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Abstract

A study was carried out to determine the accumulation of trace metals in water, sedi-
ments, and soil from several locations in the Transylvania region (Romania), using the
inductively coupled plasma mass spectrometry (ICP‐MS) technique. A significant num-
ber of metals (range of several μg L−1) were identified, the toxic metal concentrations in
mostly of the investigated waters being within the permissible limits. A seasonal varia-
tion in the metal content was also observed. Comparison of the metal concentrations to
samples of sediment, soil, and vegetation coming from the surrounding areas of the
same water reservoir revealed a higher accumulation of rare and toxic metals in sedi-
ments than in soil and vegetation.

Keywords: surface water, pollution, environmental quality

1. Introduction

The main strategic objective of Romania in the field of water is linked to European integra-

tion, which involves harmonization and implementation of the acquis communautaire in

the field of water quality protection. National Water Law No. 107/1996 [1], updated in July

2015, legally enshrines a novel conception on the status of water (Article 1, paragraph 1):

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



renewable natural resource, vulnerable, and confined; indispensable for life and society (its

physical dimension); raw material for productive activities, source of energy, and transport

route (its economic dimension); critical element in maintaining the ecological balance (its

environmental dimension). The European Union (EU) Water Framework Directive (WFD) [2]

establishes a framework for the protection of waters and consists of a new vision for the

management of water resources in Europe. Mainly sustained on ecological elements, the

ultimate objective of the WFD is the achievement of at least “a good ecological quality status”

for all surface waters.

According to the estimation of the World Health Organization, about two‐thirds of diseases

are caused by the polluted water. Through its accession to the EU, Romania has undertaken to

comply with the European regulations on water quality [3]. Within the United Nations Envi-

ronment Programme, which supports the surveillance of water quality in freshwater ecosys-

tems worldwide, by its global system of environmental monitoring (GEMS)/Water Global

Network [4], the determination of heavy metals concentration is mandatory when the water

quality is assessed.

The proposed subject represents a highly current field; the concentration of heavy metals in

water being an intensive subject researched worldwide [5–7]. Some researchers have deter-

mined metal concentrations in water, sediment, plant; others have studied the metals effect on

live organisms [8–10]. Heavy metals are seen as potential hazard for human health and

ecosystem as they cannot be degraded, being continuously deposited and incorporated in

water, sediments, soil, and vegetation. Anthropogenic activities may lead to important accu-

mulations of toxic metals into the environment; therefore, the assessment of contamination

degree in the aquatic and terrestrial environments by means of elemental analysis became a

common monitoring activity of our days.

2. Sample preparation and analytical methods selection for analyzing

contaminant elements in environmental samples

2.1. Study area

Somes is a transboundary catchment located in the north‐western Romania. Its main sources of

water are the surface waters, reservoirs, and ground waters. The overall water resources in the

basin are theoretical about 4.348 billion m3 (of which 4.012 billionm3 coming from surface waters

and 336 million m3 of groundwater), but only 21.7% are technically usable. In this region, there

are 23 reservoirs with areas over 0.5 km2 such as the Gilau Lake (0.67 km2), Tarnita (2.2 km2),

Somes Cald (0.8 km2), and Fantanele‐Belis (8.15 km2).

The main objective of this study was to characterize the surrounding areas of raw water

accumulations from the catchment, in terms of its content in heavy metals and rare earth,

correlated with the supply mechanism of these surface waters. Thus, an assessment of the

quality of surface flowing waters, during 2009–2011, was performed. Waters from eight surveil-

lance sections were sampled: the Gilau dam (Area 1); the Somes Cald River (Area 2); the end of

Gilau Lake intersection with the Somes Cald River (Area 3); the Somes Cald Lake (Area 4);
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the confluence of Somes Cald Lake with Somes Rece Lake (Area 5); the Somes Rece Lake (Area

6); Tarnita (Area 7); and the end of Tarnita Lake bottom (exit from hydro plant—Area 8). The

measurements were made with a variable frequency. Once with establishing the sampling data,

we envisaged the possibility to set any correlations between the values of the monitored

parameters and the climatic factors. Samples of sediment, soil, and vegetation corresponding

to the surface water sampling points were also taken.

2.2. Samples preparation

Water samples were collected in high‐density polyethylene containers previously washed in a

solution of 10% nitric acid in an ultrasonic bath for 15 min followed by repeated rinsing with

bi‐distilled water and finally rinsed with ultrapure water (resistivity 18.2 MΩ cm−1). Until

sampling, the containers were kept in sealed polyethylene bags. Water samples were stabilized

with ultrapure nitric acid (0.5% HNO3).

Samples of sediment, soil, and vegetation require a digestion process to bring them into solution.

For inductively coupled plasma mass spectrometry (ICP‐MS) analysis, the digestion process

should satisfy some conditions: the entire quantity of sample has to be dissolved, only

ultrapure reagents must be used, any loss of analyte has to be avoided, the vessels in which

the sample is kept must not react with the sample or the reagents used for the digestion, and

the entire process should be fast and reliable. The samples were lyophilized, and then, 0.1 g

aliquot of each sample was weighed. These aliquots were then digested in an acid mixture (3

ml HNO3 60% + 2 ml HF 40%) at high pressure and temperature. After cooling, the liquid was

transferred through a semi‐automatic pipette in a 50 cm3 volumetric flask of high‐density

polyethylene and was brought to the required volume with ultrapure water.

2.3. Analytical procedure

The analytical methods used in environmental monitoring have greatly evolved. Inductively

coupled plasma mass spectrometer offers fast multielement capabilities, a high dynamic range,

and excellent detection limits in a large number of matrices. It can be used for a variety of

aqueous samples like natural waters or environmental samples that can be dissolved [11, 12].

The mass spectrometry with inductively coupled plasma (ICP‐MS) is among the most success-

ful existing methods applied when concentrations of trace and ultra‐trace elements (under

ppb) are envisaged [13].

For this work, measurements were performed with a mass spectrometer ICP‐MS model Elan

DRC‐e, Perkin Elmer, with the following characteristics: detection limit 0.001–0.01 µg L−1;

resolution <0.5 at 10% peak height; abundance sensitivity 1–5 × 10−7; and precision: <2% at 20

min. The performance of an ICP‐MS instrument strongly depends on the operating conditions.

