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Abstract

Three experiment series on the ctenophores Mnemiopsis leidyi and Beroe ovata biolumi‐
nescence variability investigation were conducted: (1) depending on ctenophores size 
and ontogeny stage; (2) depending on temperature conditions and (3) depending on 
season. The ctenophores luminescence was registered using the laboratory complex 
“Svet” by methods of mechanical and chemical stimulation. Ctenophores light‐emission 
 characteristics are changing in the process of ontogenesis and rising proportionally to the 
organism mass growth. Seasonal dynamics of the ctenophore‐aliens light‐emission char‐
acteristics has been revealed: the highest indices of M. leidyi and B. ovata bioluminescence 
are observed in the summer period and minimal indices for both species were registered 
in the winter‐spring period. Environment temperature affects considerably at the ampli‐
tude‐temporal characteristics of the ctenophores light‐emission. The bioluminescence 
reaction optimum for M. leidyi is achieved under the temperature of 26 ± 1°C, and for 
B. ovate—under the temperature of 22 ± 1°C, while its minimum for both ctenophores 
was registered under the temperature of 10 ± 1°C. Thus, results of the investigations 
have detected the opportunity to use ctenophores M. leidyi and B. ovata light‐emission 
characteristics as an index for their physiological state estimation.

Keywords: light‐emission characteristics, ecological‐physiological  indices, Mnemiopsis 

leidyi, Beroe ovata, the Black Sea

1. Introduction

Bioluminescence as a manifestation of an organism life activity in a form of electric‐magnetic 

radiation in the visible region of spectrum is the most important ecological factor of marine 

environment [1]. Quite recently, they considered that microplankton—bacteria and dino‐

flagellates—makes the main contribution into formation of the Black Sea bioluminescence 
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field [2–5]. But for a number of the World ocean regions, another fraction of plankton com‐

munity makes the major contribution into bioluminescence field formation, in particular jelly‐
fish macroplankton [3, 6, 7]. For instance, ctenophores Mnemiopsis leidyi and Beroe ovata, which 

quite recently inhabited the Black Sea are luminescent organisms, bioluminescent intensity of 

which exceeds hundreds of thousands to million times light‐emission of the majority of the 

microplankton representatives.

There are totally about 150 species of ctenophores, of them in 46 species, living in wide 

range of temperatures, bioluminescent ability has been registered reliably [8, 9]. For the past 

30 years, the Black Sea ctenophore fauna became considerably more rich: Until 1980, it has 

been presented by one species of pleurobrachia (Pleurobrachia pileus (O.F. Muller, 1776)), 

from 1980‐1990‐th two species from genus mnemiopsis (Mnemiopsis leidyi A. Agassiz, 1865) 

and beroe  (Beroe ovata Mayer, 1912) were added and in 2007 near the Turkish and Bulgarian 

shores bolinopsis (Bolinopsis vitrea (L. Agassiz, 1860)) was also found. Now it is not yet clear 

whether this species inhabiting Mediterranean sea will be able to naturalize in the Black Sea,, 

but it was met already in 2010 [10]. That is why our work will be devoted exclusively to the 

parameters of life activity of only two alien ctenophores: Mnemiopsis leidyi and Beroe ovata.

Ctenophores—aliens not only reached the list of the Black Sea macroplankton but they also 

considerably influenced structure dynamics of its ecosystem, thus attracting great attention to 
them. The climate warming and increasing of the anthropogenic eutrophication led in a num‐

ber of cases to considerable growth of not only ctenophores populations but jelly‐fish as well, 
which influenced condition of the marine communities and effected human economic activ‐

ity: fishing nets and water canals were blocked, obstacles for marine bathing were created, 
and in the Black Sea anchovy fishing sharply decreased with the first flash of the mnemiopsis 
mass development [11–13].

At present time, there is quite great number of works devoted to physiology and ecology of 

different ctenophores species, including the Black Sea populations [12, 14–20]. From 1980, they 

conduct intensive studies of the ctenophores—aliens in the Black Sea: they reveal features of 

their distribution by the sea regions in connection with depth, temperature and salinity; they 

also study peculiarities of nutrition, breathing and reproduction. As for mnemiopsis, they 

revealed effect of the environment temperature on such characteristics as population vertical 
distribution in pelagial [13, 21–23], reproduction rate [24], metabolism intensity [25, 26] and 

some peculiarities of luminescence under experimental conditions [27, 28]. The same data 

were received for beroe as well [28–30].

But such important ecological characteristic of the ctenophores as bioluminescence still remains 

to be not much studied. In particular, the studies of the light‐emission parameters in the Black Sea 

populations of M. leidyi and B. ovata by present time were conducted exclusively in the Department 

of Biophysical Ecology, IBSS NASU (now—IMBR RAS). Such indices of the ctenophores biolumi‐

nescent as a change of intensity and duration of the light‐emission in ontogenesis are studied not 

enough, influence of different environment factors on the bioluminescence parameters is studied 
insufficiently, still unclear is connection between the organism physiological indices and its lumi‐
nescence. Nevertheless, it is known that on the base of the amplitude‐time characteristics of bio‐

luminescence we can make a conclusion about the organism functional condition [27, 28, 31, 32].
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In connection with the above mentioned, we consider it to be extremely important to continue 

investigation of the light‐emission in the Black Sea alien ctenophores, to reveal an influence of 
different factors on them and to evaluate accordance of their functional state with variability 
of the bioluminescence parameters.

2. Materials and methods

Experimental investigations were conducted in the Biophysical Ecology Department of 

the A.O. Kovalevsky Institute of Marine Biological Research (IMBR) from 2007 to 2012. 

Ctenophores with sizes of 35–40 mm (oral‐aboral length for M. leidyi and total for B. ovata) 

were collected by Judy net in the Crimea coastal zone at the layer of 0–50 m. Not damaged 

samples without content in the gastrovascular cavity were chosen for experiments. Three 

experiment series were conducted: (1) depending on ctenophore size and ontogeny stage; 

(2) depending on temperature conditions and (3) depending on season. The freshly caught 

animals were left for 2–3 h to adapt to the conditions similar to in situ.

