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Abstract

It is well recognised that upregulation/reactivation of telomerase, the telomere-lengthen‐
ing enzyme, is the sine qua non of cellular immortalisation and malignant transformation.
But there is also convincing evidence that telomerase stands at a crossroads where several
developmental signalling pathways meet and that its upregulation/reactivation has ef‐
fects beyond maintaining telomere length, such as altering energy metabolism and mod‐
ulating gene expression. We believe that it is important to realise that, in a pathological
context, such extratelomeric effects of telomerase are related to the emergence and persis‐
tence of the cancer stem cell (CSC) phenotype. Given the common conception of cancer
stemness as a major contributor to therapy resistance and tumour relapse, a more com‐
plete annotation of biological mechanisms for its regulation by telomerase will provide
the opportunity to develop telomerase-targeted anticancer therapies which kill or differ‐
entiate CSCs effectively.

Keywords: telomeres, telomerase, TERT, cancer stemness, CSCs, targeted anticancer ther‐
apy

1. Introduction

Telomeres are specialised structures that define the very ends of linear eukaryotic chromo‐
somes and provide for their stability by protecting against degradation or end-to-end fusion.
In mammals, telomeres are localised throughout the nucleus and associated with the nuclear
matrix. Telomeric DNA of human cells is composed of a long (5 to 15 kb) stretch of the repeating
hexanucleotide sequence 5ʹ‒TTAGGG‒3ʹ on one strand (the G-rich strand) and the comple‐
mentary 5ʹ‒CCCTAA‒3ʹ on the other (the C-rich strand). The G-rich strand has a short (35 to
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600 nt) single-stranded overhang at its 3ʹ end (the G-overhang) which folds back and base pairs
with the C-rich strand, forming a T-loop [1]. In humans, hexameric telomere repeats act as
binding sites for various telomere-binding proteins collectively termed the shelterin complex,
a dynamic ensemble of interactions that allows the cell to distinguish between natural
chromosome ends and DNA double-strand breaks, preventing the cell’s DNA damage
response (DDR) from improper activation [2]. Telomeres undergo progressive shortening with
each cell division as a result of incomplete lagging strand synthesis, less widely known end-
processing events, and oxidative damage [3, 4]. This so-called telomere erosion operates as a
kind of mitotic clock that determines ageing of the whole organism and suppresses malignant
transformation of its constituent cells. The biological function of telomeres is heavily regulated
and relies on both a minimal length of telomeric DNA and the proper functioning of the
associated shelterin complex. A unique enzyme termed telomerase assists in replicating linear
chromosomes through de novo synthesis of telomeric repeats, thereby counteracting the
progressive telomere erosion that would otherwise occur in its partial or complete absence. In
addition to its role in telomere length homeostasis, telomerase also performs telomere length-
independent functions such as modulation of gene expression. In a pathological context,
telomerase’s new talents are intimately related to tumour development and progression to
metastatic disease. This chapter summarises the newly discovered extracurricular activities of
telomerase and describe how these are involved in regulating cancer stemness, the stem-like
component of human tumours.

2. Telomerase and the cancer connection

Telomerase is a conserved RNA-dependent DNA polymerase canonically responsible for the
maintenance of telomere length above a critical threshold. Human telomerase is primarily
localised in the nucleus, as deducible from its role in telomere biology, but it can also be found
in other cellular compartments such as the cytosol and mitochondria [5]. Telomerase is
ribonucleoprotein in nature and consists minimally and essentially of a protein catalytic
subunit (telomerase reverse transcriptase, TERT) and a large RNA subunit (telomerase RNA,
TER). Active human telomerase has a bilobal architecture where one TERT subunit and one
TER subunit participate in the formation of each lobe and a hinge region connects the two lobes
[6]. This conformationally flexible, dimeric structure of the human enzyme undoubtedly has
profound functional implications with respect to the catalytic cycle. Firstly, during the
synthesis of telomeric DNA by telomerase, the 3′ end of the G-overhang is positioned in the
active site of TERT and aligned by base pairing with the 3ʹ end of the RNA template in TER.
Secondly, TERT catalyses the addition of deoxyribonucleotides to the chromosome substrate
through reverse transcribing TER into hexameric telomere repeats until the 5ʹ end of the RNA
template is reached. Lastly, telomerase translocates and realigns with the newly synthesised
3ʹ end of the chromosome substrate to restart the catalytic cycle [7, 8]. In spite of the fact that
TERT and TER are the two subunits that provide the catalytic core of telomerase, there are
several other molecules that associate with telomerase and are involved in its biogenesis,
trafficking, recruitment, and activation. Some of the most well-known telomerase-associated
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proteins include the nucleolar protein dyskerin [9], the three other nucleolar proteins NOP10,
NHP2 and GAR1 [10], the two AAA+ ATPases pontin and reptin [11], and the WD40-repeat
protein TCAB1 [12]. It should be noted that not all cells necessarily rely upon telomerase to
maintain telomere length. Some telomerase-negative immortalised cell lines and tumours are
able to elongate their telomeres by the much rarer alternative lengthening of telomeres (ALT)
pathway. In contrast to telomerase, which utilises an RNA template to de novo synthesise
telomeric repeats, the ALT pathway utilises a DNA template for DNA copying in an inter- or
intramolecular recombination event [13].

Cancer is usually an age-related genetic disease, manifesting only when normal cells develop
genomic instability over a reasonable period of time and acquire unlimited replicative
potential that leads to the generation of macroscopic tumours. Telomerase upregulation/
reactivation is observed in at least 85% of advanced human tumours, strongly suggesting a
crucial role during human tumour pathogenesis [14, 15]. The most widely accepted multistep
model of general tumourigenesis for explaining the part played by telomerase in telomere
maintenance and cellular immortalisation is provided in section 3.2. Besides being found in
primary tumours, telomerase activity is also detected in circulating tumour cells in, for
instance, breast [16], ovarian [17] and prostate [18] cancers. Telomerase is upregulated/
reactivated in premalignant cells by five common mechanisms: (i) increased transcriptional
activation of TERT and/or TER; (ii) loss of transcriptional repressors of TERT; (iii) mutations
in the TERT gene promoter/enhancer region (which result in the transactivation of this gene);
(iv) several kinases (which phosphorylate and thus enhance the activity of TERT); and (v) gain
of copy number of TERT and/or TER [13]. Somatic mutations in the TERT gene promoter region
are frequent events in cancers of the bladder, central nervous system, skin (melanoma) and
thyroid (follicular cell-derived) [19]. Two mutually exclusive and highly recurrent TERT
promoter mutations are C250T and C228T [20, 21]. Although both mutations create a similar
binding motif for E-twenty-six (ETS) transcription factors, they are functionally distinct in such
a way that the the C250T TERT promoter but not the C228T TERT promoter additionally
requires non-canonical NF-κB signalling in order to be transcriptionally driven [22]. Collec‐
tively, these findings highlight the contribution of TERT promoter mutations and non-
canonical NF-κB signalling to tumourigenesis and decipher a fundamental mechanism for the
reactivation of TERT in various tumours.