Working parameters for plasma were chosen so as to obtain a good compromise between high

sensitivity and low oxide levels. The following instrumental parameters of Elan DRC‐e spec-

trometer were set: 0.92 L min−1 nebulizer gas flow (NEB); 1.2 L min−1 auxiliary gas flow (AGF);

15 L min−1 plasma gas flow (PGF); 1100 W. ICP RF Power; 0.0 quadrupole rod offset; and 70.00

discriminator threshold.
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2.4. Reagents and standards

Ultrapure deionized water (18.2 MΩ cm−1) from a Milli‐Q analytical reagent‐grade water

purification system (Millipore) and ultrapure HNO3 60% were used. All the plastic lab ware

employed for sampling was either new or cleaned by soaking 24 h first in 10% HNO3 then in

ultrapure water. A 10 mg L−1 solution of Mg, Cd, Cu, In, Ba, Ce, Pb, and U (in 1% HNO3,

PerkinElmer Atomic Spectroscopy Standard–Setup/Stab/Masscal Solution) was used as exter-

nal standard. The calibration solutions for quantitative measurements were prepared from a

multi‐element standard purchased from PerkinElmer (standard ICP‐MS containing 29 ele-

ments, matrix: 5% HNO3, PerkinElmer Life and Analytical Sciences), of 10 mg L−1. To deter-

mine the rare metals in the water samples, a multi‐element standard (multi‐element calibration

standard 2: 10 mg L−1: Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Sc, Tb, Th, Tm, Y, Yb),

PerkinElmer (atomic spectroscopy standard), was used.

2.5. Parameters of performance

A method for determining the concentrations of heavy metals in water by ICP‐MS was devel-

oped and validated. The performance parameters were within specifications of SR EN ISO

17294‐2: water quality—application of inductively coupled plasma mass spectrometry (ICP‐

MS). Limit of detection recorded by the validated method for the elements under study pro-

vides the minimum limit of quantification required for quantitative determinations of the

concentrations of these elements in the investigated waters, very good linearity (with correla-

tion factors R > 0.999) for most elements.

The minimum detection limit is the lowest concentration or quantity of analyte which can be

measured with reasonable statistical certainty. To determine the limit of detection 3SD, a

method developed by PerkinElmer (Estimating Instrument Detection Limits, Elan version

3.4., and Software Guide) was used. Ultrapure water of 18.2 MΩ cm−1 was aspired, and signal

intensities for blank were recorded. The limit of detection was calculated by Eq. (1) where

SDblank is the standard deviation for the signal recorded on the blank for the element studied,

conc.sample is the concentration (μg L−1) of the analyte in the sample, and Isample and Iblank are

the signal intensities recorded for the sample and blank, respectively:

LOD ¼ 3 � SDblank � concsample=ðIsample−IblankÞ: (1)

The limit of quantitation (LOQ) is the lowest concentration that can be quantitatively deter-

mined with an acceptable level of repeatability and accuracy. It is generally considered to be

approximately ten times the minimum detection limit (LOD). The analytical quality control

included daily analysis of standards and triplicate analysis of samples and blanks. The accu-

racy and precision of the analytical technique were evaluated by analyzing a certified standard

reference material. Precision of the instrument was determined by introducing the same

quantity of one sample ten times, and then, the relative standard deviation (RSD) was calcu-

lated. RSD values ranged from 0.4 to 6.4% confirming the high precision of the method.

Accuracy expresses the correlation between the arithmetic mean of the measured values and
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the accepted reference value. RE ranged from −0.3 to 13% confirming the accuracy of the

implemented method (Table 1).

3. Experimental

3.1. Element concentrations in surface waters

Quantitative determination of the elements content in studied surface waters showed an increase,

from 2009 to 2011, of Al and Mn concentrations in three sampling areas (Area 2, Area 4, and

Area 5); an increase of Zn and Pb to Area 7; of Fe, Ti, Zn, and Pb concentrations to Area 2; of

Cu and Pb to the Area 5; and of Fe and Cu to Area 6 (Table 2). High values were also registered

for Zn and As in all sampling areas, during 2011 campaign, but below the permissible mini-

mum level [14]. Increased concentrations of Cu, Zn, As, and Pb were observed in samples of

Elements

Parameters

R1 LOD

(ng L−1)

LOQ

(ng L−1)

Intra‐day studies Inter‐day studies

Added

(μg

L−1)

Found

(average)

(μg L−1)

SD2

(%)

RSD3

(%)

Added

(μg

L−1)

Found

(average)

(μg L−1)

SD2

(%)

RSD3

(%)

RE4

(%)

Al 0.9994 1.7 16.7 25 25.59 0.23 0.9 25 25.69 0.18 0.72 2.76

Cr 0.9999 1.3 13.2 2.5 2.53 0.01 0.6 2.5 2.56 0.05 2.22 2.6

Mn 0.9995 2.6 26.5 2.5 2.51 0.04 1.5 2.5 2.60 0.07 2.93 4.0

Ni 0.9999 1.2 12.4 2.5 2.40 0.03 1.2 2.5 2.58 0.14 5.36 3.4

Cu 0.9997 1.3 12.7 2.5 2.57 0.03 1.2 2.5 2.64 0.07 2.61 5.5

As 0.9999 3.5 34.5 2.5 2.73 0.03 1.0 2.5 2.71 0.02 0.66 8.5

Sr 0.9989 0.5 5.3 25 25.32 0.11 0.4 25 25.24 0.26 1.02 0.95

Cd 0.9999 1.1 10.9 2.5 2.58 0.05 1.9 2.5 2.67 0.06 2.22 7.0

Ba 0.9998 0.9 8.7 2.5 2.67 0.04 1.7 2.5 2.83 0.18 6.48 13.3

Pb 0.9993 0.5 4.9 2.5 2.31 0.07 1.7 2.5 2.49 0.14 5.59 −0.3

Fe 0.9989 6.5 64.7 25 25.43 0.14 0.6 25 25.53 0.48 1.88 2.76

Ti 0.9998 15.8 157.8 25 25.82 0.08 0.3 25 26.19 0.54 2.06 2.76

Zn 0.9968 4.6 45.7 25 24.87 0.13 0.5 25 24.74 0.23 0.94 -

1.06

La 0.9993 5.1 50.9 2 2.03 0.02 0.9 2 1.87 0.16 8.79 −6.4

Ce 0.9995 5.3 52.7 2 2.16 0.02 1.1 2 2.06 0.20 9.88 3.2

1R—correlation coefficient; 2SD—standard deviation; 3RSD—relative standard deviation, RSD (%) = SD/[metal] mean ×

100; 4RE—relative error, RE (%) = ([metal] found − [metal] added/[metal] added) × 100.

Table 1. Performance parameters obtained for heavy metals studied.
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surface water collected in 2010 compared with those collected in 2009 and 2011. These concen-

trations can be correlated with the registered rainfalls that were much higher in 2010. Seasonal

changes in the concentrations of the analytes of interest observed in surface waters result from

the dilution effect that occurred during rainfall. The content of heavy metals from the sampled

river waters reduces due to the mixing with large volumes of uncontaminated water draining

from the slopes. When the river flow decreases, the reverse phenomenon occurs. The contam-

inant concentrations increase both due to the evaporation and of the bacterial activity of

sulfides oxidation once with the increase of temperatures.

