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Abstract

Biology has become a data‐intensive research field. Coping with the flood of data from
the new genome sequencing technologies is a major area of research. The exponential
increase in the size of the datasets produced by “next‐generation sequencing” (NGS)
poses unique computational challenges. In this context, motif discovery tools are widely
used to identify important patterns in the sequences produced. Biological sequence
motifs are defined as short, usually fixed length, sequence patterns that may represent
important structural or functional features in nucleic acid and protein sequences such
as transcription binding sites, splice junctions, active sites, or interaction interfaces. They
can occur in an exact or approximate form within a family or a subfamily of sequences.
Motif  discovery  is  therefore  an  important  field  in  bioinformatics,  and  numerous
methods  have  been  developed  for  the  identification  of  motifs  shared  by  a  set  of
functionally related sequences. This chapter will review the existing motif discovery
methods for  protein sequences and their  ability to discover biologically important
features as well as their limitations for the discovery of new motifs. Finally, we will
propose new horizons for motif discovery in order to address the short comings of the
existent methods.

Keywords: motif discovery, bioinformatics, biological sequences, protein sequences,
bioinspired algorithms

1. Introduction

Biology has been transformed by the availability of numerous complete genome sequences
for a wide variety of organisms, ranging from bacteria and viruses to model plants and animals
to humans. Genome sequencing and analysis is constantly evolving and plays an increasingly
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important part of biological and biomedical research. This has led to new challenges related
to the development of the most efficient and effective ways to analyze data and to use them
to generate new insights into the function of biological systems. The completion of the genome
sequences is just a first step toward the beginning of efforts to decipher the meaning of the
genetic “instruction book.” Whole‐genome sequencing is commonly associated with sequenc‐
ing human genomes, where the genetic data represent a treasure trove for discovering how
genes contribute to our health and well‐being. However, the scalable, flexible nature of next‐
generation sequencing (NGS) technology makes it equally useful for sequencing any species,
such as agriculturally important livestock, plants, or disease‐related microbes.

The exponential increase in the size of the datasets produced by this new generation of
instruments clearly poses unique computational challenges. A single run of a NGS machine
can produce terabytes of data, and even after image processing, base calling, and assembly,
there will be hundreds of gigabytes of uncompressed primary data that must be stored either
in flat files or in a database. Efficient treatment of all this data will require new computational
approaches in terms of data storage and management, but also new effective algorithms to
analyze the data and extract useful knowledge.

The major challenge today is to understand how the genetic information encoded in the
genome sequence is translated into the complex processes involved in the organism and the
effects of environmental factors on these processes. Bioinformatics plays a crucial role in the
systematic interpretation of genome information, associated with data from other high‐
throughput experimental techniques, such as structural genomics, proteomics, or transcrip‐
tomics.

A widely used tool in all these stages is the comparison (or alignment) of the new genetic
sequences with existing sequences. During genome assembly, short read sequences are often
aligned to a reference genome to form longer contigs. Identification of coding regions then
involves alignment of known genes to the new genomic sequence. Finally, functional signifi‐
cance is most often assigned to the protein coding regions by searching public databases for
similar sequences and by transferring the pertinent information from the known to the
unknown protein. A wide variety of computational algorithms have been applied to the
sequence comparison problem in diverse domains, notably in natural language processing.
Nevertheless, the analysis of biological sequences involves more than abstract string parsing,
for behind the string of bases or amino acids is the whole complexity of molecular and
evolutionary biology.

One major problem is the identification of important features, such as regulatory sites in the
genomes, or functional domains or active sites in proteins, that are conserved within a family
of sequences, without prior alignment of the sequences. In this context, motif recognition and
discovery tools are widely used. The retrieved motifs are often compiled in databases including
DNA regulatory motifs in TRANSFAC [1], JASPAR [2], or RegulonDB [3], and protein motifs
in PRINTS [4], PROSITE [5], or ELM [6]. These well‐characterized motifs can be used as a
starting point for the identification of known motifs in other sequences. This is otherwise
known as the pattern recognition problem. The challenges associated with de novo pattern
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discovery, or the detection of previously unknown motifs [7], is far more difficult due to the
nature of the motifs.

