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Abstract

Vorticity plays a key role in determining fluid flow dynamics, especially in vortex-
dominated flows. Vortex methods, which are based on the vorticity-based formulation
of the Navier-Stokes equations, have provided deeper insight into physical reality in a
variety of flows using vorticity as a primary variable. The penalized vortex-in-cell (VIC)
method is a state-of-the-art variant of vortex methods. In the penalized VIC method,
Lagrangian fluid particles  are  traced by continuously  updating their  position and
strength from solutions at  an Eulerian grid.  This  hybrid method retains beneficial
features of pure Lagrangian and Eulerian methods. It offers an efficient and effective
way to simulate unsteady viscous flows, thereby enabling application to a wider range
of problems in flows.  This article  presents the fundamentals of  the penalized VIC
method and its implementations.

Keywords: vorticity, unsteady viscous flow, pressure, vortex-in-cell method, penaliza-
tion method, vorticity transport equation

1. Introduction

Vorticity is an important derived variable playing both mathematical and physical roles in the
solution and understanding of problems [1], irrespective of whether the flow is laminar or
turbulent. Vortex methods (VMs) utilize such a vorticity as a main variable of fluid dynamics.
VMs are essentially a grid-free approach in which Lagrangian fluid particles are used as basic
computational elements. The computational domain is discretized into a set of N fluid particles,
which carry time-evolving vorticity.
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VMs are based on the vorticity-based formulation of the Navier-Stokes equations; namely, the
vorticity transport equation (VTE). There are several advantages in using the vorticity-based
formulation. Firstly, it allows a purely kinematical problem to be decoupled from the pressure
term. Thereby, the need for solving the pressure is eliminated. It means that pressure
computation is not part of the solution procedure. If the pressure field is desired, it can be
obtained in an explicit manner using the resolved vorticity and velocity fields. Secondly, the
vorticity-based formulation does not contain any frame-dependent terms (for detailed
information, refer to [2]). In rotating frame, for example, VTE is only altered by the addition
of a constant forcing function in the form of 2 Ωω where Ωω is a time-dependent angular
velocity. In the primitive-variable formulation, on the other hand, the mathematical character
of the equations changes depending on whether or not the reference frame is inertial. Gresho
[3] offers more comprehensive information on the fundamental formulations for incompres-
sible flow simulations. Finally, the vorticity-based formulation is inherently able to better
resolve finer scales because vorticity is one order higher than velocity. Also, computations are
performed where vorticity-carrying particles exist, thus permitting a substantial reduction in
the computational domain.

VMs have a history as old as finite differences. Many inherent benefits were discussed in
comprehensive reviews of [4–8]. Admittedly, the primitive-variable and vorticity-based
formulations, each have their own advantages and disadvantages. Their numerical character-
istics cannot be a measure of whether one formulation is better than another. The choice of the
numerical methodology is a matter of intended application. However, it is obvious that VMs
have been an attractive alternative to conventional numerical methods based on the primitive-
variable formulation, especially in terms of vortex-dominated flow simulations.

VMs track numerically the evolution of vortices in unsteady flow. Their most serious difficulty
comes from a computational time of particle-particle interactions. Particles’ velocity computed
by the interaction can be quantified according to the familiar Biot-Savart law. This requires
O(N2) operations, which is expensive for large N. A reduction in the computational complexity
has been achieved using the fast multipole method (FMM) with hierarchical data structures,
which have had a giant impact in computations using a Lagrangian framework. FMM, which
was first introduced by Greengard and Rokhlin [9], is one of the ten algorithms with the
greatest influence of the development and practice of science and engineering in the twentieth
century [10]. FMM and its variants significantly reduce the cost of computing the interaction
with N particles; namely, Ο(N2) to Ο(NlogN) or Ο(N) operations (refer to [11] for a short
review).

Another approach for speed up in computation of particle velocities is the vortex-in-cell (VIC)
method, which was originally developed by Christiansen [12]. This numerical method
evaluates a velocity field, instead of the velocity of individual particles. It involves interpolation
of physical quantities (vorticity and velocity) between Lagrangian particles and an Eulerian
grid. Hence, the VIC method is often referred to as a hybrid method. In the VIC method,
velocity field is computed by solving a Poisson equation, ∇2ψ = − ω or ∇2u = − ∇ × ω. A fast
Poisson solver accelerates the computation sufficiently. For example, a fast Fourier transform
(FFT)-based solver reduces an operation count to Ο(MlogM), where M is the number of grid
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points. Although the amount of computation is problem dependent, the VIC method is known
to be faster than FMM to simulate unsteady viscous flows (refer to [13]).

For treating vorticity diffusion problem in VMs, several different techniques were developed
[14]; the core spreading method [15], the random-walk method [16], the particle strength
exchange method [17], the deterministic method [18], and the vortex redistribution method
[19]. Interestingly, Graham [20] successfully solved the diffusion term of VTE using an Eulerian
grid instead of complicated Lagrangian operators (also refer to [21–23]). This means that in
the VIC method both convection and diffusion parts can be evaluated on a regular grid.
Another important point of concern about VMs is boundary conditions for wall-bounded
flows. In recent years, the VIC method has been successfully combined with the penalization
method [24], which is useful to enforce boundary conditions at a solid wall (for example, refer
to [25–33]). The combination, hereafter called the penalized vortex-in-cell (pVIC) method,
greatly simplifies an entire numerical procedure required to construct a solution algorithm,
thus leading to a well-performing parallel program. As a consequence, the evolution of both
velocity and vorticity fields are evaluated on an Eulerian grid, and then the values for
Lagrangian fluid particles are determined from the grid solution using an interpolation
scheme. This offers an efficient and effective way to simulate unsteady viscous flows.