The investigation of B. ovata bioluminescence parameters in ontogenesis was carried out in 

September–November 2007–2009 in three experiment series: (1) depending on ctenophore 

size; (2) depending on their physiological state and (3) on ontogeny stage. B. ovata indi‐

viduals with wet weight from 0.06 to 19.53 g were taken for the first experiment series. 
Unbroken individuals were placed into 5 l containers with filtered marine water (membrane 
filters pore diameter is 35 μm) at a temperature of 21 ± 2°C [33]. For estimation of B. ovata 

luminescence variability in relation to reproduction stage specimens were separated into 

four groups: (1) 50‐mm long—just‐caught individuals before gonada formation; (2) 50‐mm 

long individuals with mature gonads; (3) ctenophore eggs spawned by the second group; 

(4) ctenophore larvae grown from eggs of the third group. Adult just‐caught B. ovata organ‐

isms were put in 20 l aquariums with filtered water under temperature 20 ± 2°C with feeding 
M. leidyi (L = 40 mm). Experiments of B. ovata light signal registration by ontogeny stages 

were carried out by the methodology [33, 34].

The investigation of M. leidyi bioluminescence parameters in ontogenesis was carried out in 

July–August 2007–2010. Ctenophores of 3–65 mm size (oral‐aboral length) were selected from 

the plankton samples, taken by Judy net in the upper 10 m layer. Ctenophores wet weight was 

calculated by the volume of displaced water in measuring cylinder with further weighing of 

each specimen on the microanalytic weighs AN 50 with accuracy up to 0.01 g. In experiments 

on the ctenophores size influence on their bioluminescence characteristics, fresh‐caught speci‐
mens were separated to six size groups: (1) 0.0073 ± 0.00036 g; (2) 0.52 ± 0.026 g; (3) 3.69 ± 0.18 

g; (4) 12.77 ± 0.63 g; (5) 35.06 ± 1.75 g and (6) 42.03 ± 2.10 g. To avoid photoinhibition of the 

ctenophores bioluminescence, they were kept before measuring for 2 h in darkness with 24 ± 

2°C temperature. Ctenophores were kept in vessels with 3–5 l volume marine water, filtered 
through the membrane filters with 35 μm pores diameter. Proper filtration of the ctenophores 
medium was necessary for exclusion of the by‐catches of another luminescent organisms 

(first of all dinoflagellates), which could distort the results of experiments when studying 
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ctenophores bioluminescence at the initial ontogenesis stages (eggs and larvae). To study 

an influence of the ctenophores reproductive system condition on the characteristics of their 
 bioluminescence, the caught in the sea adult specimens (40 mm length) were divided to three 

experimental groups: (1) ctenophores freshly caught in the sea (with gonads at early stage of 

development, which served as a control after 2‐h adaptation in the filtrated water); (2) cteno‐

phores with eggs clutches, formed in the laboratory conditions after experimental feeding; (3) 

specimens after eggs spawning out. Such ctenophores were preliminary kept under condi‐

tions analogous to those of the second group during 6 h; during this period, they produced 

new eggs clutches and they spawned eggs out. The third group ctenophores bioluminescence 

characteristics were registered directly after their spawning.

It is known that at natural conditions calanoid copepods, dominating in mesozooplankton 

composition in the second half of the summer season make the main part of the Black Sea 

mnemiopsis feeding [35]. That is why we used calanoid copepods Calanipeda aquaducles, 

grown in the laboratory for fish cultivation for nutrition of the ctenophores in the experi‐
mental conditions. Before measuring bioluminescent characteristics, the second group cteno‐

phores were kept isolated during 5 h in 5 l vessels with concentration of the late copepodite 

stages of copepods at the level of 60 ex·l‐1 (with food supply of 300 ex for one specimen of 

ctenophores). Copepods concentration in the experimental vessels was determined before 

the beginning of experiment, counting specimens in an aliquota of volume in the Bogorov 

camera. In 3 h after beginning of exposition, concentration of food was corrected to initial 

volumes. With such food supply, ctenophores reproduce actively and in 5 h of nutrition they 

form ready for spawning eggs clutches [18]. This group of ctenophores was lighted directly 

after formation of clutch in them.

For estimation of variability of luminescence biophysical characteristics in the ctenophores 

in ontogenesis, they were divided into four groups: (1) freshly caught in the sea specimens 

of 40 mm length before gonads formation, adapted to the conditions of experiment under 

complete darkness during 2 h; (2) ctenophores of 40 mm length with matured gonads, formed 

as a result of experimental nutrition during 5–6 h after catching; (3) eggs, spawned out by 

the second group ctenophores, 0.40–0.50 mm diameter; (4) developed from the ctenophores 

eggs larvae, 0.25–0.30 mm diameter. To receive eggs and then larvae, the freshly caught adult 

ctenophores were isolated in 5 l vessels with filtered water, where they were fed by copepods. 
Eggs clutched by ctenophores were collected by filtration of all the water volume through 100 
μm sieve. Eggs collected on the sieve were washed into 200 ml glass cylinder, and the num‐

ber of eggs was calculated in all the volume under microscope. Size of eggs and larvae were 

measured with accuracy of 0.01 mm under microscope. The measurements of the biolumi‐

nescence characteristics were conducted in 15–20 specimens of each experimental group and 

repeated three times. Before light‐emission stimulation ctenophores were kept in the filtered 
marine water with 24 ± 2°C temperature. The given temperature conditions are optimal for 

quick eggs spawning by ctenophores and further larvae development [25].

For investigation of temperature variability, uni‐sized (35–40 mm length) ctenophores were 

divided in the laboratory into five groups and contained in different temperature conditions: 
(1) 10 ± 1°C; (2) 16 ± 1°C; (3) 22 ± 1°C; (4) 26 ± 1°C and (5) 30 ± 1°C. M. leidyi and B. ovata were 
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kept in the temperature‐controlled aquariums (50 l) with the filtered marine water, being 
adapted during 6–8 h to the temperature close to such in the sea in the given period [36].

The main parameters: amplitude, energy and bioluminescence duration of the alien‐cteno‐

phore under the different temperature conditions were compared. For research of sea‐

sonal dynamics, bioluminescence uniform‐sized samples group (40 mm) of ctenophores 

were taken. The adaptive period before experiments on ctenophore bioluminescence was 

2 h. Experiments on ctenophore bioluminescence characteristics registration on the labora‐

tory complex—luminescope “Svet” [31] were conducted after the adaptive period. Special 

cuvette for mechanical, chemical and electrical stimulation of the plankton organisms, made 
of transparent organic glass, in which experimental organisms were placed, was set into the 

luminescope dark chamber. Biophysical characteristics of the ctenophore light‐emission were 

investigated by mechanical and chemical stimulation in our experiments. Mechanical stimu‐

lation method, the most adequate to the natural stimuli, chemical stimulation by ethyl alcohol 

give more prolonged and bright signals with maximal values [32, 33].

