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Abstract

The massive integration of sustainable energies into electrical grids (non-interconnected
or connected) is a major problem due to their stochastic character revealed by strong
fluctuations at all scales. In this paper, the scaling behaviour or power law correlations
and the nature of scaling behaviour of sustainable resource data such as flow velocity,
atmospheric wind speed, solar global solar radiation and sustainable energy such as,
wind power output, are highlighted. For the first time, Fourier power spectral densities
are estimated for each dataset. We show that the power spectrum densities obtained are
close to the 5/3 Kolmogorov spectrum. Furthermore, the multifractal and intermittent
properties of sustainable resource and energy data have been revealed by the concavity
of the scaling exponent function. The proposed analysis frame allows a full description
of fluctuations of processes considered. A good knowledge of the dynamic of fluctua-
tions is crucial to management of the integration of sustainable energies into a grid.

Keywords: turbulence, kolmogorov spectrum, intermittency, multifractality

1. Introduction

The installed capacity for energy from solar farms, wind farms and marine energy systems is

constantly increasing in response to worldwide interest in low-emissions power sources and a

desire to decrease the dependence on petroleum. The variability and unpredictability of this

kind of resources over short time scales remains a major problem, as its penetration of this

energy into the electric grid is limited. Hence, a good knowledge of renewable resource

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



variations and intermittency is of real practical importance in managing the electrical network

integrating this kind of energy.

Figure 1 illustrates examples of temporal increments of atmospheric wind speed and global

solar radiation for a time scales Δv ¼ 5 min. We can observe the existence of intermittent

bursts. Following, the disciplinary field, the concept of intermittency can be defined differ-

ently [1, 2]. In the wind and solar energies fields, the concept of intermittency is often defined

as the variability [2]. In turbulence field, Batchelor and Townsend have observed the inter-

mittency experimentally for the first time in 1949 [3] and formalized in the multifractal

framework after the seminal works of Kolmogorov [4]. The meaning of intermittency can

change according to the authors. Frisch defines an intermittent signal if “it displays activity

during only a fraction time, which decreases with the scale under consideration”. According

to Pope, a motion “sometimes turbulent and sometimes non-turbulent” characterizes an

intermittent flow. In the engineering field, the intermittency is considered as a transition

between a laminar and turbulent flows [1].

Here, the concept of intermittency in the fully developed turbulence framework is used, with

with the help of multifractal analysis. This allows a better description of a stochastic signal at

all scales and all intensities.

Multifractal analysis techniques have encountered an amount success through several disci-

plinary fields, such as, for instance, turbulence [5–8], finance [9–11], physiology [12], rainfall

[13, 14] and geophysics [15, 16].

In this chapter, the intermittent properties of renewable resources data (wind speed, solar

radiation and flow velocity data) and sustainable energy data (power output data from WECS

and marine energy systems) are investigated using a classical multifractal analysis method,

structure functions analysis.

The structure of this chapter is as follows. Section 2 describes briefly the fully developed

turbulence framework. Section 3 presents the results analysis.

Figure 1. Examples of temporal increments of atmospheric wind speed Δv and the global solar radiation Δg. These

sequences show intermittent bursts.
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2. Fully developed turbulence framework

2.1. Richardson’s cascade and Kolmogorov theory

The intuitive scheme of Richardson has largely inspired numerous authors in the turbulence

field. Richardson provided a poetic form of energetic cascade [17] this is represented by a

schematic illustration of Kolmogorov-Obhukov given in (Figure 2):

“Big whirls have little whirls that feed on their velocity,

And little whirls have lesser whirls

And so on to viscosity in the molecular sense”

The mathematical formalization of this scheme is given in 1940s by Kolmogorov who postu-

lated the local-similarity hypothesis, i.e. small-scale turbulence is homogeneous and statisti-

cally isotropic in the inertial sub-range and hypothesized that velocity fluctuations Δv between

two points separated by a distance r depend only on the average dissipation rate ε. This trans-

lates into the following expression for the squared fluctuations S2ðrÞ ¼
�

ΔvrÞ
2 ¼ ðvxþr − vxÞ

2 [4]:

S2ðrÞ ≈ ε
2=3r 2=3 (1)

This has been generalized, considering the structure functions for moments of order q > 0 of

the absolute spatial velocity increments as follows [18]:

SqðrÞ ≈ ε
q=3r q=3 (2)

This leads to the famous K41 linear law (when there is no intermittency):

ζðqÞ ¼
q

3
(3)

where ζðqÞ is the scaling exponent of the structure functions:

Figure 2. A schematic illustration of Kolmogorov-Obhukov spectrum that a −5/3 slope, based on Richardson’s cascade

concepts.
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SqðrÞ ≈ r ζðqÞ (4)

This leads to the following expression for the power spectrum of velocity fluctuations in the

Fourier space:

EðkÞ ≈ k−5
=3 (5)

where k is the wave number.

