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Abstract

Due to their comparatively low mass that implies reduced horizontal dynamic loads
even during strong earthquakes, wood-made buildings might be a good choice in
seismic prone regions. To meet the modern design philosophy requirements, however,
such structures should be able to behave in a ductile way under exceptional events. By
presenting a brief review of the latest developments in the field, this chapter investigates
on when and to what extent historical and modern timber buildings may exhibit a
ductile and dissipative behavior. A special focus is given to the crucial role of connec-
tions and to the difficulties involved by their mechanical model when carrying out code-
based non-linear dynamic analyses. Although a ductile behavior is typically required
under strong earthquakes, it is to note that a well-designed ductile structure may also be
able to withstand other exceptional events as, for instance, tornadoes or blasts.

Keywords: ductile behavior, strong dynamic loads, timber structures, seismic perfor-
mance

1. Introduction

To be able to exhibit a ductile behavior is a bonus that a structure can exploit when exposed to

extreme and unpredictable actions like those applied by earthquakes, hurricanes, snowstorms,

fire or explosions. In fact, it would be uneconomical to design structures that withstand such

infrequent events still deforming in the elastic range. In addition to cost-effective reasons, a

significant advantage of the ductile behavior is the great amounts of input energy that can be

dissipated during the plastic motion, considerably higher than what could be dissipated in the

elastic range. Further advantages are the beneficial redistribution of stress within statically

undetermined systems and the warning that large deformations may give to inhabitants in

case of exceptional loads. Aimed by these reasons, the seismic codes of practice typically

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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require that buildings survive earthquakes of moderate severity deforming in the elastic range

whilst they behave in a dissipative ductile way, even getting damaged severely but without

collapsing, during strong seismic events. Local curvature ductility and strength hierarchy

requirements ensure such extreme performance of buildings with the final goal of life safety.

Based on this well-established design philosophy, a lot of experimental data, numerical pro-

cedures and code provisions are in fact available to design earthquake-resistant buildings

made by steel or reinforced concrete [1–3]. On the contrary, a lack of sufficient research results

and detailed code requirements still affect the design of wood structures in high seismicity

areas, despite the growing interest in natural and renewable materials. Light weight as they

typically are timber structures might possibly resist earthquakes better than other kind of

structures. Being proportional to the building masses, in fact, the horizontal loads acting on

light structures during a given earthquake are lower than those acting on heavier structures, so

that reducing the building active mass may be even a strategy for seismic stress control [4, 5].

On the other hand, to meet the modern design philosophy, timber structures are expected to

exhibit a ductile and dissipative behavior—besides adequate strength and stiffness—under

strong earthquakes. Ductility is in fact the capability to undergo large inelastic displacements

without significant reduction in strength. On the other hand, high values of ductility usually

imply large amount of energy dissipated during the dynamic motion, being the energy dissi-

pated in each cycle related to the hysteresis area of the load-displacement diagram.

With the aim of investigating on the dynamic behavior of timber structures under extreme

conditions, this survey focuses on the post-elastic behavior of wood constructions. The chapter

is composed of two main parts. The first one deals with the ductile behavior of historical

buildings (Section 2). A brief review on the performance of existing wood-made buildings

under past events is presented in Section 2.1 while experimental data on the ductile and

dissipative behavior of ancient timber buildings, as available from the literature, are provided

in Section 2.2. The remarks listed in Section 2.3 close the first part of the chapter. The second

part refers to the ductile and dissipative behavior of modern timber constructions (Section 3).

The key role of metallic connections is addressed in Section 3.1, whereas some practical aspects

to be taken into account before carrying out a code-based non-linear dynamic analysis of a

timber structure are highlighted in Section 3.2. Some brief conclusive notes are provided in

section 3.3.

2. Ductile and dissipative behavior of ancient timber buildings

Until the advent of reinforced concrete, wood buildings have been popular for centuries in

many seismic areas like China, Japan, Greece, Turkey and Balkan countries. In other geograph-

ical areas prone to earthquakes or tornados (North America), wood-frame single-family

houses and low-rise multi-family dwellings never stopped to be built since colonial times.

Timber constructions are today still very common in countries where wood is in good supply

(USA, Canada, North Europe and New Zealand), but a growing interest is developing even in

regions where adobe and masonry have been the most typical construction materials for
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centuries (e.g. Mediterranean countries). Assessing the performance of timber structures dur-

ing past severe natural events may be thus of great interest not only to preserve the architec-

tural heritage but also to improve the design of new buildings.

2.1. Performance of timber buildings during past natural events

Somehow unexpected, the finding that many ancient wooden constructions remained nearly

intact after strong earthquakes, whilst modern reinforced concrete buildings collapsed, as

emblematically shown in Figure 1, gave new impetus to build timber constructions even in

seismic regions. Several authors documented, in fact, a generally good performance of timber

buildings during natural events as earthquakes, hurricanes, tornadoes and snowstorms [6–12].