Biological sequence motifs are defined as short, usually fixed length, sequence patterns that
may represent important structural or functional features in nucleic acid and protein sequences
such as transcription binding sites, splice junctions, active sites, or interaction interfaces. They
occur in an exact or approximate form within a family or a subfamily of sequences. Motif
discovery is therefore an important challenge in bioinformatics and numerous methods have
been developed for the identification of motifs shared by a set of functionally related sequences.

Consequently, much effort has been applied to de novo motif discovery, for example, in DNA
sequences, with a large number of specialized methods that were reviewed recently in [8]. One
interesting aspect is the development of nature‐inspired algorithms, for example, particle
swarm optimization has been used to find gapped motifs in DNA sequences [9], while DNA
motifs have been discovered using an artificial immune system (AIS) [10]. Unfortunately, far
fewer tools have been dedicated to the de novo search for protein motifs. This is due to the
combinatorial explosion created by the large alphabet size of protein sequences, as well as the
degeneracy of the motifs, i.e., the large number of wildcard symbols within the motifs. Some
tools, such as Teiresias [11], or the MEME suite [12], can discover motifs in both DNA and
protein sequences. Other work has been dedicated to the discovery of specific types of protein
motifs, such as patterns containing large irregular gaps with “eukaryotic linear motifs” with
SLiMFinder [13] or phosphorylation sites [14]. Many studies have been conducted to compare
these specific motif discovery tools, such as [15].

In most cases, de novo motif discovery algorithms take as input a set of related sequences and
search for patterns that are unlikely to occur by chance and that might represent a biologically
important sequence pattern. Since protein motifs are usually short and can be highly variable,
a challenging problem for motif discovery algorithms is to distinguish functional motifs from
random patterns that are overrepresented. One solution to this challenge is to first construct a
global multiple alignment of the sequences and then search for motifs in the aligned sequences.
This reduces the search space to the aligned regions of the sequences, but also severely limits
the possibilities of finding new motifs.

Furthermore, existing motif discovery methods are able to find motifs that are conserved
within a complete family, but most of them are still unable to find motifs that are conserved
only within a subfamily of the sequences. These subfamily‐specific motifs, which we will call
“rare” motifs, are often conserved within groups of proteins that perform the same function
(specificity groups) and vary between groups with different functions/specificities. These sites
generally determine protein specificity either by binding specific substrates/inhibitors or
through interaction with other protein.

In Section 2, we will provide a brief description of protein sequences and the motifs that
characterize them. Then, in Section 3, the main approaches used for discovery of motifs in
protein sequences will be presented. Section 3 also deals with motif recognition in protein
sequences. In Section 4, the main approaches used for the more difficult problem of de novo
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motif discovery will be presented. Finally, in Section 5, we will propose new horizons for motif
discovery in order to address the short comings of the existent methods.

2. Protein sequences, active sites, and motifs

Some basic concepts in protein biology are necessary for understanding the rest of this chapter.
For many readers, this will be a familiar territory and in this case, they may want to skip this
section and go directly to Section 3.

The genetic information encoded in the genome sequence of any organism contains the
blueprint for its potential development and activity. However, the translation of this informa‐
tion into cellular or organism‐level behavior depends on the gene products, especially proteins.
Proteins perform a wide variety of cellular functions, ranging from catalysis of reactions,
nutrient transport, and signal transmission to structural and mechanical roles. A protein is
composed of a single chain of amino acids (of which there are 20 different kinds), represented
by their single letter codes. This “primary structure” or sequence is none other than a string
of characters that we can read from left to right, i.e., from NH2 part (N‐terminal) to the COOH
part (C‐terminal).

Every protein molecule has a characteristic three‐dimensional (3D) shape or conformation,
known as its native state. The process by which a protein sequence assumes its 3D structure
is known as folding. Protein folding can be considered as a hierarchical process, in which the
primary sequence defines secondary structure, which in turn defines the tertiary structure.
Individual protein molecules can then interact with other proteins to form complex quaternary
structures. The precise 3D structure of a protein molecule is generally required for proper
biological function since a specific conformation is needed that the cell factors can recognize
and interact with.

