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Abstract

Over recent years, it has been proposed that some diseases of unknown origin, such as 
schizophrenia, may be caused by persistent chronic infections coupled with a genetic 
component and may be perpetuated by the immune system. This hypothesis is supported 
by epidemiological and biological evidence on the exposure of schizophrenics to infec‐
tious diseases during prenatal or postnatal periods, including Toxoplasma gondii, chla‐
mydia, human herpes virus, human endogenous retroviruses, parvovirus B19, mumps, 
and flu viruses. This growing list of microbes will undoubtedly continue to increase in 
the future. Linking infection to schizophrenia is a complex challenge that requires further 
experimental and epidemiological research. T. gondii is the infectious agent that has most 
frequently been related to neuropsychiatric disorders, including schizophrenia, and it is 
considered to represent a highly useful model to analyze the influence of a microorgan‐
ism on human behavior and the development of psychiatric disease. It may also help 
to detect patient subpopulations susceptible to treatment with specific antimicrobials 
by improving definition of the differential phenotype of the disease, and it offers the 
 possibility of a preventive approach.

Keywords: schizophrenia, Toxoplasma gondii, antibodies, behavior, cytokine, 
neurotransmitter, gene‐infection interaction

1. Introduction

Over the past few years, it has been proposed by some authors that schizophrenia may be 

caused by central nervous system (CNS) disorders during neurodevelopment (i.e., congeni‐

tal) or during the postnatal period, at least in some patient subgroups [1]. These disorders 

may be related to environmental exposure to toxic products, radiation, stress, fetal hypoxia, 
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nutritional problems, infections (especially when chronic and persistent), and/or, according 

to more recent data, gut microbiota [2, 3]. Any of these exposures could possibly affect cogni‐
tive functions and behavior patterns with important neuropsychiatric consequences, includ‐

ing irreversible neurological lesions leading to neuronal dysfunction, behavior problems, 

mental retardation, learning difficulties, or mood disorders [4–9]. Participation by microbial 

agents in the development of schizophrenia is suggested by medical evidence, with prenatal 

or perinatal infection being the most frequent cause of severe congenital malformations and 

mental impairment [10]. Their involvement is also supported by epidemiological evidence on 

the exposure of schizophrenic patients to T. gondii, chlamydia, human herpes virus, human 

endogenous retroviruses, parvovirus B19, and rubella, mumps, or influenza viruses, among 
other microorganisms [11].

According to current pathogenic models, microorganisms may produce various inflamma‐

tory and/or immunological disorders in the infected brain, giving rise to neurotransmitter 
synthesis disorders with important clinical repercussions [7]. Schizophrenia has been related 

to the production of inflammatory cytokines that alter the synthesis of dopamine and other 
neurotransmitters [12] and to fetal neuronal tissue damage due to the transplacental trans‐

fer of maternal antibodies, which might underlie development of the disease decades later 

[13]. This association with inflammatory and immunologic disorders has been observed in 
studies of animal models and human cells. Thus, maternal infection of mice and rats during 

pregnancy was associated with behavioral disorders in the offspring that were very similar 
to those reported in schizophrenic patients. Various studies in murine models revealed an 

association between prenatal infection and marked deficits in sensory information process‐

ing, in the expression of certain neurotransmitters (e.g., dopamine) and of cytokines, and in 
the immune function, all of which emerged in the offspring. Their onset is at an age equiva‐

lent to human adolescence and is earlier, with more severe effects, in male versus female rats, 

and these alterations can be reverted by the administration of antipsychotic drugs. In short, 

the fetus can be damaged by numerous infectious agents, whether or not they are primarily 

neurotropic, which may favor in a direct or immune‐mediated manner the development of 

neurological damage, disorders in neurotransmitter expression, and modifications in sensory 
information processing [14].

There is intense and increasing research interest in the relationship between schizophrenia 

and infectious agents. Irreversible mild or severe neurophysiologic alterations may result 

from fetal infection, maternal infection with secondary fetal involvement via inflammatory 
and/or immunological mechanisms, or postnatal infection and may lead to the emergence 

of schizophrenia over the years. The full elucidation of these associations may allow specific 
antimicrobial treatments to be added to current symptomatic (or antipsychotic) treatments 

for these patients [5], potentially offering a preventive and curative approach to the disease, 
given that they would act on known and treatable etiologic factors.

T. gondii is the infectious agent that has most frequently been related to neuropsychiatric disor‐

ders, including schizophrenia, and it is considered to represent a useful model to analyze the 

influence of a microorganism on human behavior and the development of psychiatric disease 
[15]. It is an obligate intracellular protozoa belonging to the Coccidia subclass of the phylum 

Apicomplexa and causes toxoplasmosis. Its definitive hosts are cats and other felines, which 
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are the only animals in which the sexual stage of their life cycle takes place (in intestines), 

forming oocysts that are eliminated through the feces. Hot‐blooded vertebrates such as birds 

and other mammals, including humans, are intermediate hosts. Humans can become infected 

by various pathways, such as: the intake of undercooked meat containing latent forms of the 

parasite (bradyzoites in tissue cysts), fresh food (e.g., fruit and vegetables), or water contami‐

nated with oocysts from cat feces; blood transfusions; transplantation of solid organ or stem 

cells, or transplacental transmission. Upon reaching tissues, T. gondii rapidly replicates in the 

form of tachyzoites until tissue proliferation and expansion of the parasite are impeded by the 

immune response, after which its replication slows and it remains in tissue cysts in latent or 

bradyzoite form. Cysts are most frequently found in skeletal muscle, myocardium, CNS, and 

eyes and are responsible for persistent infection [16, 17].