3.1.1. Metals in water: seasonal influence

Water quality is affected by the weather conditions. This was revealed by studying the sea-

sonal influence on the content of metals in water samples taken from the same areas in

different calendar periods. A variation of heavy metal concentrations was observed in samples

of water, sediment, and soil, depending on the season and certain times of year.

Characterization in terms of Cr, Pb, and Cu concentrations in water samples taken from the

accumulation of fresh water of Tarnita (Area 8), Somes Cald (Area 2), and Somes Rece (Area 6)

in early 2010 showed that the highest concentrations of these elements (Area 7) were registered

in June and the lowest in January. This could be explained by the fact that the pollution

originates in the driving effect of heavy metals by precipitation water that “wash” the adjacent

area before reaching the lake. In the summer months, it is normal that the effect is more

pronounced than in the cold winter months when the ground is frozen and therefore less

exposed to erosion. The occurrence in July of higher concentration levels for some metals

(e.g., Co, Cu, As) could be explained by the elevated temperatures recorded in this month that

Elements

Sampling area/concentration (µg L−1)

Area 7 Area 2 Area 5 Area 6

2009 2010 2011 2009 2010 2011 2009 2010 2011 2009 2010 2011

Al 2.74 4.47 18.16 4.84 5.86 15.58 9.81 9.88 17.86 3.98 8.16 12.89

Mn 0.24 8.39 5.68 0.72 1.58 12.41 1.31 2.036 4.41 1.23 4.29 6.81

Fe 6.36 28.15 24.20 7.48 24.43 62.86 51.22 45.99 31.12 29.70 35.75 39.28

Ni 0.38 0.33 0.49 0.38 0.76 0.70 0.50 0.29 0.58 0.56 0.29 0.61

Ti 13.24 12.54 15.63 14.56 17.29 28.94 15.61 11.89 11.09 30.02 16.97 10.15

V 0.12 0.12 0.07 0.05 0.01 0.24 0.072 0.10 0.096 0.17 0.06 0.09

Co 0.03 0.63 0.43 0.03 1.37 0.613 0.032 0.56 0.398 0.07 0.53 0.52

Cu 0.69 0.59 0.71 1.42 0.71 1.348 0.588 0.50 0.727 0.59 0.54 0.68

Zn 0.23 0.16 13.08 0.19 0.14 1.26 0.202 0.13 0.532 0.87 0.14 1.57

As 0.61 0.43 1.24 0.54 0.44 2.186 0.500 0.47 1.167 0.85 0.49 1.11

Pb 0.08 0.02 0.061 0.08 0.01 0.071 0.018 0.02 0.163 0.04 0.02 0.04

Table 2. Comparative situation of metal concentrations in water sampled during the monitoring campaign.
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led to partial oxidation and solubilization of the sulfides, including biotransformation pro-

cesses. Moreover, the intense evaporation enabled the crystallization of minerals containing

large amounts of constituents of the elements Co, Cu and As. These minerals may contain

soluble salts, which dissolve when rainfall is recorded in higher amounts. Table 3 shows the

minimum and maximum values of the concentrations of elements in waters depending on the

areas and sampling periods.

Determination of rare earths from various types of environmental samples is particularly

important because it can serve to establish a sample fingerprint, and thus, the results could be

used in determining the origin of the concerned sample and to identify sources of pollution

Elements/concentration range Sampling period

Area of sampling

Area 1 Area 2 Area 4 Area 5 Area 6 Area 7

Al/2.6–31.78 µg L−1 March

May

July min. min. min. min. min. min.

September max. max. max. max. max. max.

Ti/0.18–50.37 µg L−1 March max. max.

May max. max.

July min. min. min.

September min. max. max. min. min.

Mn/0.16–25.5 µg L−1 March min. min. min.

May max. max. max.

July min. min. min.

September max. max. max.

Fe/5.6–86.8 µg L−1 March min. max. max.

May

July min. min. min. min. min.

September max. max. max. max.

Ba/7.8–40.1 µg L−1 March max.

May max. max. max. max. max.

July min. min. min.

September min. min. min.

Sr/15.6–101.2 µg L−1 March min. min. min. min. min.

May min.

July max. max. max. max.

September max. max.

Table 3. The registered minimum and maximum values of the metal concentrations in waters by sampling area.
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[15, 16]. Mass spectrometry with inductively coupled plasma offers the possibility to measure

the rare earths with an excellent accuracy, which cannot be achieved by any another method

[17, 18]. In this context, systematic observations correlated with the climatic conditions were

performed in this work for a prolonged period. Thus, by comparing the data on a sampling

site, in different periods, higher concentrations of La, Ce, and Pr were observed in September.

Analyzing data obtained in the 3 years of monitoring (2009, 2010, and 2011) for the same

sampling month, a constancy of the rare metal concentrations was revealed, except for Sc,

which recorded a significant decrease in 2009 (Table 4). Determination of trace amounts of rare

earth elements dissolved in water was correlated with their concentration in the soil; concen-

trations of rare metals can originate from the soils adjacent to waters that once washed by

rainfalls reach these waters. Quality of surface water and sediments, in terms of chemical

species concentrations of the metals, was discussed based on the results obtained for the

surface water and sediment analyzed samples taken from locations.

Elements

Sampling area/concentration (µg L−1)

Area 8 Area 7 Area 5 Area 6

2009 2010 2011 2009 2010 2011 2009 2010 2011 2009 2010 2011

Sc 2.686 0.693 0.428 1.493 0.862 0.403 1.680 0.817 0.423 2.515 0.842 0.429

Y 0.033 0.056 0.035 0.028 0.058 0.031 0.017 0.065 0.030 0.065 0.064 0.034

La 0.037 0.036 0.057 0.025 0.047 0.02 0.019 0.037 0.052 0.082 0.038 0.036

Ce 0.073 0.103 0.047 0.029 0.053 0.012 0.038 0.069 0.07 0.142 0.041 0.093

Pr 0.017 0.009 0.018 0.005 0.008 0.005 0.004 0.011 0.014 0.023 0.010 0.01

Nd 0.039 0.056 0.03 0.016 0.032 0.011 0.013 0.039 0.047 0.090 0.045 0.046

Sm 0.013 <0.001 0.005 0.004 0.003 <0.001 0.003 0.007 <0.001 0.020 0.001 <0.001

Eu 0.002 0.001 0.002 0.003 0.002 <0.001 0.004 0.003 <0.001 0.009 0.004 <0.001

Gd 0.009 0.012 0.007 0.005 0.007 0.002 0.003 0.014 0.007 0.018 0.009 0.014

Tb 0.002 0.001 0.002 0.001 0.002 0.003 0.001 0.002 0.002 0.004 0.003 0.002

Dy 0.005 0.010 0.005 0.006 0.010 <0.001 0.002 0.004 0.005 0.018 0.012 0.003

Ho 0.001 0.002 0.001 0.001 0.003 <0.001 0.001 0.003 0.003 0.003 0.002 0.002

Er 0.003 0.004 <0.001 0.002 0.005 <0.001 0.001 0.008 <0.001 0.010 0.007 <0.001

Tm 0.001 0.001 0.001 <0.001 0.002 <0.001 0.001 0.001 0.001 0.002 0.001 0.003

Yb 0.001 0.005 <0.001 0.002 0.003 <0.001 <0.001 0.004 <0.001 0.008 0.004 <0.001

Lu <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

Th 0.022 0.013 0.057 0.028 0.010 0.02 0.020 0.010 0.052 0.027 0.033 0.036

Table 4. Comparative situation of the rare metal concentrations during the monitoring campaign.
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3.2. Element concentrations in sediments samples