During evolution, random mutagenesis events take place, which change the genomic sequen‐
ces that encode proteins. There are several different types of mutation that can occur. A single
amino acid can be substituted for another one. Insertions and deletions also occur, involving
a single amino acid up to several hundred amino acids. Some of these evolutionary changes
will adversely affect the function of a protein, e.g., mutations of active sites in an enzyme, or
mutations that disrupt the 3D structure of the protein. If this happens to a protein that takes
part in a crucial process for the cell, it will result in cell death. As a result, amino acids that are
essential for a protein's function, or that are needed for the protein to fold correctly, are
conserved over time. Occasionally, mutations occur that give rise to new functions. This is one
of the ways that new traits and eventually species may come about during evolution.

By comparing related sequences and looking for those amino acids that remain the same in all
of the members in the family, we can predict the sites that might be essential for function. Some
examples of important functional sites include the following:

• Enzyme active sites: to catalyze a reaction, an enzyme will bind to one or more reactant
molecules, known as its substrates. The active site consists of the enzyme's amino acids that
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form temporary bonds with the substrate, known as the binding site, and the amino acids
that catalyze the reaction of that substrate.

• Ligand‐binding sites: a binding site is a region on a protein molecule where ligands (small
molecules or ions) can form a chemical bond. Ligand binding often plays a structural or
functional role, for example, in stabilization, catalysis, modulation of enzymatic activity, or
signal transmission.

• Cleavage sites: the location on a protein molecule where peptide bonds are broken
down by hydrolysis. For instance, in human digestion, proteins in food are broken
down into smaller peptide chains by digestive enzymes. Many viruses also produce
their proteins initially as a single polypeptide chain which is then cleaved into individual
protein chains.

• Posttranslational modification sites: some amino acids in a protein can undergo chemical
modification, produced in most cases by an enzyme after its synthesis or during its life in
the cell. This change usually results in a change of the protein function, whether in terms of
its action, half‐life, or its cellular localization.

• Targeting sites: within a cell, the localization of a protein is essential for its proper function‐
ing, but the production site of a protein is often different from the place of action. Protein
targeting signals, such as nuclear or mitochondrial localization signals, can be encoded
within the polypeptide chain to allow a protein to be directed to the correct location for its
function.

An example of a simple functional site is the N‐glycosylation site, which is a posttransla‐
tional modification where a carbohydrate is attached to a hydroxyl or other functional
group of a protein molecule. The sequence motif representing this site can be indicated by
N‐X‐S/T. The first amino acid is asparagine (N), the second amino acid can be any of the
20 amino acids (X), and the third amino acid is either serine (S) or threonine (T). This
example introduces the first complication in protein motif discovery: the motifs can con‐
tain both exact and ambiguous elements. Asparagine is a necessary amino acid, since this
is the site that will be glycosylated, and is represented by an exact element. The third
position should be a hydroxyl‐containing amino acid (serine or threonine), while the sec‐
ond position is a “wild card.” Nevertheless, the N‐glycosylation motif shown here is un‐
interrupted, and so it is relatively easy to recognize. The spacing between the elements in
many other sequence motifs can vary considerably, but the presence of such motifs is gen‐
erally detected from the structure rather than sequence and this kind of motif will not be
discussed in detail here. Finally, it should be pointed out that, just because this motif ap‐
pears in a protein sequence, it does not mean that the site is glycosylated. The functional
implications of a motif will depend on the neighboring amino acids and the surrounding
3D context. Therefore, in practice, identifying functional motifs from a protein sequence is
far from straightforward.
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3. Motif recognition in protein sequences

The motif recognition problem takes as input a set of known patterns or features that in some
way define a class of proteins. The goal is then to search in an unsupervised or supervised way
for other instances of the same patterns. As mentioned in the Introduction, the known motifs
in biological sequences are generally compiled databases that are publically available over the
Internet. For example, the PRINTS database (www.bioinf.manchester.ac.uk/dbbrowser/
PRINTS) contains “protein fingerprints,” where a fingerprint is composed of a group of motifs
that characterize a given set of protein sequences with the same molecular function. In contrast,
the PROSITE (prosite.expasy.org) and ELM (elm.eu.org) databases contain single motifs that
correspond to known functionally or structurally important amino acids, such as those
involved in an active site or a ligand binding site. The motifs contained in these resources are
generally manually curated and the entries in the databases include extensive documentation
of the specific biological function associated with the sites.