The pVIC method to simulate unsteady viscous flows will be discussed further in the
following sections. In Section 2, the basic formulations and numerical methods are described.
Section 3 describes implementations of the numerical methods and post-procedures for
obtaining pressure and force from numerical solutions. Section 4 introduces improved
implementations to further efficiently simulate a flow. Section 5 presents numerical results
and discussions to validate the presented numerical method. A summary and conclusion is
included in Section 6.

2. Basic formulation and numerical methods

For an incompressible unsteady flow of a viscous fluid, conventional VTE is expressed as
follows

( ) 2u u
t
w w w n w¶
+ ×Ñ = ×Ñ + Ñ

¶
(1)

where ν is the kinematic viscosity. The evolution of a flow can be evaluated in a fractional step
manner. The algorithm of viscous splitting consists of sub-steps in which the convective and
diffusive effects are considered. It is thus expressed in a Lagrangian frame as

, 0Dx Du
Dt Dt

w
= = (2)
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• Convection part

• Diffusion part

( ) 20,Dx D u
Dt Dt

w w n w= = ×Ñ + Ñ (3)

where D/Dt = ∂/∂t + u ⋅ ∇ is the material derivative. N discrete fluid particles are linearly
superposed to approximate the vorticity field as

( ) ( ),
N

p p
p

x t x xw z= G -å (4)

where ζ is a mollification of the Dirac-delta function. Each particle is characterized by its
position xp and strength Γp, i.e. a circulation Γp = ∫ωdV ≅ ωpVp where Vp is a volume (an area in
2D) occupied by a fluid particle.

In the pVIC method, the velocity of the particles and vorticity evolution are evaluated on a
uniform grid. For doing that, the particles’ own vorticity is first transferred onto the grid
by

( ) '
43

1,
N

g p
g p

p

x x
x t M

hh
w

-æ ö
= G ç ÷ç ÷

è ø
å (5)

where h is the grid spacing. The function �4′  is the third order interpolation kernel [34] defined

as
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(6)

in each coordinate direction. This kernel conserves the 0th, 1st, and 2nd order moments.
Vorticity of a single fluid particle is transferred to the nearest 16 grid nodes in 2D and 64 grid
nodes in 3D. The resultant vorticity at grid nodes is obtained by summing the contribution of
all the particles.

Vortex Dynamics and Optical Vortices154



2.1. Convection via vortex-in-cell (VIC) method

In the pVIC method, a velocity vector can be expressed as

u U u Uw y¥ ¥= + = +Ñ´ (7)

where U∞ is a free stream velocity and uω represents a rotational velocity. ψ is called as a vector
potential in 3D and a stream function in 2D. Taking the curl of Eq. (7) yields the Poisson
equation ∇2ψ = − ω linking vorticity to the vector potential and in turn to the velocity. ψ is
computed on a uniform grid using a FFT-based solver. The grid for solving the Poisson
equation can define a compact computational domain with non-homogeneous Dirichlet
boundary conditions. The boundary condition of a domain Ω can be approximated using a
Green's function approach [28], which is given by

1 1
4 4

N
p p

b
p b p bp

dV
x x x x

w
y

p p
W

G
= =

- -åò (8)

where xp ∈ Ω, xb ∈ ∂Ω, and xp ≠ xb. In 2D, it follows that

( )1
2

N

b p p b
p

ln x xy
p
-

= G -å (9)

Finally, rotational velocities on the nodes of the grid are computed from the definition uω = ∇ × ψ
using a finite difference scheme.

In 2D, two unknowns (two components of a velocity vector) are reduced to a single unknown
ψz (the scalar stream function) without any loss of generality. There are no problems with the
continuity equation; the velocity field is automatically divergence-free. In 3D, however, a total
of six unknowns are required to be solved instead of the usual four of the primitive-variable
formulation. Unlike the stream function in 2D, the vector potential in 3D is far from being
uniquely defined. The 3D formulation requires that the vorticity, velocity, and vector potential
are all divergence-free; ∇ ⋅ ω = 0, ∇ ⋅ u = 0, and ∇ ⋅ ψ = 0. This is a new difficulty for 3D flow
simulation. Among these three conditions, the second is satisfied by letting u = ∇ × ψ and the
third is a consequence of the first. To enforce the first, the well-known projection scheme can
be applied. The divergence-free of a vorticity field is accomplished by ω − ∇F, where F is a
scalar field which is obtained by solving ∇2F = ∇ ⋅ ω.

2.2. Diffusion via penalization method

The penalization method has been used to take into account a solid body immersed in a flow.
Among fictitious domain methods, the penalization method is very easy to implement, robust
and efficient. This consists only in adding a penalty term in the momentum equations to
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represent a solid body. For example, the L2 penalization consists in adding a damping term on
the velocity in the Navier-Stokes equations [24]. The penalty velocity satisfies Darcy’s law in
terms of a Neumann boundary condition on the pressure. Angot et al. [24] rigorously showed
that the penalized equations can be used with confidence since penalty error is always
negligible in the face of the error of approximation. In the penalization method, a solid body
is regarded as a porous medium where the permeability is infinite in the fluid part and tends
to zero in the solid part. Both the solid and fluid domains are solved directly without addition
of any boundary condition at a solid wall. The penalization method can replace complicated
algorithms to implement boundary conditions at a solid wall.