Valuable data regarding the distribution of pollutants in sediment [19–22] were published in

recent years. However, there is a limited analysis of the sedimentological characteristics on the

pollutant distribution, which can play a key role in distinguishing the different sources,

transport processes, and conservation status of specific contaminants in the environment. All

the physicochemical and biochemical processes in aquatic systems take place at interfaces

water‐atmosphere‐lithosphere, and a particularly important role is assigned to chemical and

biochemical reactions at the water‐sediment interface, which adjust the composition of natural

waters. Studying the influence of physicochemical factors on the distribution of metals in

sediments and water is important when the retention of metals by various types of sediments

is assessed, developing thus predictions that may assure data comparison, interpretation, and

their extrapolation, as an important contribution to the sustainable management of the inves-

tigated area.

Trace elements are one of the main sources of pollution of the aquatic chain. Since they tend to

be adsorbed in sediment, the study of the adsorption/desorption of heavy metals in sediment

and the effect of sediment transport are of particular importance. Sediments from lakes are an

excellent witness of the water quality since they preserve important information on the envi-

ronment and are recognized as a source of contaminants in aquatic systems due to the local

physicochemical conditions. It is worth mentioning that the sediments are the best environ-

ment for toxic metals due to their high absorption capacity; therefore, sediment plays an

important role in storing and releasing metals.

Correlations of climatic factors with the sampling locations were performed in relation to

pollution sources. The most important factor in determining the concentration values of chem-

ical species of the pollutant metal proved to be the location of the sampling point relative to the

anthropogenic sources of pollution. A correlation was also found between the concentrations

values of chemical species of the metal and the climatic factors registered during the monitor-

ing period. As shown in Table 5, the concentration values for the most elements (Cd, Cu, Pb,

Hg, and Zn) in sediment samples collected from the study area are within the permissible

limits.

Based on the analysis of experimental data, it can be concluded that there is a match between

the total concentrations of chemical species of the metals studied in samples of surface water

and sediments collected from the same locations. Possible transfers of metal compounds in

both directions may occur, from the sediment into the surface water and vice versa.

The levels for most metals in sediment samples collected from the study area generally were

within the limits of admissibility, except for As present in quantities that exceeded the mean

admitted values (sediments sampled in 2010 from the Areas 2 and 5). The average concentra-

tions of some metals such as As, Pb, Co, U, and Cd were higher in the dry season than in the

wet season. This is possible due to the dilution by rainwater influencing the concentration and

mobility of heavy metal. In contrast, the mean concentration of Fe in sediment samples taken

from the driest month was lower than concentrations in samples collected within the wet
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period, probably due to the rainfall. Higher values of metal concentrations were found in

sediments taken from lakes versus those sampled from rivers.

The predominance of metals in the free ionic form and as soluble compounds in water, in an

acidic environment, favors both the exchange processes at the water‐sediment interface and

the bioabsorbtion processes with direct consequence on the toxicity of these metals. Hence,

Elements/permissible limits [23]

Sampling area/concentration (mg kg-1)

Month Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8

As/17 mg kg−1 March 17.33 16.53 14.66 11.23 111.39 12.91 21.75 20.17

May 35.43 34.69 55.95 19.41 133.79 51.06 76.34 48.22

July 20.15 22.37 55.93 28.28 26.78 26.30 87.48 80.34

September 19.07 25.43 35.78 36.12 172.32 159.34 169.63 34.49

Cd/3.5 mg kg−1 March 0.16 0.11 0.07 0.10 0.12 0.15 1.12 0.96

May 0.35 0.32 0.41 0.22 0.16 0.56 1.65 0.13

July 0.10 0.14 0.25 0.15 0.12 0.15 2.97 1.54

September 0.08 0.12 0.15 0.20 0.38 0.36 0.31 0.26

Cr/90 mg kg−1 March 11.95 20.55 19.38 21.13 39.02 18.59 20.75 19.12

May 31.23 36.74 42.56 82.38 44.24 88.55 72.90 32.28

July 16.40 16.57 16.39 71.97 60.19 21.84 61.04 60.34

September 11.19 32.92 49.64 53.23 102.47 91.17 89.18 35.83

Cu/200 mg kg−1 March 11.03 10.62 9.91 10.59 20.08 11.21 11.65 10.15

May 25.41 24.16 27.71 47.66 27.81 60.78 66.97 17.93

July 10.29 11.62 14.30 41.52 30.23 17.76 85.25 80.56

September 10.26 17.53 25.38 40.54 54.80 52.78 49.90 16.50

Pb/90 mg kg−1 March 40.24 33.56 39.81 25.78 26.15 20.96 21.17 21.76

May 39.27 39.77 39.87 13.14 13.78 20.12 22.24 22.60

July 19.56 18.43 17.03 8.41 8.23 19.29 24.28 24.18

September 17.54 17.13 27.44 25.43 23.53 22.93 22.92 26.80

Hg/0.5 mg kg-1 March <0.001 0.07 0.12 <0.001 0.09 <0.001 <0.001 <0.001

May <0.001 0.28 0.18 0.03 <0.001 <0.001 0.15 0.12

July 0.01 0.01 <0.001 <0.001 <0.001 0.08 0.09 <0.001

September 0.07 0.04 0.17 0.19 0.24 0.20 0.11 0.07

Zn/300 mg kg−1 March 51.41 44.35 53.09 50.17 42.63 31.59 50.19 30.20

May 81.56 79.43 86.77 80.40 51.30 85.03 167.01 66.27

July 42.71 46.64 57.63 64.72 63.12 54.76 193.75 190.82

September 62.76 64.44 81.60 90.53 103.85 98.82 96.48 134.67

Table 5. Metal concentrations in the analyzed sediment samples.
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appears obvious the need to study the distribution of the metals contained in the sludge

fractions where the metals are attached in combination with different abilities of participating

to the heterogeneous equilibrium sediment‐aqueous phase.