Actually, most of the existing timber constructions were built according to conventional guide-

lines based on the empirical knowledge of the past while only the more recent ones (a little

part) are engineered structures meeting modern anti-seismic standards. Mainly based on

inspections made after natural disasters, best-practice rules were suggested—although not

always applied—in the past [13]. It may be interesting to mention that the first European anti-

seismic recommendations, which were enacted in 1783, after a devastating earthquake struck

Calabria and Sicily (at that time belonging to the Borbone Kingdom), prescribed to strengthen

buildings by means of wood frames in filled in the masonry walls. The timber frames were

recommended to be suitably connected to each other’s, to the ground and to the floors, see

Figure 2 [14]. Even more interesting is the fact that such an aseismic system (adopted in Italy

till the twentieth century and referred to as “casa baraccata”), had actually been borrowed from

the traditional little wooden single-story houses (called baracche) which were usually built near

to the palaces of nobles to be used as earthquake-proof shelters [15–17]. Although not written,

aseismic recommendations similar to—and most likely inspiring—the Borbone’s ones were

adopted in Lisbon a few years before, after the catastrophic earthquake and the ensuing

tsunami that struck the town in 1755. Based on the knowledge collected from survived build-

ings, the Pombalino constructive system (imposed by the Prime Minister Marquis of Pombal)

consisted in fact of a three-dimensional timber structure (called gaiola due to its cage-like

structure) included in the masonry walls above the first floor of the building, see Figure 3

[18–20].

Figure 1. Different damaged conditions of traditional wooden and reinforced concrete buildings after the 1999 Duzce

earthquake. Image taken from [6].
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Due to the different role given to the timber structure, the “Borbone” and the “Pombalino”

constructive systems were quite dissimilar in their mechanical behavior, as discussed in Ref.

[16]. Both of them are, however, examples of ancient timber-framed buildings. Although the

concept of structural ductility was still very far to be introduced in building design, the role of

timber frames in traditional constructions was in fact that of withstanding lateral loads by

allowing large—and usually inelastic—displacements (like a sort of reinforcement skeleton), a

role which cannot be played by unreinforced masonry.

Constructive systems adopting timber frames with infill masonry (or adobe or stone) may be

actually found in different historical periods and geographical areas, starting from one of the

most ancient examples still visible: a Roman house of the first century BC in the archeological

site of Herculaneum (Italy) (Figure 4a). More recent examples are the several well-preserved

Figure 2. First European aseismic recommendations dating back to 1783 [14].

Figure 3. (a) Pombalino building scheme [18]; (b) Pombalino building walls.
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Ottoman traditional timber-frame houses (see Figure 4b), that may be still found in earth-

quake-prone areas as Turkey, Balkan countries, Iraq, Siria and Egipt [6, 9, 21]. Likewise the

Pombalino system, also in the Ottoman houses, the timber frames were introduced from the

first floor up (for this reason they are also referred to as half-timbered frames). Further

examples of timber-framed buildings (dating back even to the medieval period) may be also

found in European countries as Germany, the United Kingdom, Greece, France, Spain, Poland

(see e.g. the examples given in Figure 4c–f), as well as in India [22, 23], the USA [24], China [25]

and Peru [26]. An overview of the history of timber framed buildings may be found for

instance in Ref. [32].

Different from the timber-framed systems, other wooden ancient buildings can be also broadly

found (see Figure 5).

The widespread use of wood as structural material even in earthquake-prone areas highlights

the awareness they had in the past of the good performance of such a material even under

extreme conditions. Of course, mistakes and experience taught how to build timber structures to

better withstand strong dynamic actions. The following shortcomings were typically found, in

fact, to be responsible for the inefficient structural behavior of wood buildings in past natural

disasters: lack of adequate foundation anchorages or inadequate foundations soil; presence of a

soft-story mechanism (typically due to large openings at the ground floor of multi-story build-

ings); insufficient connections between major components or lacking lateral bracing, as

Figure 4. Historical timber-framed masonry buildings: (a) house wall from Herculanum (opus craticium attested by

Vitruvius in the first century BC); (b) nineteenth-century Ottoman house; (c) sixteenth-century timber-frame house in

Paris (France); (d) St. Bartholomew’s Gatehouse built in London in 1595 and survived to the 1665 great fire; (e) German

typical timber-framed houses (Fachwerkhäuser); (f) Anne Hvide's House built in 1560, Denmark.
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documented, among others, in Refs. [6–11]. Other causes of failure were also detected as, for

instance, failure of infill materials in timber-framed buildings, failure of chimneys, collapse of

neighbor buildings, structural changes or excessive loadings given at a certain stage of the

building life which caused very large inertia forces [6, 9, 11, 27, 28]. However, the main lesson

drown from past events was that, to better resist to lateral loads, a timber structure should be

regular, have little openings, possess effective connections, bracing elements and ground

anchorages. In other words, it should eventually behave as a box-like unit.