3. Results

3.1. Seasonal dynamics of the Mnemiopsis leidyi bioluminescence

The studies conducted had revealed in M. leidyi bioluminescence intensity considerable 

seasonal fluctuations for its amplitude characteristic as well as for temporal one (Figure 1). 

Figure 1. Mnemiopsis leidyi light‐emission amplitude seasonal dynamics under different stimulation types [31].
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Thus, the ctenophores in the winter period gave not very intensive flash with the  amplitude 
until 70.0 ± 3.4·108 quantum·s−1·cm−2 and duration about 2.0 s. Low  bioluminescence values 

were observed in the spring period with minimum on March (9.93 ± 0.49&·108 quantum·s−1·cm−2 

and 9.21 ± 0.46·108 quantum·s−1·cm−2) under the chemical and mechanical stimulation 

 correspondingly [31].

The average luminescence amplitude (260.94 ± 13.04·108 quantum·s−1·cm−2) was registered in 

June. The light‐emission characteristics rise with peak in August and make 841.97 ± 42.09·108 

quantum·s−1·cm−2. It is related with ctenophores reproduction in July–August. M. leidyi lumi‐

nescence intensity under the chemical stimulation is 2–2.5 times greater (p < 0.05) than under 

the mechanical one [31].

The luminescence amplitude of M. leidyi decreases almost 11 times in the middle of November, 

if compared with the summer period. Light‐emission energy of ctenophores depending on 

season changes analogically with their amplitude indices (Figure 2) [31].

Thus, minimal energy values of M. leidyi were registered in February and maximal in 

August, making 659.97 ± 32.98·108 quantum·cm−2 and 393.39 ± 19.66·108 quantum·cm−2 under 

the chemical and the mechanical stimulation correspondingly. The M. leidyi luminescence 

Figure 2. Mnemiopsis leidyi light‐emission energy seasonal dynamics under different stimulation types [31].
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energy reduces during the following period and decreases 12 times in November if compared 

with July.

M. leidyi light‐emission duration changes considerably depending on season (Figure 3). 

Thus, the shortest flashes are registered in February–March, making 0.79–1.32 s and more 
 prolonged luminescence duration is observed in August–September and it achieves 2.77–3.46 

s (p < 0.05) [31].

3.2. Seasonal variability of the B. ovata bioluminescence characteristics

The typical luminescence signal of B. ovata is represented by a number of flashes, superimpos‐

ing one on another, with several amplitude peaks with sharp increasing background and the 

same damping decrement.

Figure 3. Mnemiopsis leidyi light‐emission duration seasonal dynamics under different stimulation types [31].
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The beroe luminescence has significant seasonal differences [31]. Thus, several weak signals 

may be observed for ctenophore, luminous in the winter period (Figure 4), followed by the 

flash of negligible intensity with the greatest amplitude (56.7 ± 2.83·108 quantum·s−1·cm−2).

The ctenophore bioluminescence is depressed even more in the spring period, with the 

minimal values in May: one to two weak signals are observed with the amplitude up to 

35.96 ± 1.79·108 quantum·s−1·cm−2. The bioluminescence intensity increases up to 537.6 ± 26.88·108 

quantum·s−1·cm−2 which is registered in summer. B. ovata maximal bioluminescence is regis‐

tered in July, their intensity achieves 1382.25 ± 69.11·108 quantum·s−1·cm−2 and duration up 

to 2.86 ± 0.14 s. Ctenophore light‐emission intensity is 1.5 times higher under the mechanical 

stimulation than under the chemical one (p < 0.05) [31]. B. ovata luminescence characteristics 

decrease up to 98.75 ± 4.93·108 quantum·s−1·cm−2 in August. The second peak of light‐emis‐

sion intensity is observed in September, achieving 852.56 ± 42.62·108 quantum·s−1·cm−2. 

Luminescence amplitude reduces 15 times by December, if compared with the autumn peak 

and makes 56.7 ± 2.83·108 quantum·s−1·cm−2 and 27.01 ± 1.35·108 quantum·s−1·cm−2 under the 

mechanical and chemical stimulation correspondingly. Ctenophore luminescence energy sea‐

sonal changes are the same (Figure 5).

Figure 4. Beroe ovata light‐emission amplitude seasonal dynamics under different stimulation types [31].
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Low energy values of ctenophores are observed in winter‐spring period with minimum 

in May. B. ovata bioluminescence energy is maximal in July, making 518.94 ± 25.94·108 

quantum·cm−2 under the mechanical stimulation and 511.88 ± 25.59·108 quantum·cm−2 under 

the chemical one. Decrease of the luminescence energy indices is observed in August, if com‐

pared with the previous month. B. ovata light‐emission amplitude rises again in autumn with 

maximum in September and decreases 1.5 times if compare with the summer period (p < 0.05). 

Light‐emission energy decreases 11 times (p < 0.05) by December [31]. Light‐emission dura‐

tion of ctenophore like its intensity in the different seasons change considerably (Figure 6).

More prolonged signals are registered in July and September, making 2.54–2.86 s, the 

 shortest luminescent signals of B. ovata are observed in May (1.06 s) and in December (0.9 s) 

(p < 0.05). B. ovata trophic state like this of M. leidyi is depressed in the winter‐spring period 

[31, 37], and it reveals itself in reducing its luminescence amplitude‐temporal character‐

istics. But B. ovata nutritive conditions are the most favorable in early autumn period, in 

September especially [37], which affects the ctenophore bioluminescence activity increase 
in the given period.

B. ovata, if compared to other jelly‐fish, is the species sensitive to the temperature swings more 
than others [38]. The temperature rise in the Black Sea in May up to 16°C leads to B. ovata early 

Figure 5. Beroe ovata light‐emission energy seasonal dynamics under different stimulation types [31].
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appearance, but ctenophore luminescence values are low in the spring period. The first cteno‐

phore bioluminescence peak is observed in July. The water temperature rise in August up to 

26°C leads to B. ovata abundance decrease in the given period. The ctenophore second maxi‐

mum was found in September while the water temperature falls to 20 ± 2°C. From October 

till March, the ctenophore state is depressed. Food supplies and mass spawning reduce affect 
unfavorably the B. ovata functional state as well as its bioluminescence indices [31, 39].