Primary infection usually takes place during childhood, when only a small percentage of 

people show symptoms, which are mild and include general discomfort, lethargy, cervical 

lymphadenopathy, and/or eye disease, among others. Most parasitized individuals remain 

asymptomatic for a long time period, even throughout their life, and host the latent form of 

T. gondii. However, chronic infection can be reactivated in immunocompromised individu‐

als (AIDS, transplanted, and oncology patients, etc.), giving rise to various symptoms and 

even, in death. This reactivation is often associated with nervous system symptoms, such as 

Guillain‐Barré syndrome, diffuse encephalopathy, meningoencephalitis, or brain abscesses 
[17, 18]. Human parasitizations, although generally considered asymptomatic, may cause 

behavioral disorders and the development of a psychiatric disease such as schizophrenia due 

to damage resulting from the initial infection, from the host immune response to the parasite, 

or from the persistence of cysts in the CNS [19]. Accordingly, the concept of asymptomatic 

chronic parasitization is currently under debate [20].

T. gondii is a plausible candidate as an infectious origin of schizophrenia and has attracted 
considerable research attention for the following reasons: the possibility of its transplacen‐

tal transmission; its marked neurotropism; its capacity for persistent infection, remaining in 

latent form but with the possibility of reactivation; its association with brain development 

disorders and anomalies; its relationship with behavior disorders in animal and human mod‐

els; and in vitro evidence of the inhibition of its growth in cell culture by antipsychotic drugs.

2. Epidemiologic data on the association between toxoplasmosis 

and schizophrenia

One of the first approaches adopted to explore a possible relationship between T. gondii infec‐

tion and schizophrenia was to analyze epidemiological data on the two diseases. Initial con‐

clusions were as follows:

• Both have a familial incidence. This is explained in the case of schizophrenia by the pos‐

sible participation of certain genes in its pathogeny [21], and in the case of toxoplasmosis 

by the possible common exposure of family members to the parasite, although a genetic 

influence has also been proposed [22].
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• There is a relatively high frequency of stillborns among both schizophrenic [23] and para‐

sitized [24] mothers.

• Both diseases typically show a decreased prevalence in geographic areas with small popu‐

lations of felines [25, 26].

• Initial symptoms in both diseases commonly manifest between the second and third 

decade of life [27, 28].

• The prevalence of both diseases is higher among populations with lower socioeconomic 

level and living in overcrowded conditions [29, 30].

These and other published findings indicate that the two diseases have some similar features 
and may even be epidemiologically related. However, they are inadequate to establish etio‐

logical relationships, and a pathophysiological approach is required to explore causality.

3. Studies based on the detection of anti‐Toxoplasma gondii antibodies

For more than six decades, the relationship between schizophrenia and toxoplasmosis has 

been explored by studying a specific immune response [31]. Various meta‐analyses have 

demonstrated a significantly higher prevalence of anti‐T. gondii antibodies in schizophrenic 

patients than in controls, with odds ratios ranging between 2.7 [11, 32–34] and 1.8 [35].

In the natural time course of toxoplasmosis, IgM antibodies against T. gondii are the first to be 
detected in serum, a few days after infection. These are usually negativized between weeks 4 

and 12 but can remain detectable for months or even years in a large number of patients. IgG 

antibodies are detected at around 2 weeks later than IgM antibodies, reaching a maximum 
level in the 2nd to 3rd month and persisting throughout life in residual titers. The presence 

of IgM antibodies in the absence of IgG indicates recent infection, while the presence of IgG 

indicates chronic infection, especially in the absence of IgM. The reactivation of a persistent 

infection can be accompanied by increased IgG and/or IgM values, although these antibodies 

can be undetectable in immunocompromised patients [36].

Most studies have centered on the humoral immune response, comparing anti‐T. gondii IgG 

and IgM antibodies between schizophrenic patients (in different clinical/therapeutic situa‐

tions) and controls. This method is widely employed because of the ease with which samples 

(usually serum, occasionally cerebrospinal fluid) can be gathered and the high degree of 
reproducibility, specificity, and sensitivity obtained. Many of these studies reported higher 
levels of antibodies (IgG and, in some studies, IgM) against T. gondii in patients with schizo‐

phrenia than in other populations, including patients with a different psychiatric disorder [32, 

37–51]. However, findings have been inconsistent [52, 53], and account should be taken of the 

publication bias against studies without significant results [11].

Clinical manifestations differ between seropositive and seronegative schizophrenic patients, 
with a predominance in the former of positive symptoms (delirium, hallucinations, disorga‐

nized thinking), cognitive disorders (abstract thinking difficulties, disorientation, attention 
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deficit), and agitation [50, 54]. Some researchers also observed that patients with schizophre‐

nia and anti‐T. gondii antibodies had a significantly higher risk of dying from natural causes 
[55] and were more likely to attempt suicide [56] in comparison with seronegative patients.

The above studies suggest a strong association between these diseases, with a significantly 
higher frequency of chronic parasitization in schizophrenic patients than in other popula‐

tion groups. However, if schizophrenia is a consequence of chronic CNS infection, which 

usually takes place at an early age, the question arises as to why it typically appears between 

the second and third decades of life. According to Yolken et al. [51], a significant increase in 
IgG titers observed in patients with a first schizophrenia episode may be compatible with a 
reactivation of the infection (previously in latent phase) that becomes clinically manifest in 

the onset of the disease via an immune‐mediated mechanism. Some authors proposed that 

the immunoglobulins may cross the blood‐brain barrier in this situation and react with brain 

tissue antigens due to their molecular mimicry with T. gondii antigens. This is similar to obser‐

vations in such autoimmune diseases as systemic lupus erythematosus or in paraneoplastic 

syndromes [57]. Associations with the presence of anti‐Toxoplasma IgM are less well docu‐

mented [35], although Monroe et al. [58] reported in their meta‐analysis a significant 1.7‐fold 
greater likelihood of T. gondii IgM antibodies in patients with acute psychosis than in controls. 

It was concluded that T. gondii IgM antibodies may indicate either an acute/recent infection or 

a reinfection, possibly with a different genotype.