In 1949, the experimental works of Batchelor and Townsend [3] highlighted the nonlinearity of

the scaling exponent ζðqÞ contrary to the K41 prediction. This nonlinearity indicates the

intermittent character of the dissipation energy, caused by the inhomogeneity and anisotropy

of the turbulent flow. To take intermittency into account, many theoretical formulations have

been provided for a quantitative description of cascade processes and fitting the scaling

exponent function ζðqÞ: The log-normal model was the first prediction describing the intermit-

tency of the fully turbulence [18]:

ζðqÞ ¼
q

3
þ

μ

18
ð3q − q2Þ (6)

where μ is the intermittency parameter. Thereafter, others models have been proposed. The

most used are given in Section 2.3.

2.2. A description of scale invariance and multifractal framework

2.2.1. Self-similarity and scale invariance

The idea of describing natural phenomena by the study of statistical scaling laws is not recent

[19]. Self-similarity has been widely observed in nature: self-similarity concept being the simplest

form of scale invariance. A process xðtÞ is self-similar if these statistical properties remains

unchanged with the process aHxðt=aÞ obtained by simultaneously dilating the time axis by a

factor a > 0, and the amplitude axis by a factor a−H. H is called the self-similarity or Hurst

parameter. This parameter provides information on the variability degree of process. A primitive

model of self-similar signals is the fractional Brownian motion (fBm) BHðtÞ [20] for illustration,

(Figure 3) shows a protion of flow velocity u dilated in the box, exibithing the statistical self-

similarity features of flow velocity signal considered in this study.

The Fourier spectral density Eðf Þ of scale invariance or self-similar processes follows a power

law obtained over a range of frequency f :

Eðf Þ∼f −β (7)

where β is the spectral exponent. According to some authors [19, 21, 22], it defines the degree

of stationary of the signal:

• β < 1, the process is stationary

• β > 1, the process is no stationary

• 1 < β < 3, the process is no stationary with increments stationary.
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2.2.2. Multifractal framework

The mathematical multifractal framework was appeared with the cascade multiplicative emer-

gence in order to consider the intermittency of the energy dissipation in Turbulence.

Multiscaling concept allows the statistical description of stochastic signals for the modelling of

physical systems, using multifractal technique analyses.

If xðtÞ is a stochastic signal function of time, his scaling behaviour is highlighted when the time

absolute time increments jΔxj ¼ jxðtþ τÞ−xðtÞj, more precisely, the structure functions of order

q respect the following relationship [5]:

SqðτÞ ¼ ðjΔxjÞ≈τζðqÞ (8)

where τ is a time lag and ζ is the scaling exponent function. The full ðq, ζðqÞÞ curve for integer

and non-integer q moments provides a full characterization of signal considered at all scales

and at all intensities. The parameter ζð2Þ ¼ β−1 relates the second order moment to the β

Fourier power spectrum scaling exponent. The parameter H ¼ ζð1Þ is the Hurst exponent with

0 < H < 1. This parameter defines the degree of roughness or smoothness of a measured

signal: more H is, the more the signal is smooth. The values of the ζðqÞ function are estimated

from the slope of the SqðτÞ versus τ in a log-log representation for all moments q. Concerning

the scaling behaviour, the scaling exponent function is useful to characterize the statistics of a

stochastic process. For a linear scaling function of the form qH, the signal is said to be

monofractal; Brownian motion is described by H ¼ 1=2, fractional Brownian motion is

described by 0 < H < 1, and homogeneous non-intermittent turbulence is described by

H ¼ 1=3. While for a nonlinear scaling exponent function, the signal is said to be multifractal.

Figure 4 illustrates the scaling behaviour of the ζðqÞ function for instance a monofractal and

multifractal processes. Furthermore, the concavity of ζðqÞ function gives an indication on the

intermittency degree of process considered: the more concave the curve is, the more intermit-

tent the process [5, 22].