Thus, seasonal variability of ctenophores light‐emission parameters was established. Our 

investigations showed that maximal bioluminescence values for mnemiopsis are regis‐

tered in August, whereas beroe maximal bioluminescence is observed twice—in July and in 

September. Light‐emission minimal values for both ctenophores were observed in the win‐

ter‐spring period [31].

3.3. Influence of the temperature on the M. leidyi bioluminescence

The investigation results have shown considerable changes of the M. leidyi bioluminescence 

intensity, connected with temperature changes (Table 1). Thus, maximal indices of the 

ctenophore signals amplitude were observed under the temperature of 26 ± 1°C. M. leidyi 

Figure 6. Beroe ovata light‐emission duration seasonal dynamics under different stimulation types [31].
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 bioluminescence intensity under chemical stimulation was 1.5 times higher, than under the 

mechanical one, making 1432.94 ± 71.64·108 quantum·s−1·cm−2.

The temperature increases up to 30°C leads to four times decrease of ctenophore lumines‐

cence intensity, making 322.34 ± 16.1·108 quantum·s−1·cm−2. M. leidyi light‐emission intensity 

decreased two times (p < 0.05) comparing with optimum under the temperature decrease 

down to 22°C. The temperature decreases down to 10 ± 1°C leads to more considerable biolu‐

minescence intensity change, up to its minimal values 17.32 ± 0.83·108 under mechanical and 

17.93 ± 0.89·108 quantum·s−1·cm−2 under the chemical stimulation correspondingly [36].

M. leidyi light‐emission energy changes under different temperatures (Table 1). Thus,  maximal 

values of ctenophore luminescence energy were registered under 26°C, making 894.64 ± 

44.7·108 and 725.33 ± 36.2·108 quantum·cm−2—under the chemical and mechanical stimulation 

correspondingly.

Bioluminescence energy decreases two times (p < 0.05) under the temperature of 22°C. 

M. leidyi light‐emission energy minimal indices were observed under the temperature of 

10°C [36]. Temperature fluctuations affected the M. leidyi light‐emission duration change with 

minimal indices under the temperature 10°C, under its rise up to 30°C making 1.94 and 2.67 

s correspondingly. The most continuous signals were registered under the temperature of 

26°C, 3.54 ± 0.15 s, under the chemical stimulation especially.

3.4. Influence of the temperature on the B. ovata bioluminescence

Amplitude and light‐emission energy considerable changes, connected with the environment 

temperature change, were revealed in ctenophore B. ovata (Table 2). Thus, B. ovata flashes in 
amplitude had the maximal indices under the temperature of 22 ± 1°C regardless the type 

of stimulation, having achieved 1150 ± 57.51·108 quantum·s−1·cm−2 under the mechanical and 

822.03 ± 41.10·108 quantum·s−1·cm−2 under the chemical stimulation correspondingly.

Ctenophore reacts with more low light‐emission amplitude indices with the temperature 

rise up to 26°C, but minimal values of the luminescence amplitude are registered under 

the temperature of 30°C, achieving 49.01 ± 2.4·108 under the mechanical stimulation and 

Characteristics of 

light‐emission

Amplitude of light‐emission, 
quantum·s−1·cm−2

Energy of light‐emission, 
quantum·cm−2

Duration of light‐

emission, s

Stimulation types 1 2 1 2 1 2

10 ± 1°C 29.52 ± 1.47·108 33.52 ± 1.67·108 12.47 ± 0.62·108 15.51 ± 0.77·108 1.82 ± 0.09 1.94 ± 0.097

16 ± 1°C 219.45 ± 10.97·108 332.33 ± 16.61·108 197.43 ± 9.87·108 283.97 ± 14.19·108 2.51 ± 0.12 2.70 ± 0.13

22 ± 1°C 545.75 ± 27.28·108 632.95 ± 31.64·108 407.19 ± 20.35·108 417.65 ± 20.388·108 2.89 ± 0.14 3.48 ± 0.17

26 ± 1°C 910.81 ± 45.54·108 1432.94 ± 71.64·108 725.33 ± 36.26·108 894.64 ± 44.73·108 3.14 ± 0.16 3.53 ± 0.17

30 ± 1°C 322.34 ± 16.12·108 488.43 ± 24.42·108 294.89 ± 14.74·108 265.15 ± 13.25·108 2.54 ± 0.12 2.67 ± 0.17

Remark: 1, mechanical stimulation; 2, chemical stimulation.

Table 1. Light‐emission characteristics of M. leidyi under different temperatures.
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29.23 ± 1.46·108 quantum·s−1·cm−2 under the chemical one. The B. ovata functional state is nega‐

tive under low temperature also. Thus, temperature decreases down to 10 ± 1°C  weakens 

ctenophore moving activity and lowers their luminescence intensity values: down to 

3.42 ± 0.16·108 quantum·s ‐1·cm−2 and 4.92 ± 0.22·108 quantum·s−1·cm−2 under the chemical and 

mechanical stimulation correspondingly. bioluminescence energy of beroe change as well 

as its amplitude depending on different temperatures. Thus, maximal values are registered 
under the temperature of 22°C (530.19 ± 26.5·108 quantum·cm−2) and minimal—under the 

temperature of 10°C, making 2.95 ± 0.12·108 quantum·cm−2. B. ovata light‐emission duration 

varied considerably under the temperature changes [36].

The shortest bioluminescent signals were observed under the temperature of 10°C, making 

1.02 ± 0.05 s, and the most continuous under 22°C, achieving 3.03 ± 0.15 s. Ctenophore light‐

emission characteristics changes, under different temperature conditions, can be explained, 
we believe, by these organisms physiological adaptations to the environment temperature 

oscillations point of view. Indeed, the most intensive M. leidyi luminescence is observed 

under the temperature of 26 ± 1°C, and B. ovata—under 22 ± 1°C, which are the most favor‐

able for their functional state. Thus, according to the data of Anninsky with co‐authors, 

M. leidyi [25] breeding peak is observed under the temperature of 24–26°C in August, and 

ctenophore B. ovata [12, 19] autumn abundance growth under the temperature 20–22°C. 

