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Abstract

The study on aerosol dynamics processes, such as formation of nano/microscale aerosol
particle and its subsequent growth in quiescent or evolving flows, has received much
attention from both chemical engineering and atmospheric environment communities.
The suitable theoretical method for resolving aerosol dynamical processes is widely
known as population balance modeling (PBM), which is based on solving the popula‐
tion balance equation (PBE) in terms of particle number concentration. The study on the
solution of the PBE has undergone rapid development in last several decades. In this
chapter, the development of the method of moments for solving the PBE is presented.
Three main methods of moments, including the Taylor series expansion method of
moments, log‐normal method of moments, and quadrature method of moments, are
discussed.

Keywords: aerosol dynamics, method of moments, population balance equation

1. Introduction

Aerosol particles usually refer to fine particles in air whose size is smaller than micrometer [1].
This type of particles can be found in a wide range of industrial and natural phenomena such
as nanoparticle synthesis [2, 3], aerosol sciences and air pollution [4–7], contamination control
in the microelectronics and pharmaceuticals industries [8], and diesel particulate formation [9].
The dynamics characteristics of size of these particles spans from free molecular size regime
much less than Kolmogorov length scale to inertial range. Due to Brownian motion, aerosol
varies greatly in the degree of stability, even though the aerosol flow convection transport is not
involved. Although this type of multiphase system widely emerges in industries and our
surroundings, some key issues including the conversion from gas to particle and the subsequent
particle growth affected by the surroundings remain unresolved [10]. Unlike some common
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techniques used in the multiphase flow community, the task of the study on aerosol dynamics
is to grasp the interaction between the dispersed particles and the carrier phase and also to obtain
the fundamentals of internal processes such as nucleation, condensation, coagulation, and
breakage [11].

If the particle formation and subsequent growth are studied theoretically, the theory should
cover from simple kinetics theory to continuum theory. The Stokes’ law needs to be modified
as applied in this field because aerosol particles are usually smaller than molecular mean free
path [1]. Some common methodologies in multiphase flow community, such as Euler‐Lagrange
and Euler‐Euler, are unsuitable to be used in this field. In fact, in the first decades of last century,
studies on dynamics of micro‐ and nanoscale particles are always the focus of physical science
[12]. With further requirements of modern industrial nanoparticle synthesis and atmospheric
observation, the study on interaction between fine particles and the surrounding becomes more
and more important, and thus, it needs to combine the methodology in modern multiphase
flow theory with aerosol dynamics to resolve complicated micro‐ and nanoscale particle
multiphase problems [13]. The object of these studies is to capture the property, behavior, and
physical principle of aerosol particles in air and further apply this knowledge to their meas‐
urement and control.

Besides convection and diffusion transport, the evolution of aerosol particle dynamics arises
mainly from internal mechanisms, including homogeneous or heterogeneous nucleation,
condensation, coagulation, and breakage. Among these internal mechanisms, coagulation
occurs most commonly, but it is yet the most difficult to be treated from the viewpoint of
mathematics, because the correlation among all the particles must be concerned separately
[14]. Since the pioneering work of Smoluchowski in 1917, the mean‐field theory has been
introduced in aerosol collision problems and has been basis for numerous theoretical appli‐
cations. These applications include the derivation of coagulation kernel under different
mechanisms, the solution of the governing equations within the Smoluchowski mean‐field
theory, and the application of Smoluchowski mean‐field theoretical model to predict the
behavior of aerosol multiphase system. In fact, within the Smoluchowski mean‐field theory,
some important phenomena such as self‐preserving distribution [15–17], and gelation or
asymptotic behavior [18–21] have been thoroughly studied using state‐of‐the‐art technologies
such as the method of moments (MOM) [17, 19–23], sectional method (SM) [24–30], stochastic
particle method [31–35], and Monte Carlo method [36–42]. The method of moments is more
widely used than other methods due to that it requires the least requirement for computational
cost as well as the relative simplicity of implementation [36].