In the pVIC method, a penalty term is added into VTE as follows

( ) ( )2
s

D u u u
Dt
w w n w lcé ù= ×Ñ + Ñ +Ñ´ -ë û (10)

where us is the velocity of the solid body and χ denotes a mask function that yields 0 in the
fluid and 1 in the solid. The penalty parameter λ is equivalent to an inverse permeability. In
the case of explicit Euler time discretization, λ must satisfy λΔt < O(1) to ensure stability.
Alternatively, an implicit penalty term can expressed as

( )1n n
su u

t
w lc +D é ù= Ñ´ -ê úë ûD

% (11)

where

1
1

n n
n su t uu

t
l c
l c

+ + D
=

+ D
% (12)

The implicit scheme is unconditionally stable [27]. This allows to use large λ regardless of Δt
for accurate solutions near a solid body. Based on implicit penalization scheme, the VTE is
rewritten as

( ) ( )2 .
1 s

D u u u
Dt t
w lcw n w

l c
é ù

= ×Ñ + Ñ +Ñ´ -ê ú+ Dë û
(13)

Each term can be solved using a finite difference scheme. For example, the penalty term can
be discretized by a first-order centred difference scheme. To reduce an error, one can use a
smoothed mask function [35]. The stretching term, taking its alternative form (ω ⋅ ∇T)u (the
so-called transpose scheme), can be computed with the fourth-order central difference scheme.
The transpose scheme is advantageous due to its conservative and accurate properties [36].
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The diffusion term, ν∇2ω, can be discretized by a 27-point isotropic Laplacian scheme which
is less sensitive to the grid orientation. In 2D, the diffusion term can be discretized by a classical
9-point finite difference scheme.

2.3. Numerical procedure

For high performance computing, the message passing interface (MPI) can be used on a
distributed-memory parallel system. For parallel computing, a computational domain Ω is
decomposed by splitting it into several subdomains, with one subdomain per processor. Fluid
particles are distributed among the subdomains depending on their positions.

In the pVIC method, convection, penalization, diffusion, and stretching (only in 3D) parts are
sequentially evaluated on each subdomain. A numerical procedure follows that

a. Each processor interpolates the vorticity of its own particles into grid nodes through the �4′
interpolation kernel.

b. Each processor computes ψb with its own particles’ vorticity using the Green's function
approach. Then, ψb for solving the Poisson equation is determined by a summation of the values
obtained by each processor.

c. The Poisson equation ∇2ψ = − ω is solved using the FFT-based solver. Velocities on the grid
nodes are computed from the resultant ψ, using a finite difference scheme.

d. Each processor evaluates the penalization term on the nodes using a finite difference scheme,
and then the diffusion and stretching terms are computed. Divergence-free condition of
vorticity field is enforced using the projection method.

e. Each processor interpolates the velocity and vorticity on the grid back to its own particle
positions through the �4′  interpolation kernel. Finally, the particles’ position and strength are
updated using an appropriate time integrator.

Some particles that have left a subdomain are assigned to an adjacent processor. If needed,
the computational domain is increased depending on particle distribution. The whole proc-
ess is repeated for the next time-step.

Particle redistribution is conducted every few time steps to ensure particle overlap. Concur-
rently, with this step, particles with negligibly small vorticity are discarded to prevent un-
necessary increase in particle population. The resultant particles are filtered with a relative
criterion; Γi < Cω|Γ|max where Cω is a cut-off criterion. The discarded strengths were shared to
the particles remaining in order to guarantee the conservation of circulation in the flow. It is
found that the cut-off criterion has a significant influence on global force evaluation, rather
than on vorticity and velocity fields. This will be further discussed in Section 3.4.

2.4. Numerical stability

In the pVIC method, fluid particles are traced by continuously updating their position and
strength (vorticity or circulation) from the grid solution. The method retains the key feature
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of pure Lagrangian vortex methods; namely, the convection part disappears from VTE. As
noted in [13], the particle convection is linearly unconditionally stable. The convection part
does not impose any stability constraint but relies on the Lagrangian particle convection. The
nonlinear stability condition that particles do not collide during one time-step (Δt) based on
the rate of strain of a flow reads Δt ≤ C1|∇u|− 1 ≈ C1|ω|− 1. Also, the maximum allowable Δt is
constrained by the diffusion Courant-Friedrichs-Lewy (CFL) condition, Δt ≤ C2h2/ν, because
the vorticity field is computed on a grid using a finite-difference scheme. This is less restrictive
than the convective CFL condition for pure finite-difference methods, Δt ≤ Ch|u|− 1. In practice,
the nonlinear stability condition for the convection is much less demanding since the redis-
tribution of particles to regular positions is periodically carried out. Δt for the diffusion is
regarded as the physical time-step for an entire flow simulation. This permits the use of a
relative large time-step compared to pure finite-difference methods.

3. Implementations

3.1. Domain decomposition for parallel computing

To decompose a computational domain in parallel, there are two typical strategies. One is that
a computational domain is equidistantly decomposed. The other is that a computational
domain is decomposed so as to assign the same number of particles to each processor;
consequently, the subdomains have different sizes (for detailed information, refer to [37]). In
our 2D flow simulations, the latter was typically faster than the former, whereas in 3D the
former outperformed the latter. This is related to both balancing of computation load for
Dirichlet boundary conditions and communication load of grid assembly to solve a Poisson
equation.

In our pVIC code, each processor has all the boundary nodes to minimize communications
among processors and boundary conditions at are determined by summing the contribution
of all the particles. The same number of particles among processors ensures near-perfect
balanced computation and communication loads, even if it causes unbalanced communication
for grid because of different domain sizes. Since local computation of boundary conditions in
2D cases was typically more expensive than inter-processor communication, we found the
second approach to be much faster. In 3D cases, however, balancing of communication for grid
assembly becomes more important than that of computation of boundary conditions. This is
due to a significant reduction in computing time by the spline approximation method (which
will be introduced in Section 4.2). As a result, the equidistant domain decomposition can be a
better choice for 3D flow simulations.

