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Abstract

Delivering  the  drug  to  the  target  site  with  a  desired  concentration  to  provide
therapeutic effect is a major problem in the drug delivery system. Effectiveness, poor
distribution and lack of selectivity are the drawbacks of the conventional dosage form.
Recently Nanotechnology has been given much attention in various fields specifically
in the biomedical  application.  Material  includes organic,  inorganic,  polymeric  and
lipid-based nanobiomaterials after surface modification; it has been utilized for drug
and gene delivery systems.  Viral  and non-viral  vectors  are  the two types  in  gene
delivery utilizing genetic materials like DNA plasmids, RNA and siRNA. Cellular and
extracellular barriers are the two main barriers in gene delivery. The basic mechanism
involved in the gene delivery is an introduction of a gene encoding a functional protein
altering the expression of  an endogenous gene or  owning the capacity  to  cure  or
prevent the progression of a disease. Nanoparticle surface features like particle shape
and surface charge are having major roles in the gene delivery. To provide the site-
specific delivery various properties like nature of  polymer,  particle  size,  solubility,
biocompatibility,  biodegradability and nanoparticle surface features are need to be
considered. Gene delivery has been utilized for various disease treatments such as
cancer, AIDS, and cardiovascular diseases.
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1. Introduction

Drug  and  gene  delivery  system  include  organic,  inorganic,  polymeric  and  lipid-based
nanobiomaterials. Binding of the nanobiomaterials to the receptors to target cells/tissues can
be  improved by  surface  modification.  This  surface  modification  may increase  solubility,
immune compatibility, and cellular uptake.

Various nano drug delivery systems include nanoparticles, nanocapsules, nanotubes, nano-
gels, and dendrimers. They can be used to deliver both small molecule drugs and various
classes of biomacromolecules, such as peptides, proteins, plasmid DNA, and synthetic
oligodeoxynucleotides. Antisense oligonucleotide (AS-ODN) and small interfering RNA
(siRNA) are shown as promise one in gene delivery and good therapeutic agents, but it can be
used directly due to their limitations such as sequence size, length, charge, half-life, or stability
in solutions [1].

Various diseases are occurred in human beings due to mutations or deletions in genes lead to
metabolic pathway disorder, regulation of cell cycle, protein function and its structure,
function of receptor, and cell skeleton [2]. This can be treated effectively through gene delivery
system. Gene delivery is a term used when referring to the delivery of genetic material such
as DNA plasmids, RNA, and siRNA into target cells either encapsulated inside or conjugated
to the NPs to express or suppress the biosynthesis of proteins (also called transfection) to treat
or cure many diseases [3–10].

2. Various gene delivery mechanisms

2.1. Plasmid DNA

It is currently the most commonly investigated nucleic acid in gene delivery applications.
When the pDNA is entering into the nucleus, the pDNA strand is transcribed, and the coding
gene is translated to protein, which is then expressed from the cell.

2.2. RNA interference

It is triggered by double-stranded RNA (dsRNA), activates the anti-viral interferon leads to
shutdown of protein synthesis by degradation of messenger RNA (mRNA). Another mecha-
nism involves the use of microRNAs (miRNA), which are small non-coding nucleic acids
responsible for post-translational regulation of protein expression.

2.3. Small interfering RNA

Small interfering RNA comprises around 21–23 nucleotides, which can be designed to be better
targeted than long dsRNA and can eliminate the activation of the response of the interferon
while still inhibiting target gene expression. The gene expression can be able to control/block
transected siRNA into mammalian cells; this specific gene block can be used to treat certain
infectious diseases and cancers [11–14].
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To obtain an efficient vector system and to achieve a high rate of cell transfection, the following
two limitations must be integrated in the development of an ideal genetic vector. In the gene
transfer methods whether viral, physical, or chemical, these two major limitations must be
overcome.

1. The first limitation is a carrier, which is needed to carry the nucleic acids to the target cells
without potential risks. Naturally viruses having the ability to recognize and locate the
defined target cells due to its body defense mechanisms, such as the reticulo-endothelial
system (RES). Whereas the chemical vectors conjugate with targeting molecules to realize
the specific location through various techniques.