However, although a strong association has been described between schizophrenia and para‐

sitization, these studies do not provide evidence to confirm the hypothesis on the infectious 
etiology of schizophrenia, and a causal relationship has not been demonstrated. Contact with 

T. gondii may be favored by the anomalous behavior, disorganized lifestyle, and/or weaker 

socioeconomic situation of schizophrenics, with infection being the consequence rather than 

the cause of their disease, which may explain the positive serological results [50].

4. Seroprevalence studies in mothers and newborns

The possible transplacental transmission of T. gondii has attracted considerable attention in 
seroprevalence studies. Maternal infection during the first or second trimester of pregnancy 
can lead to severe problems in the offspring, including intracranial calcifications, chorio‐

retinitis, blindness, deafness, hydrocephaly, microcephaly, mental retardation, psychomo‐

tor retardation, pancytopenia, or epilepsy. The timing of the transmission is an influential 
factor: early maternal infection less frequently affects the fetus but is associated with a more 
severe congenital toxoplasmosis that may result in intrauterine death and miscarriages, 

while later maternal infection (third trimester) increases the risk of affecting the fetus but 
is associated with offspring who are asymptomatic [17]. Complications, possibly including 

schizophrenia, can appear decades later in patients with initially undetected infection due 

to its reactivation [59].

This type of study can be classified into two groups: those on the presence of antibodies in 
pregnant women and the development of schizophrenia in their offspring; those on the pres‐
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ence of antibodies in newborns and their later development of schizophrenia. Among the for‐

mer, Brown et al. [60] and Blomström et al. [61] demonstrated associations between increased 

anti‐Toxoplasma IgG levels in pregnant mothers and risk of schizophrenia in their offspring, 
although other researchers published discrepant results [62]. Xiao et al. [63] observed a signif‐

icant association between the presence of maternal antibodies against type I T. gondii (but not 

against types II or III) and the onset of psychotic disorders in the offspring. Among the latter 
group of studies, Mortensen et al. [59] demonstrated that newborn levels of anti‐T. gondii IgG 

levels (from the mother) were significantly higher in individuals who developed schizophre‐

nia in adulthood.

Published data suggest that schizophrenia risk in offspring is associated with persistent 
maternal infection by T. gondii but is not directly related to acute maternal infection [64]. If 

this were the case, a significant association could be expected between the presence of IgM 
in the serum of mothers and/or newborns and the presence of the disease, which has not 

been demonstrated [60]. However, this relationship may be masked by the low frequency of 

 anti‐Toxoplasma IgM detection in pregnant women [24, 65].

As noted above, increased maternal IgG levels can cross the placenta (unlike IgM antibod‐

ies) and may damage fetal brain development by molecular mimicry [60, 64]. However, the 

presence of maternal IgG may indicate a reactivation of latent infection due to the impact of 

immune system disorders on protozoan replication control during pregnancy [66]; hence, 

brain development could also be impaired by transplacental transmission and/or the passage 

of inflammatory cytokines to the fetus [67, 68].

The majority of schizophrenic patients do not have anti‐Toxoplasma antibodies, and the major‐

ity of seropositive patients are not schizophrenic. Therefore, T. gondii would only explain a 

minority of cases. Other factors under investigation that may explain why only some parasit‐

ized individuals develop schizophrenia include genetic susceptibility, the infective genotype 

of the parasite, the existence of different infection pathways, and the timing of toxoplasmosis 
onset [20, 33, 63].

5. Studies based on Toxoplasma gondii nucleic acid detection

Studies of animal brain biopsies have shown T. gondii to have high neurotropism, with the 

capacity to infect glial cells (especially microglia and astrocytes) and neurons, forming per‐

sistent cysts in brain tissue [69]. Although no tropism for specific brain regions has been 
observed, with cysts being detected in many areas, the most frequently parasitized regions 

are the hippocampus, thalamus, cerebral cortex, cerebellum, olfactory bulb, and, especially, 

the amygdala [70–73].

However, the presence of brain cysts can only be detected in postmortem biopsies, explaining 

the few studies of this type and the predominance of serological techniques for the detec‐

tion of chronic infection by T. gondii in humans. The presence of glial anomalies, including a 

reduced amount of astrocytes, has been reported in the brains of schizophrenic patients [74], 

and it has been speculated that these may possibly result from infection by T. gondii [31]. 
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Imaging techniques have revealed a lower density of gray matter in certain brain regions of 
schizophrenic patients [75], which may be directly related to the infection, given that non‐

parasitized schizophrenic patients were found to have the same brain morphology as healthy 

controls [76].

One of the few studies of postmortem brain biopsies found no parasite DNA in any subject (14 

schizophrenic patients and 26 healthy controls) [77]. There appear to be three possible expla‐

nations: first, there was truly no association with the infection; second, the biopsies missed 
infected brain areas; and finally, the sensitivity of the nucleic acid detection technique might 
be inadequate. In addition, the detection of parasite DNA only demonstrates the presence of 

the parasite not its possible effect on the parasitized individual and would not establish an 
etiological relationship with schizophrenia. Thus, the detection of parasite DNA in brain tis‐

sues does not distinguish between asymptomatic patients with latent parasitization and those 

with encephalitis [17].

A study of blood samples detected parasite DNA in 33 out of 101 samples from schizophrenic 

patients versus 2 out of 55 samples from controls, a significant difference [46]. In contrast, 

Gutiérrez‐Fernández et al. [32] detected parasite DNA in only 1 out of 128 blood samples from 

schizophrenic patients and in none of 143 samples from controls (nonsignificant difference). 
However, although the presence of parasite DNA in blood indicates acute infection [17], it 

does not necessarily signify infection of the brain, and no relationship was found between 

anti‐Toxoplasma IgM and schizophrenia in the aforementioned study [46].

6. Studies on behavioral disorders in animals and humans

Research on this issue has included experimental animal studies, mainly in rats and mice. 