Figure 3. A portion of flow velocity u dilated in the box. This shows the statistical self-similarity features of flow velocity u.
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2.3. Some multifractal models

Several models have been proposed to fit the scaling exponent function ζðqÞ since in the

literature, for instance, the “black and white” model [23], the log-normal model [18] and the

log-stable model [22].

The “black and white” model proposed by Frisch et al. in 1978 is the simplest model [23]:

ζðqÞ ¼ qH − μðq − 1Þ (9)

where H is the Hurst exponent and μ the intermittency parameter.

The classical lognormal model of the form:

ζðqÞ ¼ qH −

μ

2
ðq2−qÞ (10)

The log-stable or log-Lévy model proposed by Schertzer and Lovejoy in 1987 [22]:

ζðqÞ ¼ qH −

C1

ðα−1Þ
ðqα−qÞ (11)

where H is the Hurst exponent. The parameter C1 is the fractal co-dimension measuring the

mean intermittency: the larger C1, the more the signal is intermittent. Furthermore, 0 < C1 < d

with d the dimension space (here d ¼ 1). The multifractal Lévy parameter 0 < α < 2 inquires

on the degree of multifractality i.e., how fast the inhomogeneity increases with the order of the

Figure 4. Examples of scaling exponent functions ζðqÞ for a monofractal and a multifractal processes. The scaling

exponent functions represented are linear and nonlinear (concave), respectively, for monofractal and multifractal pro-

cesses.
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moments. Furthermore, α ¼ 0 corresponds to the monofractal case and α ¼ 2 corresponds to

the multifractal log-normal case.

In this chapter, we consider the log-normal model that provides a reasonable fit for the scaling

exponent of data considered. In [24], the log-stable is considered for the global solar radiation

data.

3. Results

In this chapter, we present analysis results from multiple time series sampled at different

sampling rates and at different places. The atmospheric wind speed u was measured with a

sampling frequency of 20 Hz during 40 h, on the wind energy site production of Petit-Canal in

Guadeloupe an island located at 16°15’N latitude and 60°30’W longitude. The wind power

output P was measured at the same place, with a sampling frequency of 1 Hz over a one-year

period. A 10 MW wind farm delivers this wind power output. The global solar radiation

measurements G was collected with a sampling frequency of 1 Hz over a one-year period, at

the University site of Pointe-à-Pitre in Guadeloupe. The flow velocity measurements were

generated from the facilities of the wave and current flume tank of IFREMER (French Research

Institute for Exploitation of the Sea) in Boulogne-sur-mer (North of France). The data are

collected with a sampling frequency of 100 Hz. Figure 5 illustrates extract of signals consid-

ered. All the signals fluctuate over a large range scales showing the intermittent nature of

sustainable resources and energy considered in this study.

Figure 5. Examples of extract of signal considered: (a) flow velocity u, (b) atmospheric wind speed, (c) global solar

radiation G, (d) normalized wind power output delivered by a wind farm. All the signals display strong fluctuations at

all scales.
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3.1. Fourier analysis of sustainable energy data and −5=3 Kolmogorov spectrum

The Fourier power spectral density separates and measures the amount of variability occurring

in different frequency bands. In this section, the Fourier power spectral densities are estimated

for our database in order to detect scale invariance. For a scale invariant signal, the following

scaling power law is obtained over a range of frequency f :

Eð f Þ ≈ f −β (12)

where β is the exponent spectral.

Figure 6 shows the Fourier power spectral densities of databases described above, compared

to the −5=3 Kolmogorov spectrum (red straight line), log-log representation. The spectra

computed follow a power law of the f −β with β close to 5=3. As expected, the atmospheric

wind and the flow velocity spectra demonstrate a scaling behaviour for the respective frequen-

cies from about f ¼ 0:1−10 Hz and f ¼ 0:1−50 Hz with β ¼ 1:67 close to the 5/3 Kolmogorov

value [4, 25]. This is consistent with the values obtained for the inertial range in previous

studies [26–28]. The wind power output spectrum displays a power law with β ¼ 1:68 close

to the 5/3 Kolmogorov value, for frequencies from about f ¼ 10−4 to 0:5 Hz. In 2007, Apt has

shown that the wind power output from a wind turbine, follows a Kolmogorov spectrum over

more than four orders of magnitude in frequency [29]. In [30], we show the wind power output

spectrum with an exponent spectral close to the 5/3 value, which is observed for particular

conditions.