Thus, to study the heterogeneous equilibrium occurring at the water‐sediment interface, the

metal concentrations of sediment pore water were determined. The literature presents the

calculation mode (Eqs. (1) and (2)) of trace metals distribution in the interstitial sediment‐water

interface following the formula:

Psed: ¼ ðMs=MtÞ 100 (2)

Pint:water ¼ 100−Psed, (3)

where Psed. (%) is the proportion of metal in the sediment, Pint.water (%) is the proportion of the

metal in interstitial water, Ms (mg) is the amount of metal in the sediment, Mt (mg) is the total

amount of the metal (sediment + interstitial water) in the sample.

Experimental data showed that for the studied metals, the concentrations in pore water

samples exceed those in surface water, which suggests that sediment through interstitial water

may become a potential source to chemical species mobilization of the metals in water

(Table 6). Characterization in terms of rare metal concentrations, comparing water samples

with water resulting after settling sediment, revealed that the sediments accumulate rare

metals (the concentrations both in water and in sediment are very low, but there is a slight

increase in sediment). It was also highlighted that sediment accumulates a larger amount of

rare earth metals than soils.

3.3. Metal concentrations in soil samples

The catchment of Somes River fits in the temperate continental area, the bioclimatic conditions

in the area causing a moderately active or slow biological circuit, and a strong acidification of

soils. Soil research and its quality assessment closely related to the dynamic use of land offer

Sampling area Sample

Metal concentrations (µg L−1)

As Zn Pb Co Cu Ni

Area 1 Water 1.396 0.583 0.137 0.529 1.422 0.586

Water sediment 1.582 0.699 0.294 0.585 1.595 0.773

Area 4 Water 0.951 0.106 0.03 0.417 0.434 0.411

Water sediment 1.100 0.131 0.044 0.532 0.512 0.587

Area 6 Water 1.131 0.084 0.031 0.535 0.462 0.521

Water sediment 1.372 0.103 0.098 0.619 0.510 0.588

Area 7 Water 0.869 0.081 0.016 0.594 0.415 0.398

Water sediment 1.187 0.102 0.044 0.827 0.546 0.448

Table 6. Trace element concentration in water/water from sediment, year 2011.
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many possibilities in terms of approach. Chemical characteristics of the soil and organic carbon

content, pH, the oxides forms, carbonates, and some physical properties such as clay content

may influence the concentration of chemical elements.

This work has also proposed an assessment of heavy metals distribution in soils in the studied

areas and an investigation of the extent to which heavy metal content in soil from the areas of

waters accumulation may influence their concentration in water. Table 7 highlights the

concentrations of toxic elements in soils versus the limit values according to the Romanian

laws [24].

Cd in soil ranged from relatively narrow limits (0.19–1.95 mg kg−1), with an overwhelming

dominance (>99%) of the contents lower than the alarm threshold. It can be considered as

representative for the natural geochemical background of the investigated area. These abun-

dances are consistent with the geological structure, relatively uniform, which is determined by

sedimentary rocks, which are known for their low content in Cd. An exceeding of the normal

values was observed to Area 4 (Somes Cald Lake), but below the alert threshold.

Mn content is between relatively wide limits (120–1100 mg kg−1), with a similar distribution to

that described by the normal distribution law. Therefore, 99.90% of the samples were below

the maximum content of normal, and only 0.10% of the samples exceed the normal range, but

not the alert threshold. The monitoring carried out on soil during year 2011 revealed an

exceeding of normal values in almost all areas, but below the alert threshold.

Chromium is considered as one of the most harmful metals for human health. In aquatic

environment, it is presented as Cr3+ ion as well as anionic species and CrO4
4− si Cr2O7

2, these

Area

Metal concentrations (mg kg−1)

Cu Pb Zn Cd Ni Cr Mn

Area 1 37.46 33.59 99.23 0.45 43.91 37.05 249.73

Area 2 16.70 31.76 62.43 0.19 24.23 28.55 264.95

Area 3 11.14 22.81 44.37 0.12 14.95 23.81 151.71

Area 4 52.92 75.30 382.66 1.95 38.75 52.93 1027.20

Area 5 37.85 23.52 65.18 0.25 45.94 55.39 534.97

Area 6 58.72 26.50 85.57 0.97 53.84 63.55 807.63

Area 7 42.77 17.31 102.40 0.89 57.18 33.87 513.54

Area 8 71.07 22.59 77.05 0.22 19.57 30.26 207.05

NV 20 20 100 1 20 30 900

TA 100 50 300 3 75 100 1500

IT 200 100 600 5 150 300 2500

NV, normal values; TA, threshold alert; IT, intervention threshold [24].

Table 7. Heavy metal concentrations in soil samples collected in May 2011, in different areas.
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two forms being produced by human activities. The values determined for Cr and Ni in the

soils of the studied areas fluctuate in the range between 12.1 and 86.0 mg kg−1 (for Cr) and

17.0–70.0 mg kg−1 (for Ni), with exceedings of normal values without reaching the alert

threshold.

Pb ranges from relatively low limits of 20–80.4 mg kg−1. Most samples showed an exceeding of

lead concentrations than normal, except for samples collected from Somes Cald Lake where

values above the alert threshold were reported. This clearly reflects the effects of human

intervention in this area.

Zn content determined in 2011 on the analyzed soils varies widely (26–146 mg kg−1) with a

significant dominance (>95%) of the contents, not exceeding normal values for soils. In the

Area 4 (Somes Cald Lake), Zn anomalies are spatially overlapping, largely over the Pb,

suggesting the same originating polluting sources.

Comparing the content of heavy metals in soil and water samples to each sampling point, it

can assert that there is a correlation only in certain areas (e.g., Al, Zn, Ti, and Pb for Area 1),

where the concentrations of metals in water samples may result from soil washing during

rainfall. Here are the results obtained for soil samples collected in different months (Table 8 ):

in March, the highest concentrations recorded for Pb (Areas 1, 2, 3, 5), Cu, Co, Cr (Area 2), Zn

(Areas 2, 7, 8), and Mn (Areas 1, 5); in May, for Zn (Area 4), Ni (Area 7); in July, for As (Areas 2,

3, 4, 5, 7), Cu (Areas 4, 7, 8), Pb, Cr, Mn, and Co (Area 7), Zn (Area 4); and in September, for As

(Areas 1, 6, 8), Cu, Ni, Cr, Zn (Areas 1, 3, 5, 6), Co (Areas 6, 7), and Mn (Areas 2, 3, 4).

Following the values obtained for samples of soil taken from the same area, in different years, a

growing trend 2009–2011 in the concentrations of Pb, As, Ni, Zn, Co, and Cu, was observed

(Table 9).