2.2. Ductility of historical buildings

Apart from the qualitative considerations recalled in the previous section, we can ask

whether and to what extent existing (and often very ancient) timber structures can be able

to exhibit a ductile and dissipative behavior under extreme conditions. Unfortunately,

answering this question is not an easy task, since the actual dynamic behavior of historical

timber buildings is hardly predictable and it is usually documented, as far as for the past,

only by empirical data. The task is even made more difficult by the different constructive

techniques, wood species, kind and quality of infill materials and by the large variety of

joints adopted in ancient structures. Some recent studies can be, however, exploited to have

some clues.

Figure 5. Ancient wood constructions: (a) Hōryū-ji Pagoda (Japan, 607 A.C.); (b) Kizhi Pogost Church (Russia, seven-

teenth century); (c) Fogong Temple Pagoda (China, 1056 AC); (d) Heddal stave church (Norvey, thirteenth century).
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2.2.1. Timber-framed buildings

Experimental researches were carried out to assess the behavior of the Borbone constructive

system, [16, 17, 29]. Particularly remarkable are the results provided in Ref. [16], relevant to in-

plane cycling tests performed on two full-scale models of Borbone walls, following the UNI EN

12512:2006 protocol [30]. Experimental findings evidenced a non-linear behavior of specimens

with comparatively high values of ductility. The latter was calculated as the ratio between the

maximum displacement umax and the displacement at yield uy, namely

μ ¼

umax

uy
(1)

The quantity defined by Eq. (1) is sometimes also referred to as the static ductility. To quantify

the dissipation of energy in the plastic range, the hysteresis equivalent damping ratio was

calculated in Ref. [16], as defined by

ξeq ¼
1

2π

Ed

Ep
(2)

Based on the Jacobsen approach [31], Eq. (2) considers the ratio between the energy dissipated

for a half hysteresis cycle, namely Ed, and the potential energy Ep that an equivalent simple

oscillator would store for the same displacement achieved in the hysteretic half-cycle (see

Figure 6). The value of ξeq was evaluated in Ref. [16] for the third cycle of each level of

displacement imposed, as suggested by the UNI EN 12512:2006 protocol [30]. The cumulative

dissipated energy Ed_cum, obtained by summing the loop areas of successive cycles, was also

calculated. The values of μ, Ed_cum and ξeq obtained in Ref. [16] for infilled and bare walls are

provided in Table 1.

Figure 6. Pinched hysteresis loop (third cycle): (a) dissipated energy for a half cycle; (b) potential energy of the equivalent

oscillator for a half cycle.
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In the infilled specimens, the energy dissipation was found to depend mostly on friction and

small ruptures in the masonry. In bare specimens, the almost wholeness dissipation was found

instead to be concentrated in the connections, where two mechanisms occur contemporarily:

the first one is related to the compression and crushing of wood grain with the formation of a

cavity due to the presence of nails (which is also responsible for the pinching effects discussed

in the following); the second one concerns the inelastic deformation of the iron nails, [16, 17].

The dynamic behavior of the Pombalino timber-framed buildings in Lisbon was investigated

through experimental tests on specimens taken from actual sites [28] or rebuilt in laboratory

[19, 27, 32]. All of them assessed a rather good ductile behavior of Pombalino walls. In particu-

lar, the results given in Ref. [19], relevant to real-size reconstructions of Pombalino walls under

cyclic displacement sequences following the CUREE protocol [33], showed fat hysteresis loops

dissipating reasonable amounts of energy (although the actual values are not given by the

authors). The ductility ratio was found to be around 3. Significant pinching effects, related to

gaps and residual displacements which form in the connection zones and between masonry

and timber members were detected. A rather accurate non-linear hysteresis model was also

developed in the same paper to capture the dynamic response of the walls. Similar experimen-

tal tests on real-size laboratory reconstructions of infilled and bare-framed Pombalino walls

were carried out in Ref. [32]. The values of μ, Ed_cum and ξeq found in Ref. [32] are collected in

Table 1.