3. Cancer stemness

Cancer cells within a single tumour often exist in distinct phenotypic states which differ in
functional attributes. This so-called intratumoural heterogeneity originates from a myriad of
cell types recruited to the tumour as well as from genetic, epigenetic and metabolic differences
amongst the cancer cells themselves and may result in variable or unpredictable responses to
treatment [23]. Postulated to be the driving force behind tumour maintenance, hypermalignant
stem-like cells called cancer stem cells (CSCs) represent a unique dimension of intratumoural
heterogeneity. This often-small subpopulation of cancer cells is thought to play pivotal roles
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in tumour initiation and progression, spreading, therapy resistance, and recurrence, all of
which lead to poor prognosis.

3.1. Definitions and measurements

CSCs have critical implications for nearly, if not quite, all types of cancers, including leukae‐
mias [24–26], lymphomas [27], melanomas [28, 29], sarcomas [30], and various carcinomas such
as brain [31], skin [32], head and neck [33], lung [34, 35], liver [36], gastric [37], colorectal [38,
39], bladder [40], pancreatic [41, 42], prostate [43], breast [44] and ovarian [45] cancers. The
functions assumed by CSCs in human cancers are diverse, ranging from sustaining tumour
growth and dissemination to treatment failure and tumour relapse. The three clear-cut features
that contribute to the aforementioned functions of CSCs, aka cancer stemness traits, are: (i)
their unrestricted ability to self-renew; (ii) their aberrant ability to differentiate into mixed
populations of tumour cells; and (iii) their high ability to transition from a proliferative to a
quiescent state. In spite of the fact that these operational characteristics are, to a large extent,
shared by both CSCs and physiological stem cells, CSCs are the ones that are known to be
related to several malignant phenotypes, including induction of invasion and metastasis and
resistance to apoptosis. In addition, CSCs are distinguished from bulk tumour cells by their
capacity to form nonadherent spheres when cultured in stem cell media, their propensity to
found fresh tumours when transplanted into severe combined immunodeficient mice and their
expression of a selected repertoire of stem cell-surface markers [46]. Therefore, it is important
here to realise that cancer stemness, no matter how it is measured, stresses the ways in which
CSCs differ from bulk cancer cells as well as from physiological stem cells. The cancer stemness
phenomenon is of considerable clinical importance and significance because it prognosticates
that successful anticancer therapy must involve strategies that will eradicate CSCs, as these
cells are able to dominate any residual tumour cells that survive conventional anticancer
therapies.

3.2. Determinants and signatures

In the past, the cancer stemness model was widely seen as a static one which suggested a stable
CSC population and a hierarchical organisation of cell division and differentiation. In recent
times, however, the cancer stemness model has evolved into a dynamic one where CSCs are
rather accepted as a functional subpopulation of cancer cells and can also be formed by the
process of dedifferentiation from mature cancer cells under proper environmental conditions
[47]. Accumulating data have revealed that cancer stemness is governed by genetic changes
(such as oncogene activation and oncosuppressor gene inactivation), epigenetic changes (such
as miRNA targeting and promoter DNA hypomethylation/hypermethylation) and metabolic
changes (such as the shift to aerobic glycolysis) concomitant with changes in the tumour
microenvironment, especially the CSC niche (Figure 1). These changes are a prerequisite for
the oncogenic transformation and cellular (nuclear and metabolic) reprogramming of non-
CSCs to CSCs and precipitate a spectrum of drastic cellular consequences, including overpro‐
duction of certain oncoproteins, disruption of certain oncosuppressor proteins, upregulation/
reactivation of telomerase, reactivation of the epithelial-to-mesenchymal transition (EMT)
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programme, modulation of energy metabolism, stimulation of a number of embryonic/
oncogenic signalling pathways, and differential expression of several microRNAs (miRNAs).

Figure 1. How do CSCs arise? The joint impact of genetic, epigenetic, metabolic and microenvironmental factors is
believed to determine the conversion of non-CSCs (which could be normal stem cells, mature cancer cells, or others) to
CSCs. This process somehow is a dynamic one and CSCs are a functional and not merely territorial subpopulation of
cancer cells.