Ctenophores under the temperature 22°C are actively breeding, and their metabolism is 

considerably higher than under lower temperatures. Ctenophores light‐emission amplitude 

decreases for several orders under the temperature to 10°C can be explained by their popula‐

tions abundance sharp reduction reduces in the autumn‐winter period [23, 36].

Maximal activity of the enzyme‐substrate complex, basic for the ctenophores luminescence 

was observed under the temperature of 30°C in vivo [36, 40, 41]. Thus, light‐emission ampli‐

tude maximum was observed in our investigations under following temperatures: under 

26°C for M. leidyi and under 22°C for B. ovata [36].

3.5. Bioluminescence characteristics changes in the M. leidyi ontogenesis

After 5–6 h of experimental feeding ctenophores of 40 mm length produced from 3.0 

to 4.5 thousands of viable. The spawning peak was observed at night (23–24 h), which 

Characteristics of 

light‐emission

Amplitude of light‐emission, 
quantum·s−1·cm−2

Energy of light‐emission, 
quantum·cm−2

Duration of light‐

emission, s

Stimulation types 1 2 1 2 1 2

10 ± 1°C 4.92 ± 0.24·108 3.42 ± 0.16·108 2.95 ± 0.12·108 1.67 ± 0.08·108 1.03 ± 0.05 1.02 ± 0.05

16 ± 1°C 551.14 ± 27.55·108 482.89 ± 24.14·108 262.22 ± 13.11·108 156.12 ± 7.8·108 1.91 ± 0.09 1.76 ± 0.08

22 ± 1°C 1150.36 ± 57.51·108 822.03 ± 41.10·108 530.19 ± 26.51·108 482.65 ± 24.13·108 3.03 ± 0.15 2.47 ± 0.12

26 ± 1°C 577.06 ± 28.85·108 268.81 ± 13.44·108 166.97 ± 8.34·108 148.63 ± 7.43·108 2.12 ± 0.10 2.08 ± 0.10

30 ± 1°C 49.01 ± 2.45·108 29.23 ± 1.46·108 14.73 ± 0.73·108 13.84 ± 0.69·108 1.53 ± 0.07 1.49 ± 0.07

Remark: 1, mechanical stimulation; 2, chemical stimulation.

Table 2. Light‐emission characteristics of B. ovata under different temperatures.
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 corresponds to the data of other researchers [24]. Duration of development from eggs 

spawning to larvae getting out in our investigations was of 16–19 h. Typical biolumines‐

cent signals of ctenophores M. leidyi under mechanical and chemical stimulations at differ‐

ent stages of ontogenesis are presented in Figure 7a and b. As one can see in Figure 7 and 

Table 3, ctenophores luminescence characteristics change considerably depending on the 

development stage.

The most intensive bioluminescence is observed in adult specimens (with matured gonads), 

in which amplitude‐time characteristics reach maximum magnitudes: amplitudes up to 

Figure 7. The typical bioluminescence signals of M. leidyi at the different ontogenesis stages: (A) under mechanical 
stimulation and (B) under chemical stimulation.

Ontogenesis 

stages of  

M. leidyi

N L (мм) Amplitude of light‐emission 
(quantum·s−1·cm−2)

Energy of 

light‐emission 

(quantum·cm−2)

Duration of light‐

emission, s

Stimulation types 1 2 1 2 1 2

Just‐caught 

individuals 

(control)

43 40 (112.16 ± 5.61) ·108 (144.18 ± 7.20) ·108 (109.68 ± 

5.48) ·108

(143.36 ± 

7.16) ·108

2.39 ± 0.12 2.75 ± 0.13

Reproductive 

ctenophores

38 40 (424.46 ± 21.22) ·108 (470.98 ± 23.54) ·108 (284.76 ± 

14.23) ·108

(311.24 ± 

15.56) ·108

3.28 ± 0.16 3.93 ± 0.19

Ctenophore eggs 25 0.40–0.50 (0.39 ± 0.019) ·108 (0.89 ± 0.04) ·108 (0.23 ± 

0.012) ·108

(0.52 ± 

0.026) ·108

0.45 ± 0.02 0.76 ± 0.03

Ctenophore larvae 30 0.25–0.30 (1.44 ± 0.08) ·108 (3.13 ± 0.15) ·108 (0.48 ± 

0.022) ·108

(1.07 ± 

0.05) ·108

1.33 ± 0.067 1.86 ± 0.11

Remark: 1, mechanical stimulation; 2, chemical stimulation.

Table 3. The bioluminescence characteristics of ctenophore M. leidyi at the ontogenesis.
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(470.98 ± 23.54)·108 quantum·s−1·cm−2 and duration of signal—up to 3.93 ± 0.19 s. Light‐emis‐

sion amplitude in the adult specimens three times and signal energy two times (p < 0.05) 

exceeds analogous characteristics of the control group ctenophores.

Luminescence durations in the given ctenophore groups also differ considerably. 
For  example, luminescence duration in the adult specimens for 1.18 s exceeds the same 

in control. Signal duration in the control group ctenophores three to four times exceeded 

those in their eggs and larvae. The weakest luminescence was registered in ctenophores 

eggs (Table 3), expressed in low amplitudes (less than 0.39 ± 0.019·108 quantum·s−1·cm−2) 

and light‐emission energy (less than 0.23 ± 0.012·108 quantum·cm−2), as well as small dura‐

tion of the bioluminescent signal—up to 0.45 ± 0.02 s. Comparing bioluminescence of the 

ctenophore eggs and larvae, we stated that the larval stage luminescence amplitude was 3.5 

and energy two to three times higher than analogous characteristics of the eggs biolumi‐

nescence. Signal durations of ctenophore larvae also two to three times exceeded analogous 

parameters in eggs (p < 0.05). The results of correlation of the light‐emission in M. leidyi 

Figure 8. Variability of the bioluminescence amplitude ctenophore M. leidyi depending on wet weight of the individuals 

under mechanical and chemical stimulation.
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ctenophores depending on specimen size under the mechanical and chemical stimulation 

are given in Figures 8–10.