The global solar radiation spectrum shows also a power law behaviour with β ¼ 1:66 close to

the 5/3 Kolmogorov value for frequencies from about f ¼ 0:7· 10−4 to 0:07 Hz. This scale

invariance is indirectly linked to scale invariance of cloud field transported by atmospheric

turbulence. In [31], a power law is also observed for the spectrum of cloud radiances obtained

Figure 6. The Fourier power spectral densities for each dataset, compared with the −5/3 Kolmogorov spectrum.
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from ground-based photography: the exponent spectral β ¼ 1:67 is observed for clouds over

ocean.

In summary, the spectra of sustainable data considered in this study, display power law

behaviour with an exponent spectral close to the 5/3 Kolmogorov value. The slight difference

with the exact 5/3 value is usually caused by intermittency effects [5, 22].

Furthermore, the Fourier power spectrum is a second order statistic providing information on

medium level fluctuations, and consequently, its slope is not sufficient to fully describe a

scaling process. Multifractal analysis is a natural generalization to fully study the scaling

behaviour of a nonlinear phenomenon using, for example, the qth order structure functions.

3.2. Multifractal analysis of sustainable energy data

In order to qualify the nature of scaling behaviour (monofractal or multifractal), a multifractal

analysis using qth order structure functions is applied to sustainable energy data to determine

the scaling exponents ζðqÞ. For each dataset, the structure functions are computed on the

temporal increments Δx as defined above. The details concerning the scale range of τ and q

are given in the following references [24, 32–34]. As shown in [24, 32–34], the straight lines of

structure functions indicate that the scaling of the relationship is well respected. Consequently,

the scaling exponents ζðqÞ are extracted from the slopes of the straight lines using a linear

regression. Figure 7 represents the scaling exponents ζðqÞ corresponding to each dataset

compared with a model proposed by Kolmogorov, the linear model K41, ζðqÞ ¼ q=3. We can

see that the scaling exponents ζðqÞ obtained are nonlinear and concave. This highlights the

Figure 7. The scaling exponent functions ζðqÞ for each dataset compared with the linear non-intermittent K41 model.

−5/3 Kolmogorov Turbulent Behaviour and Intermittent Sustainable Energies
http://dx.doi.org/10.5772/106341

103



multifractal and intermittent character of considered sustainable data here. Furthermore, the

degree of concavity gives an indication on the degree of intermittency: the more concave the

scaling exponent curve is, the more intermittent the process. We recall that the intermittency

parameter can be estimated by μ ¼ 2ζð1Þ−ζð2Þ with 0 < μ < 1. Table 1 draws up some param-

eters for each dataset: H the Hurst exponent, ζð2Þ, and the intermittency parameter μ.

As shown in Figure 6 and indicated in Table 1, the global solar radiation G is the most

intermittent.

4. Conclusion

This work highlights the intermittency and the scale invariance properties of flow velocity u,

atmospheric wind speed v, wind power output P and global solar radiation G data, at all

intensities and at all scales, in the fully developed turbulence framework.

We have shown for all datasets over the period encountered:

• The presence of a scaling regime or power law correlation of the form f −β over a broad

range of time scales, in the Fourier space. The exponent spectral β is close to the exact 5/3

Kolmogorov value for all the datasets.

• The nature of the scaling behaviour for each dataset is determined using qth order struc-

ture functions analysis. The nonlinearity and the concavity of the scaling exponent func-

tions ζðqÞ obtained reveal the intermittent and the multifractal properties of datasets

considered in this manuscript. This could result from the complex interaction of the turbu-

lent atmospheric and the energy converter systems such as, for example, wind turbine.

With the increase in sustainable energies, a good knowledge of their nonstationary and

intermittent properties is crucial. The fully developed turbulence framework is a relevant

frame to analysis stochastic processes such as those considered in this manuscript. It allows

providing a sharp description of fluctuations of processes at all scales and at intensities. The

Hurst and the intermittency parameters can be used in stochastic simulations based on

multifractal cascade model, as performed in [33]. Here, with a dynamical modelling of

fluctuations sustainable energy considered, the interest could be, for instance, to test the

stability evaluation of electricity grid.

H ζð2Þ μ

Flow velocity u 0.34 0.66 0.02

Atmospheric wind speed v 0.35 0.68 0.02

Wind power output P 0.38 0.70 0.06

Global solar radiation G 0.43 0.61 0.25

Table 1. Hurst exponent H ¼ ζð1Þ, ζð2Þ linked to the exponent spectral by ζð2Þ ¼ β−1 and the intermittency parameter μ

estimated for each dataset.
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