2. The second limitation is the penetration of the nucleic acids into the cell through the
plasma membrane. Viruses can achieve the same through natural mechanisms, whereas
the chemical vectors must disturb the plasma membrane (e.g. physical vectors)/or internal
vesicular membranes (e.g. the cationic lipids) [15].

3. Gene delivery

In gene delivery, a vector/carrier is essential in order to carry the hydrophilic, negatively
charged DNA through the hydrophobic and negatively charged cell membrane. The thera-
peutic efficiency depends upon the efficient delivery of DNA into the target site. Barriers
including cellular like intracellular uptake, endosomal escape, DNA release, and nuclear
uptake and extracellular barriers like avoidance of particle clearance mechanisms, targeting
to specific tissues and/or cells of interest, and protection of DNA from degradation are present
in the system [16–19]. One main hurdle in gene delivery is the delivery of therapeutic poly-
nucleotides crossing the plasma membrane and delivering into the cells of interest. This is the
limitation one in the gene delivery for efficient and safe delivery into the cells. A good gene
delivery vector should be able to effectively compact and protect DNA, sufficient stability
during bypassing the immune system of the host, traverse the plasma membrane (typically
through endocytosis), disrupt the endosomal membrane, and deliver the DNA into the
nucleus [20–22]. Successful gene transfer requires sufficient stability of DNA during the
extracellular delivery phase, transportation through cell membranes, cytoplasm, and eventual
disassembly and nuclear delivery.

Gene delivery systems can be divided into two general categories:

1. Viral transduction systems

2. Nonviral transfection systems

Initially, viruses were used for gene delivery. The disadvantages of viral vectors limited their
application in gene delivery like due to its size of DNA that they can carry, low loading capacity,
large-scale manufacturing, quality control cost, and safety factor such as immunogenicity and
potential oncogenicity [23].
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Hence, more attention has been paid to develop non-viral vectors as an alternative one for gene
delivery [6, 8–10, 24].

Nonviral delivery systems have advantages like easy to prepare, amenable to synthetic
manipulations of polymer properties, cell/tissue targeting, less immunogenic and oncogenic,
no potential of virus recombination and limitation on the size of a transferred gene, virtually
no limitation on the unrestricted plasmid size that can be delivered and the cost of production
is relatively low [25]. Moreover, they can be consigned readily to carry genetic materials to
target cells by virtue of their size, charge and structurally modifying the vectors [26]. Difference
between viral and nonviral gene delivery is based on the various gene transfer and its
complementary mechanisms. The mechanism includes in the viral gene delivery is the ability
of virus to circulate in the blood, bind to cell surface receptors, gain entry into the cell, avoid
lysosomal destruction, survive degradation in the cytosol, and deliver genetic material to the
nucleus. In the nonviral gene delivery overcoming biological barriers in the circulation or
inside the target cell and transferring the gene vector is based on the molecular weight of the
vector, ratio between the vector nitrogens and the DNA phosphates (termed the N:P ratio) and
the salt concentration of the buffer solution. [27–30].

Nonviral gene delivery systems are typically composed of plasmid DNA condensed into
nanoparticles by a cationic polymer [31].

Nonviral vectors are categories into lipid- and polymer-based one. Whereas the polymeric
based nonviral vectors have the advantage over lipid-based one due to its modification
property.

The steps involved in the polymeric gene delivery are given below:

• DNA/polymer complexation: Nanosize complex forms when cationic polymer neutralizes
charged phosphate with negatively charged cell membrane.

• DNA/polymer complex: Also referred as polyplex, which passes through cell membrane by
a nonspecific or receptor-mediated endocytosis.

• Endosome: Complex enters into cytoplasm through endosome.

• Transportation to nucleus.

• It is free to be encoded into a therapeutic protein or to be inserted into the genome [6, 8–10].

4. Targeted drug delivery

It is necessary to ensure that the nanomaterials are carefully delivered only to the infected
region of the body without affecting the surrounding healthy tissues.