3.2. Time integrator

To move fluid particles with their own velocity, predictor-corrector methods are usually used.
Table 1 shows a summary of time integration schemes used in the literature, but the detailed
scheme was not explained in most of papers.
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Author(s) Convection part Diffusion part Remarks
Ould-Salihi et al. [38] RK2 EE 2D and 3D VIC

Coquerelle and Cottet [39] 2D and 3D pVIC

Rasmussen et al. [33] 2D pVIC

Lee at al. [32] 2D pVIC

Mimeau et al. [30] 2D pVIC

Morency et al. [40] RK4 EE 2D pVIC

Cottet and Poncet [13] 3D VIC

Kosior and Kudela [41] 3D VIC

Cocle et al. [23] RK2 and LF2 RK2 and AB2 3D VIC

Lonfils and Winckelmans [42] 3D VIC

The second-order Runge-Kutta method (RK2), the fourth-order Runge-Kutta method (RK4), the second-order Leapfrog
method (LF2), the second-order Adams-Bashforth method (AB2), the first-order explicit Euler method (EE)].

Table 1. Comparison of numerical time-integration schemes reported in the available literature.

A popular Runge-Kutta method is known as a single stepping scheme with multiple stages
per step. For example, the method can be expressed as

( )* ,n n n n
p p p p p t= + Dx x u x w (14)

1
n
pn n

p p
d

t
dt
w

w w+ = + D (15)

( ) ( )+ +é ù= + + Dê úë û
x x u x u xw w1 * * 10.5 , ,n n n n n n
p p p p p p p p t (16)

where the superscript * indicates an intermediate stage [32, 43]. Note that the velocity field is

evaluated twice in finding the new position of ��� + 1. If a higher time integration scheme is

used, more involved computations are needed. It is obvious that a higher-order integrator
helps minimize error in particle tracking, compared to one evaluation. However, more
evaluations of velocity field cause an increase in computational time.

Interestingly, Rossinelli et al. [44] evaluated particles’ velocity using a modified explicit scheme
as follows

( )
( )

*

1 *

0.5 ,

,

n n n n
p p p p p

n n n n
p p p p p

t

t+

= + D

= + D

x x u x

x x u x

w

w
(17)
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and a notable feature is that velocity field is evaluated only once although this scheme can be
still considered as a kind of the Runge-Kutta method. Particles’ velocity at the intermediate
stage is computed using interpolation. This provides a considerable saving in computational
time and memory consumption. Our research group investigated the feasibility of different
integrators such as the Euler scheme with several stages, the midpoint rule, and the Simpson
rule, as follows

( ) ( )
1

1

0

Euler method
n

n n
p p p p

i

x x t i t tx u t i td d d
-

+

=

é ù- = + + +ë ûå (18)

where δt = Δt/n′

1Midpoint rule [ ( ) ( )
2

( ) ( )]n n n n
p p p p

tx x u x t u x t t+ D
- = + + + D (19)

1Simpson rule [ (( ) () ( / 2) ( )) ( ]
6

)n n n n n
p p p p p

tx x u x t u x t t u x t t+ D
- = + + + D + + D (20)

Akin to Rossinelli et al. [44], particles’ velocity at intermediate position was computed using
interpolation from the values at neighbouring grid nodes. A benchmark problem was a flow
around a sphere at Reynolds numbers of 50, 100, and 200. Overall computational time was
about two times faster in the midpoint and Simpson rules, compared with the typical RK2
method in which velocity field is computed twice. The midpoint and Simpson rules provided
comparable accuracy, and the difference in drag force was typically <0.3%. This approach
seems to be useful. However, an essential prerequisite is that velocity field is little or not
changing during Δt. This can require a smaller Δt, especially in high Reynolds number flows.
Since the accuracy of a time integrator for tracing particles is dependent upon the change of a
flow field in both time and space, a time integration scheme should be determined carefully.

3.3. Fast Poisson solvers

To solve a Poisson equation, the fast Fourier transform (FFT) and multigrid (MG) are utilized
most widely. For a uniform grid, the behaviour of both solvers is well-known. In serial
computation, a FFT solver requires O(MlogM) for M grid points and a MG solver requires O(M)
operations. In an ideal parallel computation with zero cost communication, the FFT and MG
solvers require O(logM) and O(log2M), respectively (for detailed information, refer to [45]).
Here, the performance of two solvers is compared under exactly the same condition; a
rectangular computational domain with equidistant nodes. Both solvers were developed in
our research group. The FFT solver is based on an open-source library called Fastest Fourier
Transform in the West (FFTW) [46], and the MG solver is based on full multigrid algorithms
provided in Section 19.6 of the Numerical Recipes [47] (also refer to [41]). Here, the algorithm
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is briefly introduced. The full multigrid algorithm starts with the coarsest possible grid and
then proceeds to finer grids. It performs one or more V-cycles at each level before proceeding
down to the next finer grid. This means that the full multigrid algorithm produces a solution
for each level. We used the red-black Gauss-Seidel scheme as a smoothing operator, bilinear
interpolation for a prolongation operator, and half-weighting for a restriction operator. The
full multigrid cycle can be seen in Figure 1.

Figure 1. A computational cycle used in the MG solver.

