-known lemma.
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Lemma 2.2.1. Assume h ∈ L3/2(R3) and h(x) ≥ 0. Then for every u ∈ H1(R3), there

exists a unique w ∈ H1(R3) such that

−∆w + w = h(x)u.

Moreover, the operator Kh : H1(R3)→ H1(R3) defined by Kh(u) = w is compact.

Using the spectral theory of compact symmetric operators on Hilbert space, the above

lemma implies the existence of a sequence of eigenvalues (µn)n∈N of

−∆u+ u = µh(x)u, u ∈ H1(R3)

with µ1 < µ2 ≤ · · · and each eigenvalue being of finite multiplicity. The associated

normalized eigenfunctions are denoted by e1, e2, · · · with ‖ei‖ = 1, i = 1, 2, · · · . Moreover,

since Kh is a positive operator, one has µ1 > 0 with a positive eigenfunction e1 > 0 in R3.

In addition, we have the following variational characterization of µn:

µ1 = inf
u∈H1(R3)\{0}

‖u‖2∫
R3 h(x)u2dx

, µn = inf
u∈S⊥n−1\{0}

‖u‖2∫
R3 h(x)u2dx

, (2.35)

where S⊥n−1 = {span{e1, e2, · · · , en−1}}⊥. Let µ̄1 be the first eigenvalue of

−∆u+ u = µh(x)u, in H1
0 (Ω0).

Then clearly µ1 < µ̄1 and we have that µ 6∈ σ(−∆ + id,Ω0, h) for any µ < µ̄1.

In the following, we prove the mountain pass geometry for the functional Iµ for µ less

than µ1 and µ in the right neighborhood of µ1, respectively.

Lemma 2.2.2. Assume that the hypotheses (H) hold and 4 < p < 6.

(I1) If 0 < µ < µ1, then u = 0 is the local minimum of Iµ;

(I ′1) There are positive constants δ̄, ρ and α such that, for any µ ∈ [µ1, µ1+δ̄), Iµ|∂Bρ ≥ α;

And

(I2) there is ū ∈ H1(R3) with ‖ū‖ > ρ such that Iµ(ū) < 0 for any µ > 0.

Proof. (i) Proof of (I1): By (Hl1) one has that F (u) ≥ 0. (Hk1) and (Hk2) imply

that k is bounded in R3. Thus, by (2.35) and the continuity of the Sobolev embedding of

H1(R3) in Lp(R3), we deduce that

I(u) =
1

2
‖u‖2 +

1

4
F (u)− 1

p

∫
R3

k(x)|u|pdx− µ

2

∫
R3

h(x)u2dx

≥ 1

2
‖u‖2 − C‖u‖p − µ

2µ1
‖u‖2

= ‖u‖2
(

1

2
− µ

2µ1
− C‖u‖p−2

)
.
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Choosing ρ = ‖u‖ small enough such that

Cρp−2 ≤ 1

4

(
1− µ

µ1

)
,

we obtain that

I(u) ≥ 1

4

(
1− µ

µ1

)
ρ2. (2.36)

Therefore the conclusion (I1) follows.

(ii) Proof of (I ′1): For any u ∈ H1(R3), there exist t ∈ R and v ∈ S⊥1 such that

u = te1 + v, where

∫
R3

(∇v∇e1 + ve1) dx = 0. (2.37)

Hence we get from direct computation that

‖u‖ =
(
‖∇(te1 + v)‖22 + ‖te1 + v‖22

) 1
2 =

(
t2 + ‖v‖2

) 1
2 , (2.38)

µ2

∫
R3

h(x)v2dx ≤ ‖v‖2, (2.39)

µ1

∫
R3

h(x)e2
1dx = ‖e1‖2 = 1 (2.40)

and

µ1

∫
R3

h(x)e1vdx =

∫
R3

(∇v∇e1 + ve1) dx = 0. (2.41)

Using the mean value theorem, we know that there exists ϑ with 0 < ϑ < 1 such that

|F (te1 + v)− F (te1)| = 4

∣∣∣∣∫
R3

l(x)φte1+ϑv(te1 + ϑv)vdx

∣∣∣∣
≤ 4 |l|2 |φte1+ϑv|6 |te1 + ϑv|6 |v|
≤ C‖l‖22‖te1 + ϑv‖3‖v‖
≤ C0

(
|t|3‖v‖+ ϑ3‖v‖4

)
.

(2.42)

We first consider the case that µ = µ1 and estimate the value of Iµ1 for u not too small.

Denoting θ := 1
2

(
1− µ1

µ2

)
> 0, by (2.38)–(2.42) and the boundedness of the function k,
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one has that

Iµ1(u) =
1

2
‖u‖2 +

1

4
F (u)− µ1

2

∫
R3

h(x)u2dx− 1

p

∫
R3

k(x)|u|pdx

=
1

2

(
t2 + ‖v‖2

)
+

1

4
F (te1) +

1

4
F (te1 + v)− 1

4
F (te1)

−µ1

2

∫
R3

h(x)(te1 + v)2dx− 1

p

∫
R3

k(x)|u|pdx

≥ 1

2
‖v‖2 − µ1

2

∫
R3

h(x)v2dx+
1

4
t4F (e1)

−C0

(
|t|3‖v‖+ ϑ3‖v‖4

)
− 1

p

∫
R3

k(x)|u|pdx

≥ 1

2
‖v‖2 − µ1

2µ2
‖v‖2 +

1

4
t4F (e1)− C0|t|3‖v‖ − C0ϑ

3‖v‖4 − C2|t|p − C5‖v‖p

≥ θ‖v‖2 + C1|t|4 − C2|t|p − C3|t|3‖v‖ − C4‖v‖4 − C5‖v‖p.

Note that, for ‖v‖ ≤ |t|p−3, one obtains that

Iµ1(u) ≥ θ‖v‖2 + C1|t|4 − (C2 + C3) |t|p − C4‖v‖4 − C5‖v‖p.

Since there is C6 > 0 such that

C1|t|4 − (C2 + C3) |t|p ≥ C6t
2

for some t with (
2C6

C1

) 1
2

≤ |t| <
(

C1

2(C2 + C3)

) 1
p−4

. (2.43)

On the other hand, for ‖v‖ ≤ 1, one may deduce that

θ‖v‖2 − C4‖v‖4 − C5‖v‖p ≥ θ‖v‖2 − (C4 + C5) ‖v‖4 ≥ θ

2
‖v‖2,

as long as ‖v‖2 ≤ θ
2(C4+C5) . In sum, there is C6 > 0 such that for t satisfying (2.43) and v

with

‖v‖ ≤ min

{
|t|p−3, 1,

(
θ

2(C4 + C5)

) 1
2

}
, (2.44)

one deduce by some computations that

Iµ1(u) ≥ θ

2
‖v‖2 + C6t

2 ≥ min

{
θ

2
, C6

}(
‖v‖2 + t2

)
= min

{
θ

2
, C6

}
‖u‖2. (2.45)

Let δ̄ = µ1 min
{
θ
2 , C6

}
> 0. For any µ ∈ [µ1, µ1 + δ̄), by (2.45), we obtain

Iµ(u) = Iµ1(u) +
1

2
(µ1 − µ)

∫
R3

h(x)u2dx

≥ min

{
θ

2
, C6

}
‖u‖2 − µ− µ1

2µ1
‖u‖2

≥ 1

2
min

{
θ

2
, C6

}
‖u‖2.
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Take

ρ := ‖u‖ =
(
t2 + ‖v‖2

) 1
2

with t satisfying (2.43) and v satisfying (2.44). Hence (I ′1) follows by choosing α :=
1
2 min

{
θ
2 , C6

}
ρ2.

(iii) Proof of (I2): Choose ϕ ∈ H1(R3) with supp ϕ ⊂ Ω+ such that ϕ(x) ≥ 0 for all

x ∈ Ω+ and ϕ = t0e1 + v with t0 6= 0. Then for any s > 0, we have that

Iµ(sϕ) =
s2

2

∫
R3

(
|∇ϕ|2 + ϕ2

)
dx+

s4

4
F (ϕ)− µs2

2

∫
R3

h(x)ϕ2dx− sp

p

∫
Ω+

k(x)|ϕ|pdx.

From the choice of ϕ we know that Iµ(sϕ) < 0 for s with s|t0| >
√

2C6
C1

sufficiently large.

Thus the conclusion of (I2) follows by taking ū = sϕ. �

Remark 2.2.3. Set ε̄ = min{µ̄1 − µ1, δ̄}. If 0 < µ < µ1 + ε̄, then µ < min{µ̄1, µ1 + δ̄}.
Hence, when 0 < µ < µ1 + ε̄, Lemma 2.2.2 implies that the functional Iµ has the mountain

pass geometry and Lemma 2.1.3 means that the functional Iµ satisfies (PS)-condition.

We are in a position to prove Theorem 2.0.7.

Proposition 2.2.4. Assume that the hypotheses (H) hold and 4 < p < 6. Then problem

(2.1) has a positive solution uµ with Iµ(uµ) > 0 for 0 < µ < µ1 + ε̄.

Proof. We denote

c1,µ = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t))

with

Γ = {γ ∈ C([0, 1], H1(R3)) : γ(0) = 0, γ(1) = ū}.

By Remark 2.2.3, the Mountain Pass Theorem implies that c1,µ is a critical value of Iµ

and c1,µ > 0. The proof of positivity for at least one of the corresponding (nontrivial)

critical point is inspired by the idea of Alama-Tarantello [1]. In fact, since Iµ(u) = Iµ(|u|)
in H1(R3), for every n ∈ N, there exists γn ∈ Γ with γn(t) ≥ 0 (a.e. in R3) for all t ∈ [0, 1]

such that

c1,µ ≤ max
t∈[0,1]

Iµ(γn(t)) < c1,µ +
1

n
. (2.46)

Consequently, by means of Ekeland’s variational principle, there exists γ∗n ∈ Γ with the

following properties:
c1,µ ≤ maxt∈[0,1] Iµ(γ∗n(t)) ≤ maxt∈[0,1] Iµ(γn(t)) < c1,µ + 1

n ;

maxt∈[0,1] ‖γn(t)− γ∗n(t)‖ < 1√
n

;

there exists tn ∈ [0, 1] such that zn = γ∗n(tn) satisfies :

Iµ(zn) = maxt∈[0,1] Iµ(γ∗n(t)), and ‖I ′µ(zn)‖ ≤ 1√
n
.

(2.47)
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In particular, we get a (PS)c1,µ-sequence (zn)n∈N. By Lemma 2.1.3 we get a convergent

subsequence (still denoted by (zn)n∈N). Let zn → z in H1(R3) as n → ∞. On the other

hand, by (2.47), we also arrive at γn(tn) → z in H1(R3) as n → ∞. Since γn(t) ≥ 0, we

conclude that z ≥ 0 a.e. in R3 with Iµ(z) > 0 and it is a solution of problem (2.1). The

strong maximum principle implies that z > 0 in R3. The conclusion of this proposition

follows from choosing uµ := z. �

Proposition 2.2.5. Assume that the hypotheses (H) hold and 4 < p < 6. Then, for any

µ1 < µ < µ1 + ε̄, problem (2.1) has a positive solution ωµ with Iµ(ωµ) < 0.

Proof. Let Bρ denote the closed ball Bρ = {u ∈ H1(R3) : ‖u‖ ≤ ρ} with ρ as in Lemma

2.2.2. Set

c2,µ := inf
‖u‖≤ρ

Iµ(u). (2.48)

It is clear that c2,µ > −∞. We claim that c2,µ < 0. In fact, given R > 0, define ηR ∈
C∞0 (R3) with 0 ≤ ηR(x) ≤ 1 and |∇ηR(x)| ≤ 2

R for any x ∈ R3 and

ηR(x) =

{
1, |x| ≤ R,
0, |x| ≥ 2R.

Then ηRe1 ∈ H1(R3). To complete the proof of the claim, it suffices to show that

Iµ(tηRe1) < 0 for all t > 0 small. First we have that

Iµ(tηRe1) =
t2

2
‖ηRe1‖2 +

t4

4
F (ηRe1)

−µt
2

2

∫
R3

h(x)(ηRe1)2dx− tp

p

∫
R3

k(x)|ηRe1|pdx

=
t2

2

∫
R3

η2
R|∇e1|2dx+

t2

2

∫
R3

η2
Re

2
1dx

+t2
∫
R3

ηRe1∇ηR∇e1dx+
t4

4
F (ηRe1) +

t2

2

∫
R3

e2
1|∇ηR|2dx

−µt
2

2

∫
R3

h(x)η2
Re

2
1dx−

tp

p

∫
R3

k(x)ηpRe
p
1dx.

(2.49)

On the other hand, multiplying both sides of the equation

−∆e1 + e1 = µ1h(x)e1

by η2
Re1 and integrating by parts, one obtains that

2

∫
R3

ηRe1∇ηR∇e1dx+

∫
R3

η2
Re

2
1dx+

∫
R3

η2
R|∇e1|2dx = µ1

∫
R3

h(x)η2
Re

2
1dx. (2.50)



28 2.2. Existence of two positive solutions

Inserting (2.50) into (2.49), we get that

Iµ(tηRe1) = (µ1 − µ)
t2

2

∫
R3

h(x)η2
Re

2
1dx+

t2

2

∫
R3

e2
1|∇ηR|2dx

+
t4

4
F (ηRe1)− tp

p

∫
R3

k(x)ηpRe
p
1dx.

(2.51)

By the definition of ηR, the Hölder inequality and the Sobolev inequality, we obtain that∫
R3

e2
1|∇ηR|2dx =

∫
R≤|x|≤2R

e2
1|∇ηR|2dx

≤

(∫
R≤|x|≤2R

e6
1dx

) 1
3
(∫

R≤|x|≤2R
|∇ηR|3dx

) 2
3

≤

(∫
R≤|x|≤2R

e6
1dx

) 1
3
((

2

R

)3 ∫
R≤|x|≤2R

dx

) 2
3

≤ C

(∫
R≤|x|≤2R

e6
1dx

) 1
3

→ 0, as R→∞,

(2.52)

since ‖e1‖ = 1. Meanwhile, multiplying both sides of the equation

−∆e1 + e1 = µ1h(x)e1

by e1 and integrating by parts, we get that

µ1

∫
R3

h(x)e2
1dx = ‖e1‖2 = 1. (2.53)

Moreover, by choosing R sufficiently large, we obtain that∫
R3

h(x)η2
Re

2
1dx ≥

∫
|x|≤R

h(x)η2
Re

2
1dx =

∫
|x|≤R

h(x)e2
1dx ≥

1

2µ1
, (2.54)

and then choosing R2 > 0 sufficiently large with R ≥ R2, we deduce from (2.52)–(2.54)

that ∫
R3

e2
1|∇ηR|2dx ≤

µ− µ1

2

∫
R3

h(x)η2
Re

2
1dx (2.55)

for all R > R2. From (2.51) and (2.55), we deduce that

Iµ(tηRe1) ≤ (µ1 − µ)
t2

4

∫
R3

h(x)η2
Re

2
1dx+

t4

4
F (ηRe1)− tp

p

∫
R3

k(x)ηpRe
p
1dx

≤ −C7t
2 + C8t

4 + C9t
p,

for all R > R2, which means Iµ(tηRe1) < 0 for t > 0 small enough. Thus c2,µ < 0 and the

proof of the claim is complete.

In addition, since Iµ(u) = Iµ(|u|), given n, by (2.48), there exists w∗n ≥ 0 with ‖w∗n‖ ≤ ρ
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such that

c2,µ ≤ Iµ(w∗n) < c2,µ +
1

n
.

Then, according to the Ekeland’s variational principle, there is a sequence (wn)n∈N with

‖wn‖ ≤ ρ satisfying

c2,µ ≤ Iµ(wn) ≤ Iµ(w∗n) < c2,µ +
1

n
,

‖wn − w∗n‖ ≤
1√
n

and ‖I ′µ(wn)‖ ≤ 1

n
. (2.56)

As n → ∞, the sequence (wn)n∈N satisfies Iµ(wn) → c2,µ and I ′µ(wn) → 0. Then Lemma

2.1.3 implies the existence of a minimizer w ∈ Bρ for the functional Iµ and wn → w in

H1(R3). Hence, by (2.56), w∗n → w. Since w∗n ≥ 0, we get that w ≥ 0 a.e. in R3 with

Iµ(w) < 0 and it is a solution of problem (2.1). The maximum principle implies that

w > 0 in R3. The conclusion of this proposition follows from choosing ωµ := w. The proof

of Proposition 2.2.5 is complete. �

Remark 2.2.6. In fact, for the case of 0 < µ < µ1, to get a positive solution, it is not

necessary to involve the condition (Hl2). Since this condition is used to get the boundedness

of (PS)-sequence, for this case, one may use standard variational methods.

Remark 2.2.7. Since φu is always positive for every u ∈ H1(R3) and u 6= 0, we get that

(uµ, φuµ) and (ωµ, φωµ) are positive solutions of problem (Pµ) in H1(R3) × D1,2(R3) by

Proposition 2.2.4 and Proposition 2.2.5, respectively. Hence we finish the proof of Theorem

2.0.7.

Remark 2.2.8. Theorem 2.0.7 shows the existence of multiple positive solutions of (Pµ)

for 4 < p < 6. It would be very interesting to study the existence/nonexistence of positive

solutions of (Pµ) for 2 < p ≤ 4, which will be an issue for further studies. We thank an

unknown referee for pointing out this remark.



Chapter 3

Schrödinger-Poisson system with a

general indefinite nonlinearity

In this chapter, we still consider the indefinite nonlinearity, that is, this chapter is a

continuation of Chapter 2, in which we studied the existence of multiple positive solutions

to the following Schrödinger-Poisson system{
−∆u+ u+ l(x)φu = k(x)|u|p−2u+ µh(x)u in R3,

−∆φ = l(x)u2 in R3,
(3.1)

where 4 < p < 6, k ∈ C(R3) changes sign in R3 and lim|x|→∞ k(x) = k∞ < 0. There we

mainly proved that the system (3.1) has at least two positive solutions for µ > µ1 (but not

far from µ1), where µ1 is the first eigenvalue of −∆ + id in H1(R3) with weight function

h, whose corresponding eigenfunction is denoted by e1. An interesting phenomenon there

is that we have succeeded in making use of the nonlocal term to technically help deal

with the key difficulty that the indefinite nonlinearity has created, and we do not need the

condition ∫
R3

k(x)ep1dx < 0, (∗)

which has been shown to be a sufficient condition to the existence of positive solutions for

semilinear elliptic equations with indefinite nonlinearities with a bounded or an unbounded

domain, like

−∆mu = µa(x)|u|m−2u+ f(x, u), m ≥ 2,

where ∆mu = div(|∇u|m−2∇u), see [1, 36, 47] and their references. In this work, instead

of considering the homogeneous nonlinearity k(x)|u|p−2u, we are concerned with a more

general nonlinearity k(x)g(u), where g is a nonlinear function with superquadratic growth

both at zero and at infinity. Surprisingly, we find that, for this general case, it is still

not necessary to involve the condition (*) either. Moreover, here we extend the weight

function l ∈ L2(R3) to l ∈ L∞(R3).

More precisely, in the present chapter, we study the existence and multiplicity of

30
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positive solutions to the following problem{
−∆u+ u+ l(x)φu = k(x)g(u) + µh(x)u, in R3,

−∆φ = l(x)u2, in R3,
(3.2)

where for the continuous nonlinearity g ∈ C(R,R), we assume the hypotheses (G):

(G1) there is q ∈ R with 4 < q < 6 such that lim
s→0

g(s)

|s|q−2s
= 1;

(G2) there is p ∈ R with 4 < p < 6 such that lim
|s|→∞

g(s)

|s|p−2s
= 1;

(G3) g(s) > 0 for all s > 0.

Since we just aim to find the positive solutions, it is only necessary to consider all u > 0 for

problem (3.2), and throughout this chapter we assume, without loss of generality, that g

is defined in R as an odd function. And for the weight functions we consider the following

hypotheses (H):

(Hh) h ∈ L3/2(R3), h(x) ≥ 0 for any x ∈ R3 and h 6≡ 0;

(Hk1) k ∈ C(R3) and k changes sign in R3;

(Hk2) lim|x|→∞ k(x) = k∞ < 0;

(Hl1) l ∈ L∞(R3), l(x) ≥ 0 for any x ∈ R3 and l 6≡ 0;

(Hl2) l = 0 a.e. in Ω0, where Ω0 = {x ∈ R3 : k(x) = 0}, and Ω0 coincides the closure of

its interior .