3.1. Motif representation

Over the years, a variety of motif representation models have been developed to take into
account the complexity of protein motifs. The models are attempts to construct generalizations
based on known functional motifs, and are used to help characterize the functional sites and
to facilitate their identification in unknown protein sequences. They can be divided into two
main categories.

3.1.1. Deterministic models

Consensus sequences are the simplest model for representing protein motifs. They can be
constructed easily by selecting the amino acid found most frequently at each position in the
signal. The number of matches between a consensus and an unknown candidate sequence can
be used to evaluate the significance of a potential functional site. However, consensus sequen‐
ces are limited models, since they do not capture the variability of each position. To support
some degree of ambiguity, regular expressions can be used. Regular expressions are typically
composed of exact symbols, ambiguous symbols, fixed gaps, and/or flexible gaps [16]. For
example, the IQ motif is an extremely basic unit of about 23 amino acids, whose conserved
core can be represented by the regular expression:

[FILV]Qxxx[RK]Gxxx[RK]xx[FILVWY]

where x signifies any amino acid, and the square brackets indicate an alternative.

3.1.2. Probabilistic models

Although deterministic models provide useful ways to construct human‐readable represen‐
tations of motifs, their main drawback is that they lose some information. For instance, in the
IQ motif discussed above, the first position is usually I and both [RK] are most often R.
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Probabilistic models can be used to overcome such loss of information. The position‐specific
scoring matrix (PSSM) [17], also known as the probability weight matrix (PWM), is undoubt‐
edly one of the most widely used probabilistic models. This model is represented by a matrix
where each entry (i,a) is the probability of finding an amino acid a at the ith position in the
sequence motif. For example, for a set of motifs:

• WSEW

• WSRW

• CSKW

• CSKW

• YSKY

The corresponding PSSM is shown in Table 1.

Position 1 2 3 4

C 0.4 0.0 0.0 0.0

E 0.0 0.0 0.2 0.0

K 0.0 0.0 0.6 0.0

R 0.0 0.0 0.2 0.0

S 0.0 1.0 0.0 0.0

W 0.4 0.0 0.0 0.8

Y 0.2 0.0 0.0 0.2

Table 1. Example of a position specific scoring matrix (PSSM).

Figure 1. An example of a sequence logo for representing patterns in biological sequences. The logo represents the
Pribnow box, a conserved region found upstream of the some genes in prokaryotic genomes.

Although in this example, PSSM containing entries having a value of 0, in general, pseudo‐
counts are applied, especially when using a small dataset, in order to allow the calculation of
probabilities for new motifs.
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The information summarized in the PSSM can also be represented by a sequence logo [18],
which is a graphical representation of the motif conservation as shown in Figure 1. A logo
consists of a stack of letters at each position in the motif, where the relative sizes of the letters
indicate their frequency in the sequences. The total height of the letters corresponds to the
information content of the position, in bits.

Another widely used probabilistic model is the hidden Markov model (HMM), a statistical
model that is generally applicable to time series or linear sequences. They were first introduced
in bioinformatics for DNA sequences [19]. A HMM can be visualized as a finite state machine
that moves through a series of states and produces some kind of output. The HMM generates
a protein sequence by emitting amino acids as it progresses through a series of states. Each
state has a table of amino acid emission probabilities, and transition probabilities for moving
from state to state.

All of the representations mentioned so far inherently assume that positions within the motif
are independent of each other. However, in some cases, this strong independence assumption
may not be reasonable. Markov models of higher order, permuted Markov models, or Bayesian
networks can be used to capture local dependencies by considering how each position depends
on the other.

3.2. Motif detection

The models described in the previous section can be applied to the task of scanning a user‐
submitted sequence for matches to known motifs, thus providing evidence for the function of
the protein and contributing to its classification in a given protein family. Ideally, a motif model
would recognize all and only the members of the family. Unfortunately, this is seldom the case
in practice.

In the case of deterministic models including consensus sequences and regular expressions,
the models are often either too specific leading to a large number of false negative predictions,
or too degenerate resulting in many false positives. The statistical power of such models can
be estimated using standard measures, such as the positive and negative predictive values
(PPV and NPV, respectively).