When drugs or gene-loaded nanoparticles are injected into bodies, they can circulate in the
blood vessels by crossing the epithelial barriers before reaching the target site. Escape of
nanoparticles from the vascular circulation occurs in either continuous or fenestrated tissues.
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Nanoparticles can escape from the bloodstream at continuous vascular endothelium through
paracellular pathway, intracellular process or transcellular pathway. It is different; the space
between the fenestration sites on the endothelium is between 100 nm and 2 μm, which is longer
than in healthy tissues that are normally 2–6 nm. Therefore, nanoparticles can penetrate
fenestrations thus increase the drug concentration in target/tumor site which is called “en-
hanced permeation and retention effect (EPR effect)” [32–34]. Particle shape, surface charge,
and feature are playing important roles in intercellular delivery [35, 36]. Quantity and type of
polymers, particle size, solubility, biodegradability, and surface properties are having impor-
tant role in release of bioactive drugs into the target site [37]. Drug entries through transcellular
and paracellular pathways are shown in Figure 1.

Figure 1. Drug entry through transcellular and paracellular pathways.

Targeted drug delivery is classified into two categories. They are

1. Passive targeting

2. Active targeting

4.1. Passive targeting

Passive targeting involves the cells that are to be targeted migrate toward the drug-carrying
vehicles. This system is widely used in the delivery of cells like neutrophils, macrophages,
dendritic cells for vaccination purposes. In this system, it is not necessary the drug-carrying
vehicles in nanometer regime [38].

4.2. Active targeting

Active targeting involves rational design of nanosytems with suitable surface engineering
performed with acceptable chemical linking strategies to specifically target the cell receptors
of a target tissue. Furthermore, the targeting operates at two levels; first, the targeting of tissue/
system in order to enrich the concentration of the carriers at the infected site [9, 39].
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5. Nonviral vector gene delivery

Nonviral vector consists of either natural vectors (plasmid DNA or small nucleic acids,
antisense oligonucleotides, small interfering RNAs) or synthetic vectors (liposomes, cationic
polymers) [40]. Naked DNA, usually in plasmid form, is the simplest form of non-viral
transferring of a gene into a target cell [41–44].

Nonviral vector delivery is categorized as organic (lipid complexes, conjugated polymers,
cationic polymers, etc.) and inorganic systems (magnetic nanoparticles, quantum dots, carbon
nanotubes, gold nanoparticles (GNPs), etc.) [45].

To achieve the desired therapeutic efficacy, a suitable carrier system is needed. Nanoparticles
can be considered as a good carrier for various therapeutic applications due to the following
reasons.

• They exist in the same size domain as proteins.

• They have large surface areas and ability to bind to a large number of surface functional
groups.

• They possess controllable absorption and release properties and particle size and surface
characteristics. [46].

6. Inorganic type nonviral delivery vectors

Inorganic type of nonviral delivery vectors are magnetic nanoparticles, quantum dots, and
gold nanoparticles, and so on [31, 47].