Our main result is as following

Theorem 3.0.9. Suppose the hypotheses (G) and (H). In addition, if one of the following

conditions holds:

(i) g(s) satisfies the stronger form (G′2) of (G2) given by g(s) = |s|p−2s + O
(
|s|β
)

as

|s| → ∞ for some 0 ≤ β < 1;

(ii) the weight function k has a thick zero set Ω0 in the sense that Ω+ ∩ Ω− = ∅, where

Ω+ = {x ∈ R3 : k(x) > 0} and Ω− = {x ∈ R3 : k(x) < 0},

then

(1) for 0 < µ ≤ µ1, problem (3.2) has at least one positive solution in H1(R3)×D1,2(R3);

(2) there exists ε̄ > 0 such that, for µ1 < µ < µ1 + ε̄, problem (3.2) has at least two

positive solutions in H1(R3)×D1,2(R3).
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The approach here is variational. The Mountain Pass Theorem is used to get one of

the two positive solutions. To apply this theorem, one needs to ensure that the associated

functional should satisfy the mountain pass geometry, which is not easy, in particular, for

the case µ1 < µ < µ1 + ε̄. Here we use the same procedure as in our preceding work

by making use of the nonlocal term to compensate the technical condition (*) mentioned

above with p replacing by q under the assumptions of (G). Moreover, one also needs to re-

store the compactness, since the domain R3 is unbounded and the compactness of Sobolev

embedding does not hold. The main different thing from the preceding result is that here

we use a different method to restore the compactness. The concentration-compactness

principle of Lions [78] is used to overcome the difficulty of the lack of compactness, in

which we follow the idea of Costa-Tehrani [36], which is on the Schrödinger equation

and in which a similar general nonlinearity was used by the authors. But the situation

here becomes more delicate, because of the involvement of the Poisson equation in our

case, namely, with additionally non-local term to compare with the Schrödinger equa-

tion (see details in the second section). Also comparing with the results in the previous

chapter, we allow l ∈ L∞(R3). This also extends the results in the previous chapter be-

cause when l ∈ L2(R3), the functional
∫
R3 l(x)φu(x)u2(x)dx is weakly continuous; while

for l ∈ L∞(R3), the functional
∫
R3 l(x)φu(x)u2(x)dx may be not weakly continuous. The

second solution is obtained by the Ekeland variational principle and it is a local minimizer.

The results of the present chapter are contained in [62] and the author presented them

in the fourth annual workshop of Functional Analysis and Applications Group, University

of Aveiro, 8 June 2013.

3.1 The proof of Palais-Smale condition

As Chapter 1 mentioned, system (3.2) can be reduced into

−∆u+ u+ l(x)φuu = k(x)g(u) + µh(x)u, in R3. (3.3)

Denote G(u) =
∫ u

0 g(s)ds. With F denoted by (1.12) as F (u) =
∫
R3 l(x)φu(x)u2(x)dx, we

have the following associated functional to (3.3)

Iµ(u) =
1

2
‖u‖2 +

1

4
F (u)−

∫
R3

k(x)G(u)dx− µ

2

∫
R3

h(x)u2dx.

Hypotheses (G) imply that

|g(s)| ≤ b1|s|q−1 + b2|s|p−1, |G(s)| ≤ b1|s|q + b2|s|p, for all s ∈ R, (3.4)

and
b3|s|q ≤ G(s), b3|s|q ≤ g(s)s, if |s| ≤ δ0,

b4|s|p ≤ G(s), b4|s|p ≤ g(s)s, if |s| ≥ δ0,
(3.5)
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for some b1, b2, b3, b4, δ0 > 0. Therefore the functional Iµ is of class C1(H1(R3),R), and

〈I ′µ(u), ϕ〉 =

∫
R3

(∇u∇ϕ+ uϕ) dx+

∫
R3

l(x)φuuϕdx−
∫
R3

(k(x)g(u)ϕ+ µh(x)uϕ) dx

for any ϕ ∈ H1(R3). Moreover, there is a one to one corresponding between the solutions

of (3.3) and the critical points of Iµ. Then if u ∈ H1(R3) is a critical point of Iµ on

H1(R3), then (u, φu) is a solution of system (3.2). Hence, to solve (3.2), it suffices to

study positive critical points of the functional Iµ on H1(R3).

Now we are in a position to prove (PS)-condition for the functional Iµ. Denote σ(−∆+

id,Ω0, h) the collection of eigenvalues of −∆ + id in H1
0 (Ω0) with the weight function h.

If the Lebesgue measure of Ω0 is zero, i.e., |Ω0| = 0, then σ(−∆ + id,Ω0, h) = ∅.

Lemma 3.1.1. Suppose that the hypotheses (G) and (H) hold. If µ 6∈ σ(−∆ + id,Ω0, h),

then for c ∈ R, any (PS)c-sequence is bounded in H1(R3), provided either of the following

conditions holds:

(a) there is β with 0 ≤ β < 1 such that

g(s) = |s|p−2s+O
(
|s|β
)

as |s| → ∞;

(b) Ω+ ∩ Ω− = ∅.

Proof. Let (un)n∈N ⊂ H1(R3) be a (PS)c-sequence for Iµ at the level c, i.e.,

Iµ(un) =
1

2
‖un‖2 +

1

4
F (un)−

∫
R3

k(x)G(un)dx− µ

2

∫
R3

h(x)u2
ndx = c+ o(1), (3.6)

〈I ′µ(un), ϕ〉 =

∫
R3

(∇un∇ϕ+ unϕ) dx+

∫
R3

l(x)φununϕdx

−
∫
R3

k(x)g(un)ϕdx− µ
∫
R3

h(x)unϕdx

= o(1)‖ϕ‖

(3.7)

for any ϕ ∈ H1(R3). We assume, by contradiction, that tn := ‖un‖ and tn → ∞ as

n→∞. Denote vn := un/tn. Then we have that

‖vn‖ =
1

tn
‖un‖ = 1 (3.8)

for each n ∈ N. Going if necessary to a subsequence, we may assume that there is v ∈
H1(R3) such that for each bounded domain Ω ⊂ R3,

vn ⇀ v in H1(R3),

vn(x)→ v(x) a.e. in R3,

vn → v in Lt(Ω) for 2 < t < 6,

|vn(x)| ≤ wΩ(x) for some wΩ ∈ Lt(Ω).

(3.9)
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Hence, for any ϕ ∈ H1(R3), we have that∫
R3

(∇vn∇ϕ+ vnϕ) dx→
∫
R3

(∇v∇ϕ+ vϕ) dx. (3.10)

We first claim that v(x) = 0 a.e. in R3. In fact, by (3.8) one may deduce that∫
R3 (∇vn∇ϕ+ vnϕ) dx,

∫
R3 l(x)φvnvnϕdx and

∫
R3 h(x)vnϕdx are all bounded with the

given ϕ. Since un = tnvn and p > 4, dividing (3.7) by tp−1
n , one obtains that∫

R3

Tn(x)dx = o(1) (3.11)

as n→∞, where Tn(x) = k(x)g(tnvn(x))ϕ(x)

tp−1
n

. We prove the claim in the three parts Ω−, Ω+

and Ω0, respectively. For each y ∈ Ω+, since k ∈ C(R3), there exists δ1 > 0 such that

k(x) > 0 for all x ∈ Bδ1(y). (3.12)

Define ζm ∈ C1(R3) (m > 2) such that ζm(x) ≥ 0 for all x ∈ R3 and

ζm(x) =

 1, x ∈ B(
1
2
− 1
m2

)
δ1

(y),

0, x ∈ R3 \Bδ1/2(y).

Let ϕ = vζm in (3.7) and then suppϕ ⊂ Bδ1/2(y) for all m ∈ N and m > 2. If there is N0

such that, for every n > N0, vn(x) = 0, then v(x) = 0; If, for some large n, vn(x) 6= 0,

then |tnvn(x)| → +∞ as n→∞. Hence, by (G2), one arrives at

Tn(x) =
k(x)|vn(x)|p−2vn(x)vζmg(tnvn(x))

|tnvn(x)|p−2tnvn(x)

= k(x)|vn(x)|p−2vn(x)vζm + o(1),

which goes to k(x)|v(x)|p as n→∞ and m→∞. And it follows from (G2) that

g(s) ≤ C3(1 + |s|p−1)

for some C3 > 0 and then

|Tn(x)| ≤
C3|k(x)||vζm|

(
1 + tp−1

n |vn(x)|p−1
)

tp−1
n

≤
C
(

1 + tp−1
n |vn(x)|p−1

)
tp−1
n

≤ C
(
1 + |wΩ(x)|p−1

)
∈ L1(Bδ1/2(y)).

(3.13)

Thus, by Lebesgue dominated convergence theorem, (3.11) becomes

0 =

∫
Bδ1/2(y)

lim
n→∞

k(x)|vn(x)|p−2vn(x)v(x)dx =

∫
Bδ1/2(y)

k(x)|v(x)|pdx,
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which, together with (3.12), implies that v = 0 a.e. in Bδ1/2(y), and then v = 0 a.e. in

Ω+. We reach the claim for x ∈ Ω− in a similar way. Furthermore, if |Ω0| = 0, we finish

the proof the claim. If |Ω0| 6= 0, take ϕ ∈ C1(R3) with suppϕ ⊆ Ω0 in (3.7). By the

notation of Ω0 and the assumption (Hl2), we deduce respectively∫
R3

k(x)g(tnvn(x))ϕ(x)

tn
dx =

∫
suppϕ

k(x)g(tnvn(x))ϕ(x)

tn
dx = 0 (3.14)

and ∫
R3

l(y)φtnvnvnϕdy =

∫
suppϕ

l(y)φtnvnvnϕdy = 0 (3.15)

for any n ∈ N. Inserting (3.14) and (3.15) into (3.7), and using (3.10) and Lemma 1.4.6,

one arrives at ∫
R3

(∇v∇ϕ+ vϕ) dx = µ

∫
R3

h(x)vϕdx.

Combining this equality with the fact that v = 0 a.e. in Ω+ ∪ Ω−, we obtain that∫
Ω0

(∇v∇ϕ+ vϕ) dx = µ

∫
Ω0

h(x)vϕdx.

Since µ 6∈ σ(−∆ + id,Ω0, h), one obtains that v = 0 a.e. in Ω0. Therefore, we prove the

claim, that is, v(x) = 0 a.e. in R3 and then vn ⇀ 0, which implies, by Lemma 1.4.6, that

lim
n→∞

∫
R3

h(x)v2
ndx = 0. (3.16)

Next, dividing (3.6) by t2n and combining it with (3.16), one gets that

1

2
+

1

4t2n
F (un)− 1

t2n

∫
R3

k(x)G(un)dx = o(1). (3.17)

Take ϕ = vnζ in (3.7) with ζ ∈ C∞0 (R3) and divide it by tn to get∫
R3

(
|∇vn|2 + v2

n

)
ζdx+

1

t2n

∫
R3

l(x)φunu
2
nζdx−

1

t2n

∫
R3

k(x)g(un)unζdx = o(1), (3.18)

where, in fact, the right hand side is equal to

µ

∫
R3

h(x)v2
nζdx−

∫
R3

vn∇vn∇ζdx+ o(1)
‖unζ‖
t2n

.

In the following, we consider the two cases (a) and (b), respectively.

Case (a). If the condition (a) holds, then∫
R3

pk(x)G(un)ζ

t2n
dx =

∫
R3

k(x)g(un)unζ

t2n
dx+ o(1). (3.19)

In fact, the condition (a) implies that there exist M0 > 0 and δ2 > 0 such that, for all
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|s| > M0, one has that

|pG(s)− g(s)s| ≤ δ2|s|β+1

with 1 ≤ β + 1 < 2 and then∫
|un|>M0

|k(x)||pG(un)− g(un)un||ζ|
t2n

dx

≤ C
∫

suppζ

δ2|un|β+1

t2n
dx

≤ C
∫

suppζ

|vn|β+1

t1−βn

dx

→ 0

as n→∞. And since

|pG(s)− g(s)s| ≤ C

for all |s| ≤M0, we also have∫
|un|≤M0

|k(x)||pG(un)− g(un)un||ζ|
t2n

dx = o(1).

Without loss of generality, let us assume that k∞ < −1. Then (Hk2) implies that there is

R0 > 0 with R0 > δ0 such that

k(x) < −1 for all |x| > R0. (3.20)

Then choosing ζ ∈ C∞0 (R3) such that 0 ≤ ζ ≤ 1 and ζ(x) = 1 if |x| ≤ R0, one deduces, by

(3.17)-(3.19), that

lim
n→∞

sup

∫
R3

k(x)G(un)(1− ζ)

t2n
dx

=
1

2
+ lim
n→∞

sup
F (un)

4t2n
− lim
n→∞

inf
1

p

∫
R3

k(x)g(un)un
t2n

ζdx

=
1

2
+ lim
n→∞

sup
F (un)

4t2n
− lim
n→∞

inf
1

p

(∫
R3

(
|∇vn|2 + v2

n

)
ζdx+

1

t2n

∫
R3

l(x)φunu
2
nζdx

)
≥ 1

2
+ lim
n→∞

sup
F (un)

4t2n
− lim
n→∞

inf
1

p

(∫
R3

(
|∇vn|2 + v2

n

)
dx+

1

t2n

∫
R3

l(x)φunu
2
ndx

)
≥ 1

2
− 1

p
+

(
1

4
− 1

p

)
lim
n→∞

sup
F (un)

t2

> 0.

(3.21)

On the other hand, by the choice of R0, we obtain that∫
R3

k(x)G(un)(1− ζ)

t2n
dx ≤ 0,

which contradicts (3.21). We prove that (un)n∈N is bounded in H1(R3) in the case (a).

Case (b). It follows from (G2) that there are some r > 4 and M1 > R0 with R0 > 0 as
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in (3.20) such that

0 < rG(s) ≤ g(s)s, (3.22)

for all |s| ≥ M1. If the condition (b) holds, then by choosing ζ ∈ C∞0 (R3) in (3.18) such

that 0 ≤ ζ ≤ 1 with ζ(x) = 1 if x ∈ Ω+ and ζ(x) = 0 if x ∈ Ω−, and using (3.18) and

(3.22), one deduces that∫
R3

k(x)G(un)ζ

t2n
dx

=

∫
{x: |un|≥M1}

k(x)G(un)ζ

t2n
dx+

∫
{x: |un|≤M1}

k(x)G(un)ζ

t2n
dx

≤ 1

r

∫
{x: |un|≥M1}

k(x)g(un)unζ

t2n
dx+ o(1)

=
1

r

∫
R3

(
|∇vn|2 + v2

n

)
ζdx+

1

rt2n

∫
R3

l(x)φunu
2
nζdx+ o(1)

≤ 1

r
+

1

rt2n
F (un) + o(1).

(3.23)

However, (3.17) yields that∫
R3

k(x)G(un)ζ

t2n
dx =

∫
Ω+

k(x)G(un)

t2n
dx

≥
∫
R3

k(x)G(un)

t2n
dx

≥ 1

2
+

1

4t2n
F (un).

This is a contradiction with (3.23) and so we finish the proof of the case (b). This proves

Lemma 3.1.1. �

To end this part, by Lemma 3.1.1, it remains to prove that (un)n∈N has a conver-

gent subsequence. To achieve this goal, we recall the following known concentration-

compactness lemma of Lions.

Lemma 3.1.2. (see Lions [78].) Let (ρn)n∈N be a sequence in L1(R3) satisfying ρn ≥ 0

and
∫
ρndx→ λ̄ > 0. Then there exists a subsequence, still denoted by (ρn)n∈N, for which

one of the three possibilities holds:

Vanishing: lim
n→∞

sup
y∈R3

∫
BR(y)

ρn(x)dx = 0 for all R > 0;

Dichotomy: There exits 0 < α < λ̄ such that, for any given ε > 0, there are a sequence

(yn)n∈N ⊆ R3, a number R > 0 and a sequence (Rn)n∈N ⊂ R+, with R < R1, Rn <

Rn+1 → +∞, such that, if we set ρ1
n = ρnχ[|x−yn|≤R] and ρ2

n = ρnχ[|x−yn|≥Rn], then we

have

‖ρn − ρ1
n − ρ2

n‖1 ≤ ε,
∣∣∣∣∫ ρ1

ndx− α
∣∣∣∣ ≤ ε, ∣∣∣∣∫ ρ2

ndx− (λ̄− α)

∣∣∣∣ ≤ ε;
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Compactness: There exists yn ∈ RN such that ρn(·+ yn) is tight, i.e.

∀ε > 0 ∃R > 0 such that

∫
BR(yn)

ρn(x)dx ≥ λ̄− ε.

And we will also use the following lemma.

Lemma 3.1.3. (see Lions [78].) Let r > 0 and 2 ≤ q < 2∗. If (un)n∈N is bounded in

H1(RN ) and if

lim
n→∞

sup
y∈RN

∫
B(y,r)

|un|qdx = 0,

as n→∞. Then

un → 0 in Lt(RN) for t ∈ (2, 2∗).

Now we are ready to prove the last but fundamental lemma in this part.

Lemma 3.1.4. Suppose that the hypotheses (G) and (H) hold. And we assume that

either

there is β with 0 ≤ β < 1 such that g(s) = |s|p−2s+O
(
|s|β
)

as |s| → ∞,

or

Ω+ ∩ Ω− = ∅.

If µ 6∈ σ(−∆ + id,Ω0, h), then the functional Iµ satisfies (PS)c-condition for each c ∈ R.

Proof. Let (un)n∈N ⊂ H1(R3) be a (PS)c-sequence for Iµ, i.e., Iµ(un)→ c and I ′µ(un)→ 0

in H−1(R3). It follows from Lemma 3.1.1 that (un)n∈N is bounded in H1(R3). Setting

ρn := |∇un|2 + u2
n

and then we get that (ρn)n∈N is bounded in L1(R3). Passing if necessary to a subsequence,

we may assume that for some λ̄ ≥ 0

‖ρn‖1 → λ̄ as n→∞.

Clearly, we may assume that λ̄ > 0. In the following, we shall apply the Concentration-

Compactness Lemma 3.1.2 to get the compactness by ruling out the vanishing and di-

chotomy.

First, if there is a subsequence, still denoting (ρn)n∈N, vanishing, then (un)n∈N also

vanishes, and so there exists R1 > 0 satisfying

lim
n→∞

sup
y∈R3

∫
BR1

(y)
u2
n(x)dx = 0,

which implies, by Lemma 3.1.3, that un → 0 in Lt(R3), t ∈ (2, 6). We get that un ⇀ 0

in H1(R3) and then lim
n→∞

∫
R3

h(x)u2
n(x)dx = 0 by Lemma 1.4.6. Moreover, F (un) ≤
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C‖un‖412
5

= o(1) and by (3.4)

∫
R3

k(x)g(un)undx ≤ ‖k‖∞
∫
R3

(b1|un|p + b2|un|q) dx = o(1).

Thus it follows from I ′µ(un)→ 0 that ‖un‖ → 0, which contradicts λ̄ > 0. Hence vanishing

does not occur.

Second, we show that dichotomy does not happen. If dichotomy occurs, there exists

α ∈ (0, λ̄) such that, for each given ε > 0, there are sequences (yn)n∈N ⊆ R3, (Rn)n∈N ⊆ R+

and R̂ > 0 with R0 < R̂ < R1
2 , Rn ≤ Rn+1 → +∞ such that

α− ε ≤
∫
|x−yn|≤ R̂2

ρndx and λ̄− α− ε ≤
∫
|x−yn|≥3Rn

ρndx. (3.24)

Therefore, from ‖ρn‖1 → λ̄, for n large, we obtain that∫
R̂
2
≤|x−yn|≤3Rn

ρndx < λ̄+ ε−
∫
|x−yn|≤ R̂2

ρndx−
∫
|x−yn|≥3Rn

ρndx = 3ε. (3.25)

Note that we also have ∫
R̂≤|x−yn|≤2Rn

|un|6dx ≤ Cε3. (3.26)

Indeed, take ηn ∈ C∞0 (R3) such that ηn(x) = 0 if |x − yn| ≤ R̂
2 or |x − yn| ≥ 3Rn;

ηn(x) = 1, if R̂ ≤ |x − yn| ≤ 2Rn; |ηn(x)| ≤ 1, and |∇ηn(x)| ≤ 1
Rn−R̂

for each x ∈ R3.