Disruption of diverse oncosuppressor proteins with antiproliferative, prodifferentiative
and/or proapoptotic effects accounts for an early molecular event accompanying the emer‐
gence of cancer stemness traits. p53, pRB, PTEN, and p16INK4A are by far among the most
commonly inactivated oncosuppressor proteins in advanced human tumours [48]. Their
inactivation permits premalignant cells to avoid replicative senescence, apoptosis, or both,
thereby continuing to divide and accumulating further tumourigenic alterations like genomic
(chromosomal) instability that follows telomere erosion [49]. The subsequent upregulation/
reactivation of telomerase compensates for telomere erosion (which would otherwise trigger
entry of cells into a period of crisis with massive cell death), suppressing genomic (chromo‐
somal) instability and allowing premalignant cells to proliferate for a virtually infinite number
of cell divisions. Additionally, and surprisingly, there is accumulating evidence that telomer‐
ase upregulation/reactivation provides susceptible cells with cancer stemness traits. The many
functions of telomerase in the development and maintenance of cancer stemness will be
addressed in more detail in the next sections of this chapter.
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A further means by which non-CSCs acquire cancer stemness traits is through the EMT process.
Physiologically, EMT causes cells to change from a stationary epithelial to a motile mesen‐
chymal morphology, thereby allowing for wound healing, tissue regeneration and organ
fibrosis in adults and cell migration and tissue remodelling in developing embryos [50]. In the
context of epithelium-derived carcinoma, however, the reactivation of the EMT programme
contributes to the evolution of primary tumours towards increasingly aggressive phenotypes.
The complex molecular, cellular and morphological alterations linked to pathological EMT are
generally mediated by the joint action of the signals from the tumour microenvironment that
induce the EMT programme (for example, TGF-β signalling, inflammatory cytokines, and
hypoxia), the transcription factors that coordinate the EMT programme (for example, SNAI-1,
SNAI-2, ZEB-1, ZEB-2, TWIST-1, and TWIST-2), and the effector proteins that execute the EMT
programme (for example, low levels of E-cadherin and high levels of vimentin, N-cadherin,
fibronectin, CD44, and MMPs) [51]. Such cooperation between the cell-extrinsic signals and
the cell-intrinsic regulators is fully important and primarily responsible for endowing
epithelial tumour cells with CSC-like properties, ranging from cell motility to invasiveness to
cell survival, which are indispensable to metastatic dissemination from the primary tumour
site, secondary tumour growth at a distant site, and resistance to therapy, respectively.
Although CSCs originating from bulk tumour cells within epithelium-derived carcinomas
achieve their final stemness state possibly via EMT, the degree to which they resemble or depart
from CSCs originating from adult stem cells has yet to be fully explored.

Metabolic reprogramming is also an obvious mechanism of intervening and redirecting the
cell fate of differentiated (normal or non-CSC tumour) cells. Traditionally, energy metabolism
was widely accepted as a passive process that generated ATP and building blocks to meet the
demands of the specialised cell types of the body in response to extra- and/or intracellular
signals. Today, however, the modulation of energy metabolism and build-up of oncogenic
metabolites are viewed as the harbingers of cancer stemness [52]. Typically, cancer cells are
dependent more on glycolysis for energy production, even in the presence of sufficient oxygen
to support oxidative phosphorylation. This phenomenon of aerobic glycolysis is commonly
referred to as the Warburg effect and appears to fulfil the requirement of proliferating cancer
cells to rapidly yield ATP and to provide anabolic substrates (such as amino acids, nucleotides,
and phospholipids) for their daughter cells [53]. Besides, increased lactate generation during
aerobic glycolysis provokes the acidification of the tumour microenvironment, ultimately
giving rise to motile, invasive/metastatic and drug-resistant cells [54]. In agreement with this,
a recent report confirmed and substantiated the need for a metabolic switch to glycolysis in
the emergence of EMT-driven CSC-like characteristics in basal-like breast cancer cells [55].
Another report utilising nasopharyngeal carcinoma as a model system established that
behaviourally-selected and accordingly-assayed CSCs, as distinct from their differentiated
progenies, exhibit a metabolic shift from oxidative phosphorylation to glycolysis for ATP
supply [56]. Nevertheless, contradictory evidence on the metabolic profile of CSCs has also
been presented; two independent research groups reported that the bioenergetic and biosyn‐
thetic demands of quiescent/slow-cycling CSCs are likely to be met by oxidative phosphory‐
lation, not by glycolysis [57, 58].
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CSCs maintain their prolonged residence in the stemness state through diverting and co-opting
elegant signalling pathways that are normally active during embryonic development. The
embryonic/oncogenic signalling pathways operating in CSCs include Notch, Hedgehog (HH),
Wnt/β-catenin, cytokine receptor-mediated JAK/STAT, TNF-α receptor-mediated NF-κB,
growth factor receptor (receptor tyrosine kinase)-mediated PI3K/AKT/mTOR, TGF-β/BMP
receptor-mediated SMAD, and Hippo-YAP/TAZ [59–61]. Sustained activation of and crosstalk
between these cascades ultimately enhance the expression of cell-surface proteins (for
example, CD133, CD44, integrins, and CXCR4), prosurvival proteins (for example, BCL-2,
BCL-XL, MCL-1, survivin, and MIC-1), induced pluripotency-associated transcription factors
(for example, BMI-1, OCT-3/4, SOX-2, MYC, and NANOG), EMT-associated proteins (for
example, MMPs, vimentin, N-cadherin, SNAI, TWIST, and ZEB), glycolysis-associated
proteins (for example, GLUTs and glycolytic enzymes), treatment resistance-associated
proteins (for example, GSH, ALDH1, ABCB1, ABCC1, ABCG2, CHK-1, and CHK-2), proan‐
giogenic factors (for example, VEGF and COX-2), and proinflammatory cytokines (for
example, IL-6 and TNF-α) [60, 62, 63].

Lastly, several miRNAs have been observed to support the emergence of cancer stemness traits
through targeting signalling elements and gene groups implicated in CSC biology. miRNAs
are a fast-growing class of short (19 to 22 nt), noncoding, regulatory RNA molecules that
customarily bind to the 3′-untranslated region (3′-UTR) of their target transcripts to induce
translational repression, degradation, or destabilisation. Although miRNAs generally help
regulate the transitions between different stages of development, they are also linked with
tumourigenesis. As such, CSC-specific miRNA expression profiles may be useful for prog‐
nostic purposes. Those miRNAs that are highly expressed in CSCs of a specific tumour are
termed oncomiRs; those that are excluded from CSCs of the same tumour are known as
tumour-suppressor miRs. Breast CSCs were the first CSCs in which differential expression of
miRNAs was demonstrated [64].