Parasitized animals have shown various behavioral changes, becoming more active, express‐

ing less fear when examining new stimuli, reducing their natural aversion to cat odor or even 

becoming attracted to it, and demonstrating reduced learning ability and attention or mem‐

ory deficits [78–83]. According to the “behavioral manipulation hypothesis,” these disorders 

in their intermediate hosts (rodents) represent an evolutionary adaptation of the parasite, 

facilitating their capture by their definitive host (felines) and completing their life cycle [84, 

85]. Although the mechanism by which T. gondii induces these behavioral changes is poorly 

understood, various possibilities have been proposed. It may be due to a direct effect on tis‐

sue cysts in specific brain areas such as the amygdala or hippocampus, given that the host 
response to predator odors was changed by the parasite in male rats infected with T. gondii by 

inducing hypomethylation of the neuropeptide arginine vasopressin in the posterodorsal part 

of the medial amygdala, an important node of the extrahypothalamic vasopressin system that 

contains a large number of arginine vasopressin neurons. This epigenetic manipulation pro‐

duced a greater activation of vasopressinergic neurons after exposure to cat odor, leading to 

the reversion of fear into attraction [86]. It may also result from the effect of a more diffuse and 
wider involvement of brain tissues, with no apparent changes, that nevertheless give rise to a 

series of neurophysiological disorders. Changes may also result from inflammation (enceph‐

alitis) caused by the immune activation induced by parasitization, which would increase 
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inflammatory cytokines in the rodent brain, such as tumor necrosis factor alpha (TNF‐α), 
interleukin‐1β (IL‐1β), IL‐10, interferon gamma (IFNγ), C‐reactive protein, tissue inhibitor 
of metalloproteinases 1 (TIMP‐1), or vascular cell adhesion molecule 1 (VCAM‐1), similar to 

observations in postmortem biopsies of schizophrenic patients. Finally, the behavioral changes 

have also been related to neurochemical mechanisms, with an increase in  dopamine and 

homovanillic acid and a decrease in norepinephrine levels [73, 84, 85, 87–90].

Any of the above mechanisms in rodents could also produce behavioral changes in the 

brains of other intermediate hosts, including humans. Thus, research in humans also sug‐

gests that toxoplasmosis may alter behavior, psychomotor abilities, or personality, with the 

corresponding clinical consequences [84]. These disorders would be more related to latent 

rather than acute toxoplasmosis, given that its emergence, frequently several years after pri‐

mary infection and not during the acute phase, would indicate that it results from slow and 

possibly accumulative changes induced by parasite activity [91–93]. The study by Horacek 

et al. [76] demonstrates that, in seropositive schizophrenic patients, latent parasitization is 

associated with a significant reduction in gray matter volume in specific brain areas (cor‐

tical regions, hippocampus, and caudate nucleus), which is not observed in seronegative 

patients.

Reinforcing the relationship between the parasite and the psychiatric disease, it has been 

demonstrated that haloperidol, an antipsychotic drug that blocks D2 dopaminergic recep‐

tors in the mesolimbic system and often used in the symptomatic treatment of schizophrenia, 

inhibits the replication of tachyzoites in cell cultures in vitro. This effect may at least partly be 
due to the capacity of this drug to inhibit calcium transport, blocking cell ion channels [94]. 

The interaction between tachyzoites and host cells is calcium‐dependent; hence, cell inva‐

sion capacity can be inhibited by the presence of drugs that block calcium channels, such 

as haloperidol [95]. Experimental studies with rodents have also demonstrated that some 

behavioral changes caused by the infection are reverted by using the antipsychotic, and that 

there are fewer parasitized neurons and glial cells after the treatment; this is observed using 

immunohistochemical techniques [96]. It is therefore possible that its therapeutic effect can 
be explained in patients with schizophrenia by various mechanisms, given that on the one 

hand, it blocks dopamine, whose levels are often elevated in schizophrenia patients parasit‐

ized with T. gondii [89, 97], and on the other hand, it can inhibit parasite replication in brain 

cells [96]. Other antipsychotic drugs such as fluphenazine, thioridazine, trifluoperazine, or 
zuclopenthixol, and mood stabilizers, e.g., valproic acid, were also found to inhibit T. gondii 

proliferation in cell cultures [94, 98, 99].

Antipsychotics are especially indicated in patients with a predominance of positive symp‐

toms and agitation (as in the acute phase of schizophrenia), which are significantly more 
frequent in those parasitized with T. gondii, as noted above. The greater effectiveness of these 
drugs in these situations may be due not only to their dopamine blocking effect but also to 
their anti‐Toxoplasma activity. Thus, these treatments were found to reduce anti‐Toxoplasma 

antibody levels in seropositive schizophrenic patients, indicating their antiparasitic effect 
[44]. These findings suggest that these drugs may possibly have a beneficial effect on schizo‐

phrenic patients parasitized with T. gondii.
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Studies to date on the possible effect in these patients of drugs with anti‐Toxoplasma activity 

(e.g., pyrimethamine, sulfadiazine, azithromycin, or trimethoprim‐sulfamethoxazole) have 

not demonstrated significant improvements in psychotic symptoms [100, 101]. In fact, drugs 

used to treat toxoplasmosis are largely active during the tachyzoite replication phase, and 

their effectiveness against bradyzoites in tissue cysts is drastically reduced once chronic infec‐

tion by T. gondii is established [102].

The etiological relationship between parasitization and schizophrenia has not yet been 

established, despite the above data on behavioral changes in animals or humans and on the 

effects of antipsychotic drugs on symptoms. In addition, differences in behavioral disorders 
between humans and rodents may mean that results in animal models cannot be extrapolated 

to humans. It should also be borne in mind that the mild behavioral modifications associated 
with the infection cannot necessarily be considered symptoms of a psychotic disease.