In the case of probability matrices or HMM‐based methods, a log‐odds score can be calculated
that is a measure of how probable it is that a sequence is generated by a model rather than by
a random null model, representing the universe of all sequences (also known as the “back‐
ground”). The log‐odds score of a motif is defined as:

( ) ( )
( )

log m
z
P s

score s
P sÆ

=
(1)

where Pm is the probability that the sequence was generated by the motif model m and Pφ is
the probability that the sequence was generated by the null model. The logarithm is usually
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base 2, and the score is given in bits. A log‐odds score greater than zero indicates that the
sequence fits the motif model better.

4. Motif discovery in protein sequences

4.1. Methods for motif discovery

Given a set of functionally related sequences, the main aim of motif discovery algorithms is to
find new and a priori unknown motifs that are frequent, unexpected, or interesting according
to some formal criteria. The methods used to discover such motifs follow the same general
schema, as shown in Figure 2. They can be grouped into two main categories: alignment‐based
methods and methods that search for motifs in unaligned sequences.

Figure 2. General motif discovery process.

4.1.1. Alignment‐based methods

Alignment‐based methods for motif discovery first construct a multiple sequence alignment
of the set of sequences, where each sequence of amino acids is typically represented as a row
within a matrix. Gaps are inserted between the amino acids so that identical or similar
characters are aligned in successive columns. Once the multiple alignments are constructed,
the patterns are extracted from the alignment by combining the substrings common to most
of the sequences.

One of the first automatic methods for the identification of conserved positions in a multiple
alignment was the AMAS program [20], using a set‐based description of amino acid properties.
Since then, a large number of different methods have been proposed. For example, Al2Co [21]
calculates a conservation index at each position in a multiple sequence alignment using
weighted amino acid frequencies at each position. The DIVAA method [22] is based on a
statistical measure of the diversity at a given position. The diversity measures the proportion
of the 20 possible amino acids that are observed.
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The advantage of the alignment‐based approach is that no upper limit has to be imposed on
the length of the motifs. Moreover, these algorithms usually do not need as input a maximum
threshold value for the motif distance from the sequences. In general, this approach works well
if the sequences are sufficiently similar and the patterns occur in the same order in all of the
sequences. Unfortunately, this is not usually the case and therefore most methods for motif
discovery in protein sequences assume that the input sequences are unaligned.

4.1.2. Alignment‐free methods

The vast majority of motif discovery methods in bioinformatics are alignment‐free approaches
that do not rely on the initial construction of a multiple sequence alignment. Instead, they
generally search for patterns that are overrepresented in a given set of sequences. The simplest
solution is to generate all possible motifs up to a maximum length l, and then to search
separately for the approximate occurrences of each motif in the set of sequences. Once a list of
candidate patterns is obtained, the ones with the highest significance scores are selected. This
approach guarantees to find all motifs that satisfy the input constraints. Moreover, the
sequences can be organized in suitable indexing structures, such as suffix trees, etc., so that
the time needed by the algorithm to search for a single motif is linear in the overall length of
the sequences.

This simplistic approach has an evident disadvantage: the number of candidate motifs, and
therefore the time required by the algorithm, grows exponentially with the length of the
sequences. Computing a significance score for each motif further increases the time required
by the algorithm. A number of more efficient tools have been developed to address these issues
and in the next chapter, we will discuss some of the more widely used ones.

4.2. Tools for motif discovery

In this section, we will present of the programs that are specifically designed to search for
motifs in protein sequences that are biologically significant. The search for motifs in a set of
unaligned sequences is a complex problem because many factors come into play, such as the
precise start and end boundaries of the motif, the size variability (presence of gaps or not), or
stronger or weaker motif conservation during evolution.

De novo motif discovery programs are generally based on one of the following three algorithms:

• Enumeration is a method that involves counting all substrings of a certain length (known
as words or k‐mers) and then seeking overrepresentations. Such exhaustive motif finding
approaches are guaranteed to report all instances of motifs in a set of sequences. However,
the exponential complexity of such searches means that the problem quickly becomes
intractable for large alphabets.