To compare the two solvers, a 2D flow around a circular cylinder at a Reynolds number of 550
was considered as a benchmark problem. The MG solver with four levels was tuned by
choosing one pre-smoothing sweep and two post-smoothing sweeps. Figure 2a shows a
comparison of numerical results between the FFT and MG solvers. The MG solver performed
comparably to the FFT solver in terms of accuracy. As expected, however, the MG solver was
slower than the FFT solver as shown in Figure 2b. This is due that the MG solver is a kind of
iterative method and thus it is an order magnitude more expensive compared to the FFT solver
as a non-iterative method. Since, so far, most of VIC codes solve the Poisson equation in a
computational domain of simple shape such as a square or cube, the FFT solver as a non-
iterative method is thought to be the best choice. However, it is worth noting that the MG solver
can be applied to locally refined grids in a straightforward way. Adaptive mesh refinement is
useful both to increase accuracy and to decrease computational cost in comparison with a
uniform grid.

3.4. Force calculations

From the fact that the integral of vorticity moments becomes the change of the momentum,
fluid force exerted on the solid body (Fs) is expressed as

1
1s
V

dF x dV
dt N

r w
æ ö
ç ÷= - ´ç ÷-ç ÷
è ø

ò (21)
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where N is the dimension of the space. The volume integral can be replaced by the summation
of the moments for all the particles. Also, the adoption of the penalization method introduces
another approach for the force evaluation. One can obtain the force with the velocity field
inside the body as follows:

( )s s
V

F u u dVr lc= - -ò (22)

where the penalization term itself is included in the integral as the time-change of the mo-
mentum. For the implicit penalization scheme, it can be rewritten as

( )
1s s

V

F u u dV
t

lcr
lc

= - -
+ Dò (23)

The integral over the whole domain is actually confined to the interior of the body due to the
definition of χ.

Figure 2. Comparison of flow fields and CPU times between the FFT and MG solvers. (a) Vorticity contours and
streamlines and (b) CPU times per time steps.
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In 2D flow simulations, the drag coefficients have been reported in the literatures [30, 37, 44,
48]. They have evaluated the drag coefficient using one or both of the approaches. Rasmussen
et al. [33] and Gazzola et al. [31] addressed that the discrepancy in the drag coefficient between
the two approaches were not significant. In 3D, however, it was found that the method based
on the vorticity moment is unstable occasionally; that is, a large Cω can make it incorrect even
if there is little difference both in vorticity and velocity fields. Figure 3 shows the drag
coefficient (CD) of a sphere at a Reynolds number of 100 computed by the two different
approaches employing three different cut-off criteria; Cω = 10− 4, 10− 5, and 10− 6. CD is defined by
Fx/(0.5ρU∞A) with a sectional area A = πR2. The drag coefficient computed with vorticity
moments were converged at Cω = 10− 6, whereas the drags computed with the penalized velocity
were nearly the same in all the tested cases. This describes that force evaluation using the
vorticity moment should be taken with special care. As a result, the force evaluation with the
penalized velocity can be a better option, especially in 3D simulations. This enables one to
avoid an excessive increase in the number of particles, thus reducing the computational time
and memory. In the cases with Cω = 10− 4, 10− 5, and 10− 6, there were 1.0, 1.9, and 3.5 million
particles, respectively.

Figure 3. Drag coefficients calculated with two different approaches: (a) vorticity moment and (b) penalized velocity.

3.5. Pressure field

As discussed previously, pressure field is independently computed from the entire solution
procedure and explicitly obtained by solving a pressure Poisson equation, ∇2H = ∇ ⋅ (u × ω).
Lee [49] introduced an integral approach to obtain the pressure field at any fixed time as
follows:

( )
S V

H GH G H dS u GdV
n n

w¶ ¶æ ö= - + Ñ × ´ç ÷¶ ¶è øò ò (24)

where G is the Green function solution. H is the Bernoulli function defined as
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where p is the static pressure above the reference pressure P∞ and ρ is fluid density. The value
of H on the body surface is computed using a boundary integral approximation. A mathe-
matical identity for a vector or scalar field is used to define field values of a quantity of interest,
which involves an integral of singularities distributed over the surface and throughout the
field. The boundary integral approach has been successfully established. However, it has
disadvantages such as the presence of singular Green’s kernels. Special attention is needed to
accurately compute boundary integrals around a singular point. The higher mathematical
complexity is needed to get a usable computational formulation. The matrices that result from
the integral method are asymmetrical, and they are not easy to solve. Furthermore, this
approach takes long time of computation.

Figure 4. Pressure distributions computed with different penalty parameters for pressure; (a) λ ' = 0, (b) λ ' = 0.1/Δt, (c)
λ ' = 1/Δt, and (d) λ ' = 10/Δt. Note that the figures are reprinted with permission from [28].

Alternatively, pressure field can be evaluated based on the penalized Navier-Stokes equation
[28]. Satisfying the continuity, the Poisson equation for pressure can be expressed as

( ) ( )2 '
sH u u uw l cÑ = Ñ × ´ + - ×Ñ (26)

where λ' is distinguished from the λ by its order of magnitude. This equation is solved on the
grid using a fast Poisson solver. The boundary condition for H can be given as homogeneous
Dirichlet type. Figure 4 shows pressure distributions around a circular cylinder for a Reynolds
number of 550, which are computed using different orders of magnitude for λ'; λ' = 0, 0.1/Δt,
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1/Δt, and 10/Δt. The assumption of λ' ≅ 1/Δt is thought to be reasonable. With the assumption,
Lee et al. [28] successfully computed pressure field around a 2D cylinder as shown in
Figure 5. It is still valid in 3D flow simulations as shown in Figure 6. This approach is quite
efficient, but an accurate approximation of H at domain boundaries still remains a problem.

Figure 5. Pressure distribution around a circular cylinder at a Reynolds number of 9500. Note that the figures are re-
printed with permission from [28]. (a) Pressure contour at T = tU∞/R = 3 and (b) pressure coefficient at a solid surface.