7. The role of proinflammatory cytokines

The host response to the parasitization of glial cells and neurons involves the activation of 

immune system cells, including T lymphocytes (CD4+ and CD8+), B lymphocytes, NK cells, 

macrophages, and dendritic and glial cells. These produce a wide variety of inflammatory 
cytokines such as IFNγ, interleukins (IL‐1, IL‐1β, IL‐2, IL‐4, IL‐6, IL‐10, IL‐12, IL‐15, IL‐17, 
IL‐18, IL‐23), granulocyte macrophage colony‐stimulating factor (GM‐CSF), and/or TNFα [69, 

103]. These cytokines halt protozoan proliferation and limit their replication, playing a key 

role in regulating the infection of host cells, thereby favoring the formation of tissue cysts and 

the development of the chronic latent form [20]. These and other inflammatory responses 
have also been reported in schizophrenia [104] and are therefore involved in brain disorders 

both in this disease and in T. gondii infection [105].

Thus, infection of brain tissue by T. gondii produces activation of the Jak/STAT pathway, which 

is recognized as an important regulatory mechanism in CNS development, function, and dis‐

ease progression [106, 107]. This pathway comprises three elements: a ligand receptor, the 

majority are receptors of cytokines such as IFNγ; Janus kinase (Jak) proteins associated with 
the receptor within the cell, which possess tyrosine‐kinase activity; and signal transducer and 

activator of transcription (STAT) proteins, which act as transcription factors that move toward 

the cell nucleus after their phosphorylation, where they bind with regulatory sequences of 

genes designated gamma interferon activation sites (GAS) [108]. In mammals, the Jak/STAT 

pathway induces the transcription of genes that participate in multiple processes, including 

antimicrobial activity and the production of proinflammatory cytokines [109]. Among other 

effects, an increase is produced in the expression of NADPH oxidase enzyme (NOX2) and 
inducible nitric oxide synthase (iNOS). These enzymes are responsible for the production of 

reactive oxygen species (ROS) and reactive nitrogen species (RNS), which assist the destruc‐

tion of foreign pathogens [110, 111] but have been linked to seizures, stroke, neurodegenera‐

tive diseases, and schizophrenia [111, 112] as a consequence of their toxic effect on neurons 
[113]. Scientific evidence points to ROS‐mediated oxidative damage as a key pathogenic 
pathway involved in infection‐mediated neuropathy. According to these findings, it can be 
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expected that a high degree of degenerated neuron degeneration and cognitive impairment is 

associated with the presence of T. gondii in the brain [111].

8. The importance of dopamine and other neurotransmitters

As already noted, some experimental animal and human studies concluded that behavioral 

changes may be explained by increased dopamine levels in the parasitized brain, and that these 

disorders could largely be resolved by administration of a dopaminergic receptor antagonist 

(e.g., haloperidol) or dopamine reuptake inhibitor (e.g., GBR‐12909) [96, 114, 115]. It is therefore 

possible that dopamine represents the link between toxoplasmosis and schizophrenia [97]. This 

neurotransmitter is synthesized in the cytosol of neurons from l‐tyrosine amino acid by the 

action of the tyrosine hydroxylase enzyme, which converts it to l‐3,4‐ dihydroxyphenylalanine 

(l‐DOPA). l‐DOPA is in turn converted by the action of DOPA‐decarboxylase (DDC) to dopa‐

mine, a precursor of norepinephrine (noradrenalin) and epinephrine (adrenalin) in the synthe‐

sis pathway of these catecholamines. It is subsequently packaged in vesicles and transported 

through the axon to the synapse, where it is released by exocytosis in response to an electri‐

cal stimulus. Dopamine is one of the main neurotransmitters in the prefrontal cortex and the 
mesolimbic system (mainly formed by the nucleus accumbens, amygdala, and  hippocampus), 

where the presence of T. gondii tissue cysts is especially frequent [73].

The definitive mechanism by which T. gondii induces changes in the dopaminergic pathway 

has not been fully elucidated. However, an increase in dopamine with no modification of 
cellular tyrosine hydroxylase was demonstrated in vitro after parasitization of a rat pheochro‐

mocytoma cell line (PC12) and in vivo after the parasitization of mouse brains. This dopamine 

synthesis is attributable to the additional activity of the aromatic amino acid hydroxylase, 
which is encoded by two T. gondii genes [116] and has homologous activities to those of mam‐

malian tyrosine hydroxylase, associated with the entry of cellular DDC enzymes into parasi‐

tophorous vacuoles (compartments formed by the parasite to invade the cell) and into tissue 

cysts (the protozoan encodes no enzyme with DDC activity) [114, 117]. Experiments in cell 

cultures have demonstrated that dopamine increases the replication of T. gondii tachyzoites 

[118]. This biochemical mechanism may play a role in the behavioral changes observed, which 

would result from the involvement of catecholaminergic neurons and consequent dopami‐

nergic hyperactivity [19].

Parasitization in the fetal period may also impair the development of mesolimbic dopaminer‐

gic or prefrontal cortex neurons (inappropriate migration, altered position, reduced synapses, 

etc.) leading to neurodevelopmental disorders. Disease symptoms would not be induced 

immediately by these early anomalies but would rather manifest after a latency period of one 

to three decades. This is because the proliferation, migration, differentiation, and maturation 
of glial progenitor cells continue throughout childhood [119] and the volume of gray matter 
increases to a peak in puberty before beginning to diminish [120].

However, the hypothesis that increased dopamine levels or dopaminergic hyperactivity is 

the underlying cause of schizophrenia does not account for the negative symptoms in these 
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patients, which are more likely to result from dopaminergic hypoactivity. Therefore, neu‐

rotransmitters other than dopamine may play an important role in the development of this 
disease. Thus, it has been proposed that deficits in glutamatergic brain systems also partici‐
pate in the physiopathology of schizophrenia based on findings of higher kynurenic acid 
levels in patients with psychotic symptoms than in healthy controls [121]. Kynurenic acid is 

a metabolite of tryptophan with important biological effects on the nervous system, related 
to its antagonism for the glutamate receptor in the human brain (it is a glutamatergic NMDA 

receptor antagonist). Increased kynurenic acid levels due to blockade of NMDA receptors 

in glutamatergic neurons have been related to changes in dopamine level in different brain 
areas. These modifications include cortical dopaminergic hypoactivity and mesolimbic dopa‐

minergic hyperactivity, which would explain the negative and positive symptoms in patients. 