Then ηnun ∈ H1(R3). It follows from the Sobolev inequality and (3.25) that

(∫
R̂≤|x−yn|≤2Rn

|un|6dx

) 1
6

≤ C
(∫

R3

(
|∇(ηnun)|2 + |ηnun|2

)
dx

) 1
2

≤ C
(

2

∫
R3

(
|un∇ηn|2 + |ηn∇un|2 + |ηnun|2

)
dx

) 1
2

≤ C

(∫
R̂
2
≤|x−yn|≤3Rn

(
1 + (Rn − R̂)2

(Rn − R̂)2
u2
n + |∇un|2

)
dx

) 1
2

≤ C

(
1 + (Rn − R̂)2

) 1
2

|Rn − R̂|

(∫
R̂
2
≤|x−yn|≤3Rn

ρndx

) 1
2

≤ C
(

1 +
1

R̂2

) 1
2

ε
1
2 .

This proves (3.26). Next, let η be another cut-off function such that η(s) = 1 for s ≤ 1,
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η(s) = 0 for s ≥ 2, |η(s)| ≤ 1 for s ∈ R, and |η′(s)| ≤ 2 for 1 ≤ s ≤ 2. Define

w̄n(x) := η

(
|x− yn|
R̂

)
un(x)

and

v̄n(x) :=

(
1− η

(
|x− yn|
Rn

))
un(x).

In addition, let us assume first that the sequence (yn)n∈N is bounded. Then from (3.26)

and the fact that Rn ≥ 2R̂ one deduces that∣∣∣∣∫
R3

h(x)v̄n (v̄n − un) dx

∣∣∣∣ =

∣∣∣∣∣
∫
Rn≤|x−yn|≤2Rn

h(x)v̄n (v̄n − un) dx

∣∣∣∣∣
≤ 2

∫
Rn≤|x−yn|≤2Rn

|h(x)||un|2dx

≤ 2‖h‖ 3
2

(∫
Rn≤|x−yn|≤2Rn

|u|6dx

) 1
3

≤ C‖h‖ 3
2
ε,

which implies that ∫
R3

h(x)v̄nundx =

∫
R3

h(x)v̄2
ndx+ µ1(ε), (3.27)

where µ1(ε)→ 0 as ε→ 0. One also deduces from (3.25), the fact that (un)n∈N is bounded

in H1(R3) and the Sobolev inequality that∣∣∣∣∫
R3

l(x)v̄n (φunun − φv̄n v̄n) dx

∣∣∣∣
=

∣∣∣∣∣
∫
Rn≤|x−yn|≤2Rn

l(x)v̄n (φunun − φv̄n v̄n) dx

∣∣∣∣∣
≤ 18

∫
Rn≤|x−yn|≤2Rn

|l(x)||φun ||un|2dx

≤ 18‖l‖∞

(∫
Rn≤|x−yn|≤2Rn

|φun |6dx

) 1
6
(∫

Rn≤|x−yn|≤2Rn

|un|
12
5

) 5
6

dx

≤ C

(∫
Rn≤|x−yn|≤2Rn

ρndx

)2

≤ Cε2,

which implies that ∫
R3

l(x)φununv̄ndx =

∫
R3

l(x)φv̄n v̄
2
ndx+ µ2 (ε) , (3.28)

where µ2(ε)→ 0 as ε→ 0. Similarly, one gets that∫
R3

(
|∇v̄n|2 + |v̄n|2

)
dx =

∫
R3

(∇v̄n∇un + v̄nun) dx+ µ3(ε), (3.29)
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and ∫
R3

k(x)g(un)v̄ndx =

∫
R3

k(x)g(v̄n)v̄ndx+ µ4(ε), (3.30)

where µ3(ε)→ 0 and µ4(ε)→ 0 as ε→ 0. In fact, (3.30) comes from∣∣∣∣∫
R3

k(x) (g(un)− g(v̄n)) v̄ndx

∣∣∣∣ =

∣∣∣∣∣
∫
Rn≤|x−yn|≤2Rn

k(x) (g(un)− g(v̄n)) v̄ndx

∣∣∣∣∣
≤ C

∫
Rn≤|x−yn|≤2Rn

(|un|p + |un|q) dx

≤ C
(
ε
p
2 + ε

q
2

)
.

Using (3.27)–(3.30), one obtains

o(1) = 〈I ′µ(un), v̄n〉

=

∫
R3

(∇v̄n∇un + v̄nun) dx+

∫
R3

l(x)φununv̄ndx

−
∫
R3

k(x)g(un)v̄ndx− µ
∫
R3

h(x)v̄nundx

=

∫
R3

(
|∇v̄n|2 + |v̄n|2

)
dx+

∫
R3

l(x)φv̄n v̄
2
ndx

−
∫
R3

k(x)g(v̄n)v̄ndx− µ
∫
R3

h(x)v̄2
ndx+ β (ε) ,

(3.31)

where β (ε) goes to zero as ε goes to zero. From the assumption that (yn)n∈N is bounded,

for each x ∈ R3, there exists Nx > 0 such that, for all n > Nx, |x − yn| ≤ Rn, since

Rn →∞. Then for n large and every fixed x one has that v̄n(x) = 0 and so

v̄n ⇀ 0 in H1(R3).

Therefore, it is deduced from Lemma 1.4.6 that
∫
R3 h(x)v̄2

ndx = o(1), which makes (3.31)

become into

‖v̄n‖2 + F (v̄n)−
∫
R3

k(x)g(v̄n)v̄ndx = o(1) + β(ε).

Moreover, for M1 > 0 as in (3.22), one deduces that

−
∫
R3

k(x)g(v̄n)v̄ndx = o(1)−
∫
|x|≥M1

k(x)g(v̄n)v̄ndx

with ∫
|x|≥M1

k(x)g(v̄n)v̄ndx < 0.

Therefore it follows that

‖v̄n‖2 = o(1) + β(ε). (3.32)
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On the other hand, since (yn)n∈N is bounded, one calculates by (3.24) that for large n

‖v̄n‖2 =

∫
|x−yn|≥Rn

(
|∇v̄n|2 + |v̄n|2

)
dx

≥
∫
|x−yn|≥3Rn

(
|∇v̄n|2 + |v̄n|2

)
dx

=

∫
|x−yn|≥3Rn

(
|∇un|2 + u2

n

)
dx

≥ λ̄− α− ε.

(3.33)

Clearly (3.32) and (3.33) are a contradiction with each other for the case that (yn)n∈N is

bounded.

Now, let us consider the case that (yn)n∈N is not bounded. We apply the similar

argument with the case that (yn)n∈N is bounded to (w̄n)n∈N to get a contradiction. For

the convenience, we give details in the following. In fact, from (3.26) one deduces that∣∣∣∣∫
R3

h(x)w̄n (w̄n − un) dx

∣∣∣∣ =

∣∣∣∣∣
∫
R̂≤|x−yn|≤2R̂

h(x)w̄n (w̄n − un) dx

∣∣∣∣∣
≤ 2

∫
R̂≤|x−yn|≤2R̂

|h(x)||un|2dx

≤ 2‖h‖ 3
2

(∫
R̂≤|x−yn|≤2R̂

|u|6dx

) 1
3

≤ C‖h‖ 3
2
ε,

and then one concludes that∫
R3

h(x)unw̄ndx =

∫
R3

h(x)w̄2
ndx+ µ′1(ε), (3.34)

where µ′1(ε)→ 0 as ε→ 0. One also deduces from (3.25), the fact that (un)n∈N is bounded

in H1(R3) and the Sobolev inequality that∣∣∣∣∫
R3

l(x)w̄n (φunun − φw̄nw̄n) dx

∣∣∣∣
=

∣∣∣∣∣
∫
R̂≤|x−yn|≤2R̂

l(x)w̄n (φunun − φw̄nw̄n) dx

∣∣∣∣∣
≤ 2

∫
R̂≤|x−yn|≤2R̂

|l(x)||φun ||un|2dx

≤ 2‖l‖∞

(∫
R̂≤|x−yn|≤2R̂

|φun |6dx

) 1
6
(∫

R̂≤|x−yn|≤2R̂
|un|

12
5

) 5
6

dx

≤ C

(∫
R̂≤|x−yn|≤2R̂

ρndx

)2

≤ Cε2,
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which means ∫
R3

l(x)φununw̄ndx =

∫
R3

l(x)φw̄nw̄
2
ndx+ µ′2 (ε) , (3.35)

where µ′2(ε)→ 0 as ε→ 0. And it follows from (3.4) that

∣∣∣∣∫
R3

k(x) (g(un)− g(w̄n)) w̄ndx

∣∣∣∣ =

∣∣∣∣∣
∫
R̂≤|x−yn|≤2R̂

k(x) (g(un)− g(w̄n)) w̄ndx

∣∣∣∣∣
≤ 2‖k‖∞

∫
R̂≤|x−yn|≤2R̂

(b2|un|p + b1|un|q) dx

≤ C
∫
R̂≤|x−yn|≤2R̂

(|un|p + |un|q) dx

≤ C
(
ε
p
2 + ε

q
2

)
,

and so ∫
R3

k(x)g(un)w̄ndx =

∫
R3

k(x)g(w̄n)w̄ndx+ µ′3(ε), (3.36)

where µ′3(ε)→ 0 as ε→ 0. Similarly, one gets that∫
R3

(∇w̄n∇un + w̄nun) dx =

∫
R3

(
|∇w̄n|2 + |w̄n|2

)
dx+ µ′4(ε), (3.37)

where µ′4(ε)→ 0 as ε→ 0. Therefore one can calculate by (3.34)–(3.37) that

o(1) = 〈I ′µ(un), w̄n〉

=

∫
R3

(∇w̄n∇un + w̄nun) dx+

∫
R3

l(x)φununw̄ndx

−
∫
R3

k(x)g(un)w̄ndx− µ
∫
R3

h(x)w̄nundx

=

∫
R3

(
|∇w̄n|2 + |w̄n|2

)
dx+

∫
R3

l(x)φw̄nw̄
2
ndx

−
∫
R3

k(x)g(w̄n)w̄ndx− µ
∫
R3

h(x)w̄2
ndx+ β′ (ε) ,

(3.38)

where β′ (ε) goes to zero as ε goes to zero. Since (yn)n∈N is not bounded, for every x ∈ R3,

there is N ′x > 0 such that, for all n > Nx, |x− yn| ≥ 2R̂. Then, for n large and every fixed

x, one has w̄n(x) = 0. And then

w̄n ⇀ 0 in H1(R3).

Thus, by Lemma 1.4.6 one obtains that
∫
R3 h(x)w̄2

ndx = o(1), which means that (3.38)

becomes

‖w̄n‖2 + F (w̄n)−
∫
R3

k(x)g(w̄n)w̄ndx = o(1) + β′(ε). (3.39)

Furthermore, for M1 > 0 as in (3.22), one obtains that

−
∫
R3

k(x)g(w̄n)w̄ndx = o(1)−
∫
|x|≥M1

k(x)g(w̄n)w̄ndx
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with ∫
|x|≥M1

k(x)g(w̄n)w̄ndx < 0,

which makes (3.39) become into

‖w̄n‖2 = o(1) + β′(ε). (3.40)

However, since (yn)n∈N is unbounded, one calculates by (3.24) that

‖w̄n‖2 =

∫
|x−yn|≤2R̂

(
|∇w̄n|2 + |w̄n|2

)
dx

≥
∫
|x−yn|≤ R̂2

(
|∇w̄n|2 + |w̄n|2

)
dx

=

∫
|x−yn|≤ R̂2

(
|∇un|2 + u2

n

)
≥ α− ε,

(3.41)

for large n. Clearly (3.40) and (3.41) contradict each other for the case that (yn)n∈N is

bounded. Hence dichotomy does not happen.

Finally, by ruling out vanishing and dichotomy through above two steps, we conclude,

by Lemma 3.1.2, that compactness necessarily takes place, i.e., there exists (yn)n∈N ⊆ R3

such that, for any ε > 0, there is R̄ > 0 satisfying
∫
BR̄(yn) ρn(x)dx ≥ λ̄ − ε, which yields

that for each n > N2,ε with N2,ε depending on ε∫
Bc
R̄

(yn)
ρn(x)dx < λ̄+ ε−

∫
BR̄(yn)

ρn(x)dx = 2ε (3.42)

We claim that (yn)n∈N is bounded. Otherwise, if (yn)n∈N is not bounded, then for every

x0 ∈ R3 there exists Nx0 > 0 such that, for every n > Nx0 , B1(x0)∩BR̄(yn) = ∅ and then

by (3.42) ∫
B1(x0)

u2
ndx =

∫
B1(x0)∩BR̄(yn)

u2
ndx+

∫
B1(x0)∩Bc

R̄
(yn)

u2
ndx

=

∫
B1(x0)∩Bc

R̄
(yn)

u2
ndx

≤ 2ε,

which implies un → 0 a.e. in R3, and then un ⇀ 0 in H1(R3). It follows from Lemma

1.4.6 that

∫
R3

h(x)u2
ndx = 0, which inserts into the equality o(1) = 〈I ′µ(un), un〉 yielding

o(1) = ‖un‖2 + F (un)−
∫
R3

k(x)g(un)undx. (3.43)

Since |x| ≥ max{R0,M1} for all x ∈ BR̄(yn) with n large, we have that

−
∫
BR̄(yn)

k(x)g(un)undx ≥ 0,
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and by Sobolev equality, (3.4) and (3.42) one deduces that∣∣∣∣∣
∫
Bc
R̄

(yn)
k(x)g(un)undx

∣∣∣∣∣ ≤ C
∫
Bc
R̄

(yn)
(b1|un|p + b2|un|q) dx ≤ C

(
ε
p
2 + ε

q
2

)
.

Hence one obtains that

−
∫
R3

k(x)g(un)undx = o(1) + γ(ε), (3.44)

where γ(ε) goes to zero as ε goes to zero. Combining (3.43) with (3.44), one gets that

‖ρn‖1 = ‖un‖2 = o(1) + γ(ε), which is in contradiction with the assumption that ‖ρn‖1 =

λ̄+ o(1). Hence (yn)n∈N is bounded.

Since (un)n∈N is bounded in H1(R3), passing if necessary to a subsequence, one may

assume that un ⇀ u and un → u in Ltloc(R3). According to the boundedness of (yn)n∈N,

(3.42) implies that there is R̄2 > 0 such that∫
Bc
R̄2

(0)
ρn(x)dx < 2ε.

Then it is clear that

un → u in Lt(R3) for t ∈ [2, 6). (3.45)

From (3.4), (3.45) and the Sobolev equality, we obtain that∣∣∣∣∫
R3

k(x)g(un)(un − u)dx

∣∣∣∣ ≤ C ∫
R3

(
b1|un|p−1 + b2|un|q−1

)
|un − u|dx

≤ C
(∫

R3

|un|pdx
) p−1

p
(∫

R3

|un − u|pdx
) 1
p

+C

(∫
R3

|un|qdx
) q−1

q
(∫

R3

|un − u|qdx
) 1
q

= o(1).

Similarly, we also obtain that for n large enough,∫
R3

l(x)φunun(un − u)dx = o(1)

and ∫
R3

h(x)un(un − u)dx = o(1).

Hence using the fact that∫
R3

(∇(un − u)∇u+ (un − u)u) dx = o(1),
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one deduces that

o(1) = 〈I ′µ(un), un − u〉

= ‖un − u‖2 +

∫
R3

l(x)φunun(un − u)dx

−
∫
R3

k(x)g(un)(un − u)dx−
∫
R3

h(x)un(un − u)dx

= ‖un − u‖2.

The proof of Lemma 3.1.4 is complete. �

3.2 Existence of two positive solutions

In this section, we will prove the existence and multiplicity of positive critical points of

Iµ on H1(R3). Our main strategy is to study suitable minimization problem and minimax

procedure. We emphasize that, with the help of Lemma 3.1.4, an important thing is to

study the geometrical structure of Iµ. We need Lemma 2.2.1 and eigenvalues of −∆ + id

in H1(R3) with weight function h(x), which we state again in the following for the readers

convenience.

Lemma 3.2.1. Assume h ∈ L3/2(R3) and h(x) ≥ 0. Then for every u ∈ H1(R3), there

exists a unique w ∈ H1(R3) such that

−∆w + w = h(x)u.

Moreover, the operator Kh : H1(R3)→ H1(R3) defined by Kh(u) = w is compact.

Using the spectral theory of compact symmetric operators on Hilbert space, Lemma

3.2.1 implies the existence of a sequence of eigenvalues (µn)n∈N of

−∆u+ u = µh(x)u, in H1(R3)

with µ1 < µ2 ≤ · · · and each eigenvalue being of finite multiplicity. The associated

normalized eigenfunctions are denoted by e1, e2, · · · with ‖ei‖ = 1, i = 1, 2, · · · . Moreover,

since Kh is a positive operator, one has µ1 > 0 with a positive eigenfunction e1 > 0 in R3.

In addition, we have the following variational characterization of µn:

µ1 = inf
u∈H1(R3)\{0}

‖u‖2∫
R3 h(x)u2dx

, µn = inf
u∈S⊥n−1\{0}

‖u‖2∫
R3 h(x)u2dx

, (3.46)

where S⊥n−1 = {span{e1, e2, · · · , en−1}}⊥. Let µ̄1 be the first eigenvalue of

−∆u+ u = µh(x)u, in H1
0 (Ω0).

Then clearly µ1 < µ̄1 and we have that µ 6∈ σ(−∆ + id,Ω0, h) for any µ < µ̄1.
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In the following lemma, we prove the mountain pass geometry for the functional Iµ for

µ less than µ1 and µ in the right neighborhood of µ1, respectively.

Lemma 3.2.2. Assume that the hypotheses (G) and (H) hold.

(I1) If 0 < µ < µ1, then u = 0 is the local minimum of Iµ;

(I ′1) There are positive constants δ̄, ρ and α such that, for any µ ∈ [µ1, µ1+δ̄), Iµ|∂Bρ ≥ α;

And

(I2) there is ū ∈ H1(R3) with ‖ū‖ > ρ such that Iµ(ū) < 0 for any µ > 0.

Proof. (i) Proof of (I1): From (Hl1) it follows that F (u) ≥ 0. (Hk1) and (Hk2) imply

that k is bounded in R3. Thus, by (3.46) and the continuity of the Sobolev embedding of

H1(R3) in Lp(R3), we deduce that

I(u) =
1

2
‖u‖2 +

1

4
F (u)−

∫
R3

k(x)G(u)dx− µ

2

∫
R3

h(x)u2dx

≥ 1

2

(
1− µ

µ1

)
‖u‖2 − C‖u‖p − C‖u‖q.

Therefore the statement (I1) follows.

(ii) Proof of (I ′1): For any u ∈ H1(R3), there exist t ∈ R and v ∈ S⊥1 such that

u = te1 + v, where

∫
R3

(∇v∇e1 + ve1) dx = 0. (3.47)

Hence we get by direct computation that

‖u‖ =
(
‖∇(te1 + v)‖22 + ‖te1 + v‖22

) 1
2 =

(
t2 + ‖v‖2

) 1
2 , (3.48)

µ2

∫
R3

h(x)v2dx ≤ ‖v‖2, µ1

∫
R3

h(x)e2
1dx = ‖e1‖2 = 1 (3.49)

and

µ1

∫
R3

h(x)e1vdx =

∫
R3

(∇v∇e1 + ve1) dx = 0. (3.50)

Using the mean value theorem, we know that there exists ϑ with 0 < ϑ < 1 such that

|F (te1 + v)− F (te1)| = 4

∣∣∣∣∫
R3

l(x)φte1+ϑv(te1 + ϑv)vdx

∣∣∣∣
≤ 4‖l‖∞‖φte1+ϑv‖6‖te1 + ϑv‖2‖v‖3
≤ C‖l‖2∞‖te1 + ϑv‖3‖v‖
≤ C0

(
|t|3‖v‖+ ‖v‖4

)
.

(3.51)

It follows from (3.4) that

|G(u)| ≤ (b12p + b22q) (|t|p|e1|p + |v|p + |t|q|e1|q + |v|q) . (3.52)
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We first consider the case that µ = µ1 and estimate the value of Iµ1 for u not too small.

Denote θ := 1
2

(
1− µ1

µ2

)
> 0. By (3.48)–(3.52) and the boundedness of the function k, one

has that

Iµ1(u) =
1

2
‖u‖2 +

1

4
F (u)− µ1

2

∫
R3

h(x)u2dx−
∫
R3

k(x)G(u)dx

=
1

2

(
t2 + ‖v‖2

)
+

1

4
F (te1) +

1

4
F (te1 + v)− 1

4
F (te1)

−µ1

2

∫
R3

h(x)(te1 + v)2dx−
∫
R3

k(x)G(u)dx

≥ 1

2
‖v‖2 − µ1

2

∫
R3

h(x)v2dx+
1

4
F (e1)t4

−C0

(
|t|3‖v‖+ ‖v‖4

)
−
∫
R3

k(x)G(u)dx

≥ θ‖v‖2 + C1t
4 − C0|t|3‖v‖ − C0‖v‖4

−C5|t|p − C5‖v‖p − C6|t|q − C6‖v‖q.