6.1. Magnetic nanoparticle

Combination of inorganic nanoparticles with organic materials forms hybrids which possess
unique physical, chemical, optical, and electrical properties. These unique properties can be
utilized in different applications than large size materials. Recently, magnetic nanoparticles
have been utilized as an effective tool in gene delivery because of its submicron size. Hence,
much research has been carried out to control the size and shape of the metal nanostructure
due to its magnetic, catalytic, electrical, and optical properties. Iron oxides, such as CoFe2O4,
NiFe2O4, and MnFe2O4, exhibit superior performance compared to other magnetic materials
but highly toxic to cells. The most widely used iron oxide as magnetic cores are magnetite
(Fe3O4) and maghemite (γ-Fe2O3), possess high magnetic moments and relatively safe. The
magnetic nanoparticle core is fairly reactive, prevents corrosion and leaking when applied in
vivo. In the magnetic nanoparticle gene delivery system, the gene directly binds to the magnetic
particle or carrier. In magnetic nanoparticle, a magnetic core is coated by a protective layer
either by dispersing in a polymer matrix or encapsulated within a polymer/metallic shell,
which can be combined with therapeutic agents (carrier/DNA complexes or other drugs)
through covalent or noncovalent bond. Silica, gold, natural polymers, such as dextran, or
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synthetic polymers, such as PEI, PLL, PEG, and polyvinyl alcohol (PVA), are commonly used
coating materials in magnetic nanoparticle. Introduction of various functional groups (organic
linkers) like carboxyl, amines, thiols, and aldehyde can alter the surface properties to suit
various therapeutic agents to improve targeted gene delivery. The preferred coating surface
for magnetic particles is strongly cationic because of the negatively charged DNA molecules
that are to be delivered. Magnetofection is a methodology based on the association of magnetic
nanoparticle with gene vectors in order to optimize/enhance gene delivery in the presence of
a magnetic field. The magnetic field is applied to move the MNP-gene vector complexes toward
the target site. In magnetofection, gene can be delivered in few minutes to the target site,
whereas traditional transfection methods can take several hours. Stability of any magnetic
nanoparticles depends upon the balance between attractive (van der Waals and dipole-dipole)
and repulsive (steric and electrostatic) forces between the particles and the surrounding solvent
molecules. Temperature also has an effect in the stability of the magnetic nanoparticle due to
energy transfer from the solvent molecules (Brownian motion) to the nanometric particles.
Hence, magnetic nanoparticle can be coated with a biocompatible polymer to enhance its
stability [30, 31, 48–62].

6.2. Metal nanoparticle (gold nanoparticle)

Owing to nano-dimension size to volume ratio and its stability, inorganic (metal) nanoparticles
are being extensively used as promising gene carriers in various biomedical applications.
Among the various metal nanoparticle gold nanoparticles (GNPs) are an obvious choice due
to its inert, amenability of synthesis, high functionalization, fictionalization ability, higher
absorption coefficient, good biocompatibility, less cytotoxic, ease of detection, and potential
capability of targeted delivery, hence it is extensively used for various applications including
drug and gene delivery. Due to its remarkable stability, large surface area, surface modification,
and high biocompatibility, gold nanoparticles can retain the native structure and enzymatic
activity of the attached proteins or enzymes in the drug delivery. Gold nanoparticles have large
surface area due to which their surfaces are readily available for modification with targeting
molecules or specific biomarkers and applicable in biomedical purposes.

Gold nanoparticles have large surface bio conjugation with molecular probes, and they also
have many optical properties which are mainly concerned with localized plasmon resonance
(PR). Gold nanoparticles can bind with a wide range of organic molecules and have tunable
physical and chemical properties. Gold nanoparticles can be synthesized by chemical (seeding
growth method), physical (γ-irradiation method, microwave irradiation method), and green
methods (natural biomaterial egg shell membrane, sun light irradiation method).

Combination of gold nanoparticles into smart polymer like poly (N-isopropylacrylamine) is
an effective process to enhance its properties. Gold nanoparticles exhibit different shapes such
as spherical, sub-octahedral, octahedral, decahedral, icosahedral multiple twined, multiple
twined, irregular shape, tetrahedral, nanotriangles, nanoprisms, hexagonal platelets, and
nanorods, which are shown in Figure 2. Among the various shapes triangular-shaped
nanoparticles show attractive optical properties compared with the spherical-shaped nano-
particles [30, 58, 63–72].
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Figure 2. Various shapes of gold nanoparticle.

6.3. Quantum dots

Quantum dots are tiny semiconductor crystals of luminescent nanocrystals with rich surface
chemistry and unique optical properties with the size of 1–10 nm made up of compounds from
group II to VI and III to V, for example, Ag, Cd, Hg, Ln, P, Pb, Se, Te, Zn, and so on. QDs have
distinctive characteristics such as size-tunable light emission, improved signal brightness,
resistance against photobleaching, and simultaneous excitation of multiple fluorescence
colors.