It has been revealed that magnitudes of amplitude, energy and duration of the bioluminescent 

signals in the freshly caught ctenophores depended directly on their size. For example, lumi‐

nescence intensity in M. leidyi with wet weight 0.52 ± 0.026 g makes under mechanical stimu‐

lation 1.32·108 quantum·s−1·cm−2 and under chemical—3.55·108 quantum·s−1·cm−2 (Figure 8), 

while in big specimens (with wet weight 42.03 g) its intensity makes (767.56 ± 42.21)·108 

quantum·s−1·cm−2 under mechanical stimulation and (1016.93 ± 50.84)·108 quantum·s−1·cm−2 

under chemical one. Analogous situation is observed at the bioluminescence energetic 

 indices (Figure 9), which grow with an increase of the organism size (from (0.89 ± 0.035)·108 

to (1004.28 ± 40.17)·108 quantum·cm−2 under chemical stimulation and from (0.29 ± 0.01)·108 

quantum·cm−2 to (868.26 ± 39.07)·108 quantum·cm−2 under mechanical one). Luminescence 

duration (Figure 10) of less in size organisms (with wet weight 0.0073 ± 0.00036 g) made under 

mechanical stimulation 0.79 ± 0.03 and under chemical—1.37 ± 0.06 s, but in the second size 

group (with wet weight 0.52 ± 0.026 g) ctenophores bioluminescence duration under both 

types of stimulation increased 2–2.5 times. Further on with an increase of the specimen size 

in groups from 10 to 65 mm ctenophore luminescence duration practically did not change, 

Figure 9. Variability of the bioluminescence energy ctenophore M. leidyi depending on wet weight of the individuals 

under mechanical and chemical stimulation.
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reaching in the biggest specimens 3.35 ± 0.16 s under mechanical stimulation and 2.78 ± 0.13 

s under chemical one.

Figure 11 represents variability of the biophysical characteristics of M. leidyi light‐emission 

depending on the stage of the organism's reproduction. As it can be seen at the illustrative 

material presented amplitude of light signals appeared to be the most sensitive index of the 

bioluminescence (Figure 11), its maximum magnitudes were registered in a group of cteno‐

phores with eggs clutches, where they two to three times (p < 0.05) exceeded luminescent 

intensity in the freshly caught specimens (control).

Having compared ctenophore bioluminescence after spawning and those in control we 

found that luminescence amplitude in the control group 14 times exceeded amplitude in the 

spawned specimens. Light‐emission energy in the spawning ctenophores with clutch reached 

if compared with other groups of organisms maximum magnitudes up to (139.46 ± 8.36)·108 

quantum·cm−2, which 1.5 times exceeded analogous indices in specimens from the control 

group and 53 times (p < 0.05) the same indices in the spawned ctenophores, showing the low‐

est energetic indices to (2.62 ± 0.13)·108 quantum·cm−2. The signals duration in ctenophores 

Figure 10. Variability of the bioluminescence duration ctenophore M. leidyi depending on wet weight of the individuals 

under mechanical and chemical stimulation.
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with clutch and control exemplars practically did not differ, making from 3.28 to 3.62 s, but 
3.5 times they exceeded such signals in the spawned specimens, which gave the least time of 

luminescence to 0.90 ± 0.045 s.

3.6. Bioluminescence variability in the B. ovata ontogenesis

Bioluminescence energy values depend on quantity of secret, produced in the time of organ‐

ism irritation. So with the increase of the ctenophore age and body mass growth, the more is 

secret content. Thus, luminescence intensity is a function of organism's mass, that is, A = f (W). 

Amplitude and bioluminescent signal duration of newly caught ctenophores directly depend 

on dimension, that is, on wet weight of the investigated organism (Figure 12) [33].

B. ovata light‐emission amplitude of organisms with body mass till 0.06 ± 0.003 g under 

mechanical stimulation was two times more than the one under chemical stimulation, 

achieving (11.39 ± 0.56)·108 quantum·s−1·cm−2. Light‐emission intensity grows when B. ovata 

body mass increases from 0.06 to 19.53 g, achieving (925.74 ± 45.27)·108 quantum·s−1·cm−2. 

The shortest luminescent signals (0.46–0.94 s) were produced by small‐sized ctenophores 

(Figure 13).

Beroe light‐emission duration increased, achieving from 1.44 to 2.37 s, as body mass 

raised [33]. The organisms with body mass 19.53 ± 0.97 g produce 2–2.5 times more prolonged 

Figure 11. Variability of the bioluminescence amplitude ctenophore M. leidyi at the reproduction period.
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Figure 13. B. ovata bioluminescent signal duration depending on body mass wet weight under mechanical and chemical 

stimulations.

Figure 12. B. ovata light‐emission amplitude in terms of organism wet weight under mechanical and chemical 

stimulation [33].
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light‐emission signals than small‐sized ctenophores. Experiment's results of the ctenophore 

reproduction system investigations detected that bioluminescence amplitudes were maxi‐

mum in ctenophores with egg clutches (Figure 14), being two to three times more (p < 0.05) 

than in the control group. However, bioluminescence indices were three to four times more in 

the control organisms than in the post‐spawning group. Light‐emission energy of spawning 

individuals if compared with other groups achieved maximal indices until (434.41 ± 21.7)·108 

quantum·cm−2 [33].

The post‐spawning group gave the lowest energy indices until (56.77 ± 2.83)·108 quantum·cm−2. 

Light‐emission durations in ctenophores with eggs clutches were the same as in the control 

Figure 14. B. ovata bioluminescent signal amplitude in reproduction period [33].

Ontogenesis stages 

of B. ovata

L (мм) Amplitude of 
light‐emission 

(quantum·s−1·cm−2)

Energy of light‐emission 

(quantum·cm−2)
Duration of light‐

emission, s

Stimulation types 1 2 1 2 1 2

Just‐caught 

individuals 

(control)

50 (315.36 ± 

15.76) ·108

(246.23 ± 

12.31) ·108

(331.09 ± 16.55) 

·108

(177.60 ± 8.88) ·108 2.27 ± 0.11 1.39 ± 0.06

Reproductive 

ctenophores

50 (823.91 ± 

41.18) ·108

(601.72 ± 

30.08) ·108

(434.41 ± 21.72) 

·108

(259.75 ± 12.98) ·108 2.49 ± 0.12 1.86 ± 0.09

Ctenophore eggs 0.80–0.85 (0.76 ± 

0.03) ·108

(0.28 ± 

0.01) ·108

(0.53 ± 0.02) ·108 (0.21 ± 0.01) ·108 0.89 ± 0.04 0.33 ± 0.016

Ctenophore larvae 0.4–0.5 (6.07 ± 0.3) 

·108

(2.26 ± 0.1) 

·108

(3.71 ± 0.17) ·108 (1.49 ± 0.06) ·108 1.64 ± 0.08 1.08 ± 0.05

Remark: 1, mechanical stimulation; 2, chemical stimulation.