(3.53)

Note that for some 2 < q0 < 4,

|t|3‖v‖ ≤ 1

q0
‖v‖q0 +

q0 − 1

q0
|t|

3q0
q0−1 .

We deduce from (3.53) that

Iµ1(u) ≥ θ‖v‖2 + C1t
4 − C0

q0
‖v‖q0 − C0‖v‖4 − C5‖v‖p − C6‖v‖p

−C0(q0 − 1)

q0
|t|

3q0
q0−1 − C5|t|p − C6|t|q.

(3.54)

Therefore, from 2 < q0 < 4 and 3q0
q0−1 > 4, we know that there are positive constants θ3, θ4

and θ̃3, θ̃4 such that

Iµ1(u) ≥ θ3‖v‖2 + θ4|t|4 (3.55)

provided that ‖v‖ ≤ θ̃3 and |t| ≤ θ̃4. Hence there are positive constants θ5 and θ̃5 such

that

Iµ1(u) ≥ θ5‖u‖4 for ‖u‖2 ≤
(
θ̃5

)2
.

Set

δ̄ = min

{
µ1

2
θ5

(
θ̃5

)2
, µ2 − µ1, µ̄1 − µ1

}
.

Then for any µ ∈ [µ1, µ1 + δ̄), we deduce from by (3.55) that

Iµ(u) = Iµ1(u) +
1

2
(µ1 − µ)

∫
R3

h(x)u2dx

≥ θ5‖u‖4 −
µ− µ1

2µ1
‖u‖2 ≥ ‖u‖2

(
θ5‖u‖2 −

µ− µ1

2µ1

)
≥ ‖u‖2

(
1

2
θ5

(
θ̃5

)2
− 1

4
θ5

(
θ̃5

)2
)

=
1

4
θ5

(
θ̃5

)2
‖u‖2
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for 1
2

(
θ̃5

)2
≤ ‖u‖2 ≤

(
θ̃5

)2
. Choosing

ρ2 = ‖u‖2 ∈
[

1

2

(
θ̃5

)2
,
(
θ̃5

)2
]

and α = 1
4θ5

(
θ̃5

)2
ρ2, we get the conclusion (I ′1).

(iii) Proof of (I2): Choose ϕ ∈ H1(R3) with suppϕ ⊂ Ω+ such that ϕ(x) ≥ 0 for all

x ∈ Ω+. Then for any s > 0 sufficiently large, by (3.5) one has that

Iµ(sϕ) ≤ s2

2
‖ϕ‖2 +

s4

4
F (ϕ)− µs2

2

∫
R3

h(x)ϕ2dx− b4sp
∫

Ω+

k(x)|ϕ|pdx.

From the choice of ϕ we know that Iµ(sϕ) < 0 for s sufficiently large. Thus the conclusion

of (I2) follows by taking ū = sϕ. �

Remark 3.2.3. Set ε̄ = min{µ̄1 − µ1, δ̄}. If 0 < µ < µ1 + ε̄, then µ < min{µ̄1, µ1 + δ̄}.
Hence, when 0 < µ < µ1 + ε̄, Lemma 3.2.2 implies that the functional Iµ has the mountain

pass geometry and Lemma 3.1.4 means that the functional Iµ satisfies (PS)-condition.

With the help of previous several lemmas, we are ready to prove Theorem 3.0.9.

Proposition 3.2.4. Assume that the hypotheses (G) and (H) hold. If either there is β

with 0 ≤ β < 1 such that g(s) = |s|p−2s + O
(
|s|β
)

as |s| → ∞, or Ω+ ∩ Ω− = ∅, then

problem (3.3) has a positive solution uµ with Iµ(uµ) > 0 for 0 < µ < µ1 + ε̄.

Proof. We denote

c1,µ = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) with Γ = {γ ∈ C([0, 1], H1(R3)) : γ(0) = 0, γ(1) = ū}.

By Remark 3.2.3, the Mountain Pass Theorem implies that c1,µ is a critical value of Iµ

and c1,µ > 0. The proof of positivity for at least one of the corresponding (nontrivial)

critical point is inspired by the idea of Alama-Tarantello [1]. In fact, since Iµ(u) = Iµ(|u|)
in H1(R3), for every n ∈ N, there exists γn ∈ Γ with γn(t) ≥ 0 (a.e. in R3) for all t ∈ [0, 1]

such that

c1,µ ≤ max
t∈[0,1]

Iµ(γn(t)) < c1,µ +
1

n
. (3.56)

Consequently, by means of Ekeland’s variational principle, there exists γ∗n ∈ Γ with the

following properties:
c1,µ ≤ maxt∈[0,1] Iµ(γ∗n(t)) ≤ maxt∈[0,1] Iµ(γn(t)) < c1,µ + 1

n ;

maxt∈[0,1] ‖γn(t)− γ∗n(t)‖ < 1√
n

;

there exists tn ∈ [0, 1] such that zn = γ∗n(tn) satisfies :

Iµ(zn) = maxt∈[0,1] Iµ(γ∗n(t)), and ‖I ′µ(zn)‖ ≤ 1√
n
.

(3.57)
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In particular, we get a (PS)c1,µ-sequence (zn)n∈N. By Lemma 3.1.4 we get a convergent

subsequence (still denoted by (zn)n∈N). Let zn → z in H1(R3) as n → ∞. On the other

hand, by (3.57), we also arrive at γn(tn) → z in H1(R3) as n → ∞. Since γn(t) ≥ 0,

we conclude that z ≥ 0 a.e. in R3 with Iµ(z) > 0 and I ′µ(z) = 0. The strong maximum

principle implies that z > 0 in R3. The conclusion of this proposition follows from choosing

uµ := z. �

Proposition 3.2.5. Assume that the hypotheses (G) and (H) hold. If either there is β

with 0 ≤ β < 1 such that g(s) = |s|p−2s+O
(
|s|β
)

as |s| → ∞, or Ω+ ∩ Ω− = ∅, then for

each µ with µ1 < µ < µ1 + ε̄, problem (3.3) has a positive solution ωµ with Iµ(ωµ) < 0.

Proof. Let Bρ denote the closed ball Bρ = {u ∈ H1(R3) : ‖u‖ ≤ ρ} with ρ as in Lemma

3.2.2. Set

c2,µ := inf
‖u‖≤ρ

Iµ(u). (3.58)

It is clear that c2,µ > −∞. We claim that c2,µ < 0. In fact, given R > 0, define ηR ∈
C∞0 (R3) with 0 ≤ ηR(x) ≤ 1 and |∇ηR(x)| ≤ 2

R for all x ∈ R3 and

ηR(x) =

{
1, |x| ≤ R,
0, |x| ≥ 2R.

Then ηRe1 ∈ H1(R3). To complete the proof of the claim, it suffices to show that

Iµ(tηRe1) < 0 for all t > 0 small. First we have that

Iµ(tηRe1) =
t2

2
‖ηRe1‖2 +

t4

4
F (ηRe1)

−µt
2

2

∫
R3

h(x)(ηRe1)2dx−
∫
R3

k(x)G(tηRe1)dx

=
t2

2

∫
R3

η2
R|∇e1|2dx+

t2

2

∫
R3

η2
Re

2
1dx

+t2
∫
R3

ηRe1∇ηR∇e1dx+
t4

4
F (ηRe1) +

t2

2

∫
R3

e2
1|∇ηR|2dx

−µt
2

2

∫
R3

h(x)η2
Re

2
1dx−

∫
R3

k(x)G(tηRe1)dx.

(3.59)

On the other hand, multiplying both sides of the equation

−∆e1 + e1 = µ1h(x)e1

by η2
Re1 and integrating by parts, one obtains that

2

∫
R3

ηRe1∇ηR∇e1dx+

∫
R3

η2
Re

2
1dx+

∫
R3

η2
R|∇e1|2dx = µ1

∫
R3

h(x)η2
Re

2
1dx. (3.60)
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Inserting (3.60) into (3.59), we get that

Iµ(tηRe1) = (µ1 − µ)
t2

2

∫
R3

h(x)η2
Re

2
1dx+

t2

2

∫
R3

e2
1|∇ηR|2dx

+
t4

4
F (ηRe1)−

∫
R3

k(x)G(tηRe1)dx.

(3.61)

By the definition of ηR, the Hölder inequality and the Sobolev inequality, we obtain that∫
R3

e2
1|∇ηR|2dx =

∫
R≤|x|≤2R

e2
1|∇ηR|2dx

≤

(∫
R≤|x|≤2R

e6
1dx

) 1
3
(∫

R≤|x|≤2R
|∇ηR|3dx

) 2
3

≤

(∫
R≤|x|≤2R

e6
1dx

) 1
3
((

2

R

)3 ∫
R≤|x|≤2R

dx

) 2
3

≤ C

(∫
R≤|x|≤2R

e6
1dx

) 1
3

→ 0, as R→∞,

(3.62)

since ‖e1‖ = 1. Meanwhile, multiplying both sides of the equation

−∆e1 + e1 = µ1h(x)e1

by e1 and integrating by parts, we get that

µ1

∫
R3

h(x)e2
1dx = ‖e1‖2 = 1. (3.63)

Moreover, by choosing R sufficiently large, we obtain that∫
R3

h(x)η2
Re

2
1dx ≥

∫
|x|≤R

h(x)η2
Re

2
1dx =

∫
|x|≤R

h(x)e2
1dx ≥

1

2µ1
, (3.64)

and then choosing R2 > 0 sufficiently large with R ≥ R2, we deduce from (3.62)–(3.64)

that ∫
R3

e2
1|∇ηR|2dx ≤

µ− µ1

2

∫
R3

h(x)η2
Re

2
1dx (3.65)

for all R > R2. From (3.4), (3.61) and (3.65), one deduces that

Iµ(tηRe1) ≤ (µ1 − µ)
t2

4

∫
R3

h(x)η2
Re

2
1dx+

t4

4
F (ηRe1)

+‖k‖∞b1
∫
R3

|tηRe1|q dx+ ‖k‖∞b2
∫
R3

|tηRe1|p dx

≤ −C7t
2 + C8t

4 + C9t
p + C10t

q,

for all R > R2, which means that Iµ(tηRe1) < 0 for t > 0 small enough. Thus c2,µ < 0

and the proof of the claim is complete.

In addition, since Iµ(u) = Iµ(|u|), given n, by (3.58), there exists w∗n ≥ 0 with ‖w∗n‖ ≤ ρ
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such that

c2,µ ≤ Iµ(w∗n) < c2,µ +
1

n
.

Then, according to the Ekeland’s variational principle, there is (wn)n∈N with ‖wn‖ ≤ ρ

satisfying

c2,µ ≤ Iµ(wn) ≤ Iµ(w∗n) < c2,µ +
1

n
,

‖wn − w∗n‖ ≤
1√
n

and ‖I ′µ(wn)‖ ≤ 1

n
. (3.66)

As n→∞, the sequence (wn)n∈N satisfies

Iµ(wn)→ c2,µ and I ′µ(wn)→ 0.

Then Lemma 3.1.4 implies the existence of a minimizer w ∈ Bρ for the functional Iµ and

wn → w in H1(R3). Hence, by (3.66), w∗n → w. Since w∗n ≥ 0, we get that w ≥ 0 a.e. in

R3 with Iµ(w) < 0 and I ′µ(w) = 0. The maximum principle implies that w > 0 in R3. The

conclusion of this proposition follows from choosing wµ := w. The proof of Proposition

3.2.5 is complete. �

Remark 3.2.6. In fact, for the case of 0 < µ < µ1, to get a positive solution, it is not

necessary to involve the condition (Hl2). Since this condition is used to get the boundedness

of (PS)-sequence, for this case, one may use standard variational methods.

Proof of Theorem 3.0.9: Since φu is always positive for every nonzero u ∈ H1(R3), we

get that (uµ, φuµ) and (ωµ, φωµ) are the positive solutions of problem (3.2) in H1(R3) ×
D1,2(R3) by Proposition 3.2.4 and Proposition 3.2.5, respectively. Hence we finish the

proof of Theorem 3.0.9. �



Chapter 4

A positive solution of a

Schrödinger-Poisson system with

critical exponent

In this chapter, we study the existence of solutions of system (SP) involving a critical

growth with the following form{
−∆u+ u+ l(x)φu = k(x)|u|2∗−2u+ µh(x)|u|q−2u in R3,

−∆φ = l(x)u2 in R3,
(4.1)

where 2 ≤ q < 2∗. Since we consider the problem in R3, 2∗ = 6. We use the standard

Mountain Pass Theorem to show the existence of a positive solution. However, since

the nonlinearity involves a critical exponent, the Sobolev embedding H1(R3) ↪→ Ls(R3)

(2 ≤ s ≤ 6) is not compact. This will create great difficulties in the proof of the Palais-

Smale condition. We will transform the problem into a nonlocal elliptic equation in R3

and we also consider the limiting case q = 2.

We assume the following hypotheses (H):

(Hl) l ∈ L2(R3) ∩ L∞(R3), l(x) ≥ 0 for any x ∈ R3 and l 6≡ 0;

(Hk1) k(x) ≥ 0 for any x ∈ R3;

(Hk2) There exists x0 ∈ R3, δ1 > 0 and ρ1 > 0 such that k(x0) = maxR3 k(x) and

|k(x)− k(x0)| ≤ δ1|x− x0|α for |x− x0| < ρ1 with 1 ≤ α < 3;

(Hh1) h ∈ L6/(6−q)(R3) and h(x) ≥ 0 for any x ∈ R3 and h 6≡ 0;

(Hh2) There are δ2 > 0 and ρ2 > 0 such that h(x) ≥ δ2|x − x0|−β for |x − x0| < ρ2 and

2− q
2 < β < 3, where x0 is given by (Hk2);

53



54 4.1. Preliminaries

(Hhµ) 0 < µ < µ̄ when 2 ≤ q < 4; µ > 0 when 4 ≤ q < 6, where µ̄ is defined by

µ̄ := µh = inf
u∈H1(R3)

{∫
R3

(|∇u|2 + u2)dx :

∫
R3

h(x)|u|qdx = 1

}
.

Remark 4.0.7. The hypotheses (Hk1) and (Hk2) mean that k ∈ L∞(R3).

Remark 4.0.8. In Lemma 4.1.5, we show that µ̄ is achieved.

The following theorem is the main result of this chapter.

Theorem 4.0.9. Assume the hypotheses (H) hold and 2 ≤ q < 6. Then problem (4.1)

has at least one positive solution (u, φu) in H1(R3)×D1,2(R3).

To prove the result above, we use a combination of techniques, e.g. techniques moti-

vated by Willem [103], to overcome the lack of compactness of the Sobolev embedding, and

methods used by Chen-Li-Li [28] and Zhao-Zhao [109], to estimate carefully the energy

level.

The results presented here are published in [59].

4.1 Preliminaries

Let u+ = max{u, 0} and u− = max{−u, 0}.
We remind here that F is already defined in (1.12) by

F (u) =

∫
R3

l(x)φu(x)u2(x)dx.

Many works in the literature mention that F ∈ C1(H1(R3),R), but we did not find any

details of the proof. Let us start to prove this result with the case that l ∈ L∞(R3).

Lemma 4.1.1. (see Reed-Simon [86, p.31].) Let 0 < β < N and f ∈ Lq(RN ), g ∈ Lr(RN )

with 1
q + 1

r + β
N = 2 and 1 < q, r <∞. Then∫
RN×RN

|f(x)||g(y)|
|x− y|β

dxdy ≤ C(q, r, β,N)‖f‖q‖g‖r, x, y ∈ RN ,

where C(q, r, β,N) is a positive constant depending on q, r, β and N .

Lemma 4.1.2. If the hypothesis (Hl) holds, then F ∈ C1(H1(R3),R).

Proof. From Lemma 4.1.1 and the hypothesis (Hl) we obtain∫
R3×R3

|l(x)u2(x)||l(y)u(y)v(y)|
|x− y|

dxdy

≤ C‖u‖212/5‖uv‖6/5
≤ C‖u‖212/5‖u‖12/5‖v‖12/5
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for any u, v ∈ H1(R3). Then we may use the Lebesgue theorem and Fubini theorem and

get

lim
t→0

F (u+ tv)− F (u)

t

= lim
t→0

∫
R3

l(x)

t

(
(u+ tv)2

(
φu + 2t

∫
R3

l(y)u(y)v(y)

|x− y|
dy + t2φv

)
− φuu2

)
dx

= 2

∫
R3

l(x)

(
u2(x)

∫
R3

l(y)u(y)v(y)

|x− y|
dy + u(x)v(x)

∫
R3

l(y)u2(y)

|x− y|
dy

)
dx

= 4

∫
R3

l(x)φuuvdx.

Hence the Gateaux derivative of F on H1(R3) exists and 〈14F
′(u), v〉 =

∫
R3 l(x)φuuvdx.

Let un → u in H1(R3) and v ∈ H1(R3), then by (Hl) we obtain

‖F ′(un)− F ′(u)‖H−1 = sup
‖v‖=1

|〈F ′(un)− F ′(u), v〉|

= 4 sup
‖v‖=1

∣∣∣∣∫
R3

l(x)(φunun − φunu+ φunu− φuu)vdx

∣∣∣∣
≤ 4‖l‖∞ sup

‖v‖=1

(
‖φun‖6‖un − u‖12/5‖v‖12/5 +

∫
R3

|φun − φu||uv|dx
)
.

(4.2)

It follows from Lemma 4.1.1 that∫
R3

|φun − φu||uv|dx

=

∫
R3×R3

|u(x)v(x)||u2
n(y)− u2(y)|

|x− y|
dxdy

≤ C‖u2
n − u2‖6/5‖uv‖6/5

≤ C‖u2
n − u2‖6/5‖u‖12/5‖v‖12/5.

(4.3)

From (1.10), (4.2), (4.3) and the fact that un → u in H1(R3), we obtain

‖F ′(un)− F ′(u)‖H−1 → 0.

Thus F has a continuous Gateaux derivative on H1(R3). Therefore F ∈ C1(H1(R3),R). �

In the setting of this chapter, for problem (4.1), the equation (NSN ) should become

−∆u+ u+ l(x)φuu = k(x)|u|4u+ µh(x)|u|q−2u in R3. (4.4)

But since in this chapter we use a different method from Chapter 2 and Chapter 3 to get

a positive solution, we consider the following corresponding modified equation

−∆u+ u+ l(x)φuu = k(x)|u+|5 + µh(x)|u+|q−1 in R3. (4.5)



56 4.1. Preliminaries

Let us introduce the Euler functional associated to (4.5) by

I(u) =
1

2
‖u‖2 +

1

4
F (u)−

∫
R3

(
1

6
k(x)|u+|6 +

µ

q
h(x)|u+|q

)
dx. (4.6)

By Lemma 4.1.2 we know that the functional I is of class C1(H1(R3),R) and its critical

points are weak solutions of (4.5).

To prove Theorem 4.0.9, we still need some other preliminary lemmas.

Lemma 4.1.3. Assume that the hypothesis (Hl) holds. Then F is a weakly continuous

functional.

Proof. Suppose un ⇀ u in H1(R3). Since un → u in L2
loc(R3), going if necessary to a

subsequence, we can assume that

un → u a.e. in R3

and

φun → φu a.e. in R3.

In fact, the last statement is true since, by (Hl) and the Hölder inequality, we have

|φun(x)− φu(x)| ≤ 1

4π

∫
R3

∣∣l(y)||u2
n(y)− u2(y)

∣∣ 1

|x− y|
dy

≤ C‖u2
n − u2‖L2(BR(x))

(∫
|x−y|≤R

1

|x− y|2
dy

)1/2

+C‖u2
n − u2‖L4/3(BcR(x))

(∫
|x−y|>R

1

|x− y|4
dy

)1/4

≤ C‖u2
n − u2‖L2(BR(x)) + CR−

1
4 ‖u2

n − u2‖L4/3(BcR(x))

→ 0,

(4.7)

as n → ∞ and R → ∞. Then φunu
2
n → φuu

2 a.e. in R3. Moreover, the sequence

(φunu
2
n)n∈N is bounded in L2(R3), since

∫
R3

(
φunu

2
n

)2
dx ≤

(∫
R3

φ6
undx

)1/3(∫
R3

u6
ndx

)2/3

= ‖φun‖26‖un‖46 ≤ C‖un‖6.