• Deterministic optimization is based on the expectation‐maximization (EM) algorithm that
estimates the likelihood of a motif from existing data in two stages repeated iteratively. The
first uses a set of parameters to reconstruct the hidden motif structure. The second uses this
structure to reestimate the parameters. This method allows finding alternate sequences
representing the motif and updating the motif model.
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• Probabilistic optimization is an iterative method in which a random subsequence is
extracted from each sequence to build an initial model. In each subsequent iteration, the ith
sequence is removed and the model is recalculated. Then, a new motif is extracted from the
ith sequence. This process is repeated until convergence.

Below, and in Table 2, we present the most used motif discovery programs and discuss their
advantages and limitations.

Teiresias [11] is based on an enumeration algorithm. It operates in two phases: scanning and
convolution. During the scanning phase, elementary motifs with sufficient support are
identified. These elementary motifs constitute the building blocks for the convolution phase.
They are combined into progressively larger motifs until all the existing maximal motifs are
generated.

MEME [12] is an example of a deterministic optimization algorithm. It allows discovery of
motifs in DNA or protein sequences based on expectation maximization (EM). MEME
discovers at least three motifs, each of which may be present in some or all of the input
sequences. MEME chooses the width and number of occurrences of each motif automatically
in order to minimize the “E‐value” of the motif, i.e., the probability of finding a similarly well‐
conserved pattern in random sequences. With default parameters, only motif widths between
6 and 50 are considered, but the user have the possibility to change this as well as several other
parameters (options) of the motif discovery.

Pratt [23] is based on probabilistic optimization. It first searches the space of motifs, as
constrained by the user, and compiles a list of the most significant sequences that matches at
least the user‐defined minimum number of sequences. If the user has not switched off the
refinement, these motifs will be input to one of the motif refinement algorithms. The most
significant motifs resulting from this are then output to a file.

qPMS [24] stands for quorum planted motif search. The program searches for motifs in either
DNA or protein sequences. It uses the (l, d) motif search algorithm known as the planted motif
search. qPMS takes as input a set of sequences and two values, l and d. It returns all sequences
M of length l, which appear in at least q% of the sequences.

SLiMFinder [13] identifies novel short linear motifs (SLiMs) in a set of sequences. SLiMs are
microdomains that have important functions in many diverse biological pathways. SLiM‐
mediated functions include posttranslational modification, subcellular localization, and ligand
binding. SLiMs are generally less than 10 amino acids long, many of which will be “flexible”
in terms of the conserved amino acid. SLiMFinder constructs such motifs by grouping dimers
into longer patterns: motifs with fixed amino acid positions are identified and then grouped
to include amino acid ambiguity and variable‐length wildcards. Finally, motifs that are
overrepresented in a set of unrelated proteins are identified.

Dilimot [25] proceeds as follows: in the first step, a user provided set of protein sequences is
filtered to eliminate repetitive sequences as well as the regions least likely to contain linear
motifs. In the second step, overrepresented motifs are identified in the nonfiltered sequences
and ranked according to scores that take into account the background probability of the motif,
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the number of sequences containing the motif, the size of the sequence set, and the degree to
which the motif is conserved in other orthologous proteins.

Program Description Advantages Disadvantages

Teiresias Finds motifs that are frequent in a set of

related sequences

Does not need background

sequences; Very fast

Too many redundant

motifs discovered

MEME Finds motifs in related sequences

using Gibbs sampling and expectation

maximization

Does not need background

sequences; Fast, Multi‐thread

version available; User

friendly output

User defines the number of

motifs to discover

Pratt Discovers flexible motifs in related

sequences

Does not need background

sequences

Unable to discover

effectively exact motifs

qPMS Finds overrepresented motifs in a set of

sequences based on Quorum Planted Motif

Search

Fast; Low memory

consumption

Limited to 20 protein

sequences

SlimFinder Finds overrepresented motifs in a set of

unrelated sequences relative to background

sequences

Well documented; Can use

filters

Needs background

sequences

MotifHound Exhaustively finds motifs overrepresented

in a set of unrelated sequences relative to

background sequences

Exhaustive exploration of

motifs; Can use filters Fast;

Multi‐thread version available

Needs background

sequences

Dilimot Finds overrepresented motifs in a set of

unrelated sequences relative to a

background sequences

Integrates several types of

sequence information on

motifs

Needs background

sequences; Source code not

available

FirePro Correlates overrepresented motifs in a

set of sequences with specific functions or

behaviors

User friendly output Needs background

sequences

Table 2. Advantages and limitations of the most used motif discovery programs.