Figure 6. Pressure distribution around a sphere for a Reynolds number of 100 at T = tU∞/R = 30. (a) Pressure contour
and (b) pressure coefficient at a solid surface.

4. More efficient implementations

4.1. Multiple domains

In the pVIC method, the size of a computational domain relies on the distribution of fluid
particles. A large domain leads to an increase in computational memory required for a grid.
A multiple domain approach can be considered to handle much more particles with a limited
computational memory. The entire domain Ω can be defined as the union of physical subdo-
mains, covering all the fluid particles; that is, xp ∈ Ω where � = �1 ∪⋯ ∪ ���. The number of

small domains, ND, is not constant and depends on a spatially evolving flow. When the domain
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size exceeds a certain limit, a new domain is created. For example, the first domain Ω1 includes
a solid body and the others are sequentially located downstream from the body as shown in
Figure 7. Note that this approach differs from the domain decomposition for parallel compu-
tations. That is, each small domain Ωi is again decomposed into subdomains for parallel
computations; �� = ��1 ∪⋯ ∪ ���� where NP is the number of processors

Figure 7. Vorticity contour around a circular cylinder for a Reynolds number of 185.

In Ωi, vorticity and velocity fields are computed according to the numerical procedure given
in Section 2.3. There is no dependency between the small domains since domain boundary
conditions of Ωi are computed by summing the contribution of all the particles. Hence,
independent domains ensure a relatively small use of computational memory during a flow
simulation, compared to an approach based on parent and child grids [23]. Also, the multiple
domain approach enables to have different resolutions among small domains. For example,
the grid spacing of Ωi can be defined as either hi = ϵ (single-resolution) or hi = 2nϵ (multi-
resolution) where ϵ denotes the particle size. The particle strength can be transferred into the
nodes as follows:

( ) '
43

1,
N

g p
g p

ii p

x x
x t M

hh
w

-æ ö
= G ç ÷ç ÷

è ø
å (27)

Although this approach ensures the small consumption of computational memory, it causes
an increase in computational time because of an increase in the number of domain boundaries.
Fast computations of ψ at domain boundaries will be discussed in Section 4.2.

4.2. Approximation of far-field conditions

For simplicity, consider a single domain Ω. The resultant values at ∂Ω are determined by
summing the values computed by all processors. Each processor requires O(MbN/P), where
Mb and N/P denote the number of boundary nodes and its owned particles, respectively. Note
that N/P can be reduced by an increase in the number of processors (P), whereas Mb is a constant
depending on the size of Ω. Mb can be critical to determine the computational time. In practice,
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a substantial part of the overall computational time is spent on the calculation of ψb at domain
boundaries for solving Poisson’s equation. Lee et al. [37] attempted a fast computation of ψb
using splines. They found that ψb varies very smoothly at boundaries of a domain. This feature
permits the use of spline interpolation. In 2D, for example, one spline curve enables to represent
one side of the computational domain. ψb at the part of the boundary nodes (���) is computed

by pure direct summations, and then values at the other nodes (���) can be approximated

using a spline curve. Here, �� = ���+���. Using spline, approximation leads to a reduc-

tion in ���, which is directly linked to the reduction in the computational time.

Figure 8. CPU time in numerical simulation using the spline approximation. Note that the FMM is based on a tree level
of 3 and an expansion degree of 10. The figures are reprinted from [50]. (a) Computational time for boundary values
and (b) overall computational time and error.

Figure 8 shows CPU times elapsed in computations of boundary values using the spline
approximation and the FMM [50]. The numerical simulation for a flow past a circular cylinder
at Reynolds number of 550 was carried out using 16 CPUs with 4 GB of memory per processor.
Once one-eighth of all the boundary points are equidistantly chosen as points for the direct
summation, the spline approximation approach becomes faster than the FMM that is modified
to compute only boundary values. In this case, the spline approximation approach has accuracy
comparable to the FFM. A weak point of the FMM is that it has a quad-tree (oct-tree in 3D) data
structure to hierarchically subdivide the computational domain. Each processor in a distributed
memory parallel system must have a sufficient amount of memory for tree data structures. A
required memory in the FFM depends on both the number of particles and grid nodes.

In 3D, the bi-cubic interpolation can be used instead of the bi-cubic spline (for detailed
information on interpolation methods, refer to [47]). According to prior tests to assess this
approach, the former was more accurate for our purpose. For example, for computing the
stream functions at one side of the cube with 256 × 256 nodes from 3 million randomly
distributed particles, the trial using the bi-cubic interpolation method took approximately 1 s
when 16 × 16 nodes were used for direct summations, whereas the fully direct evaluations took
194 s in average. The error was typically <0.01%.
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5. Numerical validations

5.1. Flows past an impulsive started circular cylinder

The impulsively started circular cylinder problem is a good prototype to validate a numerical
method. The Reynolds number, Re = U∞D/ν, based on the free stream velocity, U∞ and the
diameter of the cylinder, D, is selected to be 40, 550, 3000, or 9500. In the simulations, no
symmetry constraint is imposed. The dimensionless time is based on the radius (R = 0.5D) of
the cylinder; T = tU∞/R. The penalization parameter λ is fixed to 108.

5.1.1. Reynolds number of 40

The numerical parameters are h = 0.04 and Δt = 0.016, which are determined through the
stability condition Δt = h2/ν. At a Reynolds number of 40, it is well-known that the flow reaches
a steady state. A pair of stationary recirculating wakes develops behind the cylinder. The wake
length, L/D, is 4.16 and separation angle, θs, is 51.7°, respectively. Fornberg [51] made a similar
remark and gave L/D = 4.48 and θs = 51.5° experimentally. The drag coefficient is computed as
CD = 1.483. This is close to the experimentally measured value of 1.498 in [52]. Figure 9 shows
pressure coefficient (CP) distribution around the cylinder body. The pressure is continuous
through the cylinder body, and there is no Gibb’s oscillation associated with the discontinuity
at the body surface.