Although the method of moments has become a powerful tool for investigating aerosol
chemistry physical processes since it was first used in aerosol community by Hulburt and Katz
[22], the closure of governing equations in terms of kth moment is not easy to achieve. Up to
now, there have been five main techniques proposed to achieve the closure of moment
equations, namely the Taylor series expansion MOM (TEMOM) [43], the predefined size
distributed method such as log‐normal MOM (log MM) [44, 45] and Gamma MOM [46],
Gaussian quadrature MOM (QMOM) and its variants [47, 48], pth‐order polynomial MOM
[49], and MOM with interpolative closure (MOMIC) [23]. In recent years, the PBM scheme,
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which couples the PBE with the Computational Fluid Dynamics (CFD), has been increasingly
received attention, and accordingly, it is possible to simultaneously capture the details of the
fluid flow and transport, the evolution of the particle size distribution and complex chemical
kinetics. For any techniques, consuming computational cost has to be concerned as the solution
of Navier‐Stokes equations is involved. Thus, the efficiency of solving the PBE in the imple‐
mentation of the PBM is another important issue besides the accuracy of numerical calculation.
Although the QMOM and its variants are the most used scheme for solving the PBE today, it
shows disadvantage in efficiency as compared to the TEMOM and log MM. It needs to note
here in the log MM, and the log‐normal size distribution has to be employed in the construction
of the model, which inevitably weakens its reliability and capability for solving the PBE. It is
necessary to construct a new approach with respect to moment equation, which is easy to
implement with low computational cost like the log MM and has not the prior requirement
for particle size spectrum like the QMOM, to adapt to the requirement of modern complicated
particulate industries. In particular, there needs a suitable technique capable of providing
explicit moment governing equations for further asymptotic analysis for the PBE [50]. In order
to accomplish it, a new promising method of moments based on Taylor series expansion
technique has been proposed and successfully applied to resolve some aerosol engineering
problems [43]. Relative to the QMOM and log MM, the TEMOM has advantage to give explicit
moment governing equations, making it suitable as basis equation for further analytical
solution or asymptotic solution of the PBE.

This chapter is outlined as follows: In Section 2, the review of the PBE as well as its solution
is presented, in which three main techniques applied for solving the PBE, namely the meth‐
od of moments, sectional method, and Monte Carlo method, are briefly presented; the meth‐
od of moments is highlighted in Section 3, where three predominated methods of moments,
including the QMOM, log MM, and TEMOM, are presented separately.

2. Methods for solving the PBE

The study of PBE dates back to 1917 when famous polish scientist, Smoluchowski, first
established the discrete governing equation for colloid coagulation, that is, Smoluchowski
equation [12]; then, Smoluchowski equation was further developed by Müller in its integral‐
differential form, which finally becomes the basis equation of the PBM [51]. Today, the
Smoluchowski equation has developed from its original version only accounting for coagula‐
tion to the present version accounting to almost all aerosol dynamics, including external
processes such as particle convection and diffusion transport in air, and internal processes such
as nucleation, coagulation, condensation, and breakage [52, 53]. Without loss of generality, the
general form of a PBE, accounting for both external and internal processes, can be expressed
as: where n(v,xi,t) is the particle number density for particle volume v, location x, and time t;
uj is the particle velocity; uth is the thermophoresis velocity; DB is the Brownian diffusion
coefficient; Gr is the particle surface growth rate; J is the nucleation rate for the critical monomer
volume v*; β is coagulation kernel between two particles; and a and b are parameters accounting
for the breakage rate associated with the turbulence shear force. Equation (1) encompasses
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almost all physicochemical processes of aerosol with a size smaller than approximately 1 μm
and therefore is reliable for studying aerosol dynamics. In particular, an inherent advantage
is that it can be coupled with the Navier‐Stokes equation.
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It needs to note here in Eq. (1), the coordinate (i.e., particle volume v) of particle number
concentration function might be other quantity, such as particle surface area or charge number,
and coordinate number might be more, depending on the specific requirement of study. Even
only the particle volume is selected as coordinate of particle number concentration function,
the direct numerical solution of Eq. (1) is intractable for most applications due to the extreme
large number of independent variables, and it should be further modified using suitable
mathematical techniques. To solve the Eq. (1) numerically or analytically, several schemes by
different researchers, including the method of moments, sectional method, and stochastic
particle method, have been proposed and evaluated. Both advantages and disadvantages of
these three methods have been compared in many review articles [36, 53]. In case the coagu‐
lation kernel is simplified with homogeneous assumption, the analytical solution of PBE can
be achieved [54–57]. The analytical method has been used to study nanoparticle dynamics in
an experimental chamber [58].

Because of relative simplicity of implementation and low computational cost, the method of
moments has been extensively used to solve the PBE. In the application of this method, the
fractal moment variables inevitably appear in the transfer from the PBE to moment governing
equation, which needs to be further treated with different techniques. Due to the low require‐
ment for computational cost, in the last decade, the combination of method of moments and
Computational Fluid Dynamics (CFD) technique has been an emerging research field; the task
is to investigate the temporal and spatial evolution of nanoparticles under turbulent condi‐
tions.

The information of particle size distribution is lost due to the integral in the transfer from the
PBE to moment governing equations in the method of moments, and thus this method is unable
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to trace the evolution of particle size distribution (PSD) if the reconstruct technique of PSD is
not implemented [59]. The sectional method, which divides the PBE into a set of size classes,
overcomes the limit of method of moments in tracing the PSD. This method was usually used
as an exact solution to validate the method of moments [60] and also widely applied in studies
on the evolution of particle size distribution at engineering conditions due to the different
dynamical processes including coagulation, condensation, gas‐particle conversion, etc.