4. Regulation of cancer stemness by telomerase

Most adult somatic cells do not or only transiently express telomerase and undergo telomere
shortening with every cell division until the cell eventually dies. Most tumour cells, including
CSCs, however, display high levels of telomerase activity and possess the ability to continually
regenerate their telomeres [65]. As a result, telomerase upregulation/reactivation serves as an
important mechanism for CSCs to attain indefinite (or at least extremely long) replicative
lifespans. In fact, in reality, telomerase undertakes roles that significantly diverge from its
normal role in elongating telomeres, as suggested by contemporary research on manipulation
of telomerase expression and/or function in cells representing potential targets for oncogenic
transformation and cellular (nuclear and metabolic) reprogramming. Central to the extratelo‐
meric roles of telomerase (particularly of TERT) is its interaction with key downstream
components of the main embryonic/oncogenic signalling pathways or with other macromo‐
lecules (such as DNA and transcription factors) by which gene expression is regulated. The
presence of a few to several hundred copies of TERT, which are not assembled into telomerase,
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in human immortalised cell lines reasonably provides a molecular basis for the formidable
power of TERT as a transcriptional cofactor in oncogenic transformation and cellular (nuclear
and metabolic) reprogramming, irrespectively of its TER-dependent DNA polymerase activity
[66]. A very recent systemic review of the literature by us disclosed that most of the non-
canonical responsibilities of telomerase identified so far strongly relate to the control of cancer
stemness traits [67]. Telomerase/TERT-controlled aspects of the CSC phenotype involve
proliferation, survival, therapy resistance, induced pluripotency, motility, glycolytic metabo‐
lism, and niche establishment and integrity (Figure 2). Equally strikingly, there seems to be a
positive feedback loop between a number of gene products targeting TERT and TERT
expression itself, plausibly amplifying the effects of central oncogenes and oncogenic path‐
ways associated with the generation and/or maintenance of cancer stemness traits in a cell-
autonomous manner. Although some of the observed cell-intrinsic/microenvironmental
changes may require a catalytically active enzyme, there are several examples of oncogenic
alterations brought about by catalytically inactive telomerase, as in the case of alternatively
spliced (AS) TERT variants. To date, as many as twenty different AS TERT variants have been
identified [68]. These variants tend to occur more frequently in cancer cells than in normal
cells, indicating that they may be evolutionarily favoured in the context of pathology.

4.1. Stimulation of CSC proliferation

Given their role in the expansion of a tumour cell population, CSCs must display extensive
proliferative capacity. Cell proliferation is both a matter of progression through the cell cycle
and an issue necessitating cell growth (biosynthesis). There is a wealth of information in the
literature on the promotive role of telomerase, independent of its telomere-elongating function,
in cell proliferation. In an early study of the association between telomerase and cell prolifer‐
ation, telomerase was shown to support the proliferation of human mammary epithelial cells
through elevated EGFR signalling (even though it is quite ambiguous whether this effect is
telomere length-independent or not) [69]. Moreover, TERT confers CSC characteristics to
glioma cells by inducing EGFR expression, disconnectedly from its role in telomere biology
[70]. Interestingly, telomerase upregulation was found to be closely linked to EGFR expression
in actively proliferating normal human epithelial cells [71]. These observations imply the
existence of a feed-forward loop that involves telomerase/TERT and EGFR. A plausible
mechanism linking the EGFR‒telomerase axis to cancer is that aberrant EGFR signalling may
render CSCs less dependent on exogenous mitogens/growth factors and reinforce the persis‐
tent expression of telomerase in CSCs, thus playing a critical role in tumour development and
progression.

Expanding these findings, one research group demonstrated that TERT promotes the prolif‐
eration of mammalian tissue progenitor cells via transcriptional control of a MYC- and Wnt-
related developmental program [72]. To be more precise, TERT physically occupies the
promoters of Wnt/β-catenin target genes, including those encoding cyclin D1 and MYC [73].
Cyclin D1 is a cell cycle control protein with oncogenic potential and has both enzymatic and
nonenzymatic activities which are of great significance in tumour cells [74]. An additional
molecular component involved in cyclin D1 expression in proliferating cells is nucleolar
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Figure 2. Emergence and persistence of cancer stemness by telomerase/TERT (figure adapted from [67] with permis‐
sion). Clearly and unmistakably, telomerase/TERT is a powerful regulator of many aspects of the CSC phenotype, in‐
cluding: (a) proliferation, survival, therapy resistance; and (b) induced pluripotency, motility, glycolytic metabolism,
niche establishment and integrity. This multifaceted ribonucleoprotein complex exerts its telomere-independent tu‐
mour-promoting effects partly by diverting and co-opting developmental signalling pathways and modulating gene
expression. A cross symbol denotes an inhibition (blockage). A dashed arrow indicates that a given cancer stemness
trait is not a direct consequence of the process shown in the preceding box, but of the inhibition of that process. AG,
angiogenesis; DDR, DNA damage response; dsDNA, double-stranded DNA; dsRNA, double-stranded RNA; GSH,
glutathione; INF, inflammation; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; rDNA, ribosomal DNA; RMRP,
RNA component of mitochondrial RNA-processing endoribonuclease; ROS, reactive oxygen species; siRNAs, small in‐
terfering RNAs
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antigen p120 (NOL1), as suggested by the results of a very recent study [75]. In this study,
telomerase was found to interact, in a TER-dependent fashion, with NOL1 and activate the
transcription of the gene coding for cyclin D1. The relationship between TERT and cyclin D1
expression was corroborated also by other scientists [76–79]. Further support for TERT
involvement in the stimulation of Wnt signalling-mediated cell proliferation was evidenced
by an independent approach employing the Δ4‒13 AS variant of human TERT that is devoid
of reverse transcriptase activity [80]. In this approach, ectopic expression and small interfering
RNA (siRNA)-mediated knockdown of the Δ4‒13 AS variant in ALT cells, transformed
telomerase-positive cell lines and telomerase-negative normal cells unquestionably proved
that the proliferative effect of TERT is not coupled to telomerase activity. Because β-catenin is
known to modulate TERT expression in stem cells and tumour cells [81], it is tempting to
speculate that telomerase and Wnt/β-catenin signalling may act together in a positive feedback
circuit to actively encourage the proliferation of CSCs.