Figure 9. Vorticity and pressure contours around a circular cylinder at a Reynolds number of 40. (a) Vorticity contour
and (b) pressure contour.

5.1.2. Reynolds number of 550

The simulation parameters are h = 0.005 and Δt = 0.002. Simulation was carried out until T = 7
to validate the present formulation in the early time stage after the impulsive start. The number
of fluid particles ranged from approximately 30,000 to 150,000, and the total computation time
is approximately 4 h on 8 CPUs (Intel Xeon64 3.3 GHz). Numerical results are presented for
vorticity contours and streamlines in Figure 10. As time increases, a pair of secondary
symmetric vortices appears and become stronger. The so-called bulge phenomena observed
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experimentally by Bouard and Coutanceau [53] is well captured by our numerical simulation.
The vortex core position indicated by the coordinates a/D and b/D is investigated. In this flow
simulation, the abscissa a/D = 0.34 and ordinate b/D = 0.27, and the wake length L/D = 0.82. In
[53], a/D = 0.36, b/D = 0.28, and L/D = 0.85.

Figure 10. Vorticity contours (left) and streamlines (right) at a Reynolds number of 550; (a) T = 1, (b) T = 3, (c) T = 5, and
(d) T = 7.
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Figure 11 shows the time evolution of the drag coefficient for an impulsively started flow
around a two-dimensional cylinder for Re = 550 calculated with the pVIC method, compared
with results from the short time asymptotic solution of Bar-Lev and Yang [54], the vortex
method result of Koumoutsakos and Leonard [55], and the VIC method result of Kudela and
Kozlowski [56].

Figure 11. Time evolution of the drag coefficient for a cylinder at a Reynolds number of 550. Note that the figure is
reprinted with permission from [28].

Figure 12. Surface pressure coefficients for a cylinder at a Reynolds number of 550. Note that the figure is reproduced
with permission from [28].

The pressure distribution at the cylinder surface is shown in Figure 12. At very early stages in
the numerical simulation, the surface pressure distribution is quite close to that for an ideal
inviscid flow. As flow evolves, the minimum pressure coefficient gradually moves upstream.
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The corresponding locations of CP = 0 have the same upstream moving trends and is at the
angular position θ = 35° as experimentally measured by Norberg [57].

5.1.3. Reynolds number of 3000

The simulation parameters are h = 0.0025 and Δt = 0.002. Simulation was carried out until T = 10
and the number of fluid particles ranged from approximately 130,000 to 420,000. The total run
time is about 9 h on 16 CPUs (Intel Xeon64 3.3 GHz). Figure 13 shows numerical results.
Compared with a flow at Re = 550, the secondary vortices appear at an earlier time and grow
larger. In the case of Re = 3000, the two secondary vortices formed are equivalent in size and
in strength. It is the so-called α phenomena [53]. Also, the streamline computed for Re = 3000
compares with the flow visualization result of Loc and Bouard [58]. The present simulation
correctly captures the expected physics of the flow at Re = 3000.

Figure 13. Numerical results for a circular cylinder at Re = 3000 at (a) T = 1, (b) T = 3, and (c) T = 5. Note that the figures
are reprinted and reproduced with permission from [28]; vorticity contour (left), streamline (middle), pressure contour
(right).

5.1.4. Reynolds number of 9500

The simulation parameters are h = 0.001 and Δt = 0.002. Flows were numerically simulated
until T = 4, and the number of fluid particles ranged from approximately 800,000 to 1,200,000.
The total run time is about 25 h on 24 CPUs (Intel Xeon64 3.3 GHz). Figure 14 shows vorticity
contours. They are in good agreement with the numerical results in [29].
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Figure 14. Vorticity contours at a Reynolds number of 9500; (a) T = 1, (b) T = 2, (c) T = 3, and (d) T = 4. Note that the
figures are reprinted and reproduced with permission from [28].

As shown in Figure 15, the streamline patterns computed for Re = 9500 compare quite well
with the flow visualization results in [58]. The α and β phenomena, which are observed
experimentally by Bouard and Coutanceau [53], are well captured by the numerical simulation.

Figure 15. Streamlines at Reynolds number of 9500; (a) T = 2 and (b) T = 4 compared with flow visualization results of
Loc and Bouard [58]. Note that the figures are reprinted with permission from [28].

Vortex Dynamics and Optical Vortices172



5.2. Flows past an impulsive started sphere

When the pVIC method comes to a 3D implementation, a little attention should been paid to
the quantitative validation as mentioned in Sections 2.1 and 3.4. An incompressible viscous
flow past a sphere has extensively been studied by many researchers in theoretical, experi-
mental, and numerical ways. It is well-known that the wake behind a sphere depends on the
Reynolds number. Especially, the flows at 20 < Re < 210 are often investigated as a validation
case by virtue of their steady and axisymmetric features in wake structure including separa-
tion. To demonstrate the feasibility of the pVIC method, we carried out numerical simulations
of the impulsively started flow past a sphere at a Reynolds number of 100. Figure 16 illustrates
the configuration of the multiple domains. The sphere is immersed in a Cartesian grid that
does not conform to its surface.

Figure 16. Configuration of computational domains.