Table 4. The bioluminescence characteristics of ctenophore B. ovata at the ontogenesis [33].
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group. The lowest light‐emission time was in the post‐spawned group up to 1.51 ± 0.07 s. 

The B. ovata clutch contained from 2.0 till 7.0 thousands of eggs with size up to 0.80–0.85 

mm. Free‐swimming larvae with body length of 0.4–0.5 mm appeared on the third day after 

spawning.

Ctenophore eggs have low luminescence indices with intensity peaks up to (0.76 ± 0.03)·108 

quantum·s−1·cm−2, light‐emission energy values—up to (0.53 ± 0.02)·108 quantum·cm−2 and 

short bioluminescent signal—up to 0.89 ± 0.048 s. It was shown also that larvae biolumi‐

Figure 15. Typical B. ovata bioluminescent signals at different ontogeny stages under mechanical (A) and chemical (B) 
stimulations [33].
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nescence intensity was eight times and energy—seven times more than eggs had (p < 0.05) 

(Table 4, Figure 15).

The same situation was observed for eggs and larvae light‐emission durations. Thus, lar‐

vae luminescence duration was two to three times more than the eggs’ one. B. ovata light‐emis‐

sion amplitude rises with ctenophore growth. Adult individual's light‐emission amplitude 

exceeded the larvae one. Luminescence duration in the control organisms is 0.63 s more than 

in the larvae. Consequently, present research detected that B. ovata light‐emission characteris‐

tics significantly change in ontogeny, at the reproductive stages and rise proportionally with 
body mass growth [33].

4. Discussion

M. leidyi and B. ovata light‐emission seasonal variability can be conditioned by specificities 
of ctenophores chemical composition seasonal dynamics. Thus, different food supply is the 
main reason of the organism's biochemical composition changes. Ctenophores physiologi‐

cal state in the winter‐spring periods is depressed, that is connected with food concentra‐

tion deficit [27]. That is why light‐emission intensity and energy have the lowest values 

in these periods. Food conditions of ctenophore are most favorable in the summer, which 

is connected with rise of glycogen and waxes concentrations in the M. leidyi [42]. Other 

maximal light‐emission amplitude values are registered in August as well. Other reason 

of the  bioluminescence  seasonal changes is the Black Sea water temperature variability. 

Thus, water temperature lowering to 8 ± 2°C in winter‐spring leads to decrease in ampli‐

tude‐temporal indices of ctenophores bioluminescence. Low temperatures are unfavorable 

for the M. leidyi vital activity, their motion function and metabolic processes and negatively 

influence reproduction condition [39, 43, 44]. That is why the ctenophore light‐emission 

characteristics decrease in this period. Ctenophores light‐emission seasonal dynamics can 

be explained by the seasonal changes of their biochemical composition, connected with the 

food supply [31, 39].

That allows using our experiments results in different variants of the ecological monitoring 
of the coastal water area. Environment temperature affects considerably the amplitude‐tem‐

poral characteristics of the Black Sea alien‐ctenophore light‐emission. It was revealed that 

bioluminescence reaction optimum for M. leidyi is achieved under the temperature of 26 ± 1°C 

and for B. ovata—under the temperature of 22 ± 1°C, while its minimum for both ctenophore 

species was registered under the temperature of 10 ± 1°C. As it follows from the results of the 

experiments conducted, bioluminescence is characteristic for M. leidyi ctenophores at all the 

stages of individual development, but with considerable changes in its parameters during 

ontogenesis. It is necessary to underline that our investigations were conducted at the period 

of the ctenophores reproduction from July to September, maximum of which in M. leidyi takes 

place in August [43].

But at the period of intensive growth and reproduction, when fodder zooplankton biomass 

cannot supply needs for support and reproduction of the population, ctenophores are under 
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deficit of food [18, 20]. That is why increase in the mnemiopsis abundance during repro‐

duction is accompanied with a decrease of its average individual mass, first of all due to a 
decrease of the big size individuals share in the population [33, 39]. During the given inves‐

tigations, we also observed in the zooplankton samples domination of fry, eggs and larvae of 

the ctenophores and to a less extent availability of matured specimens.

Undoubtedly flashes intensity depends on a number of photoprotein in photocytes and matu‐

ration of the photocytes themselves. Its content increases with age and consequently with 

an increase if linear sizes and body mass. Thus, light‐emission energy is a function of the 

organism mass, that is, E=f (W). It is also known that trophic factor effects considerably life 
activity and bioluminescent characteristics of ctenophores [27]. For example, according to our 

data, freshly caught ctenophores with full stomachs gave eggs and germs averagely in 6 h. 

But without feeding germs did not develop and they perished, having not reached the larval 

stage. In the laboratory conditions with satisfactory supply of food ctenophores are close to 

the conditions of the specimens in situ [18, 20]. At the before‐spawning period, ctenophore 

is getting ready for the reproduction, accumulates necessary for this organic substances and 
contains quite great energetic potential, equal to the sum of its own one and this of eggs. 

That is why just at the given period, we observe the highest amplitude‐energetic parameters 

of their bioluminescence. Visual observations of the ctenophores behavior at the period of 

their spawning have shown that individuals after ovulation feel themselves worse, become 

less mobile, some of them fall to the bottom. Such behavior is identical to this in situ, when 

ctenophores spawning not only influences their moving activity but in some cases also causes 
specimens death [33]. According to some researchers, organic losses in the ctenophores after 

spawning can make 6.9% of body. But the full‐day losses for exchange in ctenophore with 

body mass of 25 g at 26°C are estimated as 5.6% of body [43].