Intriguingly, one group failed to find evidence that TERT promotes Wnt signalling in human
breast cancer cells, indicating that TERT’s effect on Wnt signalling is possibly context- and cell
type-dependent [82]. Their findings are in the same direction as those from a former study on
telomerase-null mouse models, where TERT loss-of-function in a physiological setting was
reported to have no evident effects on Wnt signalling [83]. An alternative mechanism of action
of telomerase on cell proliferation, as deduced by reverse genetics in human mammary
epithelial cells, is that TERT-induced cell proliferation may result primarily from decreased
levels of the RNA component of mitochondrial RNA-processing endoribonuclease (RMRP),
not from increased Wnt signalling [78]. TERT and RMRP form a definite ribonucleoprotein
complex that exhibits RNA-dependent RNA polymerase activity and, using RMRP as a
template, produces double-stranded RNAs that can be later processed into siRNAs in a Dicer-
dependent fashion [84]. siRNAs regulate gene expression at the posttranscriptional level as
well as at the level of chromatin structure; therefore, it is reasonable to question whether their
mutations or altered expression correlate with human cancers.

Aside from activating Wnt signalling and regulating gene expression (in the presence of
RMRP), telomerase also stimulates ribosomal biogenesis through increased Pol I-directed
ribosomal DNA transcription, exerting a positive influence on cell cycle and proliferation
dynamics [85]. This may ultimately improve the protein synthesis capacity of CSCs for
unrestrained growth. The molecular mechanism behind telomerase-induced ribosomal
biogenesis was investigated in a very recent report where a MYC-driven oncogenesis model
was proposed [79].

4.2. Promotion of CSC survival

Apoptosis is a form of cell death induced by miscellaneous stimuli and mediated by a subset
of cysteine proteases termed caspases. A cancer cell’s ability to evade death signals, thus
preventing self-destruction by the activation of an apoptotic programme, is regarded as one
of the hallmarks of cancer [86]. Several pieces of information suggest that telomerase exerts
antiapoptotic effects in cancer cells through telomere-independent mechanisms. In the case
of CSCs, telomerase-mediated inhibition of apoptosis may contribute to the enhanced and
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continued survival of these cells in tumours. In keeping with its cytoprotective function, TERT
was revealed to  inhibit  cell  death  by  blocking the  death  receptor-initiated (or  extrinsic)
apoptotic  pathway  in  acute  promyelocytic  cells  [87].  Similarly,  yet  in  a  mechanistically
different  way,  TERT was  also  shown to  block  the  mitochondrion-initiated  (or  intrinsic)
apoptotic pathway in colon and cervical carcinoma cell lines [88]. A more thorough prob‐
ing of the molecular mechanism behind telomerase-mediated suppression of the intrinsic
apoptotic  pathway  found  that  TERT  overexpression  upregulates  the  expression  of  the
antiapoptotic mitochondrial protein BCL-2, downregulates the expression of some proapop‐
totic mitochondrial proteins (for example, BAX) and reduces the activation of some caspas‐
es (for example, caspase-9) in ovarian surface epithelial cells [89]. Given the capacity of BCL-2
to increase telomerase activity in human colorectal and cervical carcinoma cell lines [90], it
is conceivable that telomerase and BCL-2 are engaged in a positive feedback loop that impedes
apoptosis.  In  this  connection,  it  is  well  to  add  that  the  introduction  of  a  constitutively
expressed TERT construct  into  colon carcinoma and Burkitt’s  lymphoma cell  lines  was,
independently  of  telomerase  activity,  associated  with  the  reversion  of  a  transcriptional
programme coordinated by p53, a potent and common activator of both the intrinsic and
extrinsic apoptotic pathways [91].

Apart from suppressing mitochondrion-initiated cell death, overexpression of TERT was also
found to suppress, in a telomere-independent manner, endoplasmic reticulum (ER) stress-
induced cell death in murine primary neural cells and human cancer cell lines [92]. ER stress
arises as a result of perturbations in ER function and elicits the unfolded protein response
(UPR), a conserved signal transduction pathway for dealing with misfolded proteins. When
the UPR-induced mechanisms fail to alleviate ER stress, both the intrinsic and extrinsic
apoptotic pathways may become activated [93]. Reciprocally, specific activation of ER stress
was demonstrated to upregulate TERT expression in a breast cancer cell line [94]. It therefore
seems reasonable to suggest that TERT and ER stress are involved in a dynamic interplay
supporting CSC survival in abnormal metabolic conditions such as glucose starvation.

4.3. Induction of pluripotency

Restoration  of  the  molecular  circuitry  that  forms  the  necessary  base  of  pluripotency  in
embryonic stem cells (ESCs) strongly correlates with the gaining and retention of cancer
stemness. In ESCs, this circuitry is made up of special transcription factors and function as
a repressor of differentiation. Takahashi and Yamanaka were the first to demonstrate that a
cocktail of four transcription factors (namely OCT-3/4, SOX-2, MYC, and KLF4) are necessa‐
ry and sufficient for nuclear reprogramming into an ESC-like state [95]. In CSCs, the so-
called Yamanaka factors,  besides driving the induction of  pluripotency,  are  additionally
involved in inhibiting apoptosis [96]. A valued piece of work documented that TERT forms
a ternary complex with the nucleolar GTP-binding protein NS/GNL3L and the chromatin
remodelling  factor  BRG1 and  that  the  resulting  NS/GNL3L TERT BRG1 complex  is  re‐
quired for NS/GNL3L-induced upregulation of the nuclear reprogramming factors OCT-3/4,
MYC, and KLF-4 [97].  The likely part played by TERT/telomerase in contributing to the
pluripotent character of CSCs is also congruous with the later finding that siRNA-mediat‐
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ed hTERT depletion in gastric  CSCs downregulates  the induced pluripotency-associated
transcription factor OCT-4 [98].

4.4. Increase of CSC motility and invasiveness

Migrating CSCs and EMT-phenotypic cells have the ability to disseminate from their primary
site and are thus present in the invasive front of tumours. The initial evidence for telomerase/
TERT participation in cell migration came from experiments measuring the in vitro migration
rate of telomerase-positive progenitor cells and cancer cell lines [99, 100]. Later experiments
aiming at uncovering the molecular mechanism behind this positive trend showed that
telomerase reconstitution boosts cell migration through the activation of Rho family members
and the SDF-1‒CXCR4 axis [101]. With respect to CSC motility, expression of the chemokine
receptor CXCR4 may enable CSCs to migrate along a gradient of the ligand SDF-1 and thus
help facilitate their spread. Therapeutic strategies intended to interfere with the SDF-1‒CXCR4
axis can possibly have useful clinical relevance and application in the prevention of metastatic
disease.