Hence φunu
2
n ⇀ φuu

2 in L2(R3). By (Hl) we have

F (un) =

∫
R3

l(x)φunu
2
ndx→

∫
R3

l(x)φuu
2dx = F (u).

We have proven that F is weakly continuous. �

Lemma 4.1.4. Assume the hypothesis (Hl) holds. Let un ⇀ u in H1(R3), then

F (un − u) = F (un)− F (u) + o(1).
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Proof. Since (Hl) holds, from the proof of [109, Lemma 2.1], the result follows. �

Lemma 4.1.5. Suppose that the hypothesis (Hh1) holds and 2 ≤ q < 4. Then the following

infimum

µ̄ := µh = inf
u∈H1(R3)

{∫
R3

(|∇u|2 + u2)dx :

∫
R3

h(x)|u|qdx = 1

}
(4.8)

is achieved.

Proof. Let (un)n∈N ⊂ H1(R3) be a minimizing sequence such that∫
R3

h(x)|un|qdx = 1 and

∫
R3

(|∇un|2 + u2
n)dx→ µh, as n→∞.

So (un)n∈N is bounded in H1(R3). Then there exists a subsequence satisfying un ⇀ u in

H1(R3). Since h ∈ L6/(6−q)(R3), by Lemma 1.4.6, we have∫
R3

h(x)|un|qdx→
∫
R3

h(x)|u|qdx.

Hence ∫
R3

h(x)|u|qdx = 1.

Then, by the weakly lower semi-continuous property of the norm, we get

µh = lim
n→∞

inf

∫
R3

(|∇un|2 + u2
n)dx ≥

∫
R3

(|∇u|2 + u2)dx ≥ µh.

Thus the infimum µh is achieved. �

Lemma 4.1.6. Suppose that the hypotheses (Hl), (Hk1), (Hh1) and (Hhµ) hold. Then

I(0) = 0 and

(I1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α; and

(I2) there is ū ∈ H1(R3) \ B̄ρ such that I(ū) < 0.

Proof. It is clear from the definition of I that I(0) = 0. To prove (I1) and (I2), we

consider 2 ≤ q < 4 and 4 ≤ q < 6, respectively. First, for 2 ≤ q < 4, we have 0 < µ < µ̄

by (Hhµ). It follows from (Hk1), Lemma 4.1.5 and the Sobolev inequality that

I(u) =
1

2
‖u‖2 +

1

4
F (u)− 1

6

∫
R3

k(x)|u+|6dx− µ

q

∫
R3

h(x)|u+|qdx

≥ 1

2
‖u‖2 − C‖u‖6 − µ

qµ̄
‖u‖2

= ‖u‖2
(

1

2
− µ

qµ̄
− C‖u‖4

)
.
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Set ρ = ‖u‖, small enough such that Cρ4 ≤ 1
2(1

2 −
µ
qµ̄). Hence we have

I(u) ≥ 1

2

(
1

2
− µ

qµ̄

)
ρ2. (4.9)

Take α = 1
2(1

2−
µ
qµ̄)ρ2. Then we get the result (I1). By (1.10) and the fact that µh(x) ≥ 0,

for fixed u0 with ‖u0‖ = 1 and supp u0 ⊂ supp k, we have that

I(tu0) ≤ t6
(

1

2t4
‖u0‖2 +

C

4t2
‖u0‖4 −

C

6

∫
R3

k(x)|u+
0 |

6dx

)
.

Let t be large enough such that t > ρ and

1

2t4
‖u0‖2 +

C

4t2
‖u0‖4 −

C

6

∫
R3

k(x)|u+
0 |

6dx < 0.

Take ū = tu0. Then (I2) follows.

Next, we consider 4 ≤ q < 6, so µ > 0 by (Hhµ). Since (Hk1) and (Hh1) hold, the

Hölder inequality and the Sobolev inequality imply that

I(u) =
1

2
‖u‖2 +

1

4
F (u)− 1

6

∫
R3

k(x)|u+|6dx− µ

q

∫
R3

h(x)|u+|qdx

≥ 1

2
‖u‖2 − C‖u‖6 − µ

q
‖h‖ 6

6−q
‖u‖q6

≥ ‖u‖2
(

1

2
− C‖u‖4 − C‖u‖q−2

)
for each µ > 0 fixed. Let ρ = ‖u‖ be small enough such that C‖u‖q−2 ≤ 1

4 and then

I(u) ≥ 1
4ρ

2. Take α = 1
4ρ

2. Thus one achieves the result (I1). The proof of (I2) is the

same to the case that 2 ≤ q < 4. The proof is complete. �

4.2 The proof of Palais-Smale condition

Since Lemma 4.1.6 shows that the functional I has the mountain pass geometry, to

apply the Mountain Pass Theorem to the functional I on H1(R3), it is enough to prove

that the (PS)c-condition at some level c that we are intended to solve.

Lemma 4.2.1. Assume (Hl), (Hk1), (Hh1) and (Hhµ) hold. Then the functional I satisfies

the (PS)c-condition for c ∈
(

0, 1
3S

3
2 ‖k‖−

1
2∞

)
, where S denotes the best Sobolev constant

defined by

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx(∫
R3 |u|6dx

)1/3 . (4.10)

Proof. Let (un)n∈N be a (PS)c-sequence of I at the level c ∈
(

0, 1
3S

3
2 ‖k‖−

1
2∞

)
, i.e.,

I(un)→ c and I ′(un)→ 0 in H−1(R3). (4.11)
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Step 1. We consider 2 ≤ q < 4, so we get 0 < µ < µ̄ by (Hhµ). Then by the Sobolev

inequality, Lemma 4.1.5 and k(x) ≥ 0 for any x ∈ R3, for large n we have that

c+ 1 + ‖un‖ ≥ I(un)− 1

4
〈I ′(un), un〉

=
1

4
‖un‖2 +

(
1

4
− 1

6

)∫
R3

k(x)|u+
n |6dx+

(
µ

4
− µ

q

)∫
R3

h(x)|u+
n |qdx

≥ 1

4
‖un‖2 +

(
1

4
− 1

6

)∫
R3

k(x)|u+
n |6dx+

(
1

4
− 1

q

)
µ

µ̄
‖un‖2

≥
(

1

4
+

(
1

4
− 1

q

)
µ

µ̄

)
‖un‖2,

(4.12)

which implies (un)n∈N is bounded in H1(R3), since 0 < µ < µ̄ and 2 ≤ q < 4. Passing if

necessary to a subsequence, we can assume that

un ⇀ u in H1(R3),

un → u a.e. in R3,

∇un ⇀ ∇u in L2(R3)

and

un ⇀ u in L2(R3).

Let us define wn = k(x)|u+
n |5 and w = k(x)|u+|5. Since (un)n∈N is bounded in L6(R3) and

k ∈ L∞(R3), then (wn)n∈N is bounded in L6/5(R3) and so wn ⇀ w in L6/5(R3). Note that

for any v ∈ H1(R3), we have v ∈ L6(R3), ∇v ∈ L2(R3) and v ∈ L2(R3). Hence∫
R3

wnvdx→
∫
R3

wvdx, (4.13)

i.e., ∫
R3

k(x)|u+
n |5vdx→

∫
R3

k(x)|u+|5vdx,

and ∫
R3

(∇un∇v + unv) dx→
∫
R3

(∇u∇v + uv) dx. (4.14)

From the proof of Lemma 4.1.3 and Lemma 1.4.6 we also have∫
R3

h(x)|u+
n |q−1vdx→

∫
R3

h(x)|u+|q−1vdx, (4.15)

and ∫
R3

l(x)φununvdx→
∫
R3

l(x)φuuvdx. (4.16)
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Combining (4.13)–(4.16), for un ⇀ u in H1(R3), we obtain

〈I ′(un), v〉 =

∫
R3

(∇un∇v + unv)dx+

∫
R3

l(x)φununvdx

−
∫
R3

k(x)|u+
n |5vdx− µ

∫
R3

h(x)|u+
n |q−1vdx

→
∫
R3

(∇u∇v + uv)dx+

∫
R3

l(x)φuuvdx−
∫
R3

k(x)|u+|5vdx

−µ
∫
R3

h(x)|u+|q−1vdx

= 〈I ′(u), v〉.

(4.17)

On the other hand, by the fact I ′(un) → 0 in H−1(R3), we get that 〈I ′(un), v〉 → 0 for

any v ∈ H1(R3). So 〈I ′(u), v〉 = 0 for any v ∈ H1(R3), i.e.

−∆u+ u+ l(x)φuu = k(x)|u+|5 + µh(x)|u+|q−1. (4.18)

In particular, 〈I ′(u), u〉 = 0. And then from Lemma 4.1.5, k(x) ≥ 0, and the assumptions

that 2 ≤ q < 4 and 0 < µ < µ̄, we obtain that

I(u) =
1

4
〈I ′(u), u〉+

1

4
‖u‖2 +

(
1

4
− 1

6

)∫
R3

k(x)|u+|6dx

+

(
µ

4
− µ

q

)∫
R3

h(x)|u+|qdx

≥
(

1
4 +

(
1
4 −

1
q

)
µ
µ̄

)
‖u‖2 ≥ 0.

(4.19)

Let vn = un − u and so vn ⇀ 0 in H1(R3). Hence, by using the given hypotheses, the

Brézis-Lieb lemma [22] implies that

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1),∫
R3

k(x)|u+
n |6dx =

∫
R3

k(x)|v+
n |6dx+

∫
R3

k(x)|u+|6dx+ o(1),∫
R3

h(x)|u+
n |qdx =

∫
R3

h(x)|v+
n |qdx+

∫
R3

h(x)|u+|qdx+ o(1),

and hence by Lemma 4.1.4 we have

I(un) = I(u) +
1

2
‖vn‖2 +

1

4
F (vn)− 1

6

∫
R3

k(x)|v+
n |6dx−

1

2

∫
R3

h(x)|v+
n |qdx+ o(1),

and

〈I ′(un), un〉 = 〈I ′(u), u〉+ ‖vn‖2 + F (vn)−
∫
R3

k(x)|v+
n |6dx

−µ
∫
R3

h(x)|v+
n |qdx+ o(1).

Therefore it follows from Lemma 4.1.3, Lemma 1.4.6 and the hypotheses of I(un)→ c and
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I ′(un)→ 0 in H−1(R3) that

c = lim
n→∞

I(un) = I(u) + lim
n→∞

1

2
‖vn‖2 − lim

n→∞

1

6

∫
R3

k(x)|v+
n |6dx, (4.20)

and

〈I ′(u), u〉+ lim
n→∞

‖vn‖2 − lim
n→∞

∫
R3

k(x)|v+
n |6dx = 0. (4.21)

Using (4.18) and (4.21) we obtain

‖vn‖2 −
∫
R3

k(x)|v+
n |6dx→ −〈I ′(u), u〉 = 0.

Now we may assume that

‖vn‖2 → b

and ∫
R3

k(x)|v+
n |6dx→ b.

By the Sobolev’s inequality we have

‖vn‖2 ≥
∫
R3

|∇vn|2dx ≥ S
(∫

R3

|v+
n |6dx

)1/3

,

which means that∫
R3

k(x)|v+
n |6dx ≤ ‖k‖∞

∫
R3

|v+
n |6dx ≤ ‖k‖∞

(
S−1‖vn‖2

)3
,

i.e., b ≤ ‖k‖∞
(
S−1b

)3
. So we get that b = 0 or b ≥ S

3
2 ‖k‖−

1
2∞ . Assume b ≥ S

3
2 ‖k‖−

1
2∞ .

Then combining (4.19) and (4.20), we obtain that

c ≥ 1

2
b− 1

6
b =

1

3
b ≥ 1

3
S

3
2 ‖k‖−

1
2∞ ,

which contradicts the fact that c < 1
3S

3
2 ‖k‖−

1
2∞ . Hence b = 0.

Step 2. One computes by 4 ≤ q < 6 and µ > 0 that

c+ 1 + ‖un‖ ≥ I(un)− 1

4
〈I ′(un), un〉

=
1

4
‖un‖2 +

(
1

4
− 1

6

)∫
R3

k(x)|u+
n |6dx

+

(
µ

4
− µ

q

)∫
R3

h(x)|u+
n |qdx ≥

1

4
‖un‖2,

which implies that (un)n∈N is bounded in H1(R3). Passing if necessary to a subsequence,

one can assume that

un ⇀ u in H1(R3),



62 4.2. The proof of Palais-Smale condition

un → u a.e. in R3,

∇un ⇀ ∇u in L2(R3)

and

un ⇀ u in L2(R3).

Let us define wn = k(x)|u+
n |5 and w = k(x)|u+|5. Since (un)n∈N is bounded in L6(R3) and

k ∈ L∞(R3), then (wn)n∈N is bounded in L6/5(R3) and so wn ⇀ w in L6/5(R3). Note that

for any v ∈ H1(R3), one has v ∈ L6(R3), ∇v ∈ L2(R3) and v ∈ L2(R3). Thus∫
R3

wnvdx→
∫
R3

wvdx, (4.22)

i.e., ∫
R3

k(x)|u+
n |5vdx→

∫
R3

k(x)|u+|5vdx,

and ∫
R3

(∇un∇v + unv) dx→
∫
R3

(∇u∇v + uv) dx. (4.23)

From the proof of Lemma 4.1.3 and Lemma 1.4.6 we also have∫
R3

h(x)|u+
n |q−1vdx→

∫
R3

h(x)|u+|q−1vdx, (4.24)

and ∫
R3

l(x)φununvdx→
∫
R3

l(x)φuuvdx. (4.25)

Combining (4.22)–(4.25), for un ⇀ u in H1(R3), we obtain that

〈I ′(un), v〉 =

∫
R3

(∇un∇v + unv)dx+

∫
R3

l(x)φununvdx

−
∫
R3

k(x)|u+
n |5vdx− µ

∫
R3

h(x)|u+
n |q−1vdx

→
∫
R3

(∇u∇v + uv)dx+

∫
R3

l(x)φuuvdx−
∫
R3

k(x)|u+|5vdx

−µ
∫
R3

h(x)|u+|q−1vdx

= 〈I ′(u), v〉.

(4.26)

On the other hand, by the fact I ′(un) → 0 in H−1(R3), we get that 〈I ′(un), v〉 → 0 for

any v ∈ H1(R3). So 〈I ′(u), v〉 = 0 for any v ∈ H1(R3), that is,

−∆u+ u+ l(x)φuu = k(x)|u+|5 + µh(x)|u+|q−1.

In particular,

〈I ′(u), u〉 = 0. (4.27)

And then it follows from Lemma 4.1.5, k(x) ≥ 0, l(x) ≥ 0 and the assumptions that
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4 ≤ q < 6 and µ > 0 that

I(u) =
1

4
〈I ′(u), u〉+

1

4
‖u‖2 +

(
1

4
− 1

6

)∫
R3

k(x)|u+|6dx

+

(
µ

4
− µ

q

)∫
R3

h(x)|u+|qdx

≥ 1

4
‖u‖2 ≥ 0.

(4.28)

Let vn = un − u and so vn ⇀ 0 in H1(R3). Hence, by using the given hypotheses, the

Brézis-Lieb lemma [22] implies that

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1),∫
R3

k(x)|u+
n |6dx =

∫
R3

k(x)|v+
n |6dx+

∫
R3

k(x)|u+|6dx+ o(1),∫
R3

h(x)|u+
n |qdx =

∫
R3

h(x)|v+
n |qdx+

∫
R3

h(x)|u+|qdx+ o(1),

and hence by Lemma 4.1.4 we have

I(un) = I(u) +
1

2
‖vn‖2 +

1

4
F (vn)− 1

6

∫
R3

k(x)|v+
n |6dx−

1

2

∫
R3

h(x)|v+
n |qdx+ o(1),

and
〈I ′(un), un〉 = 〈I ′(u), u〉+ ‖vn‖2 + F (vn)

−
∫
R3

k(x)|v+
n |6dx− µ

∫
R3

h(x)|v+
n |qdx+ o(1).

Therefore it follows from Lemma 4.1.3, Lemma 1.4.6 and the hypotheses I(un) → c and

I ′(un)→ 0 in H−1(R3) that

c = lim
n→∞

I(un) = I(u) + lim
n→∞

1

2
‖vn‖2 − lim

n→∞

1

6

∫
R3

k(x)|v+
n |6dx, (4.29)

and

〈I ′(u), u〉+ lim
n→∞

‖vn‖2 − lim
n→∞

∫
R3

k(x)|v+
n |6dx = 0. (4.30)

Using (4.27) and (4.30) we obtain

‖vn‖2 −
∫
R3

k(x)|v+
n |6dx→ −〈I ′(u), u〉 = 0.

Now we may assume that

‖vn‖2 → b

and ∫
R3

k(x)|v+
n |6dx→ b.
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By the Sobolev’s inequality we have

‖vn‖2 ≥
∫
R3

|∇vn|2dx ≥ S
(∫

R3

|v+
n |6dx

)1/3

,

which means that∫
R3

k(x)|v+
n |6dx ≤ ‖k‖∞

∫
R3

|v+
n |6dx ≤ ‖k‖∞

(
S−1‖vn‖2

)3
,

i.e., b ≤ ‖k‖∞
(
S−1b

)3
. So we get that b = 0 or b ≥ S

3
2 ‖k‖−

1
2∞ . Assume b ≥ S

3
2 ‖k‖−

1
2∞ .

Then combining (4.28) and (4.29), we obtain that

c ≥ 1

2
b− 1

6
b =

1

3
b ≥ 1

3
S

3
2 ‖k‖−

1
2∞ ,

which contradicts the fact that c < 1
3S

3
2 ‖k‖−

1
2∞ . Then b = 0. Hence we know that every

(PS)c-sequence (un)n∈N has a convergent subsequence. This proves Lemma 4.2.1. �

Lemma 4.2.2. Suppose the hypotheses (H) hold. Then c < 1
3S

3
2 ‖k‖−

1
2∞ , where c is defined

by

c = inf
g∈Γ

max
u∈g[0,1]

I(u)

with

Γ = {g ∈ C([0, 1], H1(R3)) : g(0) = 0, g(1) = ū}

and ū is defined by Lemma 4.1.6, which belongs to H1(R3) \ B̄ρ and satisfies I(ū) < 0.

Proof. The idea here is to find a path in Γ such that the maximum of the functional I at

this path is strictly less than 1
3S

3
2 ‖k‖−1/2

∞ . To construct this path, we need the extremal

function uε,x0 for the embedding D1,2(R3) ↪→ L6(R3), where

uε,x0 = C
ε1/4

(ε+ |x− x0|2)1/2
.

Here C is a normalizing constant and x0 is given in (Hk2). Let ϕ ∈ C∞0 (R3) be such that

0 ≤ ϕ ≤ 1, ϕ|BR2
≡ 1 and supp ϕ ⊂ B2R2 for some R2 > 0. Set

vε = ϕuε,x0

and then vε ∈ H1(R3) with vε(x) ≥ 0 for each x ∈ R3. The following asymptotic estimates

hold if ε is small enough (see Brézis-Nirenberg [23]):

‖∇vε‖22 = k1 +O(ε
1
2 ), ‖vε‖26 = k2 +O(ε), (4.31)
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‖vε‖ss =


O(ε

s
4 ) s ∈ [2, 3),

O(ε
s
4 |ln ε|) s = 3,

O(ε
6−s

4 ) s ∈ (3, 6),

(4.32)

with k1/k2 = S, and 2 ≤ s < 6. We know that the path tvε ∈ Γ. In the rest, we will prove

that

max
t≥0

I(tvε) <
1

3
S

3
2 ‖k‖−1/2

∞ (4.33)

for small ε. Since I(tvε) → −∞ as t → ∞, there exists tε > 0 such that I(tεvε) =

max
t≥0

I(tvε). Also by Lemma 4.1.6, max
t≥0

I(tvε) ≥ α > 0. Then we have that

I(tεvε) ≥ α > 0.