Experimental tests on eight different timber frames with and without infill (brick and adobe)

or cladding, all reproducing portions of the typical himis-timber-framed Ottoman construc-

tions, were carried out in Ref. [21]. The force-displacement curves obtained for reversed cyclic

in-plane lateral loading showed stable hysteretic loops with highly dissipative behavior. The

authors suggested to evaluate the cumulative energy dissipation capacity through the follow-

ing empirical formulas [21]:

Test specimens Frame µ Ed_cum (kJ) ξeq (%) Drift (%)

Real-size Borbone walls [17] Infilled 7.6 19 6–8.9 2–2.6

Bare 1.36 1.6 1–23 0.15–2.71

Real-size Pombalino walls [32] Infilled 5.48–17.95 2–2.8 15 1.76–3.34

Bare 11.6–15.28 0.75–2.8 11–15 2.55–2.61

Real-size Ottoman walls [21] Infilled n.a. 1.8–11 7.80 4–6.5

Bare n.a. 0.6–8 7.79 3.5–8.7

Real-size dhajji-dewari walls [23] Infilled 3.7 n.a. 5–25 4.2–5

Bare 3 n.a. 7 4.2–5

Half-scale quincha walls [26] Infilled 6.2 n.a. n.a. n.a.

Bare 15.4 n.a. n.a. n.a.

Note: n.a., not available.

Table 1. Ductility ratio and dissipation capacity of historical timber-framed walls.
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Ed_cumW ¼ ð0:873W ef f þ 0:055Aef f Þð1:1865Dmax þ 0:5697Þ3=2 (3)

Ed_cumWO ¼ ðW ef f þ 0:0638Aef f Þð0:19Dmax þ 1:0469Þ2 (4)

Here Ed_cumW and Ed_cumWO denote the cumulative energy dissipation capacity (expressed in

Joule) of specimens with and without infill/cladding, respectively; while W ef f , Aef f and Dmax

are the effective width (m), the effective area (m2) and the maximum lateral top displacement

(mm) of each framed wall considered in the experimental tests. The values of Ed_cum as

obtained by applying Eqs. (3) and (4) and of ξeq, as defined by Eq. (2), were derived from the

data given in Ref. [21] and are provided in Table 1 both for infilled and bare frames. A high

ductile behavior was found to be exhibited by the considered timber-framed walls, although

the actual values of the ductility ratio μ were not provided in Ref. [21]. The highly dissipative

behavior detected for Ottoman walls was found to depend on the dissipative plastic behavior

of nailed connections, as also confirmed by other authors [22].

The results of in-plane quasi-static cyclic tests on full-scale dhajji-dewari walls (wooden-

braced frame system with masonry infill, typical of India and Pakistan) were given in Ref.

[23]. The tests highlighted a very strong resilience of the dhajji-dewari system against

lateral loads, which is almost totally due to the performance of the timber framework.

Also in this case, a rather good ductile and dissipative behavior is found in the experi-

mental tests. The values of μ and ξeq obtained in Ref. [23] for infilled and bare walls are

given in Table 1.

Finally, the data taken from [26] relevant to experimental tests carried out on half-scale quincha

walls are also provided in Table 1. (Quincha is a Peruvian traditional timber-framed construc-

tive system consisting of an adobe-made ground floor and upper stories built with timber

frames infilled with a weave of canes and mud).

A qualitative diagram is provided in Figure 7 showing some of the typical features evidenced

by the experimental cyclic tests on timber-framed walls, infilled with masonry and connected

with metallic nails. The main features evidenced in Figure 7 are (a) non-linear behavior; (b)

almost symmetric curves; (c) indistinct yield point; (d) lateral stiffness degradation for increas-

ing loading cycles; (e) pinching effect after the first load cycle; (f) strength degradation at the

same deformation level for increasing loading cycles; (g) strength degradation for higher

deformation;(h) fat hysteresis loops which implies large amounts of energy dissipated

(narrowed loop areas are generally found, however, for successive load cycles or for higher

deformation levels); (i) rather high values of ductility.

The so-called “pinching effect” is due to the formation of a cavity around the fasteners due to

irrecoverable crushing of wood (this effect occurs after the first loading cycle) which implies

a reduced stiffness at load reversals (the connection stiffness is due, in this phase, to the sole

contribution of metallic fasteners). As soon as the contact with the surrounding wood is

reestablished, at increased deformation levels, the stiffness rapidly increases which leads to

the typical pinched shape of curves in the load-displacement diagram. It can be noted,

finally, that features very similar to those illustrated in Figure 7 and discussed before were
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also detected for modern timber walls (plywood shear, strand-board diaphragms), as can be

inferred by examining, for instance, the experimental load-displacement curves provided in

Ref. [34].