3.4. Determination of metal concentrations in vegetation samples

The toxic effect of the metals in the tissues and plant cells varies according to the concentration,

leading that at high concentrations the whole process of plant growth and development is

inhibited. Plants heavily suffer due to the harmful action of impurities from polluted air, their

behavior representing a good indicator of pollution.

The ability of removing metals is a general characteristic of the organisms tolerant to metals.

Many organisms/plants instead to eliminate metals accumulate them in high concentrations,

especially in roots and leaves. The manner in which plant metabolism responds to the expo-

sure at different concentrations of heavy metals is an important step in determining the fate of

plants, tissues, or cells and their ability to survive. Metal tolerance issues related to develop-

ment are increasingly the focus of researchers [25].

The ability of plants to takeover chemical elements varies within a wide range. Elements such

as Br, As, B, Cs, and Rb are easily taken, while others such as Ba, Ti, Zr, Sc, Bi, Ga, and Fe are

less available; these aspects are being adjusted depending on the particularities of the soil

plant. Specific to the fungi, these show an affinity for taking over metals like Hg, Cd, Se, Cu,

and Zn. The problem of heavy metal pollution of soil and plants in the general context of
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ensuring the health of living beings (humans, animals, plants), avoiding disturbance on the

balance of the ecosystem and the need to address and to elucidate issues related to quality

greenhouse products in order to improve culture techniques without soil, requires intense

monitoring differences in the content of pollutants in the plant.

We also considered in our work the characterization of vegetation samples from surrounding

areas of raw water reservoirs. We noticed that higher concentrations were found in moss than

Elements Period sampling

Area sampling/metal concentrations (mg kg−1)

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8

As March 12.36 14.67 10.72 13.06 16.74 39.64 40.05 27.87

July 16.95 26.27 28.62 93.30 169.74 53.41 90.18 33.73

September 82.67 25.22 21.36 13.18 25.88 67.62 19.51 49.58

Cu March 16.63 21.03 5.15 20.34 28.64 55.6 73.23 80.54

July 37.21 15.37 13.4 60.53 39.01 52.86 74.87 121.06

September 58.54 13.7 14.88 45.31 45.9 67.71 10.68 21.09

Pb March 48.6 54.4 29.44 49.06 32.26 15.68 10.86 12.42

July 32.56 23.56 21.27 73.06 18.82 20.13 19.84 21.06

September 19.63 17.32 17.73 77.55 19.5 43.70 14.78 24.12

Zn March 102.25 65.12 26.96 108.71 49.2 66.79 106.89 102.85

July 53.85 61.03 55.7 432.00 59.87 77.18 146.37 55.27

September 141.59 61.14 58.46 333.33 86.49 112.76 50.44 98.84

Cd March 0.32 0.27 0.06 1.96 0.21 0.43 0.58 0.16

July 0.27 0.23 0.20 1.95 0.27 1.70 1.64 0.14

September 0.77 0.18 0.12 1.95 0.27 0.8 0.08 0.30

Ni March 17.07 22.74 11.93 25.21 28.65 48.08 52.04 21.32

July 21.09 15.13 15.03 32.81 33.18 40.31 100.92 17.39

September 93.59 34.84 17.1 44.69 76 73.13 13.44 21.76

Cr March 24.26 36.39 12.11 45.31 37.46 56.6 34.16 24.05

July 20.95 23.03 27.28 50.73 59.72 47.51 59.76 24.04

September 65.94 26.23 32.06 55.13 68.99 86.54 7.98 36.48

Mn March 304.55 265.56 127.98 324.06 679.78 387.65 250.13 205.02

July 220.33 207.68 235.08 376.52 289.36 1434.76 655.86 228.02

September 224.33 321.63 220.06 1077.88 635.78 600.5 371.23 186.09

Co March 8.75 11.00 3.57 4.25 12.4 24.55 20.71 17.12

July 8.96 7.12 7.81 19.13 13.35 33.34 23.07 15.82

September 11.93 7.25 8.96 18.55 16.45 29.68 6.69 9.01

Table 8. Comparative situation for metal concentration in soils.
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in leaves, so they accumulate more quickly the toxic metals. Also, there was observed a

concentration of heavy metals in aquatic plant tissues; in the same area of sampling, analyzing

samples of terrestrial and aquatic vegetation, we observed higher concentrations values of Fe,

Co, Ni, Zn, As, and Pb in the lacustrine vegetation. So there is the possibility of using certain

plant species for “extracting” the potential toxic heavy metals from water. Table 10 contains

the metal concentrations of vegetation collected in May 2011, while Table 11 presents the

comparative data for soil‐vegetation.

Elements Sampling year

Area sampling

VN

PA PI

Area 4 Area 6 Sensitive Less sensitive Sensitive Less sensitive

Pb 2009 24.89 27.04 20 50 250 100 1000

2010 39.89 36.72

2011 73.06 43.70

As 2009 10.54 8.38 5 15 25 25 50

2010 18.82 18.43

2011 13.18 67.62

Ni 2009 14.28 8.61 20 75 200 150 500

2010 28.77 26.55

2011 44.69 73.13

Cd 2009 0.18 0.23 1 3 5 5 10

2010 1.14 2.33

2011 1.95 0.80

Zn 2009 46.47 48.24 100 300 700 600 1500

2010 137.35 106.96

2011 333.32 112.76

Cu 2009 17.00 28.65 20 100 250 200 500

2010 58.12 34.12

2011 45.31 67.71

Co 2009 11.63 11.26 15 30 100 50 250

2010 12.85 25.50

2011 18.55 29.68

Hg 2009 0.11 0.10 0.1 1 4 2 10

2010 0.24 0.62

2011 0.05 0.16

VN, normal values; PA, threshold alert; PI, intervention threshold [24].

Table 9. Element concentrations for 3 years of sampling (mg kg-1).
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3.5. Drinking water

The surface water pollution's main impact in the studied area is on the water processing plant in

terms of providing potable water. The drinking water released from the water treatment plant at

good quality parameters and distributed through the public network could reach the end users

Elements

Sampling area/metal concentrations (mg kg−1)

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

Leaves Moss Leaves Leaves Leaves Leaves Leaves Leaves Moss

Ti 44.78 283.50 47.64 121.20 223.20 23.16 41.64 55.34 236.95

V 0.90 31.83 0.47 11.65 21.09 0.34 0.21 2.71 69.19

Cr 3.38 17.44 1.28 9.09 17.28 2.07 1.37 2.62 45.07

Mn 47.74 257.27 41.98 196.11 399.35 93.22 76.17 79.23 252.88

Fe 357.01 9104.51 161.19 3147.62 5580.78 109.56 98.10 631.14 11290.76

Co 0.24 5.62 0.33 2.10 4.47 0.24 0.67 0.86 7.87

Ni 2.05 11.04 2.89 4.72 10.09 3.13 2.15 5.88 24.75

Cu 8.52 20.02 19.34 10.50 19.11 14.51 8.32 20.73 18.75

Zn 44.78 79.84 33.91 32.75 44.88 27.43 27.38 51.31 54.50

As 0.66 11.47 0.36 7.40 13.30 0.66 0.14 2.01 45.97

Cd 0.04 0.72 0.11 0.36 0.35 0.22 0.45 0.95 1.05

Ba 34.23 132.58 64.13 117.8 121.47 26.64 21.40 130.86 703.31

Pb 1.12 35.90 1.88 4.02 8.20 1.84 1.11 1.80 12.25

Table 10. Metal concentrations in vegetation collected in May 2011, from the studied areas.