Thus from the continuity of I, we may assume that there exists some positive t0 such that

tε ≥ t0 > 0. Moreover from I(tvε) → −∞ as t → ∞ and I(tεvε) ≥ α > 0, we get that

there exists T0 such that tε ≤ T0. Hence t0 ≤ tε ≤ T0. Let

I(tεvε) = A(ε) +B(ε) + C(ε),

where

A(ε) =
t2ε
2

∫
R3

|∇vε|2dx−
t6ε
6

∫
R3

k(x0)|vε|6dx,

B(ε) =
t6ε
6

∫
R3

k(x0)|vε|6dx−
t6ε
6

∫
R3

k(x)|vε|6dx,

and

C(ε) =
t2ε
2

∫
R3

|vε|2dx+
t4ε
4
F (vε)−

t2εµ

2

∫
R3

h(x)|vε|qdx,

since v+
ε = vε. First, we claim that

A(ε) ≤ 1

3
S

3
2 ‖k‖−

1
2∞ + Cε1/2. (4.34)

Indeed, let

g(t) =
t2

2

∫
R3

|∇vε|2dx−
t6

6

∫
R3

k(x0)|vε|6dx.

It is clear that g(t) achieves its maximum value at some Tε. So

0 = g′(Tε) = Tε

∫
R3

|∇vε|2dx− T 5
ε

∫
R3

k(x0)|vε|6dx.

That is,

Tε =

( ∫
R3 |∇vε|2dx∫

R3 k(x0)|vε|6dx

) 1
4

.
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Therefore, from (4.31), we have that

g(Tε) = sup
t≥0

g(t) =
1

3

(∫
R3 |∇vε|2dx

)3/2(∫
R3 k(x0)|vε|6dx

)1/2 =
1

3
S

3
2 ‖k‖−

1
2∞ + Cε1/2.

Then (4.34) follows. Second, we claim that

B(ε) ≤ Cε1/2. (4.35)

In fact, since t0 ≤ tε ≤ T0 and k ∈ L∞(R3), by the definition of vε, (Hk2) and using a

change of variables with 1 ≤ α < 3, we have

B(ε) =
t6ε
6

∫
R3

(k(x0)− k(x))|vε|6dx

≤ Cδ1

∫
|x−x0|<ρ1

|x− x0|αε3/2

(ε+ |x− x0|2)3
dx+ C

∫
|x−x0|≥ρ1

ε3/2

(ε+ |x− x0|2)3
dx

≤ Cδ1ε
3
2

∫ ρ1

0

r2+α

(ε+ r2)3
dr + Cε

3
2

∫ ∞
ρ1

r−4dr

= Cδ1ε
α
2

∫ ρ1ε
− 1

2

0

ρ2+α

(1 + ρ2)3
dρ+ Cρ−3

1 ε3/2

≤ Cδ1ε
α
2 + Cε3/2

≤ Cε
1
2 .

So we have proved the claim (4.35). Therefore, to finish the proof, it is enough to show

lim
ε→0+

C(ε)

ε1/2
= −∞. (4.36)

Actually, from the definition of vε, (Hh2) and for any ε such that 0 < ε ≤ ρ2
2, it follows

that ∫
R3

h(x)|vε|qdx ≥ Cδ2

∫
|x−x0|<ρ2

|x− x0|−βεq/4

(ε+ |x− x0|2)q/2
dx+

∫
|x−x0|≥ρ2

h(x)|vε|qdx

≥ Cδ2ε
q/4

∫ ρ2

0

r2

rβ (ε+ r2)q/2
dr

= Cδ2ε
3
2
− q

4
−β

2

∫ ρ2ε
− 1

2

0

ρ2

ρβ (1 + ρ2)q/2
dρ

≥ Cδ2ε
3
2
− q

4
−β

2

∫ 1

0

ρ2

2qρβ
dρ

= Cε
3
2
− q

4
−β

2 .
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Therefore, by the fact that t0 ≤ tε ≤ T0 and hypothesis (Hl), we have

C(ε) =
t2ε
2

∫
R3

|vε|2dx+
t4ε
4
F (vε)−

t2εµ

2

∫
R3

h(x)|vε|qdx

≤ C‖vε‖22 + C‖vε‖412/5 − µCε
3
2
− q

4
−β

2

≤ Cε
1
2 + Cε− µCε

3
2
− q

4
−β

2 .

It follows from 2− q
2 < β < 3 that for fixed µ we have

C(ε)

ε1/2
≤ C + Cε

1
2 − µCε1− q

4
−β

2 → −∞, as ε→ 0.

So we prove the claim (4.36). Therefore (4.33) follows. We finish the proof of this lemma.

�

4.3 The proof of Theorem 4.0.9

To prove Theorem 4.0.9, we will apply the Mountain Pass Theorem to find a solution

of problem (4.5) and then prove that it is a positive solution.

Proof of Theorem 4.0.9. By Lemma 4.1.6, the functional I has the mountain pass

geometry. Moreover, it follows from Lemma 4.2.1 and Lemma 4.2.2 that the functional I

satisfies the (PS)c-condition at the level c defined by

c = inf
g∈Γ

max
u∈g[0,1]

I(u)

with

Γ = {g ∈ C([0, 1], H1(R3)) : g(0) = 0, g(1) = T0vε},

for some T0 > 0 such that T0vε ∈ H1(R3) \ B̄ρ and I(T0vε) < 0, where ρ is defined by

Lemma 4.1.6. Hence the functional I has a critical value c > 0. That is, there exists a

nontrivial u ∈ H1(R3) such that I ′(u) = 0, which means that u is the nontrivial solution

of system (4.5).

Since

0 = 〈I ′(u), u−〉 = ‖u−‖2 +

∫
R3
l(x)φu|u−|2dx ≥ ‖u−‖2,

then u ≥ 0 in R3. So u is the nontrivial solution of system (4.4). By standard arguments

as in DiBenedetto [45] and Tolksdorf [97], we have that u ∈ L∞(R3) and u ∈ C1,γ
loc (R3)

with 0 < γ < 1. Furthermore, by Harnack’s inequality (see Trudinger [98]), u(x) > 0 for

any x ∈ R3. Thus u is a positive solution of system (4.4) and then (u, φu) is a positive

solution of system (4.1). �



Chapter 5

Positive and sign changing

solutions of a Schrödinger-Poisson

system involving a critical

nonlinearity

In this chapter, we continue to study the system with the critical Sobolev exponent in

the nonlinear term, but the different thing from Chapter 4 is that here we use different

methods to find a positive solution. More importantly, we obtain a pair of sign changing

solutions. The results obtained here are published in [61].

We, in the present chapter, study the existence and multiplicity of fixed sign and sign

changing solutions of the following nonlinear Schrödinger-Poisson system{
−∆u+ u+ l(x)φu = k(x)|u|4u+ µh(x)u in R3,

−∆φ = l(x)u2 in R3,
(5.1)

where l, k and h are nonnegative functions, µ is a positive constant, and the nonlinear

growth of |u|4u reaches the critical Sobolev exponent since the critical exponent 2∗ = 6 in

three spatial dimensions, which is why we call critical nonlinearity in the title.

As we have seen in Chapter 1, system (5.1) can be easily reduced into a nonlinear

Schrödinger equation with a nonlocal term as

−∆u+ u+ l(x)φuu = k(x)|u|4u+ µh(x)u in R3. (5.2)

And the corresponding functional is

I(u) =
1

2
‖u‖2 +

1

4
F (u)− 1

6

∫
R3

k(x)|u|6dx− µ

2

∫
R3

h(x)u2dx,

where F (u) =
∫
R3 l(x)φu(x)u2(x)dx.

68



5. Positive and sign changing solutions of a Schrödinger-Poisson system involving a
critical nonlinearity 69

Our main purpose in this chapter is to study the existence of the sign changing so-

lutions to equation (5.2). In general, finding a sign changing solution of an equation is

much more difficult than finding a mere solution. Although there were several abstract

theories or methods to study sign changing solutions, they are only applicable to some

specific situations. For example, when a problem involves a small parameter, usually

Lyapunov-Schmidt reduction procedure (see Ambrosetti-Malchiodi [4]) can be used to

find sign changing solutions. In [13], Bartsch established an abstract critical point theory

in partially order Hilbert spaces by virtue of critical groups and studied superlinear prob-

lems. In Li-Wang [73], one kind of Ljusternik-Schnirelman theory was established to study

sign changing critical points of an even functional. Some linking type theorems were also

obtained in partially ordered Hilbert spaces. The methods and abstract critical point the-

ory of Bartsch [13], Bartsch-Weth [15] and Li-Wang [73] involved the dense Banach space

C(Ω) (Ω is a smooth bounded domain) of continuous functions in the Hilbert space H1
0 (Ω),

in which the cone has nonempty interior and this framework requires strong hypotheses

such as boundedness of the domain. In [91], Schechter and Zou established relationships

between sign changing critical point theorems and the linking type theorem of Schechter

and the saddle point theorem of Rabinowitz, and applied them to study sign changing

solutions for the nonlinear Schrödinger equation with jumping or oscillating nonlinearities

and of double resonance.

It seems that all the methods mentioned above can not be applied directly to equation

(5.2), which is considered in the whole space R3 with nonlocal term. Our methods used

here involve neither the Palais-Smale sequence nor Ekeland variational principle. Our

idea is inspired by Hirano-Shioji [56], but the procedure is a little simpler than that in

Hirano-Shioji [56]. With the help of several lemmas (see Section 3), we get at least a pair

of fixed sign solutions as well as a pair of sign changing solutions.

Many mathematicians have been devoted to the study of the similar system (5.1) with

various nonlinearities f(x, u) as we mentioned in the introduction. However, all these

results are about existence, multiplicity and behavior of positive solutions. Only little

information about sign changing solutions for the similar system is known. Recently, Ianni

[63] used a dynamical approach together with a limit procedure to study the existence of

infinitely many radially symmetric sign changing solutions in the case of f(x, u) = |u|p−2u

(4 ≤ p < 6) and function l(x) ≡ 1. To our best knowledge, we have not seen any results

related to sign changing solutions to system (5.1).

In the present chapter, we assume the following hypotheses (H):

(Hl) l ∈ L2(R3) ∩ L∞(R3), l(x) ≥ 0 for any x ∈ R3 and l 6≡ 0;

(Hk1) k(x) ≥ 0 for any x ∈ R3;

(Hk2) There exist x0 ∈ R3, δ1 > 0 and ρ1 > 0 such that k(x0) = maxR3 k(x) and

|k(x)− k(x0)| ≤ δ1|x− x0|α for |x− x0| < ρ1 with 1 ≤ α < 3;

(Hh1) h ∈ L3/2(R3) and h(x) ≥ 0 for any x ∈ R3 ;



70 5.1. Preliminaries

(Hh2) There are δ2 > 0 and ρ2 > 0 such that h(x) ≥ δ2|x− x0|−β for |x− x0| < ρ2, where

x0 is given by (Hk2);

(Hhµ) 0 < µ < µ̄, where µ̄ is defined by

µ̄ := µh = inf
u∈H1(R3)\{0}

{∫
R3

(|∇u|2 + u2)dx :

∫
R3

h(x)|u|2dx = 1

}
.

Remark 1. From the above assumptions, we have the following two remarks.

(1) The hypotheses (Hk1) and (Hk2) mean that k ∈ L∞(R3).

(2) Lemma 5.1.2 (iii) shows that µ̄ is achieved.

The main results in this chapter read as follows.

Theorem 5.0.1. Assume that the hypotheses (H) hold with 1 < β < 3. Then the system

(5.1) has at least one positive solution (ψ1, φψ1) in H1(R3)×D1,2(R3).

Theorem 5.0.2. Assume that the hypotheses (H) hold with 3
2 < β < 3. Then the system

(5.1) has at least one sign changing solution (ψ2, φψ2) in H1(R3)×D1,2(R3).

The remainder of this chapter is organized as follows. In Section 1, we give some useful

preliminaries. In Section 2, we study the existence of a positive solution of (5.1), where

we not only prove Theorem 5.0.1 but also prove several lemmas which pave the way for

getting sign changing solutions. Then Section 3 is devoted to proving Theorem 5.0.2.

5.1 Preliminaries

In this section, our aim is to give some useful preliminary lemmas. Let us start with

the following easy lemma–Calculus Lemma.

Lemma 5.1.1. (see Ghoussoub-Yuan [53].) For every 1 ≤ q ≤ 3, there exists a constant

C (depending on q) such that for a, b ∈ R we have

∣∣|a+ b|q − |a|q − |b|q − qab
(
|a|q−2 + |b|q−2

)∣∣ ≤ { C|a||b|q−1 if |a| ≥ |b|,
C|a|q−1|b| if |a| ≤ |b|.

For q ≥ 3, there exists a constant C (depending on q) such that for a, b ∈ R we have

∣∣|a+ b|q − |a|q − |b|q − qab
(
|a|q−2 + |b|q−2

)∣∣ ≤ C (|a|q−2b2 + a2|b|q−2
)
.

From this inequality, we can actually deduce the following more convenient result for

any q ≥ 1:

∣∣|a+ b|q − |a|q − |b|q − qab
(
|a|q−2 + |b|q−2

)∣∣ ≤ 2C
(
|a|q−1|b|+ |a||b|q−1

)
.
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Lemma 5.1.2. Assume that the hypotheses (Hl) and (Hh1) hold. Then the following

statements are valid:

(i) F is a weakly continuous functional.

(ii) If un ⇀ u in H1(R3), then F (un − u) = F (un)− F (u) + o(1).

(iii) The following infimum µ̄ is achieved

µ̄ := µh = inf
u∈H1(R3)

{∫
R3

(|∇u|2 + u2)dx :

∫
R3

h(x)u2dx = 1

}
. (5.3)

Proof. The proofs of (i) and (iii) are the same as Lemma 4.1.3 and Lemma 4.1.5 in

Chapter 4, respectively. And it follows from (i) that (ii) holds. �

Lemma 5.1.3. If the hypotheses (Hl), (Hk1), (Hh1) and (Hµ) hold, then I(0) = 0 and

(I1) there are constants ρ, α0 > 0 such that I|∂Bρ ≥ α0;

(I2) for every u0 ∈ H1(R3) with ‖u0‖ = 1 and meas(supp(ku0)) > 0, there exists ρ∗ > 0

such that I(tu0) < 0 for any t > ρ∗.

Proof. It is clear that I(0) = 0. It follows from Lemma 5.1.2 (iii) and the Sobolev

inequality that

I(u) ≥ 1

2
‖u‖2 − C‖u‖6 − µ

2µ̄
‖u‖2 = ‖u‖2

(
1

2
− µ

2µ̄
− C‖u‖4

)
.

Set ρ = ‖u‖ small enough such that Cρ4 ≤ 1
4(1− µ

µ̄). Hence we have

I(u) ≥ 1

4
(1− µ

µ̄
)ρ2. (5.4)

Choosing α0 = 1
4(1− µ

µ̄)ρ2, we get the statement (I1).

Let u = tu0, with ‖u0‖ = 1. By (1.11) and the assumptions (Hh1) and (Hµ), we have

that

I(u) = I(tu0) ≤ t6
(

1

2t4
‖u0‖2 +

C

4t2
‖u0‖4 −

1

6

∫
R3

k(x)|u0|6dx
)
.

Let ρ∗ > 0 be fixed such that for all t > ρ∗ we have

1

2t4
‖u0‖2 +

C

4t2
‖u0‖4 −

1

6

∫
R3

k(x)|u0|6dx < 0.

Then (I2) follows. �

Next, we prove an important lemma, by which we analyze the behavior of the Nehari

set N defined by

N := {u ∈ H1(R3) \ {0} : G(u) = 0}, where G(u) = 〈I ′(u), u〉.
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Lemma 5.1.4. Suppose that the hypotheses (Hl) and (Hµ) hold. Then we have the fol-

lowing conclusions:

(1) For every u ∈ H1(R3) \ {0}, there exists a unique tu ≡ t(u) > 0 such that tuu ∈ N .

(2) If 〈I ′(u), u〉 < 0, then 0 < tu < 1; if 〈I ′(u), u〉 > 0, then tu > 1.

(3) tu is a continuous functional in H1(R3) with respect to u.

(4) If ‖u‖ → 0, then tu → +∞.

Proof. (1) For every u ∈ H1(R3) \ {0}, define g(t) = I(tu) and

f(t) = ‖u‖2 + t2F (u)− t4
∫
R3

k(x)|u|6dx− µ
∫
R3

h(x)|u|2dx.

Then we have g′(t) = tf(t). By the definition of N , for t > 0, we obtain that

g′(t) = 〈I ′(tu), u〉 = 0 ⇔ tu ∈ N . (5.5)

From the structure of the functional I, we know that supt>0 g(t) is achieved at some

tu = t(u) > 0, and then g′(tu) = 0. Hence, by (5.5), tuu ∈ N . It remains to prove that

such tu with g′(tu) = 0 is unique, i.e.,

it is sufficient to prove that the solution of f(t) = 0 in (0,+∞) is unique.

In fact, from

f ′(t) = 2tF (u)− 4t3
∫
R3

k(x)|u|6dx = 0,

we obtain a unique

t∗u =

√
F (u)

2
∫
R3 k(x)|u|6dx

> 0 (5.6)

such that f ′(t∗u) = 0 and f ′(t) > 0 for any t ∈ (0, t∗u); f ′(t) < 0 for any t ∈ (t∗u,+∞).

Moreover, since 0 < µ < µ̄, by Lemma 5.1.2 (iii),

f(0) = ‖u‖2 − µ
∫
R3

h(x)|u|2dx > 0.

Therefore, from f(tu) = 0, tu ∈ (t∗u,+∞) and so tu must be unique. That is, for any

u ∈ H1(R3), there exists a unique tu satisfying

‖u‖2 + t2uF (u)− t4u
∫
R3

k(x)|u|6dx− µ
∫
R3

h(x)|u|2dx = 0. (5.7)

This proves (1).
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(2) If 〈I ′(u), u〉 < 0, using Lemma 5.1.2 (iii) and the assumption of 0 < µ < µ̄, we get

that

‖u‖2 + F (u) <

∫
R3

k(x)|u|6dx+ µ

∫
R3

h(x)|u|2dx ≤
∫
R3

k(x)|u|6dx+
µ

µ̄
‖u‖2,

which means that

F (u) <

∫
R3

k(x)|u|6dx. (5.8)

It is deduced from (5.6) and (5.8) that t∗u < 1. Moreover, we have that

f(1) = 〈I ′(u), u〉 < 0.

Then t∗u < tu < 1, because f(t) decreases in (t∗u,+∞) and f(tu) = 0. Thus, in the case of

〈I ′(u), u〉 < 0, we have proven that 0 < tu < 1.

In the case of 〈I ′(u), u〉 > 0, we have f(1) = 〈I ′(u), u〉 > 0. If t∗u ≥ 1, we deduce that

tu > t∗u ≥ 1. Now we consider t∗u < 1. Since f(t) decreases in (t∗u,+∞) and f(1) > 0, to

be sure that f(tu) = 0 for tu ∈ (t∗u,+∞), it must have tu > 1. Therefore, in this case we

have that tu > 1. This finishes the proof of (2).

(3) Let (un)n∈N be such that un → u in H1(R3). By (5.7) there exists a unique positive

real sequence (tun)n∈N satisfying

‖un‖2 + t2unF (un)− t4un
∫
R3

k(x)|un|6dx− µ
∫
R3

h(x)|un|2dx = 0, (5.9)

which implies (tun)n∈N is bounded in R. Going if necessary to a subsequence, still denoted

by (tun)n∈N, we may assume that there is t0 > 0 such that limn→∞ tun = t0 and then as

n→∞ passing to the limit in (5.9) we get that

g′(t0) = t0

(
‖u‖2 + t20F (u)− t40

∫
R3

k(x)|u|6dx− µ
∫
R3

h(x)|u|2dx
)

= 0.

Hence it follows from (5.5) that t0u ∈ N . According to the uniqueness of tu, we arrive

at t0 = tu, i.e., limn→∞ tun = tu. We have proved that tu is continuous with respect to

u ∈ H1(R3).

(4) When ‖u‖ → 0, we claim that tu → +∞. Otherwise, if ‖u‖ → 0 and there exists

M > 0 such that |tu| ≤ M , then by the Sobolev inequality and k ∈ L∞(R3), we obtain

that

t4u

∫
R3

k(x)|u|6dx = o(‖u‖2). (5.10)

From (5.10) and Lemma 5.1.2 (iii) we deduce that

‖u‖2 + t2uF (u)− t4u
∫
R3

k(x)|u|6dx− µ
∫
R3

h(x)|u|2dx ≥
(

1− µ

µ̄

)
‖u‖2 − o(‖u‖2) > 0,
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which contradicts (5.7). Hence tu → +∞. This proves (4) of Lemma 5.1.4 and so we finish

the proof of Lemma 5.1.4. �

For any u ∈ N , by (1) of Lemma 5.1.4, we have that tu = 1. Moreover, by the proof

(1) of Lemma 5.1.4, we have the following corollary.