Differentiated epithelial cells that have undergone EMT may as well exhibit augmented
motility and invasiveness leading to metastasis. The ternary complex containing TERT, BRG1,
and NS or GNL3L (see section 4.3) acts in a telomere-independent mode to activate the EMT
programme via NS/GNL3L-induced upregulation of vimentin, SNAI, and TWIST, three of the
mesenchymal cell markers, in genetically defined cancer cells [97]. TERT additionally stimu‐
lates EMT in gastric cancer cells through directly regulating the expression of Wnt/β-catenin
target genes like those coding for vimentin and SNAI-1 [98]. Equally important is the fact that
TERT, in a telomere-independent manner, regulates the expression of several MMP family
members, such as MMP-9, via the NF-κB pathway [102]. MMPs are the key mediators pro‐
moting extracellular matrix (ECM) degradation and remodelling, both of which pave the way
for EMT and subsequent metastasis. The indirect involvement of TERT in dissemination was
also highlighted by a separate set of data which documented that changes in the motility and
invasiveness of malignant cells are likely to result from the TERT-induced upregulation of the
metastasis-implicated proteins RhoC and MMP-9 [103]. Interestingly, MMP-9 silencing was
shown to downregulate TERT expression via ITGB1-mediated FAK signalling in glioma
xenograft cells [104]. It is worth mentioning here that a very recent report found that ITGB1
itself is regulated by TERT and that TERT may promote the invasion and metastasis of gastric
cancer cells by enhancing ITGB1 protein levels [105]. Collectively, these findings reinforce the
notion that there is an indirect, metastasis-favouring interaction between TERT, MMP-9 and
ITGB1 in cancer cells. Another study discovered that TERT upregulates the levels of MAC2BP,
a metastasis-related secreted ECM glycoprotein, in gastric cancer cells [106]. MAC2BP is
believed to support metastasis through interacting with galectins and altering cell‒cell and
cell‒matrix adhesion properties [107].

Another contribution to knowledge came from a very recent report in which TERT was found
to stimulate the expression of oncomiRs, including miR-21, in human leukaemia and HeLa
cell  lines  [108].  Extant  research  identifies  miR-21  as  being  among  the  most  frequently
upregulated miRNAs in epithelial  cell-derived solid tumours [109] and also as having a
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decisive role  in  the conservation of  CSC phenotype via  the  AKT and ERK1/2 signalling
pathways  targeting  PTEN  [110].  The  centrality  of  miR-21  to  cancer  stemness  was  con‐
firmed in a recent study on the antisense oligonucleotide-mediated inhibition of miR-21 in
two different anaplastic thyroid carcinoma (ATC) cell lines, where the knockdown of miR-21
disturbed the stemness state of ATC cells, as assessed by a decreased expression of the genes
encoding OCT-4 and ABCG2 [111].

4.5. Modulation of energy metabolism

Apparently, genetic, epigenetic and microenvironmental changes that regulate the transition
to a CSC-like state cannot occur without the presence of a favourable metabotype. In general,
stimulation of aerobic glycolysis promotes metabolic reprogramming, whereas inhibition of
glycolytic enzymes impairs metabolic reprogramming. In harmony with the concept that
metabolism is involved in the control of cancer stemness, a microarray-based gene expression
profiling study elucidated that ribozyme-mediated targeting of telomerase in murine mela‐
noma cells downregulates the expression of more than a few glycolytic pathway genes such
as those coding for phosphofructokinase and aldolase C [112]. Additionally, a very recent
report showed that siRNA-mediated knockdown of TERT in human lymphoma cells lowers
the expression of MYC-regulated target genes such as those coding for the glycolytic enzymes
lactate dehydrogenase, hexokinase 2, and pyruvate kinase M2 isoform [79]. Due to the fact that
MYC is a well-established oncogenic transcription factor activating TERT expression [113], a
feed-forward mechanism for the rewiring of glucose metabolism in CSCs is likely to prevail
between TERT and MYC.

4.6. Contribution to therapy resistance

CSCs are notorious for their resistance to existing cancer treatment regimens, including
radiotherapy and chemotherapy. Both cell-intrinsic and microenvironmental factors appear
to contribute to the emergence of therapy resistance in CSCs. Radiotherapy works by directing
ionising radiation toward tumours to induce the generation of reactive oxygen species (ROS)
which react with and cause damaging of DNA. By the same token, a number of chemothera‐
peutic agents such as platinum-based antitumour drugs are known to bind to and cause
crosslinking of DNA. In this regard, implementation by CSCs of fast and efficient DNA repair
mechanisms as well as potent antioxidant/scavenger systems may prove vital to circumvent
the deleterious effects of irradiation and several classes of antitumour compounds.

Growing evidence points to a role for telomerase in modulating DDR and contributing to DNA
repair. In a prior report, TERT was proposed to, independently of its effect on telomere length,
set in motion a transcriptional programme leading to enlarged ribonucleotide (NTP) pools,
enhanced DNA repair, and increased chromosomal stability [114]. A circumstantial investi‐
gation into the enhanced DNA repair capability of telomerase-expressing cells suggested that
TERT/telomerase increases DNA end-joining repair and accelerates nucleotide excision repair
through recruiting proteinaceous factors to sites where DNA damage is occurring [115]. The
aforementioned findings are consistent with a newer report which showed that TERT expres‐
sion affords a means of protecting human transformed cells against double-stranded DNA-
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damaging drugs and increases their endurance to chromosomal instability [116]. Specifically
expressing TERT mutants lacking catalytic activity in ALT cells, the authors of the same report
reached the conclusion that the observed cytoprotective effect of telomerase is distinct from
its function in telomere biosynthesis. In a separate study providing evidence for an epigenetic
component to telomerase-induced treatment resistance, stable short hairpin RNA (shRNA)-
mediated suppression of TERT expression was demonstrated to, in a telomere length-
independent way, diminish the response of human fibroblasts to DNA double strand breaks,
most likely through a mechanism altering the overall state (that is to say, configuration) of
chromatin [117].