Elements

Sampling area/metal concentrations (mg kg−1)

Area 1 Area 3

Soil Vegetation Soil Vegetation

Co 8.96 0.13 7.81 1.13

V 48.67 0.17 58.72 0.22

Ni 21.09 1.72 15.82 2.69

Cu 37.21 2.54 13.40 6.10

Zn 53.85 48.26 55.70 36.32

As 16.95 0.15 28.62 0.34

Pb 32.56 0.12 21.27 0.10

Table 11. Metal concentrations in soil and vegetation samples from July 2011.

Water Quality284



at a less quality level, in which the distribution network of water may represent a potential

source of chemical contaminants in the processed water. All the investments undertaken for the

rehabilitation and modernization of water supply chain have as final aim the improvement in

water quality. Even if the public distribution of water from sources and treatment facilities to the

networks and connections are upgraded, there is a gap in the rehabilitation of some buildings

internal networks, and thus, water with appropriate quality to the branch may get degraded to

the end user tap due to the poor state of the interior outdated pipes.

Due to the increasing influence of the anthropogenic factors on water sources, the ensuring of

water quality is of primary importance. At global level, the environmental monitoring is assured

by the IGBM (integrated global background monitoring of environmental pollution) and GEMS

(global system of environmental monitoring) networks. IGBM deals with background monitor-

ing (before the intervention of pollution), and GEMS follows the impact monitoring (after the

intervention of pollution). Over 20 EEC Directives regarding the protection of aquatic environ-

ment andmany guidelines laying down the quality standards regarding the use of water and the

checking of wastewater discharge are in force to support these activities (e.g., Council Directive

76‐464‐EEC—pollution caused by the discharge of dangerous substances into the aquatic envi-

ronment; Council Directive 88/20/EEC—limit values for discharges of certain dangerous sub-

stances). Metals with potentially harmful effect on groundwater are Zn, Cu, Ni, Cr, Pb, Se, As,

Sb, Mo, Ti, Sn, Ba, Be, Bi, U, V, Co, Tl, Te, and Ag. The maximum permissible limits for metal

concentrations in drinking water given by some international directives are shown in Table 12.

Elements NS30 EU USA Romania

Ag 10 – 100 –

Al 200 200 200 200

As 50 10 10 –

Ba 1000 – 2000 –

Cd 5 5 5 5

Cr 50 50 100 50

Cu 3000 1000 1000 100

Fe 200 200 300 –

Hg 1 1 2 –

Ni 50 20 – 20

Pb 50 10 15 10

Sb 10 5 6 –

Se 10 10 50 10

U – – 30 –

V – 50 – –

Zn 5000 – 5000 5000

Mn – – – 50

Table 12. Permissible limits, in μg L−1, for drinking water in England (NS300), European Union (EU), United States of

America (USA) and Romania.
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In Germany, the maximum permissible limits for drinking water are the same as those for the

member states in the EU, exception As (40 μg L−1) and Pb (40 μg L−1). In Spain, the quality

criteria for wastewater that may affect quality of surface water has recently been amended,

setting values of 50 μg L−1 for Astotal, 5 μg L−1 for Cr (VI), and 1 μg L−1 for Sedissolved. In

Romania, certification of potable water is performed in accordance with the Laws 458/2002

and 311/2004, which are aligned with the European Framework water Directive 2000/60/EC

(Table 13). They concern the organoleptic (sensory), physical, chemical (general and toxic),

radioactive, bacteriological, and biological characteristics of water.

The waters investigated in this study ensure the drinking water sources of the cities from Cluj

county, but also provide industrial water for energy purposes and water for a trout farm in the

area downstream the dam. The trace elements present in the water supplied as drinking water

to population but also in the wastewaters and water of sewage plants before discharging into

the rivers were determined for this work. Quality of water at the inlet in the distribution

networks versus the one at the household consumer was characterized to highlight potential

sources of contamination due to the technical condition of pipe networks. The water quality

monitoring consisted of three phases:

i. Monitoring the water quality of Gilau Lake in order to establish a realistic image in terms

of physicochemical parameters value of the water before entering the treatment plant—

samples collected directly from the lake. In terms of toxic metals, the studied surface

Area/sampling period

Metal concentrations (μg L-1)

As Cd Pb Co U

2011 Water treatment plant Raw water 0.302 <0.001 0.002 0.338 0.102

Decant water 0.250 <0.001 0.016 0.147 0.010

Filtered water 0.165 0.007 0.033 0.284 0.041

Chlorinated water 0.221 <0.001 0.005 0.255 0.026

City water entry point 0.229 <0.001 0.003 0.230 0.076

2010 Gilău treatment plant Raw water 0.220 <0.001 0.003 0.244 0.101

Decant water 0.125 <0.001 0.002 0.159 0.058

Filtered water 0.247 0.003 0.078 0.245 0.105

Chlorinated water 0.234 <0.001 0.010 0.228 0.114

City water entry point 0.184 <0.001 0.002 0.201 0.101

2009 Water treatment plant Raw water 0.345 <0.001 0.007 0.453 0.078

Decant water 0.236 <0.001 0.012 0.245 0.056

Filtered water 0.188 0.101 0.051 0.387 0.074

Chlorinated water 0.268 <0.001 0.003 0.368 0.066

City water entry point 0.298 <0.001 0.005 0.392 0.069

Table 13. Characterization of waters from water treatment plant (entrance to city).
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water fall in first quality class, with few minor exceptions. Overall, the overruns, in the

absence of an organized source of pollution, would lead to the conclusion that it is a

natural pollution, which could be confirmed geochemical.

ii. Water quality monitoring inside the treatment plant; water samples collected after each

stage of the raw water treatment (coagulation, filtration, sedimentation, chlorination).

Referring to their content in metal with toxic effect was characterized the water treatment

plant from the point of entry in the city (located 10 km away from the water treatment

plant) taken in 2009, 2010, 2011. The obtained concentration values for As were in the

range of 0.1–0.6 μg L−1, Cd <0.001 μg L−1, Pb in the range 0.03–0.7 μg L−1, and U between

0.007 and 0.2 μg L−1. Table 13 presents a quantitative characterization of metals from

period 2009, 2010, 2011.

iii. Water quality monitoring in the drinking water distribution network.