Corollary 5.1.5. If u ∈ N , then max
t>0

I(tu) = I(u).

5.2 Existence of a positive solution

Lemma 5.2.1. Assume that the hypotheses (Hl), (Hk1), (Hh1) and (Hµ) hold. Let

(un)n∈N ⊂ N be such that un ⇀ u in H1(R3) and I(un) → d, but any subsequence of

(un)n∈N does not converge strongly to u in H1(R3). Then one of the following conclusions

holds:

(1) d ≥ 1
3 S̄

3
2 ‖k‖−

1
2∞ if u = 0;

(2) d > I(tuu) if u 6= 0 and 〈I ′(u), u〉 < 0;

(3) d > 1
3 S̄

3
2 ‖k‖−

1
2∞ if u 6= 0 and 〈I ′(u), u〉 ≥ 0,

where S̄ denotes the best Sobolev constant for the embedding of D1,2(R3) in L6(R3) defined

by

S̄ = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx(∫
R3 |u|6dx

)1/3
and tu is defined as in Lemma 5.1.4.

Proof. We borrow an idea from Hirano-Shioji [56] to prove this lemma. From un ⇀ u in

H1(R3) we have that un − u ⇀ 0 in H1(R3). Then by Lemma 1.4.6 and Lemma 5.1.2 (i)

we arrive at ∫
R3

h(x)|un − u|2dx→ 0 and F (un − u)→ 0. (5.11)

Going if necessary to a subsequence, we may assume that for some a ≥ 0 and b ≥ 0

‖un − u‖2 → a and

∫
R3

k(x)|un − u|6dx→ b. (5.12)

Since any subsequence of (un)n∈N does not converge strongly to u in H1(R3), one has

a 6= 0. By the Brézis-Lieb lemma [22], (5.11) and (un)n∈N ⊂ N , we get that

d+ o(1) = I(un) = I(u) +
1

2
‖un − u‖2 −

1

6

∫
R3

k(x)|un − u|6dx+ o(1) (5.13)

and

0 = 〈I ′(un), un〉 = 〈I ′(u), u〉+ ‖un − u‖2 −
∫
R3

k(x)|un − u|6dx+ o(1). (5.14)
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Let

g(t) = I(tu),

β(t) =
a

2
t2 − b

6
t6

and

γ(t) = g(t) + β(t).

It follows from (5.12) and (5.14) that γ′(1) = g′(1)+β′(1) = 0 and t = 1 is the only critical

point of γ(t) in (0,+∞), which implies that

γ achieves its maximum at t = 1. (5.15)

In the following, we will prove the three possibilities of the conclusions, respectively.

(1) If u = 0, then from (5.12) and (5.14) one deduces that

0 = 〈I ′(un), un〉 = ‖un‖2 −
∫
R3

k(x)|un|6dx+ o(1)→ a− b,

which implies that a = b and b 6= 0, since a 6= 0. Using the Sobolev inequality, we have

that

‖un‖2 ≥
∫
R3

|∇un|2dx ≥ S̄
(∫

R3

|un|6dx
) 1

3

and then ∫
R3

k(x)|un|6dx ≤ ‖k‖∞
∫
R3

|un|6dx ≤ ‖k‖∞
(
S̄−1‖un‖2

)3
,

i.e., b ≤ ‖k‖∞
(
S̄−1b

)3
. Therefore, by the fact that b 6= 0, we obtain that

b ≥ S̄
3
2 ‖k‖−

1
2∞ . (5.16)

Thus, combining (5.12), (5.13), (5.16) with the assumption of u = 0, we get that

d =
1

2
lim
n→∞

‖un − u‖2 −
1

6
lim
n→∞

∫
R3

k(x)|un − u|6dx ≥
1

3
S̄

3
2 ‖k‖−

1
2∞ .

This proves the case (1).

(2) Now we consider the case that u 6= 0 and 〈I ′(u), u〉 < 0. In this case, by (5.14),

we get that a > b ≥ 0. Then we arrive at

β′(t) = at− bt5 > bt(1− t4) ≥ 0

for any t ∈ (0, 1), which implies that β strictly increases in (0, 1) and then

β(t) > β(0) = 0 for any t ∈ (0, 1). (5.17)
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By applying Lemma 5.1.4 to the u with 〈I ′(u), u〉 < 0, there exists a unique tu > 0 such

that tuu ∈ N and 0 < tu < 1. Then by (5.17) we arrive at β(tu) > 0. Therefore, combining

(5.13) with (5.15), we get that

d = γ(1) > γ(tu) = g(tu) + β(tu) > I(tuu).

This proves the second statement.

(3) For the third case, we separate it into two steps. First, we consider that u 6= 0

and 〈I ′(u), u〉 = 0. Then from Corollary 5.1.5 and (I1) of Lemma 5.1.3 we obtain that

I(u) = max
t>0

I(tu) > 0. (5.18)

By (5.14) and the same process as in the proof of (5.16), we can deduce that

a = b ≥ S̄
3
2 ‖k‖−

1
2∞ . (5.19)

Thus from (5.13), (5.18) and (5.19) we obtain that

d = γ(1) = I(u) +
a

2
− b

6
>

1

3
S̄

3
2 ‖k‖−

1
2∞ .

Next, we prove the case that u 6= 0 and 〈I ′(u), u〉 > 0. In this case (5.14) implies that

b > a. So b > a > 0. Since β′(t) = at− bt5, we get t∗∗u =
(
a
b

) 1
4 < 1 such that β′(t∗∗u ) = 0.

Note that

β′(t) ≥ 0 for any t ∈ (0, t∗∗u ) and β′(t) ≤ 0 for any t ∈ (t∗∗u ,∞). (5.20)

We get the maximum of β as follows

max
t>0

β(t) = β(t∗∗u ) =
a

3
2

3b
1
2

. (5.21)

It is now deduced from∫
R3

k(x)|un − u|6dx ≤ ‖k‖∞
∫
R3

|un − u|6dx ≤ ‖k‖∞
(
S̄−1‖un − u‖2

)3
that

a
3
2

b
1
2

≥ S̄
3
2 ‖k‖−

1
2∞ . (5.22)

Inserting (5.22) into (5.21), we get that

β(t∗∗u ) = max
t>0

β(t) ≥ 1

3
S̄

3
2 ‖k‖−

1
2∞ . (5.23)
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By Lemma 5.1.4 we know that tu > 1. Hence

0 < t∗∗u < 1 < tu.

By the definition of tu, we know that I(t∗∗u u) ≥ 0. Hence from (5.15) and (5.23) we obtain

that

d = γ(1) > γ(t∗∗u ) = I(t∗∗u u) + β(t∗∗u ) ≥ 1

3
S̄

3
2 ‖k‖−

1
2∞ .

This proves the third statement. In sum, we finish the proof of this lemma. �

Next, we define the following minimization problem

c1 = inf
u∈N

I(u).

The following estimate to the minimum c1 will be useful in what follows.

Lemma 5.2.2. Suppose the hypotheses (H) hold with 1 < β < 3. Then

c1 <
1

3
S̄

3
2 ‖k‖−

1
2∞ .

Proof. The idea here is to find an element in N such that the value of the functional I

at this element is strictly less than 1
3 S̄

3
2 ‖k‖−

1
2∞ . To construct this element, we need the

extremal function uε,x0 of the embedding D1,2(R3) into L6(R3), where

uε,x0 = C
ε

1
4

(ε+ |x− x0|2)
1
2

and C is a normalizing constant and x0 is given in (Hk2). Let ϕ ∈ C∞0 (R3) be such that

0 ≤ ϕ ≤ 1, ϕ|BR2
≡ 1 and suppϕ ⊂ B2R2 for some R2 > 0. Set

vε = ϕuε,x0

and then vε ∈ H1(R3) with vε(x) ≥ 0 for any x ∈ R3. The following asymptotic estimates

hold for ε small enough (see Brézis-Nirenberg [23]):

‖∇vε‖22 = K1 +O(ε
1
2 ), ‖vε‖26 = K2 +O(ε), (5.24)

‖vε‖ss =


O(ε

s
4 ) s ∈ [2, 3),

O(ε
s
4 |ln ε|) s = 3,

O(ε
6−s

4 ) s ∈ (3, 6),

(5.25)

with K1
K2

= S̄. For this vε, by Lemma 5.1.4, we know that there exists a unique tvε > 0

such that tvεvε ∈ N . Thus c1 ≤ I(tvεvε). To prove c1 <
1
3 S̄

3
2 ‖k‖−

1
2∞ , it is enough to prove
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that

max
t>0

I(tvε) <
1

3
S̄

3
2 ‖k‖−

1
2∞ . (5.26)

Since I(tvε)→ −∞ as t→∞, there exists tε > 0 such that I(tεvε) = max
t>0

I(tvε). And by

Lemma 5.1.3, max
t>0

I(tvε) ≥ α0 > 0. Then we have that

I(tεvε) ≥ α0 > 0.

Thus from the continuity of I, we may assume that there exists some positive t0 such that

tε ≥ t0 > 0. Moreover, from I(tvε) → −∞ as t → ∞ and I(tεvε) ≥ α0 > 0, we get that

there exists T0 such that tε ≤ T0. Hence t0 ≤ tε ≤ T0. Let

I(tεvε) = A(ε) +B(ε) + C(ε),

where

A(ε) =
t2ε
2

∫
R3

|∇vε|2dx−
t6ε
6

∫
R3

k(x0)|vε|6dx,

B(ε) =
t6ε
6

∫
R3

k(x0)|vε|6dx−
t6ε
6

∫
R3

k(x)|vε|6dx,

and

C(ε) =
t2ε
2

∫
R3

|vε|2dx+
t4ε
4
F (vε)−

t2εµ

2

∫
R3

h(x)|vε|2dx.

First, we claim

A(ε) ≤ 1

3
S̄

3
2 ‖k‖−

1
2∞ + Cε

1
2 . (5.27)

Indeed, let

z(t) =
t2

2

∫
R3

|∇vε|2dx−
t6

6

∫
R3

k(x0)|vε|6dx.

It is easy to see that z(t) achieves its maximum at Tε with

Tε =

( ∫
R3 |∇vε|2dx∫

R3 k(x0)|vε|6dx

) 1
4

.

Therefore, from (5.24), we have that

z(Tε) = sup
t≥0

z(t) =
1

3

(∫
R3 |∇vε|2dx

) 1
2(∫

R3 k(x0)|vε|6dx
) 1

2

=
1

3
S̄

3
2 ‖k‖−

1
2∞ +O(ε

1
2 ). (5.28)

This proves (5.27). Second, we claim that

B(ε) ≤ Cε1/2.

In fact, since t0 ≤ tε ≤ T0 and k ∈ L∞(R3), by the definition of vε, (Hk2) and using a
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change of variables, we obtain that for ε small enough

B(ε) =
t6ε
6

∫
R3

(k(x0)− k(x))|vε|6dx

≤ Cδ1

∫
|x−x0|<ρ1

|x− x0|αε
3
2

(ε+ |x− x0|2)3
dx+ C

∫
|x−x0|≥ρ1

ε
3
2

(ε+ |x− x0|2)3
dx

≤ Cδ1ε
3
2

∫ ρ1

0

r2+α

(ε+ r2)3
dr + Cε

3
2

∫ ∞
ρ1

r−4dr

= Cδ1ε
α
2

∫ ρ1ε
− 1

2

0

ρ2+α

(1 + ρ2)3
dρ+ Cρ−3

1 ε
3
2

≤ Cδ1ε
α
2 + Cε

3
2

≤ Cε
1
2 .

(5.29)

So we obtain B(ε) ≤ Cε1/2. Therefore, to finish the proof, it suffices to show that

lim
ε→0+

C(ε)

ε1/2
= −∞. (5.30)

Actually, from the definition of vε, (Hh2) and for any ε such that 0 < ε ≤ ρ2
2, it follows

that ∫
R3

h(x)|vε|2dx

≥ Cδ2

∫
|x−x0|<ρ2

|x− x0|−βε
1
2

ε+ |x− x0|2
dx+

∫
|x−x0|≥ρ2

h(x)|vε|2dx

≥ Cδ2ε
1
2

∫ ρ2

0

r2

rβ (ε+ r2)
dr

= Cδ2ε
1−β

2

∫ ρ2ε
− 1

2

0

ρ2

ρβ (1 + ρ2)
dρ

≥ Cδ2ε
1−β

2

∫ 1

0

ρ2

2ρβ
dρ

= Cε1−β
2 .

(5.31)

Thus, by the fact that t0 ≤ tε ≤ T0 and hypothesis (Hl), we have that

C(ε) =
t2ε
2

∫
R3

|vε|2dx+
t4ε
4
F (vε)−

t2εµ

2

∫
R3

h(x)|vε|2dx

≤ C‖vε‖22 + C‖vε‖412/5 − µCε
1−β

2

≤ Cε
1
2 + Cε− µCε1−β

2 .

It is deduced from 1 < β < 3 that for fixed µ we have that

C(ε)

ε1/2
≤ C + Cε

1
2 − µCε

1
2
−β

2 → −∞, as ε→ 0.

Hence (5.30) holds. Then (5.26) follows and the proof of Lemma 5.2.2 is complete. �

Theorem 5.2.3. Suppose that the hypotheses (H) hold with 1 < β < 3. Then there exists
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a positive ψ1 ∈ N such that c1 = I(ψ1) and then ψ1 is a positive critical point of the

functional I in H1(R3).

Proof. By the definition of c1, we may assume that there exists (vn)n∈N ⊂ N such that

I(vn)→ c1 as n→∞. It is also known from Lemma 5.2.2 that

c1 <
1

3
S̄

3
2 ‖k‖−

1
2∞ . (5.32)

Since (vn)n∈N ⊂ N , we have that

‖vn‖2 + F (vn)− µ
∫
R3

h(x)v2
ndx =

∫
R3

k(x)|vn|6dx. (5.33)

Using (5.33) and Lemma 5.1.2 (iii), we get that

c1 + o(1) =
1

2

(
‖vn‖2 − µ

∫
R3

h(x)v2
ndx

)
+

1

4
F (vn)− 1

6

∫
R3

k(x)|vn|6dx

=
1

N

(
‖vn‖2 − µ

∫
R3

h(x)v2
ndx

)
+

(
1

4
− 1

6

)
F (vn)

≥ 1

N

(
1− µ

µ̄

)
‖vn‖2,

which implies (vn)n∈N is bounded in H1(R3), since 0 < µ < µ̄. Going if necessary to a

subsequence, we may assume that vn ⇀ v in H1(R3). Suppose that any subsequence of

(vn)n∈N does not converge strongly to v in H1(R3) and then by Lemma 5.2.1 we obtain

one of the following three cases:

(1) c1 ≥ 1
3 S̄

3
2 ‖k‖−

1
2∞ if v = 0;

(2) c1 > I(tvv) if v 6= 0 and 〈I ′(v), v〉 < 0;

(3) c1 >
1
3 S̄

3
2 ‖k‖−

1
2∞ if v 6= 0 and 〈I ′(v), v〉 ≥ 0.

However, from (5.32) we know that the both cases (1) and (3) do not occur. Moreover, from

the definition of tv, we know that tvv ∈ N . So I(tvv) ≥ c1, and then c1 > I(tvv) ≥ c1 by (2),

which is a contradiction. Hence the second case (2) is also impossible to happen. Therefore

there must exist some subsequence of (vn)n∈N converging strongly to v in H1(R3). Going

if necessary to a subsequence, we may assume that vn → v in H1(R3). By the Sobolev

inequality, Lemma 5.1.2 (iii) and (5.33), we arrive at(
1− µ

µ̄

)
‖vn‖2 ≤

∫
R3

k(x)|vn|6dx ≤ ‖k‖∞
(
S̄−1‖vn‖2

)3
. (5.34)

Since (vn)n∈N ⊂ N , ‖vn‖ 6= 0 for any n ∈ N and hence by (5.34) we have ‖vn‖ ≥ C for

some positive C, which depends on the constants µ, µ̄, ‖k‖∞ and S̄. Therefore v 6= 0 and

then v ∈ N and I(v) = c1. By Lagrange multiplier rule, there exists θ ∈ R such that

I ′(v) = θG′(v).
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Then

0 = 〈I ′(v), v〉 = θ

(
2‖v‖2 + 4F (v)− 6

∫
R3

k(x)|v|6dx− 2µ

∫
R3

h(x)|v|2dx
)
,

which implies that

θ

(
−4

(
‖v‖2 − µ

∫
R3

h(x)|v|2dx
)
− 2F (v)

)
= 0

since v ∈ N . Then θ = 0 and hence v is a nontrivial critical point of the functional I in

H1(R3).

Note that if (vn)n∈N ⊂ N and I(vn) → c1 as n → ∞, then (|vn|)n∈N ⊂ N and

I(|vn|)→ c1 as n→∞. Hence we may assume that v ≥ 0 in R3. By standard arguments

as in DiBenedetto [45] and Tolksdorf [97], we have that v ∈ L∞(R3) and v ∈ C1,ω
loc (R3)

with 0 < ω < 1. Furthermore, by Harnack’s inequality (see Trudinger [98]), v(x) > 0 for

any x ∈ R3. Thus v is a positive critical point of I in H1(R3). We finish the proof of

Theorem 5.2.3 by choosing ψ1 = v. �

5.3 Existence of sign changing solutions

In this section, we will prove the existence of sign changing solutions of (5.1). A

function w is called sign changing if w+ 6= 0 and w− 6= 0, where w+ = max{w, 0} and

w− = max{−w, 0}. Denote

N∗ = {w = w+ − w− ∈ H1(R3) : w+ ∈ N , w− ∈ N}

and define

c2 = inf
w∈N∗

I(w).

We will prove that c2 is achieved at some point ψ2 and ψ2 is a sign changing critical point

of the functional I in H1(R3).

Lemma 5.3.1. Suppose that the hypotheses (H) hold with 3
2 < β < 3. Then c2 < c1 +

1
3 S̄

3
2 ‖k‖−

1
2∞ .

Proof. We are going to find an element in N∗ such that the value of I at this element

is strictly less than c1 + 1
3 S̄

3
2 ‖k‖−

1
2∞ . Let ψ1 be the positive critical point of I obtained in

Theorem 5.2.3 and vε be constructed in Lemma 5.2.2.

First, we claim that there exist a0 > 0 and b0 ∈ R such that

a0ψ1 + b0vε ∈ N∗. (5.35)

In fact, denote ϕ(s) = ψ1 +svε with s ∈ R, and define s1 ∈ [−∞,+∞) and s2 ∈ (−∞,+∞]

by s1 = inf{s ∈ R : ϕ+(s) 6= 0} and s2 = sup{s ∈ R : ϕ−(s) 6= 0}. We know s1 < s2,



82 5.3. Existence of sign changing solutions

because ϕ(s) is strictly increasing. Since t(ϕ+(s)) − t(ϕ−(s)) → +∞ as s → s1 + 0 and

t(ϕ+(s)) − t(ϕ−(s)) → −∞ as s → s2 − 0 by (3) and (4) of Lemma 5.1.4, there exists

s0 ∈ (s1, s2) such that t(ϕ+(s0)) = t(ϕ−(s0)) by (3) of Lemma 5.1.4. Thus

t(ϕ+(s0))ϕ(s0) = t(ϕ+(s0))(ϕ+(s0)− ϕ−(s0))

= t(ϕ+(s0))ϕ+(s0)− t(ϕ−(s0))ϕ−(s0) ∈ N∗.

By the definition of tu, we have t(ϕ+(s)) > 0, which implies that (5.35) holds.

Second, we claim that there is ε > 0 such that

sup
a>0,b∈R

I(aψ1 + bvε) < c1 +
1

3
S̄

3
2 ‖k‖−

1
2∞ . (5.36)

In fact, it follows from (I2) of Lemma 5.1.3 that for any a > 0, b ∈ R such that ‖aψ1+bvε‖ >
ρ∗ we have that

I(aψ1 + bvε) < 0.