Telomerase upregulation/reactivation also seems to be involved in counteracting oxidative
stress-induced intracellular injury that often follows therapy, as evident from several experi‐
mental studies. The initial study examining the extratelomeric function of telomerase under
oxidative stress found that mitochondrially-localised TERT decreases cellular peroxide levels
and mitochondrial superoxide production, increases mitochondrial membrane potential and
protects mitochondrial DNA from oxidative damage in human lung fibroblasts [118]. The
observation that telomerase provides resistance to oxidative stress was validated and extended
in an ensuing study where TERT was shown to bind to mitochondrial DNA and accordingly
protect it and its function against damage [119]. An alternative explanation for telomerase-
induced resistance to oxidative stress came from a more recent study in which TERT overex‐
pression in cancer cells was demonstrated to alleviate basal ROS levels and intracellular ROS
production through potentiating the effects of endogenous antioxidants or free radical
scavengers such that the proportion of reduced to oxidised glutathione (GSH/GSSG) is
increased and peroxiredoxin is replenished in the interior of the cell [120]. Apart from serving
to keep mitochondrial DNA damage-free, mitochondrially-localised telomerase also guards
nuclear DNA against oxidative attack through decreasing mitochondrial ROS production
[121]. Finally, it is appropriate to mention that the β-deletion variant, a catalytically defective
AS variant of TERT, localises to both mitochondria and the nucleus and, distinct from the
canonical role of TERT in telomere extension, protects three basal breast cancer cell lines from
cisplatin-induced apoptosis, endowing breast tumours with chemotherapy resistance [122].

4.7. Establishment and integrity of the CSC niche

The tumour microenvironment (TME) is an umbrella term that encompasses all cellular and
non-cellular components surrounding a tumour. These components include tumour-adjacent
stromal cells (for example, endothelial cells and fibroblasts), diverse effectors of the immune
system (for example, lymphocytes and mesenchymal stem cells), ECM elements, proteases,
and networks of cytokines, growth factors and other soluble factors. Specifically, both the
immediate TME (cell‒cell and cell‒matrix connections) and the extended TME (for example,
vascular bed) are thought to be implicated in tumour progression. The TME is also capable of
creating a niche for CSCs, in which they remain in an undifferentiated state until stimulated
to differentiate into non-CSC tumour cells and form tumour bulk. Modulation of gene
expression and metabolism by telomerase in CSCs may recondition the CSC niche in favour
of the hypermalignant (that is to say, highly metastatic, therapy-resistant) nature of these cells.
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It is in this regard that a recent study demonstrated that telomerase binds to p65 and localises
to promoters of NF-κB target genes, such as those encoding IL-6, TNF-α, and IL-8, proinflam‐
matory cytokines that are the critical triggers of inflammatory responses [123]. Inflammation
is considered an enabling characteristic of cancer for the reason that it supplies bioactive
molecules (for example, growth factors and EMT-inducing ligands) to the TME and primes
cells to release ROS and other chemicals that drive the mutagenesis, and hence genetic
evolution, of nearby tumour cells toward hypermalignancy [86]. Since NF-κB is known to
transcriptionally upregulate telomerase levels [124], this finding implies that a positive
feedback loop between telomerase and NF-κB may explain the grounds for the coexistence of
chronic inflammation and sustained telomerase activity in neoplastic lesions.

Furthermore, it was reported that TERT activates the transcription of VEGF, an endothelial
mitogen and master orchestrator of angiogenesis, independently of telomerase activity in
HeLa cells [125]. Further dissection of the underlying regulatory mechanism led to the
conclusion that TERT upregulates VEGF expression through its interaction with the specificity
protein 1 (Sp1) transcription factor [126]. Angiogenesis is the process of growth or formation
of fresh blood vessels from the pre-existing vasculature, and its induction is widely considered
an essential attribute of tumour growth as well as metastasis as solid tumours larger than 1
cm3 have to develop their own blood supply to circumvent necrotic cell death. Given the prior
discovery that VEGF stimulates the production of TERT [127], it may be that there is a positive
feedback circuit between TERT and VEGF. This regulation may account for the combined and
continuing contribution of these two proteins to the maintenance of CSCs in solid tumours.
Moreover, siRNA-mediated knockdown of TERT was shown to downregulate the prostaglan‐
din-synthesising enzyme COX-2 in pancreatic cancer cells [128]. COX-2, like VEGF, is a
proangiogenic factor that has the potential to establish a selective niche favourable to the
preservation of CSCs. Subsequent studies showed that COX-2 stimulates the expression of
TERT in cervical cancer cells [129]. Collectively, these data indicate that a feed-forward
regulation, which could be important in carcinoma growth and progression, occurs between
TERT and COX-2.