The water samples were collected from many urban districts. Comparing the obtained data

with the permissible values in Romania, we can state that in terms of toxic metals content the

drinking water is adequate and is well below the admissible limits (Table 14).

City distribution area/sampling period

Metals concentrations (μg L-1)

As Cd Pb Ni Co Fe Zn U Cu

2011 Area 1 city 1.271 0.007 0.909 2.944 0.288 42.890 143.930 0.133 43.94

Area 2 city 1.422 0.015 0.070 0.590 0.239 39.671 4.000 0.137 1.600

Area 3 city Cold 1.330 0.017 0.074 0.661 0.238 43.880 16.201 0.124 1.991

Warm 1.710 0.073 0.774 3.222 0.330 42.670 168.77 0.160 5.740

Area 4 city 1.290 0.017 1.270 0.744 0.151 45.226 8.925 0.131 14.070

Area 5 city 1.500 0.007 0.106 2.275 0.172 41.987 13.47 0.122 8.866

Area 6 city Cold 1.180 0.026 0.052 0.760 0.166 35.770 36.35 0.124 1.921

Warm 1.103 0.027 0.126 0.369 0.204 46.905 20.544 0.093 4.659

Area 7 city 1.435 0.005 0.034 0.594 0.288 45.223 5.226 0.132 1.696

Area 8 city center 1.023 0.022 0.268 1.059 0.209 43.990 142.88 0.113 2.785

Area 9 1.545 0.022 0.268 2.257 0.142 42.991 43.053 0.113 6.028

2010 Area city 1 0.247 <0.001 0.142 0.443 0.201 45.772 1.445 0.132 1.331

Area city 2 0.195 <0.001 0.011 0.521 0.206 35.984 1.994 0.106 1.207

Area city 3 0.167 <0.001 0.005 0.61 0.185 52.806 1.553 0.092 1.094

2009 Area city 1 1.060 0.006 0.143 0.592 0.032 36.536 4.162 0.062 1.408

Area city 2 1.063 <0.001 0.043 0.528 0.047 46.900 0.831 0.069 1.209

Area city 4 1.003 0.016 3.433 0.682 0.027 58.758 9.481 0.064 2.175

Area city 3 1.013 0.002 0.047 0.528 0.030 54.270 21.290 0.074 0.931

Table 14. Characterization of metal concentrations in waters from urban distribution areas.
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4. Conclusions

The metals are considered to be one of the main sources of environmental pollution, having a

significant effect on the ecological quality. Potentially toxic metals derived from the anthropo-

genic activities may lead to severe disturbances in the ecosystems, and therefore, the identifi-

cation of pollution sources along with the assessment of the long‐term pollution potential is a

must in order to take actions for reducing or stopping the pollution. The anthropogenic

sources lead to an increase in the metals levels in the environment due to the industrial and

atmospheric pollution and their accumulation in soil, affecting thus the ecosystems. Therefore,

measurements of metals in soil, plants, and sediment are very important in monitoring envi-

ronmental pollution.

The primary objective of this study investigation was to characterize the surrounding areas of

raw water reservoirs in terms of the content in heavy metals and rare earth, linked to

establishing the supply mechanism of these surface waters. High accuracy measurements for

quality assessment were performed on water samples, in terms of toxic metals, over a period of

3 years: 2009, 2010, and 2011. An increase (2009–2011) in the levels of Al and Mn was regis-

tered in three sampling sites (Somes Cald River, the confluence Somes Cald/Somes Rece, and

Somes Cald Lake); of Zn and Pb to Tarnita site; of Fe, Ti, Zn, and Pb to the Somes Cald River; of

Cu and Pb to the confluence Somes Cald/Somes Rece; and of Fe and Cu to the Somes Rece

Lake. A large increase in the content of Zn and As was reported in 2011 for all the areas, but

below the admissibility limits.

Water quality is influenced by weather conditions, and this was revealed by studying their

influence on the content of metals in water samples from the same area, but different calendar

period. There is a variation in the concentrations of heavy metals observed in the studied

matrices (water, sediment, soil) depending on season, for certain periods of the year.

Determination of rare earths in various types of environmental samples is particularly impor-

tant because it can serve to establish a fingerprint sample, and so the results could be used in

determining the origin of the sample in question and to identify sources of pollution. Compar-

ing the data of the 3 years, 2009, 2010, 2011, from the same month of sampling, there is a

constant concentration of rare metals, except for Sc, where there is a significant decrease from

2009. Heavy metals are one of the main sources of pollution of the aquatic environment, they

tend to adsorb in sediment, and the study of the adsorption/desorption effect of heavy metals

in sediment and sediment transport has a particular importance. The concentration levels for

most metals in sediment samples collected from the study area were within the general

admissibility limits, with exception of As which was present in sediment samples taken in

2010 in quantities that exceeded the mean admitted (in the sediment samples collected from

Areas 4—Warm Somes, 5—confluence Somes Cald/Somes Rece); also in the Area 4—Somes

Cald was registered a significant increase in the Cr content (150 mg kg−1, the limit was

estimated to 90 mg kg−1).

We found higher values of metal concentrations in sediments taken from lake versus concen-

tration values in sediment samples taken from the river water. In soil samples taken from the

same areas, in the same calendar period (2009 and 2010), an increase in the concentrations of

Pb and As was observed and a decrease in the content of Co (for soil sampled in 2010).
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Correlations with the climatic factors and the location of the sampling points were performed

in relation to the pollution sources. The most important factor in determining the concentration

values of the pollutant metal chemical species has proved to be the location of sampling points

relative to the anthropogenic sources of pollution. A correlation between the results obtained

for the concentrations of metals chemical species and the climatic factors registered during the

monitoring period was also noted. Comparisons were made between the water quality at the

inlet into the distribution networks and the water quality to the end user, to highlight potential

sources of contamination related to the technical condition of these networks.

There is our responsibility, now and certainly in the future, to balance and control the environ-

mental quality for each component and as overall. Thereby improving environmental quality will

become the action against disorder and the reaction against the inertia and of the compromises

when considering human life environment. Maybe someday each item and parameter of the

environment will be integrated “in a world of balance and harmony”. This calls for an efficient

management of the environmental resources and for mandatory preserving of a right balance

between the nature and society. It means implementation of a scientifically based management,

both for the exploitation of natural resources and for the recovery and recycling of waste so that

the failures and discontinuities in the evolution of ecosystems can be eliminated. The results of

our research can be used by the companies that manage water resources in improving the

drinking water treatment technologies. The results may be also useful for the territorial environ-

mental agencies and authorities that have as direct responsibility the water quality.
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