This relationship between glutamate pathway disorders and dopamine level changes may 

explain the presence of different symptoms in the psychosis [122].

Indoleamine‐2,3‐dioxygenase and therefore the metabolism of tryptophan, a precursor metab‐

olite in serotonin (and melatonin) synthesis, are induced by the proinflammatory cytokines 
released in response to T. gondii infection, especially IFNγ [123]. Tryptophan is an essential 

amino acid for the parasite, and decreased levels inhibit its growth and replication capac‐

ity [124]. However, induction of this metabolite in turn increases kynurenic acid levels and 

therefore alters dopamine levels through the glutamatergic receptor antagonist effect of this 
acid [114]. Tryptophan degradation also reduces serotonin levels, which has been related to a 

higher incidence of depression and suicide [125, 126], as also observed in patients with high 

anti‐T. gondii antibody levels [56].

Patients with schizophrenia also show anomalous levels of gamma‐aminobutyric acid 

(GABA), another important neurotransmitter [20], which is synthesized from glutamate by 

the action of glutamic acid decarboxylase (GAD) [127]. GABA activates GABA
A
 receptors, 

which are ion channels, and GABA
B
 receptors, which are G‐protein‐coupled receptors [128]. It 

is the main neurotransmitter with inhibiting effect in the CNS, regulating dopaminergic activ‐

ity and playing a key role in the reduction of neuronal excitability throughout the nervous 

system. Dopaminergic neurons in basal ganglia would be directly inhibited by GABAergic 

neurons, so that any GABAergic hypofunction would be accompanied by an increase in 

 subcortical dopaminergic activity, as observed in schizophrenia.

More direct evidence of the involvement of this neurotransmitter in the etiology of schizo‐

phrenia derives from data on the reduction in neurons in the GABAergic system or in brain 

regions such as the hippocampus, temporal lobe, and prefrontal cortex of schizophrenic 

patients [129–131]. Postmortem molecular studies have demonstrated: a reduction in messen‐

ger RNA (mRNA) levels of isoform 67 of glutamic acid decarboxylase (GAD67) and of type 1 

GABA transporter (GAT‐1) in the prefrontal cortex of schizophrenics [132, 133]; an increase 

in subunit α2 of the GABA
A
 receptor in the initial segment of the axon of pyramidal neurons 

[134]; and a reduced expression of the receptor GABA
B,

 which regulates GABA release as a 

possible compensatory mechanism for GABAergic dysfunction [135]. As noted above, these 

findings may be the consequence of alterations during neurodevelopment in the differentia‐

tion and migration of these neurons toward their definitive localizations in the brain. This 
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would give rise to structural alterations and neurochemical dysregulation that would have a 

global effect on all of these neurotransmitters (dopamine, glutamate, serotonin, GABA) and 
would become manifest from adolescence onward, inducing the appearance of the disease. 

Once more, infection by T. gondii may play an important role in this process.

Outside the nervous system, GABAergic mechanisms have been observed in different tissues 
and peripheral organs, and GABA has also been found to exert a major role in the immune 

system, with important inter‐regulatory functions between this and the CNS [136]. It has 

been reported that T. gondii infection is followed by an increase in the motility and migratory 

capacity of infected dendritic cells, permitting propagation of the parasite to different tissues, 
including the brain [128]. Although dendritic cells are considered guardians of the immune 

system, they can also, paradoxically, mediate in the spread of the parasite. This mechanism 

is produced by the induction in these cells of the GAD enzyme and therefore of GABA pro‐

duction and secretion, which in turn activate GABA receptors expressed by these same cells, 

stimulating their motility [137]. In experimental mouse models, inhibition of the GABAergic 

pathway by blockade of GABAA receptors or inhibition of the GAD enzyme markedly 

reduced the hypermotility and spread of T. gondii‐infected dendritic cells and therefore of the 

parasite itself [137, 138]. Finally, it has also been reported that brain infection by T. gondii can 

interfere with the GABAergic system by inducing changes in the distribution of the GAD67 

enzyme, although this event has been related more to possible neurological complications 

of toxoplasmic encephalitis, such as seizures [139], than to possible complications of latent 

toxoplasmosis, such as schizophrenia.

Accordingly, the inflammatory response of the host to parasitization, which aims to control 
parasite replication and alterations in differentiation and migration processes, can change 
levels of dopamine, tryptophan, kynurenic acid, serotonin, and GABA, leading to behavioral 

changes and giving rise to different psychotic symptoms.

In order to establish dopamine and other related neurotransmitters as a causal link between 
toxoplasmosis and schizophrenia development, it is necessary to confirm that this neurotrans‐

mitter is also involved in the disease genesis when there is infection by other pathogens [140], 

and this mechanism should also explain the possible contribution of T. gondii parasitization in 

other dopaminergic pathway diseases, e.g., Parkinson's disease [114].

9. The N‐methyl‐d‐aspartate receptor hypofunction theory: 

anti‐NMDAr antibodies

Encephalitis due to antibodies against the glutamatergic NMDA receptor (anti‐NMDAr 

antibodies) is an autoimmune disease caused when antibodies produced by the host 

immune system identify NMDA receptors as foreign antigens. This receptor forms a hetero‐

tetramer between two GluN1 and two GluN2 subunits and participates in essential func‐

tions for reality perception, memory, and the control of unconscious activities. The disease 

is characterized by the hypofunction of NMDA receptors, which would account for the 

psychotic symptoms, personality changes, memory impairment, and psychomotor agitation 
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[141, 142]. It usually arises during the course of a paraneoplastic process and is frequently 

associated with the development of ovarian teratomas, explaining its higher incidence 

among females [143, 144]. Likewise, 14–75% of patients with systemic erythematous lupus, 

another autoimmune disease, have been reported to manifest psychiatric symptoms related 

to the presence of the same antibodies [145, 146]. This involvement of anti‐NMDAr antibod‐

ies (and other neurotransmission receptors) indicates an important link between immune 

abnormalities and altered neurotransmission in schizophrenia, major depression, or bipolar 

disorder [147, 148].