5. Prospects for telomerase-targeted anticancer therapies

There is little doubt that telomerase is not only an effector in human tumour pathogenesis but
also a regulator of essentially all aspects of malignant behaviour, including spreading to
secondary sites. This being the case, specifically and sensitively measuring telomerase activity
in clinical samples represents both an early diagnostic marker and a negative prognostic factor
for patients with malignant disease. The obvious capacity of telomerase to directly regulate an
ever-expanding number of tumour-promoting genes and pathways renders this gifted
ribonucleoprotein particle an attractive and almost universal target for human cancers. Given
the integral role played by cancer stemness in disease recurrence, selectively targeting and
eradicating CSCs with low toxicity to somatic cells and with minimal side effects holds the
promise of a full cure for cancer. Besides being pursued with vigour in the hope of improving
patient outcomes, successfully suppressing cancer stemness may also provide the ultimate
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evidence for the CSC concept. As summarised in this chapter, telomerase contributes to
carcinogenesis most likely through the emergence and persistence of conspicuous CSC
qualities. Accordingly, telomerase inhibition in CSCs is predicted to: (i) shrink telomeres; (ii)
restrain anchorage-independent growth and inhibit proliferation by cell cycle arrest; (iii)
induce CSC death; (iv) induce CSC differentiation; (v) inhibit CSC migration and reverse the
EMT programme; (vi) deteriorate glucose metabolism; (vii) enhance radio- and chemosensi‐
tivity; and (viii) disrupt the CSC niche. Serious telomere shrinkage is assumed to be a long-
term effect of telomerase inhibition in CSCs so the tumour mass will continue to expand for a
time after treatment until its constituent cells enter crisis and begin to die in large numbers.
The rest of the aforementioned effects, however, are likely to occur after short-term exposure
of CSCs to telomerase inhibitors, inducing relatively rapid initial responses to treatment.
Natural telomerase inhibitors (phytochemicals) and small-molecule telomerase inhibitors,
antisense oligonucleotides and chemically modified nucleic acids, immunotherapeutic agents,
and telomerase-directed gene therapy are promising treatment options and may play a larger
role in the near future [130]. Imetelstat (GRN163L), which was designed by Geron Corporation
in 2003, is the first telomerase inhibitor to advance to clinical development. It is a lipid-
conjugated 13-mer (5ʹ‒TAGGGTTAGACAA‒3ʹ) antisense oligonucleotide that is complemen‐
tary to and binds with high affinity to TER, thereby directly inhibiting telomerase activity and
interfering with telomere length homeostasis. It is perhaps safe here to assume that Imetelstat
impairs the regulatory role of telomerase in CSC biology not only through telomere shortening
but also through negatively influencing its telomere length-independent tumour-promoting
functions. In support of this, short-term (72-hour) Imetelstat exposure was shown to promote
the differentiation and inhibit the colony-forming ability of multiple myeloma CSCs through
a telomere length-independent mechanism [131]. Similarly, in vitro Imetelstat treatment was
found to deplete breast and pancreatic CSCs, as measured by the reduced proportion of ALDH-
positive and CSC-surface marker-expressing cells, through a mechanism of action independ‐
ent of telomere shortening [132]. Although Imetelstat is known to form thermodynamically
stable and sequence-specific duplexes with TER, the possibility that even less thermodynam‐
ically stable tetraplexes of Imetelstat may bind to and interfere with some other, yet to be
identified, proteins (particularly those that interact with telomerase) should not be excluded
[133]. There also exists a possibility that telomerase inhibitors like Imetelstat may be coupled
with conventional therapies such as surgical (debulking) therapy, radiotherapy, and chemo‐
therapy, all of which have their own weaknesses and inadequacies. Such combination therapy
is predicted to result in rapid and durable clinical responses in broad tumour types (Figure
3). As shown by the sources provided earlier in this chapter and elsewhere in the literature,
the principal signalling pathways governing CSC biology operate in physiological stem cells
as well. This complicates telomerase inhibition therapy because of the risk of telomerase
inhibitors exerting an adverse influence on the size of the physiological stem cell pool and/or
on the integrity of the physiological stem cell niche. The notion that physiological stem cells
only transiently express telomerase and have relatively long telomeres [65], however, means
that there is likely to be a narrow but safe therapeutic window where only CSCs will be
depleted by telomerase inhibitors and normal stem cells will remain unaffected. Furthermore,
rational approaches that disrupt the interactions of telomerase with important downstream
components of embryonic/oncogenic signalling pathways (Wnt/β-catenin and NF-κB being
the most prominent of all so far) may be conceived and executed as therapeutic tactics to
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specifically target and eliminate CSCs. As far as targeting protein‒protein interactions is
concerned, a future challenge is to add to existing pathways or identify new ones where
telomerase, independently of its role in preventing telomere loss, intervenes and contributes
to CSC phenotype. The essential nature of telomerase in the promotion and maintenance of
cancer stemness provides a logical basis for believing that CSCs will not develop resistance to
any of the aforementioned telomerase-focused therapeutics, in contrast to other targeted
anticancer therapies whose targets are likely to be compensated for by functionally equivalent
gene products and signalling pathways.

Figure 3. Combination therapy for predicting rapid and durable clinical responses in broad tumours. Here, telomer‐
ase-focused therapy is proposed as a strategy to effectively target CSCs. Combining telomerase-focused therapy with
conventional therapy may provide scope for the elimination of bulk tumour cells while preventing recurrence by si‐
multaneously eradicating the stem-like component of the tumour. Combination therapy may also prevent non-CSC tu‐
mour cells from acquiring cancer stemness traits via, for example, EMT. A bar-headed solid line denotes a strong
inhibitory (negative) effect. A bar-headed dashed line denotes a weak inhibitory (negative) effect.

6. Abbreviations

ABC, ATP-binding cassette; Akt, protein kinase B; ALDH1, aldehyde dehydrogenase 1; BAX,
BCL-2-associated protein X; BCL, B-cell lymphoma family protein; BMI-1, B lymphoma Mo-
MLV insertion region 1 homolog; BMP, bone morphogenetic protein; BRG1, Brahma-related
gene 1; CD, cluster of differentiation; CHK, checkpoint kinase; COX-2, cyclooxygenase-2;
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CXCR4, C–X–C chemokine receptor type 4; EGFR, epidermal growth factor receptor; ERK1/2,
extracellular signal-related kinase 1/2; FAK, focal adhesion kinase; GLUTs, glucose transport‐
ers; GNL3L, guanine nucleotide-binding protein-like 3-like; IL, interleukin; ITGB1, integrin
beta-1; JAK, Janus kinase; KLF-4, Kruppel-like factor-4; MAC2BP, Mac-2-binding protein;
MCL-1, myeloid cell leukaemia-1; MIC-1, macrophage inhibitory cytokine-1; MMPs, matrix
metalloproteinases; MYC, v-myc avian myelocytomatosis viral oncoprotein homolog; mTOR,
mammalian target of rapamycin; NANOG, Nanog homeobox transcription factor; NF-κB,
nuclear factor-κB; NS, nucleostemin; OCT-3/4, octamer-binding transcription factor-3/4; PI3K,
phosphoinositide 3-kinase; PTEN, phosphatase and tensin homolog; SDF-1, stromal cell-
derived factor-1; SMAD, small mother against decapentaplegic homolog; SNAI, snail family
zinc-finger transcription factor; SOX-2, SRY (sex determining region Y)-box 2; STAT, signal
transducer and activator of transcription; TAZ, Tafazzin; TGF-β, transforming growth factor-
β; TNF-α, tumour necrosis factor-α; TWIST, twist family bHLH (basic helix-loop-helix)
transcription factor; VEGF, vascular endothelial growth factor; Wnt, Wingless ligand; YAP,
Yes-associated protein; ZEB, zinc-finger E-box-binding homeobox family protein
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