An alternative to sectional method and method of moments for solving the PBE is stochastic
particle method (or Monte Carlo method) [31–35]. The application of this method, however, is
limited because of low efficiency. This method has advantage to capture the evolution of
particle size distribution physically and also can be used to obtain some key kernels for aerosol
dynamics such as coagulation. Up to now, there have been lots of versions of Monte Carlo
methods for solving the PBE, but the coupling between the Computational Fluid Dynamics
(CFD) and Monte Carlo method is still limited.

3. Method of moments

The evolution of aerosol particle behavior arises from the interaction between particles and
surrounding air; these small particles share energy with gas molecules and exhibit Brownian
motion. With the exception of convection and diffusion transport, the nucleation and conden‐
sation mechanisms account for the mass or energy transfer from gas vapors to particle system,
while coagulation and breakage mechanisms account for particle number variance. In theory,
all the mechanisms can be defined as a function of time from a macroscopic probability view.
Within the Smoluchowski mean‐field theory, all aerosol dynamics processes can be invoked
into the particle general dynamic equation, that is, the PBE. Except nucleation and condensa‐
tion mechanisms, some difficulties are from closure of unresolved moment, which limits the
application of moment methodology in this field. This is not only because there is nonintegral
form in coagulation or breakage kernel, but also because there are much more specific
mechanisms to concern.

Typically, turbulence is the driving force for particle radii of about 1–10 μm, while smaller
particles are driven by Brownian motion and larger particles by differential sedimentation [61].
Here, coagulation receives much more attention by scientists than other dynamics processes
such as nucleation and condensation because coagulation mechanism is harder to dispose in
mathematics [14, 62]. The collision between interparticles is assumed to be instantaneous with
spherical shape, while the mathematical description for agglomerate structures composed of
noncoalescing spheres should be specially disposed [17, 63–65].

3.1. Closure of moment equations

The key task of the method of moments for solving the PBE is to convert the PBE to
moment governing equations, during the conversion some approximations have to be
employed to achieve the closure of the moment governing equations. Once the closed
moment governing equations were established, they can be solved by some common
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numerical techniques, such as the fourth‐order Runge‐Kutta method. In the past, some
techniques have been proposed to implement the method of moments. In this section, we
only focus on coagulation and present how these different methods of moments are
implemented for resolving this issue.

In order to represent the evolution of particle number, it is necessary to define particle
concentration as a function of time and particle volume. This disposition was first proposed
by Smoluchowski [12] for coagulation in dilute electrolytes, which has been basis for solving
micro‐ and nanoparticle multiphase problems in modern aerosol or colloid science. The
integral form of Smoluchowski equation is: where n(v,t) dv is the number of particles whose
volume is between v and v+dv at time t, and β(v,v') is the collision kernel for two particles of
volumes v and v'. If the method of moments is used, the general disposition for this problem
is to convert Eq. (2) into an ordinary differential equation with respect to the moment mk. The
conversion involves multiplying Eq. (2) by vk and then integrating over the entire size distri‐
bution, and finally the converted moment equation based on the size distribution is obtained
where
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The key task of all methods of moments, including the TEMOM, QMOM, MOMIC, and log
MM, is to convert the integral term on the right hand of Eq. (3) to polynomials, and thereby,
the numerical calculation can proceed. In this chapter, only the TEMOM, log MM, and QMOM
will be presented. If readers have interests to other methods of moments, they are recom‐
mended to read articles for the MOMIC [23], the Gamma method of moments [66], and the
DQMOM [48].
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3.2. Taylor series expansion method of moments

The TEMOM was first proposed in 2008 in its numerical version for dealing with coagulation
due to the Brownian motion [43]; since then, it was further developed [60, 64, 67]. On the basis
of governing equations obtained from the TEMOM, researchers have found that it is easy to
achieve analytical and asymptotic solutions of the PBE [19, 20, 56, 57, 68–70]. The TEMOM has
been applied in many aerosol‐related problems and has also successfully been used for the
realistic environmental and engineering problems where multidynamics are involved [71, 72].
However, all of these quoted studies were only taken into consideration for three‐order Taylor
series expansion using integer moment sequence. The recent study shows that this kind of
solution leads to shortcoming of the existing TEMOM, that is, the initial geometric standard
deviation is limited, and the fractional moment at an initial stage cannot be accurately captured.
Both shortcomings indeed greatly weaken the capability of the TEMOM. To overcome the
shortcoming of the TEMOM in this aspect, a generalized TEMOM was currently proposed [60],
in which the accuracy of numerical calculation is increased with increasing the orders of Taylor
series expansion.