The presence of anti‐NMDAr antibodies has been documented in schizophrenic patients 

in the absence of seizures, movement disorders, or other neurological signs or symptoms 

[149–151], although other researchers were unable to replicate these findings [152, 153]. 

For various reasons, the production of anti‐NMDAr antibodies is a plausible mechanism 

to explain at least a percentage of schizophrenic cases [149]: several studies reported that 

5–10% of cases are associated with the presence of these antibodies in serum and cerebrospi‐

nal fluid [150, 151, 154]; kynurenic acid is an antagonist of glutamate via blockade of NMDA 

receptors, as commented in the previous section, suggesting that it contributes to the patho‐

genesis of schizophrenia [122]; persistent blockade of NMDA receptors in experimental ani‐

mals recreates clinical characteristics of schizophrenia [155]; selective elimination of subunit 

GluN1 of the NMDA receptor in neurons of the cortex and hippocampus in early postnatal 

development contributes to the pathophysiology of schizophrenia‐related disorders in mice 

[156]; some of the genes associated with schizophrenia are related to the NMDA receptor 

[157]; NMDA receptors are reduced in medication‐free schizophrenic patients [158]; block‐

ade of the receptor with ketamine or phencyclidine produces psychotic symptoms [159, 

160]; and de novo mutations (large chromosomal copy number changes) affect genes that 
encode one or more nucleotides among the glutamatergic postsynaptic proteins that form 

part of the receptor, providing insight into possible etiological mechanisms underlying 

schizophrenia [161].

Maternal infection during brain development or infection during childhood may produce 

anti‐NMDAr antibodies, while other environmental or genetic factors may influence the age 
of disease onset [149]. Certain pathogens have been associated with elevated anti‐NMDAr 

antibodies [162, 163]. Thus, a T. gondii‐infected mouse model showed a significantly higher 
increase in serum GluN2A autoantibodies among juvenile‐ versus adult‐infected mice. 

Adolescence is a critical window in neurodevelopment, and the authors hypothesized that 

early infection would have greater effects on behavior and the brain in comparison with adult 
infection. It is possible that chronic infection with T. gondii affects pre‐ or postnatal brain 
development by altering synaptic maturation. An increase in NMDAr autoantibodies due to 

T. gondii exposure might underlie behavioral alterations in symptomatic individuals [164].

10. Studies on gene‐infection interaction

Various studies have demonstrated the participation of numerous genes in schizophre‐

nia, providing firm evidence on the involvement of genetics in the etiology of the disease 
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[165]. Some authors have described inheritability in >80% of cases, and schizophrenia has 

been associated with polymorphic variability in certain genes [21, 166–168]. However, the 

genetic hypothesis alone cannot explain the familial association of schizophrenia with other 

diseases, the seasonal peaks of schizophrenia births, the different prevalences among resi‐
dents of urban and rural areas, discordant results between monozygotic and dizygotic twins 

or between dizygotic twins and full siblings, or correlations in adopted children, which are, 

however, consistent with an infectious etiology [1]. Schizophrenia is likely a genetically 

complex disease that does not follow a Mendelian transmission pattern but rather involves 
multiple genes, each with a small effect, which act in combination with epigenetic and envi‐
ronmental factors [169]. Accordingly, epidemiological findings suggest that a combination 
of intrinsic (genetic) and extrinsic or environmental factors, including infections, may par‐

ticipate in the origin of this disease, operating during the development of the individual at 

some time between conception and adolescence [7]. Tomonaga [170] proposed that persistent 

chronic infections or the expression of microbial proteins may directly and/or indirectly affect 
CNS functions in infected individuals, changing the expressions of genes related to schizo‐

phrenia and  increasing the risk of suffering this disease or at least some of its varied clinical 
phenotypes.

Genes whose variants or polymorphisms have been associated with the risk of schizophre‐

nia include some that encode proteins with important functions in neurodevelopment or 

neurodegeneration and in neuronal neurotransmission circuits. This is the case of the gene 

that encodes neuregulin 1 (NRG1), a key molecule in maintaining brain synaptic plasticity in 

adults, which has been related to schizophrenia etiology [171, 172], and the genes that encode 

catechol‐O‐methyltransferase (COMT) [173], proline dehydrogenase (PRODH) [174], dysbin‐

din protein (DTNBP1) [175], a regulator of G4 protein (RGS4) [176], a regulator of potassium 

calcium channels (KCNN3) [177], and d‐amino‐oxidase complex (G72, DAAO) [178], among 

others [179]. The genes that encode these proteins are located in chromosomal regions that 

have been described as relevant for the study of schizophrenia, and many of these proteins 

participate in glutamatergic, dopaminergic, or serotonergic neurotransmission circuits.

Genetic polymorphisms that increase susceptibility to schizophrenia, including some of the 

above, have also been related to resistance or susceptibility to certain infections through 

their important role in the life cycle of some pathogens, including T. gondii [169, 179, 180]. 

Schizophrenia may possibly correspond to a model in which various genes may interact with 

microbial agents in a process that is probably mediated by the inflammatory and immune 
response of the individual, increasing the risk of developing psychiatric disease [169, 179–

182]. It appears reasonable to assume that infections may interact, thereby changing the 

expressions of schizophrenia‐related genes and increasing the risk of suffering this condition.

Various rodent [79, 183, 184] and human [185, 186] studies have supported the existence of 

genetic susceptibility to T. gondii parasitization, suggesting that if the parasite were one of the 

possible causes underlying schizophrenia development, this genetic susceptibility might also 

explain familial cases of schizophrenia [1]. As commented above, some T. gondii genes encode 

proteins with a similar activity to that of enzymes (e.g., tyrosine hydroxylase) in the cells of 

their intermediate hosts. Therefore, this parasite has genes that allow it to “manipulate” the 
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behavior of the host and facilitate its capture by the cat, its definitive host, thereby favoring parasite 
survival. The presence of these genes is consequently an evolutionary advantage of T. gondii [19].