2.2.2. Other kinds of ancient wooden constructions

Experimental studies were carried out to assess the dynamic behavior of traditional Chinese

[35–37] and Japanese [38–40] constructions. Of particular interest to the purpose of the present

study are the results provided in Ref. [37]. They are relevant to scaled specimens, reproducing

a prototype of a historical Chinese timber palace, subjected to cyclic lateral loading. Stable and

large-area hysteretic loops were found in the tests, associated with rather high values of

ductility (9–19) and energy dissipation (not quantified). The equivalent viscous damping was

evaluated to reach even values of 20–30%. It is worth noting that Chinese and Japanese

constructions were found able to exhibit a rather high ductile response and to dissipate large

amount of energy, despite they typically avoid metallic connections. Energy dissipation was

found to be due, in fact, to friction and embedding between structural elements at the contact

interfaces inside the wooden joints.

Further experimental studies can be also quoted, for example [41], confirming a rather good

ductile and dissipative behavior of ancient timber constructions.

Figure 7. Qualitative hysteresis loops as obtained from experimental tests on timber framed walls.
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2.3. Some remarks on the ductility of ancient timber constructions

Before closing the present section, the following remarks can be drawn.

i. Ductile behavior and energy dissipation are two key points of the modern aseismic

strategy adopted by current standards. Experimental findings showed that historical

timber buildings can generally be able to meet these modern requirements.

ii. Table 1 substantiates statement (i). With reference to the classification given by EC8 [1],

recalled in Table 2, three kinds of the traditional timber structures referred to in Table 1

may be assigned to the high ductility class (DCH), namely the Borbone, the Pombalino and

the quincha walls (all in the case of infilled timber frames). A low ductility class (DCL)

should be assigned instead to the dhajji-dewari walls. The class of ductility of the Ottoman

traditional walls cannot be assessed through the available data.

iii. Although giving an interesting portrait of the ductile and dissipative capacity of tradi-

tional timber buildings, the data collected in Table 1 should be compared with caution

due to the different settings (laboratory set-ups, loading procedures, recorded data anal-

ysis, yield and ultimate deformation evaluation) adopted in the experimental studies

mentioned. For instance, the total amount of energy dissipated can be strongly dependent

on the load protocol, which is usually different from an experimental research to the other.

In addition, it can be noted that a different ductile behavior was sometimes detected in

experimental tests from positive to negative direction of load, although such an aspect has

not been evidenced in Table 1 for the sake of brevity.

iv. The last column of Table 1 reports the values of the drift (in %) as given by the ratio

between the maximum lateral displacement and the wall height. This is in fact a very

significant parameter to be considered when large displacements are involved.

v. Despite the extreme attention paid by the authors in reproducing, as faithfully as possible,

the in-situ conditions(timber species, infill materials, geometry, ground constraints, con-

nections, and so on), the results obtained in laboratory on rebuilt models of parts of

ancient constructions should be obviously used with great care to predict the actual

dynamic behavior of existing whole buildings, also in view of all the aspects affecting the

behavior of real structures (material degradation, efficiency of connections, internal dam-

age, workmanship irregularities, tridimensional behavior of the building).

vi. A crucial role in the ductile behavior of ancient timber structures was found to be played

by connections, since timber elements generally do not exploit their latest strength

resources [21, 42]. Based on this statement, some retrofitting solutions were also proposed

to improve the dynamic behavior of ancient structures under dynamic loads [27, 42]

3. Ductile and dissipative behavior of modern timber structures

Besides the more common single-family and low-rise houses, spectacular and daring-shaped

modern timber buildings may be even encountered nowadays in many countries, as the few
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instances of Figure 8 let imagine. A feeling for eco-friendly and renewable materials, together

with the easy of production and transportation from the past, adds new motivations to the

construction of wooden buildings.

As discussed in the introductive section of this chapter, modern structures are required to be

ductile and dissipative, particularly when they are built in seismic areas. While timber struc-

tures are uniquely recognized to be able to meet such requirements provided that they are

μ Class of ductility q Structural type

≤4 DCL Low capacity to

dissipate energy

1.5 Cantilevers; beams; arches with pinned joints; trusses joined with connectors;

mixed structures consisting of timber framing and non-load bearing infill.

4<μ<6 DCM Medium capacity to

dissipate energy

2 Glued wall panels with glued diaphragms connected with nails and bolts;

trusses with doweled and bolted joints.

2.5 Hyperstatic portal frames with doweled and bolted joints possessing medium

capacity of rotational ductility.

μ≥6 DCH High capacity to

dissipate energy

3 Nailed wall panels with glued diaphragms, connected with nails and bolts;

trusses with nailed joints

4 Hyperstatic portal frames with doweled and bolted joints possessing high

capacity of rotational ductility.

5 Nailed wall panels with nailed diaphragms, connected with nails and bolts.

Note: The q-values should be reduced by 20% if the building is non-regular in elevation.

Table 2. Ductility classes and behavior factors q for different typologies of timber structures, according to EC8 [1].