Thus it suffices to consider the case that ‖aψ1 +bvε‖ ≤ ρ∗, which means that it is sufficient

to consider that a and b are contained in a bounded interval. Since ψ1 is a solution of

(5.2), it holds ∫
R3

(∇(aψ1)∇(bvε) + (aψ1)(bvε)− µh(x)(aψ1)(bvε)) dx

= ab

(∫
R3

k(x)|ψ1|5vεdx−
∫
R3

l(x)φψ1ψ1vεdx

) (5.37)

Let

g1,ε(b) =
1

2

∫
R3

|∇(bvε)|2dx−
1

6

∫
R3

k(x0)|bvε|6dx,

g2,ε(b) =
1

6

∫
R3

k(x0)|bvε|6dx−
1

6

∫
R3

k(x)|bvε|6dx,

g3,ε(a, b) =
1

4
F (aψ1 + bvε)−

1

4
F (aψ1)

and

g4,ε(a, b) =
1

6

∫
R3

k(x)
(
|aψ1|6 + |bvε|6 − |aψ1 + bvε|6

)
dx.

It follows from Lemma 5.1.1 that

g4,ε(a, b) ≤ C
∫
R3

k(x)
(
|ψ1|5vε + ψ1|vε|5

)
dx. (5.38)
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Using (5.37), (5.38) and Corollary 5.1.5, we deduce that

I(aψ1 + bvε) = I(aψ1) + g1,ε(b) + g2,ε(b) + g3,ε(a, b) + g4,ε(a, b)

+
1

2

∫
R3

|bvε|2dx−
µ

2

∫
R3

h(x)|bvε|2dx

+

∫
R3

(∇(aψ1)∇(bvε) + (aψ1)(bvε)− µh(x)(aψ1)(bvε)) dx

≤ I(ψ1) + g1,ε(b) + g2,ε(b) + g3,ε(a, b) +
1

2

∫
R3

|bvε|2dx

+C

∫
R3

k(x)|vε|5ψ1dx+ C

∫
R3

k(x)|ψ1|5vεdx

+C

∫
R3

l(x)φψ1ψ1vεdx−
µ

2

∫
R3

h(x)|bvε|2dx.

(5.39)

By (5.28) we obtain that

sup
b∈R

g1,ε(b) =
1

3
S̄

3
2 ‖k‖−

1
2∞ +O(ε

1
2 ). (5.40)

Since b is bounded and 1 ≤ α < 3, we get from (5.29) that

g2,ε(b) =
1

6

∫
R3

k(x0)|bvε|6dx−
1

6

∫
R3

k(x)|bvε|6dx ≤ Cε
1
2 . (5.41)

By (5.25) and the fact of ψ1 ∈ H1(R3) ∩ L∞(R3), we obtain that∫
R3

k(x)|vε|5ψ1dx ≤ ‖k‖∞‖ψ1‖∞
∫
R3

|vε|5dx ≤ Cε
1
4 (5.42)

and ∫
R3

k(x)|ψ1|5vεdx ≤ ‖k‖∞‖ψ5
1‖∞

∫
R3

vεdx ≤ Cε
1
4 . (5.43)

We claim that

g3,ε(a, b) ≤ Cε
1
4 . (5.44)

Actually by calculation we arrive at

g3,ε(a, b) =
1

4

∫
R3

l(x)
(
φaψ1+bvε(aψ1 + bvε)

2 − φaψ1(aψ1)2
)
dx

= ab

∫
R3

l(x)φaψ1ψ1vεdx+ ab

∫
R3

l(x)φbvεψ1vεdx

+
1

2
b2
∫
R3

l(x)φaψ1(vε)
2 +

1

4
b2
∫
R3

l(x)φbvε(vε)
2dx

+a2b2
∫
R3×R3

1

|x− y|
l(y)ψ1(y)vε(y)l(x)ψ1(x)vε(x)dxdy.

(5.45)

Using the Hölder inequality, (1.10), (5.24), (5.25) and the fact that a, b are bounded, we

obtain that∫
R3

l(x)φaψ1ψ1vεdx ≤ ‖l‖∞‖φaψ1‖6‖ψ1‖12/5‖vε‖12/5 ≤ C‖vε‖12/5 ≤ Cε
1
4 , (5.46)
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∫
R3

l(x)φbvεψ1vεdx ≤ ‖l‖∞‖φbvε‖6‖ψ1‖12/5‖vε‖12/5 ≤ C‖vε‖312/5 ≤ Cε
3
4 , (5.47)

∫
R3

l(x)φbvε(vε)
2dx ≤ ‖l‖∞‖φbvε‖6‖vε‖212/5 ≤ C‖vε‖

4
12/5 ≤ Cε (5.48)

and ∫
R3

l(x)φaψ1(vε)
2dx ≤ ‖l‖∞‖φaψ1‖6‖vε‖212/5 ≤ Cε

1
2 . (5.49)

Moreover, by Lemma 4.1.1, it holds∫
R3×R3

l(y)ψ1(y)vε(y)l(x)ψ1(x)vε(x)

|x− y|
dxdy

≤
(∫

R3

|l(x)ψ1(x)vε(x)|
6
5dx

) 5
3

≤ C‖ψ1‖212
5

‖vε‖212
5

≤ Cε
1
2 .

(5.50)

It follows from (5.45)–(5.50) that the claim (5.44) holds. Hence combining (5.31) with

(5.39)–(5.44), for 3
2 < β < 3, we obtain that

I(aψ1 + bvε) ≤ I(ψ1) +
1

3
S̄

3
2 ‖k‖−

1
2∞ − Cε1−β

2 + Cε
1
4

< I(ψ1) +
1

3
S̄

3
2 ‖k‖−

1
2∞

= c1 +
1

3
S̄

3
2 ‖k‖−

1
2∞ ,

(5.51)

as ε→ 0. Hence the claim (5.36) follows. Thus by (5.35) and (5.36) we deduce that

c2 < c1 +
1

3
S̄

3
2 ‖k‖−

1
2∞ .

This proves Lemma 5.3.1. �

Lemma 5.3.2. If the hypotheses (H) hold with 3
2 < β < 3, then there exists ψ2 in N∗

such that I(ψ2) = c2.

Proof. From the definition of c2 we may assume that there exists (wn)n∈N ⊂ N∗ such

that I(wn) → c2. And we may assume that there exist constants d1 and d2 such that

I(w+
n ) → d1 and I(w−n ) → d2 and c2 = d1 + d2. By the definition of c1, w+

n and w−n , it

holds that

d1 ≥ c1 and d2 ≥ c1. (5.52)

Just as the proof of Theorem 5.2.3, there are positive constants C1, C2, C3 and C4 such

that

C1 ≤ ‖w+
n ‖ ≤ C2 and C3 ≤ ‖w−n ‖ ≤ C4. (5.53)

Going if necessary to a subsequence, we may assume that w+
n ⇀ w+ and w−n ⇀ w−. If
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w+ = 0 or w− = 0, by (1) of Lemma 5.2.1 and (5.52), we obtain that

c1 +
1

3
S̄

3
2 ‖k‖−

1
2∞ ≤ d1 + d2 = c2,

which contradicts Lemma 5.3.1. Hence we may assume that w+ 6= 0 and w− 6= 0. Using

Lemma 5.2.1, we get one of the following:

(I1) there is a subsequence of (w+
n )n∈N converging strongly to w+ in H1(R3);

(I2) d1 > I(tw+w+) if w+ 6= 0 and 〈I ′(w+), w+〉 < 0;

(I3) d1 >
1
3 S̄

3
2 ‖k‖−

1
2∞ if u+ 6= 0 and 〈I ′(w+), w+〉 ≥ 0;

and we also have one of the following:

(II1) there is a subsequence of (w−n )n∈N converging strongly to w− in H1(R3);

(II2) d2 > I(tw−w
−) if w− 6= 0 and 〈I ′(w−), w−〉 < 0;

(II3) d2 >
1
3 S̄

3
2 ‖k‖−

1
2∞ if w− 6= 0 and 〈I ′(w−), w−〉 ≥ 0.

We claim that only (I1) and (II1) happen. In fact, if the pair (I1) and (II2) or the pair

(I2) and (II2) holds, then from w+ − tw−w− ∈ N∗ or tw+w+ − tw−w− ∈ N∗ respectively,

we arrive at respectively

c2 ≤ I(w+ − tw−w−) = I(w+) + I(tw−w
−) < d1 + d2 = c2

or

c2 ≤ I(tw+w+ − tw−w−) = I(tw+w+) + I(tw−w
−) < d1 + d2 = c2.

Any one of the above two inequalities is not true. If the pair (I1) and (II3) or the pair (I2)

and (II3), or the pair (I3) and (II3) occurs, then by Lemma 5.2.2 we obtain the following

three possibilities:

c1 +
1

3
S̄

3
2 ‖k‖−

1
2∞ ≤ I(w+) +

1

3
S̄

3
2 ‖k‖−

1
2∞ < d1 + d2 = c2;

c1 +
1

3
S̄

3
2 ‖k‖−

1
2∞ ≤ I(tw+w+) +

1

3
S̄

3
2 ‖k‖−

1
2∞ < d1 + d2 = c2;

c1 +
1

3
S̄

3
2 ‖k‖−

1
2∞ ≤ 1

3
S̄

3
2 ‖k‖−

1
2∞ +

1

3
S̄

3
2 ‖k‖−

1
2∞ < d1 + d2 = c2,

while any one of the above three possibilities contradicts the conclusions of Lemma 5.3.1.

Hence all the pairs (I1) and (II2), (I2) and (II2), (I1) and (II3), (I2) and (II3), (I3) and

(II3) do not occur. The pairs (I2) and (II1), (I3) and (II1), (I3) and (II2) also do not

happen by a similar proof. Since we have considered all the cases, we know that only

the pair (I1) and (II1) holds. We may assume that w+
n → w+ strongly in H1(R3) and
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w−n → w− strongly in H1(R3). From these and (5.53) we have that w+ 6= 0 and w− 6= 0.

Set ψ2 = w+−w−. Then ψ2 ∈ N∗ and I(ψ2) = d1 + d2 = c2. This proves Lemma 5.3.2. �

According to Lemma 5.3.2 we know that ψ2 ∈ N∗ is sign changing and I(ψ2) = c2.

Since N∗ usually is not a manifold, Lagrange multiplier rule may not be applied. In order

to show that ψ2 is a critical point of the functional I in H1(R3), i.e., I ′(ψ2) = 0, we need

an idea from Castro-Cossio-Neuberger [24] and Hirano-Shioji [56].

Theorem 5.3.3. If the hypotheses (H) hold with 3
2 < β < 3, then ψ2 is a sign changing

critical point of the functional I in H1(R3).

Proof. Suppose that ψ2 is not a critical point of I, i.e., I ′(ψ2) 6= 0. For any u ∈ N , we

have that ∫
R3

k(x)|u|6dx = ‖u‖2 + F (u)− µ
∫
R3

h(x)|u|2dx

≥
(

1− µ

µ̄

)
‖u‖2 + F (u)

≥ F (u)

and then

〈G′(u), u〉 = 2

(
‖u‖2 − µ

∫
R3

h(x)|u|2dx
)

+ 4F (u)− 6

∫
R3

k(x)|u|6dx

= −4

∫
R3

k(x)|u|6dx+ 2F (u)

≤ −2F (u) < 0.

(5.54)

Therefore, for any u ∈ N , ‖G′(u)‖H−1 = sup
‖v‖=1

|〈G′(u), v〉| 6= 0. Set

Φ(u) = I ′(u)−
〈
I ′(u),

G′(u)

‖G′(u)‖

〉
G′(u)

‖G′(u)‖
, u ∈ N (5.55)

Then we get that Φ(ψ2) 6= 0. In fact, if Φ(ψ2) = 0, then, by (5.54) and (5.55), it holds

that

0 = 〈I ′(ψ2), ψ2〉 =

〈
I ′(ψ2),

G′(ψ2)

‖G′(ψ2)‖

〉〈
G′(ψ2)

‖G′(ψ2)‖
, ψ2

〉
6= 0,

which is a contradiction. Let δ ∈ (0,min{‖ψ+
2 ‖, ‖ψ

−
2 ‖}/3) such that

‖Φ(v)− Φ(ψ2)‖ ≤ 1

2
‖Φ(ψ2)‖ for each v ∈ N with ‖v − ψ2‖ ≤ 2δ.

Let χ : N → [0, 1] be a Lipschitz mapping such that

χ(v) =

{
1, for v ∈ N with ‖v − ψ2‖ ≤ δ,
0, for v ∈ N with ‖v − ψ2‖ ≥ 2δ.

Let η : [0, s0]×N → N be the solution of the differential equation
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η(0, v) = v,
dη(s, v)

ds
= −χ(η(s, v))Φ(η(s, v)), for (s, v) ∈ [0, s0]×N ,

where s0 is a positive number. We set

r(τ) = t((1− τ)ψ+
2 + τψ−2 )((1− τ)ψ+

2 + τψ−2 )

and σ(τ) = η(s0, r(τ)), for 0 ≤ τ ≤ 1. If τ ∈ (0, 1
2) ∪ (1

2 , 1), we have

I(σ(τ)) ≤ I(r(τ)) = I(r+(τ)) + I(r−(τ)) < I(ψ+
2 ) + I(ψ−2 ) = I(ψ2),

and I(σ(1
2)) = I(r(1

2)) < I(ψ2), i.e., I(σ(τ)) < I(ψ2) for all τ ∈ (0, 1). Since t(σ+(τ)) −
t(σ−(τ))→ −∞ as τ → 0 + 0 and t(σ+(τ))− t(σ−(τ))→ +∞ as τ → 1− 0, there exists

τ1 ∈ (0, 1) such that t(σ+(τ)) = t(σ−(τ)). Then we have σ(τ1) ∈ N∗ and I(σ(τ1)) < I(ψ2),

which is a contradiction. This proves Theorem 4.3. �

Remark 2. Theorem 5.2.3 means that (ψ1, φψ1) is a positive solution of system (5.1) and

Theorem 5.3.3 means that (ψ2, φψ2) is a sign changing solution of system (5.1). Further-

more, if (ψ, φψ) is the solution of system (5.1), then (−ψ, φ−ψ) is also its solution. Hence,

by Theorem 5.2.3 and Theorem 5.3.3, we know that system (5.1) has at least one pair of

fixed sign solutions and at least one pair of sign changing solutions under the hypotheses

(H) with 3
2 < β < 3, respectively. �



Chapter 6

Some considerations and future

research

In this last chapter, we will present some final comments about problems under study

and we will give some directions of future research.

6.1 Some considerations

Once one reads this thesis, maybe the most common question he or she raises is that

it is possible to extend the operator Laplace ∆u in system (SP) to the more general p-

Laplace ∆pu := div(|∇u|p−2∇u). To our best knowledge, for now we have not seen any

results extending the operator Laplace in all kinds of the Schrödinger-Poisson systems to

more general p-Laplace, although there are large amount of works related to these systems

in recent years. There are three possible reasons to explain this situation according to our

understanding.

We think the main reason is based on the physical meaning that the Schrödinger-

Poisson systems arise in an interesting physical context as we mention in the introduction

of this thesis unless extending the operator is theoretical or mathematical needs. The

second reason, in our opinion, is that for the Schrödinger-Poisson systems there are still a

lot of work to be done for the time being. And from the point of theoretical view the final

reason, why we have seen nothing about the extending, is that one needs to find some new

methods, at least some different ways from the methods used until now. So it is not only

a big challenge in some sense, but also an interesting thing to think and try.

6.2 Some directions of future research

The problems studied in this work involve interesting research points. Moreover, we

introduce some methods originally, which can be applied to many other problems. We

believe there are many remains to be done. Here we will give some possible research

directions that can use our methods, or which turn to be some kind of generalization of

88
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already obtained results, situations without being considered.

To apply our methods to other cases

• In Chapter 2 and Chapter 3, we introduce a method to improve the previous results

in the literature with indefinite nonlinearities. We find an interesting phenomenon

in Chapter 2 or Chapter 3 that we do not need the condition
∫
R3 k(x)ep1dx < 0 with

an indefinite non-corercive case, which has been shown to be a sufficient condition

to the existence of positive solutions for semilinear elliptic equations with indefinite

nonlinearities (see e.g. Alama and Tarantello [1], Costa and Tehrani [36]), where e1

is the first eigenfunction of −∆+id in H1(R3) with weight function h. Moreover, the

process used in this case can be applied to study the other aspects of the Schrödinger-

Poisson systems and it also gives a way to study the Kirchhoff systems and quasilinear

Schrödinger systems.

• In Chapter 5, to get sign changing solutions, we follow the spirit of Hirano and Shioji

[56], but the procedure is simpler than that in that paper [56]. One can also apply

this simpler method to find sign changing solutions of other problems.

To extend the left side of system (SP)

• To extend the system (SP) to semiclassical case. Let us give the following example.

{
−ε2∆u+ u+ l(x)φu = g(x, u), in R3,

−∆φ = l(x)u2, in R3,
(6.1)

where ε→ 0. There are already many results about the similar system to (6.1) with

g(x, u) = |u|p−2u, such as [3, 37, 90, 105] and their references therein. But so far we

have not seen any information on our cases.

• To extend system (SP) to a case with steep potential well{
−∆u+ aλ(x)u+ l(x)φu = g(x, u), in R3,

−∆φ = l(x)u2, in R3,
(6.2)

where aλ(x) = 1 + λf(x), λ is a positive parameter, and f satisfies

(f1) f(x) ≥ 0, f ∈ L∞(R3);

(f2) {x ∈ R3 : f(x) = 0} is bounded and has nonempty interior;

(f3) lim inf |x|→∞ f(x) = c, where c is a positive constant.

The above conditions imply that aλ represents a potential well whose depth is con-

trolled by λ. aλ is called a steep potential well if λ large, see Jiang-Zhou [66], where

the authors study the case that g(x, u) = |u|p−2u.
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• To extend the usual Laplace operator ∆ to a second order operator with a weight

function, for example, may we replace the ∆u by div(A(x)∇u) with suitable con-

ditions on A(x)? We believe that this case will be very interesting because for the

usual Schrödinger equation, the study of −div(A(x)∇u) + V (x)u = f(x, u) is an in-

teresting problem and has been studied by many mathematicians. For system (SP)

with ∆u replaced by div(A(x)∇u), we do not know if such kind of system arises

from what kind of physical phenomena. However, from the pure mathematical point

of view, this problem will be quite interesting since in this case it is not easy to

establish the relation between the Poisson term
∫
R3 φuu

2dx and
∫
R3 A(x)|∇u|2dx.

We will think these problems.

• Note that for system (SP), a new phenomenon is the appear of Poisson term∫
R3

φuu
2dx =

∫
R3

u2(x)

∫
R3

u2(y)

|x− y|
dydx =

∫
R3

u2(x)
(
u2 ∗ |x|−1

)
dx.

A question is that: can we replace the |x|−1 by a general symmetric function? Can

we study the existence and multiplicity of positive solutions for the system in this

case?

• For system (SP), the second equation can be solved explicitly, and the system can

be reduced to a single equation with a nonlocal Poisson term. A natural question

is that if the second equation can not be solved, what will happen? For example, if

the second equation is −∆φ+ l1(x)φ = u2, what can we do by using the variational

method? We believe that these will be also good questions for further studies.

To extend the right side of system (SP)

• To extend system (SP) to a positive potential. In this case, one may not get Palais-

Smale condition at any level. An interesting question is to study, for which level, the

Palais-Smale conditions will hold. Another interesting question is to study the role

played by the Poisson term to the existence and multiplicity of solutions, as well as

under what conditions the system may not have positive solutions.

• To loose the conditions of system (SP). In Chapter 3, we give an improvement to

the homogenous nonlinearity in Chapter 2, namely, we assume that the nonlinear

function g(x, u) has the form a(x)g(u) and g(u) satisfies the conditions

lim
s→0

g(s)

|s|p
= 1

and

lim
s→∞

g(s)

|s|q
= 1.

An interesting question is that: can we get similar existence and multiplicity results

if one of the following conditions holds?
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1. lims→0
g(s)
|s|p = 0 and lims→∞

g(s)
|s|q = 0.

2. lims→0
g(s)
|s|p =∞ and lims→∞

g(s)
|s|q = 0.

3. lims→0
g(s)
|s|p = 0 and lims→∞

g(s)
|s|q =∞.

4. lims→0
g(s)
|s|p =∞ and lims→∞

g(s)
|s|q =∞.

5. lims→0
g(s)
|s|p = 0 and lims→∞

g(s)

|s|2∗ = 0.

Another interesting question is that: can we get similar results for very general

g(x, u)?
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atoms and molecules, Comm. Math. Phys. 79 (1981), 167–180.

[20] H. Berestyeki and P. Lions, Nonlinear scalar field equations, I. Existence of a ground

state, Arch. Ration. Mech. Anal. 82 (1983), 313–345.

[21] G. Bianchi, J. Chabrowski, A. Szulkin, On symmetric solutions of an elliptic equations

with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal. 25 (1995),

41–59.
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