MotifHound [26] is suitable for the discovery of small and degenerate linear motifs. The
method needs two input datasets: a background set of protein sequences and a subset of this
background set that represents the query sequences. MotifHound first enumerates all possible
motifs present in the query sequences, and then calculates the frequency of each motif in both
the query and the background sets.

FIRE‐pro [27] stands for finding informative regulatory elements in proteins. Its main goal is
to discover protein motifs that correlate with the biological behavior of the corresponding
proteins. FIRE‐pro calculates a mutual information measure between frequent k‐mer motifs
and a “protein behavior profile” containing experimental data about the function of the
proteins.
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Most of these programs need prior knowledge about either the input sequences or the motif
structure. Furthermore, they are generally designed to discover frequent motifs that occur in
all or most of the sequences. The subfamily‐specific motifs, which differentiate a specific subset
of sequences, pose a greater challenge due to the statistical nature of these programs or the
default choice of parameters used. Nevertheless, these “rare” motifs are often characteristic of
important biological functions or context‐specific modifications, including substrate binding
sites, protein‐protein interactions, or posttranslational modification sites.

In the final section of this chapter, we will discuss the use of “intelligent algorithms” that should
be more reliable for the discovery of significant rare motifs in addition to the conserved and
known ones.

5. Intelligent algorithms for protein motif discovery

Intelligent algorithms include optimization and nature inspired algorithms. Among these,
artificial immune systems are especially adapted to pattern discovery, and have been used
recently for motif discovery in DNA sequences. The high complexity and dimensionality of
the problems in bioinformatics are an interesting challenge for testing and validating new
computational intelligence techniques. Similarly, the application of AIS to bioinformatics may
bring important contributions to the biological sciences, providing an alternative form of
analyzing and interpreting the huge volume of data from molecular biology and genomics [28].

Artificial immune systems are a class of computationally intelligent systems inspired by the
principles and processes of the vertebrate immune system. The algorithms typically apply the
structure and function of the immune system to solving hard computational problems. Since
their introduction in the 1990s, a number of common techniques have been developed,
including:

• Clonal selection algorithms model how antibodies of the immune system adaptively learn
the features of the intruding antigen and defend the body from it. The algorithms are most
commonly applied to optimization and pattern recognition domains.

• Negative selection refers to the identification and deletion of self‐reacting cells, i.e., cells that
may attack self‐tissues. The algorithms are typically used for classification and pattern
recognition problems, especially in the anomaly detection domain.

• Immune network algorithms focus on the network graph structures involved where
antibodies represent the nodes and the training algorithm involves growing or pruning
edges between the nodes based on affinity. The algorithms have been used to solve cluster‐
ing, data visualization, control, and optimization problems.

• Dendritic cell algorithms are inspired by the danger theory algorithm of the mammalian
immune system, and particularly the role and function of dendritic cells, from the molecular
networks present within the cell to the behavior exhibited by a population of cells as a whole.
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Although a number of these different AIS can be used for pattern recognition, the clonal
selection algorithm seems to be particularly well suited for protein motif discovery in large
sets of sequences. In particular, the capabilities for self‐organization of huge numbers of
immune cells mean that no prior information is needed. In addition, the system does not
require outside intervention and so it can automatically classify pathogens (motifs) and it can
react to pathogens that the body has never seen before. Another advantage of AIS is the fact
that there are varying types of elements that protect the body from invaders, and there are
different lines of defense, such as innate and adaptive immunity. These features can be
abstracted to model the diverse types of motifs found in protein molecules (see Section 1).
These different mechanisms are organized in multiple layers that act cooperatively to provide
high noise tolerance and high overall security.

The use of such intelligent algorithmic approaches should improve the whole motif discovery
process: from the selection of suitable sets of sequences, via data cleaning and preprocessing,
motif identification and evaluation, to the final presentation and visualization of the results.
Nevertheless, a number of issues remain to be addressed before such systems can be applied
to the very large datasets produced by NGS technologies. In particular, the substantial time
and memory requirements of AIS are a limiting factor, although these can be significantly
reduced thanks to the inherently parallel nature of the algorithms.
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