Depending on their size by laser, the quantum dots glow brightly in different colors, such as
Adirondack Green (520nm), Blue (514 nm), Greenish blue (544 nm), Green (559 nm), Yellowish
green (571 nm), Yellow (577 nm), Yellowish orange (581 nm), Fort Orange (600nm), Orange
(610 nm), and Maple Red-Orange (620nm).

QDs are nearly spherical semiconductor particles with core-shell structure. Colloidal core/shell
QDs, such as CdSe/ZnS, CdSe/CdS/ZnS, CdTe/CdSe, and InP/ZnS, are commonly synthesized
for biomedical applications, whereas CdSe/ZnS, CdTe/ZnS, and CdSe/CdS/ZnS have been
commonly used.

Quantum dots are made up of three parts, that is, core, shell, and cap.

Core is made up of CdSe, which is a semiconductor material. Core is surrounded by shell
which is made up of ZnS for improving its optical properties and cap encapsulates the double
layer quantum dots by different materials like silica which helps in improving solubility in
aqueous buffers. Structure of quantum dot is shown in Figure 3.

Advanced Technology for Delivering Therapeutics20



Figure 3. Structure of a quantum dot.

The semiconducting nature and the size-dependent fluorescence of these nanocrystals have
been successfully applied for in vitro, in vivo transfection and for diagnosis of various diseases.
One of the most important emerging applications of QDs appears to be traceable drug delivery,
because it has the potential to elucidate the pharmacokinetics and pharmacodynamics of drug
candidates and to provide the design principles for drug carrier engineering.

In gene technology, the quantum dot can be conjugated with oligonucleotide sequences
(attached via surface carboxylic acid groups) may be targeted to bind with DNA or mRNA.
Gene-associated drugs can be loaded within a QD core or attached to the surface of these
nanoparticles through direct conjugation or electrostatic complexation by which QDs can
protect the gene from degradation by nucleases. This property has been utilized for an assay
of single nucleotide polymorphism (SNP). Due to concerns about long-term in vivo toxicity
and degradation, QDs are currently limited to cell and small animal uses [30, 31, 77–101].

7. Conclusion

Recently nanotechnology-based gene delivery is one of the most attractive therapeutic
methods for treatment of various diseases. In drug delivery, size and distribution of particles
are critical parameters to target specific organs and tissues. Proteins (derived from their
secondary structure) are suitable materials for drug/gene carriers due to their precise molec-
ular sizes. An ideal nanoparticle formulation for a drug or gene carrier system can achieve
long circulation time, low immunogenicity, good biocompatibility, and selective targeting.

Gene delivery involves viral and non-viral vectors. Viral vectors are having low loading
capacity, large-scale manufacturing, quality control cost, and safety factor such as immuno-
genicity and potential oncogenicity. From the stability and safety concern, non-viral vectors
have more efficiently passing the gene transfection through the biological barriers compared
to viral vectors. Organic, inorganic, and various hybrid materials are used for the preparation
of nanoparticles. Among these, polymeric nanoparticles have great therapeutic application
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due to its wide range of sizes and varieties and can be used in sustained and targeted gene
delivery for long periods. Biopolymers used for the preparation of nonviral vectors possess
several favorable characteristics, such as high biocompatibility, low toxicity, good biodegrad-
ability, and abundant renewable sources, which can be used for efficiency delivery of drug/
gene to the target site.

Choosing a suitable design of nanoparticle structure can increase gene transfection efficiency
to overcome extracellular and intracellular transfection barriers: the blood stream, the cellular
membrane, endosomes, and the nuclear membrane. Nanoparticle in gene delivery depends
upon the nature of the polymer charge and its chain length. Furthermore, modifications in the
nanoparticle by introducing ligands onto the surface can enhance localization and retention
in specific target tissue, local delivery of agents to a large volume of tissues for better clinical
application. However, biopolymer-based nanoparticle will become a tool in near future for the
precisely targeted delivery of drugs and genes in many therapeutic fields, but toxicological
issues and degradation products of nanoparticles are need to be considered before being
applied into humans.
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