Figure 8. (a) Dolomites, Italy; (b) Vancouver, Canada; (c) London, Great Britain; (d) Odate Stadium, Japan.
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regular, hyperstatic and connected with ductile fasteners (as also confirmed by Table 2), most

of the issues related to evaluating and modeling this ability are still under discussion.

3.1. Crucial role of connections

Connections in modern timber buildings are metallic devices ensuring transmission of forces

between structural elements. Their design is the most strategic part of the structural project of a

timber construction, since from the characteristics of the connections (type, mechanical prop-

erties, geometry, spacing, assembly techniques) may strongly depend the stiffness, the

strength, the ductility and the energy dissipation of the whole structure.

Although some constructive typologies (such as moment-resisting timber frame systems,

timber shear panel systems and cross-laminated panel systems) are indicated as being partic-

ularly able to ensure a ductile behavior under extreme dynamic lateral loads [43], it is the

connection design that eventually decides the ductility resources of a timber structure. The

same structural type may be, in fact, assigned to different ductility classes in dependence of the

rotational ductility capacity of its connections, as can be inferred, for instance, by the classifi-

cation done by EC8, recalled in Table 2.

The most common connections in modern timber structures are the dowel-type mechanical

fasteners (nails, screws, dowels, bolts, rivets) which deeply penetrate into the wood to transfer

the load by means of wood bearing and connector bending. Dowel-type connectors can be

used alone or in combination with metal predrilled plates. Joints with dowel-type fasteners are

expected to be ductile due to the highly nonlinear behavior of the wood under embedding

stresses and the plastic behavior of the steel fasteners in bending [44]. Nevertheless, they can

sometimes be affected by sudden and brittle failures like block shear or splitting [45]. Ten

different types of failures (six in single shear and four in double shear) are considered by the

European standards for dowel-type timber connections [46].

As a matter of fact, timber members and metallic joints play different roles in the seismic

behavior of timber structures. Since the failure mechanisms of wooden elements are mostly

brittle, the timber members are required to remain in the elastic range even under very strong

events. The task of satisfying the demand of ductility is entrusted instead to the metallic

connections which are expected to sustain large inelastic deformations while preventing col-

lapse. The ductile behavior of connections is influenced both by metallic fasteners (which may

behave in a ductile or brittle way depending on whether plasticization is attained or not) and

by the strength properties of the wood surrounding the connection zone (direction of the grain

with respect to the load direction).

Preventing brittle failure may guarantee an adequate ductility to the whole structure.

Complying some strength hierarchy rules can assure a ductile behavior to timber struc-

tures. In particular, it is essential to design the fasteners to be weaker than the wood

members they are connecting, so that they can yield and dissipate great amount of energy.

On the other hand, the weaker the fasteners, the lower their bearing capacity. A way of

ensuring both adequate ductility and sufficient bearing area is using a large number of

weak fasteners. Some alternatives to improve the performance of dowel-type joints are

discussed in Ref. [47].
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Although the plastic properties of the steel fasteners alone are well-known and their behavior

under cyclic loads easy predictable, the non-linear response of the assembly of metallic con-

nectors and surrounding wood is rather difficult to predict, since it is not a cross-section

property (as for reinforced concrete). In fact, the behavior of the timber connections depends

from several factors, some well-known as the strength properties and the geometric configu-

ration of involved materials, others affected by uncertainty as the influence of neighboring

metallic fasteners or the interaction between fasteners and surrounding wood. This makes

rather difficult to develop an analytical model able to reproduce the behavior of a timber

connection.

Most of the features evidenced in Figure 7 and discussed in Section 2.2.1 characterize the

behavior of metallic timber connections, as can be inferred from Figures 9a and 9b, which

provide qualitative examples of the typical hysteretic behavior of riveted and nailed connec-

tions, respectively. In particular, two phenomena were found to be typical of the hysteretic

response of steel dowel-type connections, as recalled in Ref. [43]. The first one is the pinching

effect implying different hysteretic curves from the first to the subsequent load cycles (see

Figure 9). The second one, referred to as the memory of material, is due to a dependence of the

load-slip curve from the loading history. Both these phenomena may influence the ductile

behavior of a timber structure.

3.1.1. Influence of the pinching effect on the ductile behavior of connections

The pinching effect is a very typical feature of the hysteretic behavior of dowel-type connections

affecting both historical and modern timber constructions. The mechanical causes of it have

been discussed in Section 2.2.1. This effect has been documented by many authors, as for

instance [48–52]. It was found, in particular, that for a given displacement level, the highest

resistance and widest hysteresis loop was attained at the first load cycle, whilst the subsequent

cycles were narrowed and achieved lower resistance, stabilizing after about three cycles (see

Figures 9a and 9b). Stabilization of the pinched curve after three cycles is also referred to in

UNI EN 12512:2006 [30]. Due to the reduction of the area of the hysteresis loop, the pinching

effect may be actually responsible for a reduced amount of energy dissipation, although con-

nections are still able to exhibit high values of ductility.