Here, we select coagulation in the continuum‐slip regime as an example to present how the
TEMOM is implemented. The coagulation kernel for agglomerates in the continuum‐slip is
[64] where vp0 is the volume of primary particles,B2 = 2kbT/3μ, ψ = λA/(3/4π)1/3, A = 1.591, f = 1/Df.
To implement the TEMOM, we need to substitute Eq. (5) in Eq. (3) and then multiply vk on both
sides, and we can obtain the following expression, where
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Once the definition for k ‐th moment, mk, shown in Eq. (4), is introduced, we can obtain the
following expression for moment governing equation, where
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It is obvious that Eq. (7) is not closed due to the appearance of some unexpected variables,
such as m−f and mf. In the TEMOM, approximated functions are used to replace these unex‐
pected variables, such as third‐order Taylor series expansion function,
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As the function shown in Eq. (8) is applied in Eq. (7), the final closed moment governing
equation can be obtained where
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Equation (9) is a system of first-order ordinary differential equations, all the right terms are
denoted by the first three moments m0, m1, and m2, and thus, this system can be automatically
closed. It is clear in the derivation that no any physical assumption for the particle size
distribution is introduced, making the TEMOM has more solid foundation in mathematics
relative to the log MM.

The TEMOM was further developed to a much more general version, that is, generalized
TEMOM. This newly developed version has some advantages as compared to old one. The
new generalized TEMOM successfully overcomes the shortcomings of the old version whose
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geometric standard deviation must be less than a certain value. In addition, the accuracy of
numerical calculation for capturing fractional moments at an initial stage can be largely
increased. In the generalized TEMOM, the closure function shown in Eq. (8) is changed, in
which the moment sequence is composed not only by integer moments but also by fractional
moments. Thus, higher‐order Taylor series expansion can be achieved for the closure function,
making it much more accurate function.

3.3. Log-normal method of moments

Unlike the TEMOM, the closure of moment governing equations in the log MM is achieved by
assuming the PSD to log‐normal size distributions. This method was first investigated by
Cohen and Vaughan whose work covers both Brownian and gravitational coagulation [73].
This work forms the basis of the computer code HAARM and aerosol dynamics model MAD
[74], and the latter finally became key part in some atmospheric forecast models, such as WRF/
chem. Thanks to works from scientists, including Lee [44, 75], and Pratsinis [14], the log MM
becomes one of several main methods of moments today, and especially, it has been applied
in computational fluid dynamics software, Fluent.

Similar to the TEMOM, the log MM also requires to first obtain the moment equations as shown
in Eq. (7). Then, the task is to use its own closure function to achieve the closure of moment
equations. In this method, the closure function is obtained on basis of the log‐normal size
distribution assumption, which has the following expression, where
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In theory, once the PBE was converted to forms such as Eq. (7), in which unresolved moments
are involved, it can be further numerically solved together with Eq. (10).

3.4. Quadrature method of moments

The QMOM and its variants such as DQMOM are regarded as the mostly used method of
moments in the implementation of the PBM [47, 48]. This method achieves great success in
that it has no any physical assumptions and has no requirement for the form of dynamics
kernels. Thus, this method can deal with all relevant aerosol dynamics problems. Unlike the
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log MM, this method does not need to first convert the PBE to unresolved moment equations,
which needs further closed by approximated closure functions, such as Eqs. (8) and (10).
Therefore, this method can be regarded as the most ideal scheme for solving the PBE if the
numerical efficiency is not considered. In this method, the closure problem of the PBE is solved
with a quadrature approximation. However, the weights and abscissas of the quadrature
approximation need to be additionally obtained by suitable mathematical techniques, such as
the product-difference algorithm. This increases the computational cost in contrast to the log
MM and TEMOM. In fact, the numerical efficiency is similar important to the accuracy for
simulation; especially, the coupling between the PBM and the computational fluid dynamics
is considered.

Same as discussed in Sections 3.3 and 3.4, coagulation in the continuum-slip regime is selected
as an example to present how the QMOM is implemented. To implement the QMOM, Eq. (3)
needs to be disposed using Gaussian quadrature approximation as below, where vi is the ith
quadrature point, and ωi is the corresponding weight in the quadrature formula. This method
has insensitive form of kernel β(vi, vj), and thus, extremely complicated kernel can be used. The
method requires two times of quadrature point number to attain expected moments, for
example, governing equations for moment m0, m1, …, m5 need to be simultaneously solved as
NQ = 3.
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To implement the QMOM, the quadrature abscissas and weights are obtained from lower-
order radial moment sequence by solving Eq. (11). During the implementation, the key task is
to construct a symmetric tridiagonal matrix whose diagonal elements and off-diagonal
elements are derived from the calculated moments. The symmetric tridiagonal matrix is
diagonalized to obtain the abscissas and weights. It needs to note here that the number of
abscissas and weights are dependent on NQ. More details about the implementation of the
QMOM are recommended to see the original work of this method.
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