Genetic studies (in animals and humans) currently center on the possible presence of genes 

or specific allelic variants that interact with the genes of microorganisms that can infect the 
patient (gene‐infection interaction hypothesis), increasing the risk of schizophrenia [187–189]. 

Thus, it has been demonstrated that a critical role in human congenital T. gondii infection is 

played by the ALOX12 gene, which encodes arachidonate 5‐lipoxygenase enzyme, which is 

involved in fatty acid metabolism and has been related to schizophrenia, at least in a Korean 
population [190, 191]. HLA‐related genes such as SGK1 on chromosome 6, which plays a role 

in regulating different brain functions [192] and mediates the effects of cortisol on hippocam‐

pal neurogenesis [193], have a modulating effect on some infectious agents, including T. gon-

dii, consistent with the proposition that parasitization may modify the risk of schizophrenia 

[187]. In a study of mice parasitized with T. gondii, heterozygous deletion of the Nurr1 gene 

(Nurr1 ± genotype), an orphan nuclear receptor essential for the development of mesence‐

phalic dopamine neurons [194], predisposed the animals to behavioral disorders that involve 

dopamine neurotransmission associated with schizophrenia symptoms [195].

A further example in support of this hypothesis is the Akt cell signaling system. The Akt 

gene encodes a serine‐threonine kinase with three isoforms (Akt1, 2, and 3), whose activa‐

tion mediates cell survival processes and whose inhibition favors apoptosis. As commented 

above, the innate immune system induces a range of processes after infection of brain cells by 

T. gondii, including antimicrobial activity and the generation of ROS to assist in the destruc‐

tion of foreign pathogens. However, increases in ROS concentrations activate the Akt system, 

which guarantees cell survival and allows the pathogen to persist and replicate within the 

infected cell. Akt is above all activated in pathophysiological situations in which ROS increase 

as the result of ischemia‐reperfusion, playing an important role in the protection of the differ‐

ent cells and tissues involved, including nerve tissue [196]. On the other hand, Akt is known 

to affect dopaminergic signaling, and polymorphisms of the Akt1 gene have been found to 

increase the risk of developing schizophrenia through its relationship with dopaminergic 

pathways of the prefrontal cortex [197].

Other researchers reported similar associations between schizophrenia risk and other human 

pathogens, supporting the gene‐infection interaction hypothesis [198–201]. This research line 

on the effects of interaction between genes or genetic variants on the risk of schizophrenia 
related to T. gondii parasitization is highly likely to establish the true causes of the disease, at 

least in some types of patient.

11. Is there an etiological association between Toxoplasma gondii 

infection and schizophrenia development?

Numerous studies have contributed evidence on the involvement of toxoplasmosis in the 

pathogenesis of numerous CNS diseases, including bipolar disorder, depression, Alzheimer's 

disease, Parkinson's disease, and epilepsy [49, 202–204]. However, the main advances over 
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the past few years have been achieved by research on deciphering the molecular mechanisms 

underlying the physiopathology of schizophrenia.

This chapter analyzes data from in vitro and animal and human in vivo studies in order elu‐

cidate points of connection between T. gondii and schizophrenia. It can be concluded that 

infection by T. gondii is highly likely to be a cause of the disease for the following reasons: 

it is a neurotropic microorganism that persistently invades glial cells and neurons; it gener‐

ates brain development anomalies; it reduces brain gray matter density; it elicits an inflam‐

matory and immune response that alters neurotransmission systems; it affects cognitive 
function and behavior; and its replication is inhibited by some antipsychotics. All disor‐

ders reported for the parasite are associated with the development of psychotic symptoms. 

Furthermore, specific genetic polymorphisms linked to an increased risk of schizophrenia 
have also been associated with a higher likelihood of infection by this  parasite. Nevertheless, 

despite all of the above evidence on this possible pathogenic association, one important 

Figure 1. Likely involvement of infection by Toxoplasma gondii in the development of schizophrenia.
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question remains to be resolved, which is why most individuals with signs of infection by T. 

gondii are asymptomatic and only a few develop psychiatric disorders.

Schizophrenia is a complex disease with innumerable symptoms, and its presentation 

and severity vary among patients. According to the infectious hypothesis of this disease 

(Figure 1), differences among patients would be influenced by their genetic predisposition 
or vulnerability, their immune status, the timing of parasitization (congenital, neonatal, or 

adult), the time interval since their first contact, and/or the particular brain area(s) affected. 
Characteristics of the infection also play a role, including its source (oocysts or tissue cysts), 

possible interactions with other infectious agents, and the genotype; thus, genotypes II and 

III more frequently establish chronic infections and show a greater expression of tyrosine 

hydroxylase genes in comparison with genotype I, and they may be more strongly related to 

behavioral changes [205].

Finally, the biology of schizophrenia must be fully elucidated to support the appropriate 

design of disease‐modifying therapies or novel antipsychotic drugs. There appears to be 

sufficient evidence to suggest that schizophrenic patients with T. gondii infection could clini‐

cally benefit from a combined therapeutic approach based on the prescription of current 
or future antipsychotic drugs with antitoxoplasmic activity. However, published results 

have not been conclusive [206], and randomized controlled prospective trials are required 

in wider samples, stratifying schizophrenic patients into subgroups (e.g., by clinical phe‐

notype, pathophysiological mechanism, or response to treatment) and in relation to spe‐

cific types of T. gondii parasitization. Translational research must play a key role, with the 

involvement of psychiatric, neurologic, immunologic, biochemical, genetic, pharmacologi‐

cal, and microbiological investigators, among others, offering the possibility of using new 
and more effective methodologies. It appears highly likely that different causal agents are 
responsible for schizophrenia and that the pathogenic action of a particular microorganism 

such as T. gondii would only be relevant in certain patient subgroups, endorsing the need for 

personalized medicine.
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