Figure 9. Typical hysteretic curves from cyclic tests on metallic (a) riveted connections and (b) nailed connections.
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In modeling the mechanical behavior of a steel dowel-type connection for numerical analysis

purposes, the pinching effect should be considered. A discussion on how this can be done may

be found in Ref. [34], even if standard models comprehensive of the pinching effect and of the

strength and stiffness degradation are not yet available, neither suggested by codes of practice.

3.1.2. Influence of the load history on the ductile behavior of connections

From the results available in the literature, it is clear that the hysteretic behavior of timber

connections may strongly depend on the type of experimental test carried out (dynamic, static,

cyclic, monotonic) as well as on the testing protocol adopted. On the other hand, while

different protocols are available to carry out cyclic loading tests on timber structures, for

example, EN 12512 [30], CUREE-Caltech standard [33], UBC protocol [11], a consensus on the

best protocol to be assumed as standard has not been yet reached [48]. Many experimental

findings proved, however, the influence of the load history on the final results.

It was shown in Ref. [48] that a connection usually reaches its maximum load at a lower

deformation under cyclic loads than under monotonic loading. In Ref. [50], it was found that

the ductility ratio of timber shear walls may be much higher when measured under static

monotonic tests than when measured under dynamic tests. These experimental findings indi-

cate that results from monotonic tests tend to overestimate the load-deformation behavior of

connections with respect to cyclic loading tests, and therefore should be avoided when deter-

mining the seismic performance of timber buildings [48]. Dynamic tests are surely the best

choice to capture the behavior of timber structures under seismic or wind loads, also in view of

the fact that the failure modes may be very different in static and dynamic conditions [50]. The

hysteresis loops obtained from dynamic tests were, however, found to be very sensitive to the

protocol adopted [11, 53].

The dependence of the connection ductility from the experimental test may be also inferred

from Table 3, where are collected the ductility ratios experimentally obtained for different

timber connections [44, 48, 51–52, 54]. Table 3 may be quite convenient to have an idea of the

ductile capacity of timber connections, although the data herein provided should be compared

with care, owing to the different specimens, test setups and loading protocols involved in the

tests (the reader is referred to the papers quoted in the table for any detail).

Analogously, the ductility ratios of modern timber walls are given in Table 4, as derived from

Refs. [50, 55, 56]. The data collected in Table 4 highlight the good ductility which may be

exhibited by modern timber constructions, although comparing the data collected in Table 4

needs again caution. It can be also noted, finally, that the hysteresis curves obtained by testing

modern timber walls with nailed connections evidenced features similar to those of Figure 7,

as can be inferred for instance from diagrams provided in Ref. [50–51, 55, 57].

3.2. Non-linear dynamic analysis to predict the seismic response of timber structures

The non-linear time-history analysis (NLTHA) is the most comprehensive procedure allowed

by seismic codes to design earthquake-resistant structures. It involves a complete time-history

investigation under different spectrum-compatible ground motions. Despite its potential, the
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NLTHA is still underused, likely due to the difficulties it indubitably involves and even to

some inadequacies of the current codes of practice [58]. Such an analysis is, however, the better

way to predict the actual seismic performance of structures composed of elastic and inelastic

parts. Current codes of practice allow non-linear analyses for the calculation of the internal

forces in the members of timber structures, provided that they are able to redistribute the

internal forces via connections of adequate ductility [46].

When implementing a NLTHA, an efficient approach to model the structure is that of separat-

ing the critical zones where the NLTHA ductile behavior may be exhibited from the other

Connection type Wood elements Loading µ

Steel plates with bolts [48] Glulam members Monotonic 3–4.8

Cyclic 2.53–2.91

Steel plates with glulam rivets [48] Glulam members Monotonic 16.4–20.4

Cyclic 10.74–15.96

Steel brackets with nails or screws [51, 52] XLam panels Cyclic (parallel to grain) 3.01–6.36

Cyclic (perpendicular to grain) 3.82–4.83

Dowel-type [44] XLam members Cyclic 1.3–2.1

Dowel-type reinforced with self-tapping screws [44] Cyclic 3.4–7.3

Slotted-in steel plates with nails [54] glulam members Monotonic (parallel to grain) 11.9–31.9

Note: XLam, cross-laminated.

Table 3. Ductility of connections as obtained from experimental tests.