In other words, the loss of substance with sex products is quite comparable with losses of 

an organism for breathing. This points to domination of the generative metabolism strat‐

egy in ctenophores and explains accompanying slowing of its growing at the reproductive 

period [14]. As bioluminescence is closely connected with the breathing chain of organ‐

ism [3], it is quite understandable that considerable change in the functional condition and 

metabolism in ctenophores during reproduction are reflected in the observed low indices of 
the bioluminescence in the spawned individuals if compared with the control. Differences in 
the ctenophores bioluminescence parameters we revealed at different ontogenesis stages can 
be also explained by changes in their biochemical composition during their individual devel‐

opment. For instance, according to Finenko and Anninsky, organic substance composition 

differs considerably in eggs and larvae from the same in the matured specimens. In particu‐

lar, content of organic substance in M. leidyi eggs makes only 0.25 μg·mg−1, but in the body 

of two‐day larvae of M. leidyi of 0.26–0.30 mm size 25.1 ± 8.3 μg·mg−1 of wet substance [14].

Due to the fact that the organic substances stock provide early survival of larvae and maxi‐

mum growth rate parallel to minimum exchange more bright lighting of larvae if compared 

with the ctenophore eggs can be explained, as we think, by great content of organic substance 

in larvae. Together with this, specific content of organic substance in the ctenophore early 
larvae is 20–30 times higher than the corresponding magnitudes for adult specimens. Change 

in number of photocytes in developing individuals can present one more reason of the regis‐
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tered by us variability of the luminescence characteristics on the ctenophores in ontogenesis. 

For example at early stages of the ctenophores development, when growth of twinkling row‐

ing plates begins in organisms we observe an increase of the photocytes cytological maturity. 

At more late stages, when embryo begins to feed itself we observe an increase of the photo‐

cytes number. And at last with development of the organisms, we register an increase of the 

photoprotein number in the photocytes tissues of the adult specimens [40].

That is why it is quite explainable that quantum issue of the ctenophores bioluminescence is 

minimal at early stages of the organism's development and it is maximal at those late. Besides 

differences in the ctenophores bioluminescence parameters can be conditioned, according 
to our opinion, by peculiarities of the ctenophores biochemical composition, determined by 

their dependence on nutrition quantity and spectrum. According to the data of Anninsky 

et al. [14], concentration of organic substance in the ctenophore body depends considerably 

on their size. Protein in the ctenophore body is dominating oxidized substrate and its share 
in the ctenophore organic substance is of 80–85%. Correlation of concentrations of free amino 

acids and protein is maximal in small individuals with highly active metabolism and mini‐

mal in big organisms. There is domination in lipids of fractions, characteristic for the cell 

membranes: phospholipids make 35.7 ± 9.6% of general lipids. But in bigger organisms, they 

observe a tendency to increase number of waxes and sterine ethers. For example their content 

was of 4.0 ± 3.6; 5.5 ± 3.2 и 7.1 ± 4.0% in ctenophores with the size 10–20, 21–30 and 31–50 
mm, correspondingly. In carbohydrates, glycogen dominated; its content grew a bit with an 

increase of ctenophores size and made 25 ± 4; 28 ± 5; and 36 ± 12 μg·g−1, when body length was 

10, 11–20 and 31–50 mm correspondingly [42].

And at last with organisms growing hydration increases and individuals motility decreases. 

Thus, protein‐lipid and carbohydrate exchange effect changes in the ctenophores biolumi‐
nescence parameters. But, as it has been already marked with development of organisms’ 

quantity of photoprotein in the ctenophores photocytes and concentration of the substrate of 

the bioluminescent reaction—luciferin increase, which influence reinforcement of the biolu‐

minescent activity in adult ctenophores [40]. Taking into consideration fermentative nature of 

the bioluminescent reaction, we can presume that change in the rate of fermentative processes 

affects duration of the bioluminescent signals. Really maximal bioluminescence is observed in 
small specimens with higher fermentative activity and shorter signal duration. In adult indi‐

viduals, we observed decrease in metabolism and connected with this decrease in luciferase 

fermentative activity, which facilitates more long light‐emission [45]. Thus, development of 

organisms along the way of increasing body hydration and decrease of the active exchange 

in more big specimens, lowering of their motility and maneuver is compensated by the most 

important ecological characteristic: less access for predators due to more developed lumi‐

nescent organs and correspondingly maximal yield of the bioluminescence energy. It gives 

grounds for supposition that bioluminescence protective function is the most important com‐

ponent in the ctenophores ecology.

Our investigations with Beroe larvae were conducted in the period of ctenophore reproduc‐

tion—from September to November. B. ovata spawning peak is observed in October [19, 

33, 34]. Juveniles, eggs and larvae predominated in the zooplankton samples from mid‐

September till October. Similar to M. leidyi Beroe prepared for reproduction in prespawning 
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period. Composition of ctenophores changed. Probably, for this reason, high bioluminescent 
amplitude‐energetic parameters of B. ovata were observed. Recording beroe behavior in the 

spawning period has shown that the organisms after fertilization became less mobile. The 

B. ovata eggs clutch in situ was similar to our laboratory experiments, but varied from 4500 ± 

250 until 28,000 eggs per day. Distinction in clutch sizes was determined by different organ‐

isms’ sizes, temperature conditions and availability of nutrition budget [14, 33, 46]. Adult 

B. ovata organisms lose large amount of organic material with reproductive products [14]. 

Ctenophores with body mass 15.4 g loose from 6% to 8% of organic matter per day, from dif‐
ferent data, at temperature conditions of 19–21°C [14, 33, 38].

Accordingly, the fact that bioluminescence is closely related to biochemical processes in organ‐

ism and to its physiological state [28, 47] is well substantiated by our data that the lowest cteno‐

phore bioluminescent parameters are produced by post‐spawned individuals at reproduction 

period. It is revealed by us that ctenophore bioluminescent parameters dissimilarity at different 
reproductive stages are explained by changes of their biochemical composition in ontogenesis. 

The eggs and larvae composition of organic matter differed much from the adult individuals 
[14]. Beroe light‐emission parameters changeability in ontogenesis can be related with pho‐

tocyte quantitative variability of growing individuals and their cytological maturity [40]. We 

suppose that ctenophore light‐emission characteristics changeability with body mass growth 

can be determined by specialty of their biochemical composition depending on sizes [23].

At the same time, as the organism develops along the way of body growing hydration and active 

metabolism [14, 23], decrease of great individuals’ mobility and maneuverability is compen‐

sated by one of highly important qualities: the lowered survival capability due to more devel‐

oped bioluminescent organs and, consequently, maximum bioluminescent energy discharge.
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