Figure 17. Contour of vorticity magnitude and streamline on xz-plane at a steady state.
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The simulations were carried out until T = 30 to demonstrate the convergence of the present
method and test its capability of long-time simulation. Numerical parameters were determined
through the stability condition, νΔt/h2 < 1/6, and the grid convergence was achieved with
h = 0.02 and Δt = 0.005. It was concluded that giving Cω = 10− 5 is sufficient in terms of the force
calculation. The number of fluid particles ranges from 2 to 5 million during the simulation,
and the total computation time is roughly 67 h on 16 CPUs (Intel Xeon64 3.3 GHz). Figure 17
shows the vorticity contour at the steady state. The vorticity contour is in excellent agreement
with the numerical result in [59]. The wake shape and drag coefficient at the steady state are
compared to the references in Table 2. The numerical results are good agreements with the
reference results.

Author(s) Wake centre (a/D, b/D) Wake length (L/D) Separation angle Drag coefficient

Taneda [60], exp. (0.75, 0.28) 0.89 52.3° –

Johnson and Patel [59], cal. (0.76, 0.29) 0.89 53.3° –

Bagchi and Balachandar [61], cal. – 0.87 53.2° 1.09

The presented pVIC method (0.764, 0.282) 0.877 53.1° 1.09

Table 2. Comparisons of wake shape behind a sphere and drag coefficient with previous results.

5.3. Vortex shedding from a hydrofoil

We selected a National Advisory Committee for Aeronautics (NACA) 0009 cross section with
a truncated trailing edge for the numerical simulations. This hydrofoil has the same as the
experimental model used in [62–64]. Ten percent of the original chord co was removed from
the trailing-edge region of the NACA 0009 hydrofoil. The hydrofoil geometry is further
detailed in [63]. The maximum thickness, as normalized by the chord length c, is tmax/c = 0.1
and the thickness at the trailing edge is 0.0322. The numerical parameters h = 0.0003 and
Δt = 0.00015 were chosen to simulate flow past the 2D hydrofoil at a Reynolds number of 2 × 106.

Figure 18. (a) Instantaneous vorticity contour and (b) a time history of drag and lift coefficients at a Reynolds number
of 2 × 106.
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The instantaneous contour of vorticity magnitude is plotted in Figure 18a. Vortices are regu-
larly shed from the symmetric trailing-edge in the form of two trains of opposite-sign but
equal-strength vortices. The Strouhal number, St = fc/U∞ = is about 7.0 from our numerical
simulation, and Zobeiri et al. [64] made a similar remark experimentally gave 7.2 (also, refer
to [63]). Regular vortex shedding causes periodic loading on the structure. Figure 18b
shows the evolution of drag and lift coefficients. It has been well-known that the drag force
oscillation during vortex shedding is much smaller than the lift force. Oscillations in drag
force occur at twice the vortex shedding frequency owing to the fact that two vortices are
shed from alternate sides during one full period of wake oscillation. Such features are well
captured by our numerical simulation as shown in Figure 18b. The mean drag coefficient
CD is 0.0107 and the root-mean-square lift coefficient is 0.0056.

Figure 19. Temporal power spectral density (PSD) of vertical velocity fluctuations. Note that this figure is reprinted
with permission from [32].

Figure 19 shows the temporal power spectrum of vertical velocity fluctuations measured in the
near wake. The maximum peak is identical to the vortex shedding frequency, and the second
peak area is found in the third harmonic of the shedding frequency. For U∞ < 5, spectral levels
are almost flat as f decreases. This trend is similar to experimental data of Bourgoyne et al. [65].
In their measurements, an important characteristic of the spectra is the presence of a clear region
with a −5/3 slope; spectral power-law for high Reynolds number turbulent fluctuations. From
our numerical simulation, however, the spectral density of the velocity fluctuations shows a
decay of the form. A similar remark was made by Singh and Mittal [66]. This is due that the
vortex stretching mechanism is absent in two-dimensional flows. More detail on fluid turbu-
lence confined two spatial dimensions can be found in Boffetta and Ecke [67].
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Figure 20 shows vortex shedding from a hydrofoil with different bevel angles in degrees. At
β = 0°, the vortex shedding is regular and periodic. As the bevel angle β increases, vortex
shedding becomes increasingly disorganized. The periodicity of both forces is almost lost at
β = 60°.

Figure 20. Vortex shedding from a hydrofoil with different bevel angles. Note that the figures are reproduced with
permission from [37]. (a) β = 0°; (b) β = 20°; (c) β = 40°; (d) β = 60°.

Also, we conducted numerical simulations to investigate vortex shedding with respect to the
sinusoidal motions of the free stream flow. The angle of attack varied periodically with time t;
α = αosin(2πf∞t) where f∞ was the frequency of the free-stream flow oscillation and its oscillation
amplitude was restricted at αo = 2 in degrees. The magnitude of the free-stream velocity was
kept constant. The tested model is the NACA 0009 hydrofoil with β = 60°. Interestingly, at f∞ = 20
vortices are regularly shed from the trailing edge, as shown in Figure 21. In the power spectral
density (PSD) functions, drag oscillation induced by vortex shedding is clearly observed. This
means that a particular oscillation frequency in the free stream velocity can cause regular and
periodic vortex shedding.

Figure 21. Vortex shedding at f∞ = 20. Note that the figures reproduced and reprinted with permission from [37].
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6. Concluding remarks

The pVIC method was applied to the simulation of an incompressible viscous flow past a solid
body in 2D and 3D. The obtained results showed good agreement with experimental and
numerical data from the published literature. This demonstrates the feasibility of the pVIC
method. Obviously, the pVIC method offers a simple, efficient, and effective way to simulate
unsteady flows. The fact that vortex-dominated flows are well-characterized by vortices makes
the pVIC method more attractive. However, some hard problems still remain; for example,
rigorous boundary conditions at solid walls and an efficient approximation of pressure
boundary conditions at far field.
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