Test specimens Connections Loading µ

Shear walls sheathed with plywood [50] Plates to stud nailing Monotonic 14

cyclic 9.3

Shear walls sheathed with OSB [50] Plates to stud nailing Monotonic 13.2

cyclic 7.7

Cross-laminated walls [55] Hold-downs and brackets with nails, screws and

rivets

Cyclic 3.65–7.54

Shear walls sheathed with OSB [56] Nailed steel brackets and hold-down Monotonic 3.5–4.9

cyclic 3–4.2

Shear walls sheathed with GF [56] Nailed steel brackets and hold-down Cyclic 3.4

Shear walls sheathed with OSB and

GF [56]

Nailed steel brackets and hold-down Monotonic 5.67

Note: OSB, oriented strand board; GF, gypsum fiber.

Table 4. Ductility of modern timber walls as obtained from experimental tests.
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structural parts which are expected to deform elastically even at the ultimate state. This is a

typical procedure followed, for example, in reinforced concrete frames where plastic hinges

are usually lumped at either end of columns and beams, while preventive plasticization of

beams is guaranteed by some code-based strength hierarchy rules. An analogous procedure

can be exploited for timber structures, by assuming timber members as purely elastic elements

and connections as nonlinear links. To comply with the modern philosophy of the capacity

design, the timber elements should be overdesigned to ensure their brittle failure will follow

plasticization of connections (strength hierarchy rule).

3.2.1. Modeling timber connections

Exploiting experimental data is often the best way to obtain the mechanical behavior of a

timber connection under dynamic loads. Several empirical models were proposed in the

literature, which commonly involve parameters calibrated to experimental data, see for exam-

ple [34, 43, 59, 60]. It should be noted, however, that extracting a general model from the

experimental load-displacement curves needs caution owing to the possible dependence on

both the loading history and the test set-up [34, 61, 62], as already discussed in Section 3.1.2.

More detailed micro-models were also proposed by other authors, for example [62–64], which

investigated the non-linear response of metallic fasteners and surrounding wood through

three-dimensional finite element dynamic analyses. Still requiring some empirical adjustments

of parameters, such sophisticated models usually imply a significant aggravation of the com-

putational effort, which may become unsustainable for purposes other than those of advanced

researches.

As already observed in Section 3.1, the behavior of timber connections depends from several

factors, some of which are not easily predictable. This makes rather difficult to develop an

analytical model able to reproduce the behavior of a timber connection. However difficult it

may be, finding a suitable model for the hysteretic behavior of connections is essential to study

the dynamic response of a timber structure, at least when a non-linear analysis has to be

performed.

Commercial packages for structural analysis usually allow choosing between different

mechanical models to implement the behavior of nonlinear links. For instance, the pivot

hysteretic model provided by the widely used SAP2000 for nonlinear links (NLLINK) is

depicted in Figure 10. To adopt a model like this, a set of parameters have to be properly

assigned to reproduce all the typical phenomena experimentally detected in timber connec-

tions such as stiffness and strength degradation as well as pinching effects.

3.3. Concluding notes on the ductile behavior of modern timber structures

When appraising the ductile behavior of modern timber structures, the following aspects can

be eventually addressed.

i. In-situ inspections, laboratory investigations and analytical models available in the litera-

ture converge to the statement that modern timber structures may be ductile and dissipa-

tive, provided that their metallic connections are well designed and detailed. Data collected
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in Tables 3 and 4 show that timber constructions own a rather high—and sometimes

excellent-ductility capacity. However, the actual ductility of a timber construction is not

always univocally established. Different definitions of the ductility ratio are, in fact, pro-

posed by authors and by codes of practice, as extensively discussed in Refs. [65–67].

ii. A decisive step to evaluate the ductility ratio, in its more classical definition, is the

determination of both the deformation at yield and the ultimate deformation from the

experimental load-deformation curve. Different conventional methods are available to

this purpose as discussed in Refs. [66, 67], but adopting one method or another may lead

to substantial differences in the calculation of the ductility ratio (even up to 100%), as

evidenced in Ref. [66].

iii. The value of the ductility ratio alone cannot be sufficiently representative of the perfor-

mance under strong dynamic loads. Not always, in fact, to higher values of ductility

corresponds a greater amount of energy dissipated. This was addressed, for instance, in

Ref. [55].

iv. To carry out a NLTHA of a timber structure nonlinear links should be located where

plasticization is expected to occur, that is, at connections (plastic hinges). The mechanical

model of the plastic hinges is generally difficult to be defined by the designer due to (a)

insufficient support given by codes of practice; (b) difficulty in finding the experimental

data relevant to the specific connection adopted; (c) uncertainty in the correct extraction of

Figure 10. Multi-linear plastic pivot model for nonlinear links (NLLINK) in SAP2000.
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the required parameters from the experimental curves. These difficulties may eventually
discourage the practitioners to carry out non-linear dynamic analyses of timber structures.
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