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Abstract

Severe malaria is a systemic illness characterized by the dysfunction of one or more
peripheral organs, such as the lungs [acute respiratory distress syndrome (ARDS)] and
kidneys [acute kidney injury (AKI)]. Several clinical and experimental studies suggest
that features of the inflammatory response are related to the multi-organ dysfunction
observed in severe malaria. Our group has been dedicated to studying the roles of pro-
and anti-inflammatory mediators in the multi-organ dysfunction observed in experi-
mental severe malaria, especially in the lungs, kidneys, and brain. Herein, we explore
severe malaria as a pathology derived from intense inflammatory responses in different
organs  and  further  distinguish  and  compare  these  organ-specific  inflammatory
responses. The pathophysiological mechanism of severe malaria is not fully elucidated;
however, it is important to study it as a complex inflammatory response assembled by
different actors, each one orchestrating a different mechanism.

Keywords: inflammation, cerebral malaria, acute respiratory distress syndrome, acute
kidney injury, vascular permeability

1. Introduction

Severe malaria is a systemic illness characterized by one or more clinical manifestations, such
as acute respiratory distress syndrome (ARDS),  multiple convulsions,  prostration,  shock,
abnormal bleeding, jaundice, and acute kidney injury (AKI) [1–3]. Severe malaria used to be
exclusively attributed to Plasmodium falciparum infection. However, in the last 15–20 years,
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several reports of severe malaria attributed to Plasmodium vivax [4–6] and Plasmodium knowlesi
[7–9] have been described, which led the World Health Organization (WHO) to add these
species as causes of severe malaria [10]. According to the WHO, severe malaria evolves from
an uncomplicated illness due to several factors, such as the host response, parasite virulence,
comorbidities, and deficient health services for malaria patients. Beyond the three species cited
above, Plasmodium malariae and Plasmodium ovale also affect multiple organs in children and
adults, however with different intensity (Table 1).  The multi-organ dysfunction observed
during severe malaria is associated with a systemic inflammatory response triggered by,
among other factors, leukocyte adhesion to organ microvasculature, parasitized erythrocytes
and production of inflammatory mediators [11, 12]. Despite the morphological and biochem-
ical differences among Plasmodium species, the mechanisms by which severe malaria develops
appear to be similar. Herein, we discuss the inflammatory response underlying the Physio-
pathology of severe malaria in human and experimental data. We further discuss triggers of
the inflammatory response and how chemical and cellular mediators of inflammation cause
severe malaria-induced multi-organ damage [6, 7, 9, 13–36].

Clinical manifestation

ARDS CM Jaundice AKI

Species

P. falciparum [13, 14] [13, 15–22] [13, 14, 16, 17, 23] [13, 14, 16, 18, 24]

P. vivax [6, 23, 25–27] [27] [6, 23] [6, 18, 27]

P. knowlesi [9, 28, 29] – [32, 36] [31, 32, 36]

P. malariae [31] [6, 18, 27] [7, 28–30] [31, 32, 36]

P. ovale [31, 33, 34] – [33, 35] [31, 35]

ARDS, acute respiratory distress syndrome; CM, cerebral malaria; AKI, acute kidney injury.

Table 1. Studies describing severe malaria clinical manifestation according Plasmodium species.

2. Molecular and cellular features of the malaria-induced inflammatory
response

During severe malaria, leukocytes and lymphocytes produce soluble inflammatory mediators,
such as pro-inflammatory cytokines, which activate endothelial cells [37]. Furthermore,
proteins anchored on membranes of infected red blood cell (RBC) such as P. falciparum
erythrocyte membrane protein 1 (PfEMP1), expressed by parasites, induce endothelium
activation resulting in increased expression of adhesion molecules [38, 39] and the activation
and adhesion of leukocytes to the microvasculature.

In both the pre-erythrocytic and erythrocytic phases, macrophages and monocytes are
responsible for the cytokine storm during an acute malarial infection [40]. Activation of
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phagocytes is mediated by binding of the hemozoin/parasite DNA complex to TLR-9 and the
consequent downstream activation of inflammasome signaling [41]. The hemozoin released
into circulation during infected RBC lysis is taken up by circulating monocytes and tissue
macrophages and activates inflammasome intracellular protein complexes, such as NOD-,
LRR-, and pyrin domain-containing (NLRP)3 and NLRP12, resulting in caspase 1 activation
and the subsequent release of interleukin (IL)-1β, which is involved in fever during malaria
bursts [40, 42]. In addition to inducing pro-inflammatory cytokines, some studies demonstrate
that hemozoin can also induce the expression of anti-inflammatory cytokines in monocytes,
such as IL-10, which tightly regulates IL-12 and CCL5 production [43]. These cytokines and
chemokines, respectively, are directly involved in the development of the immune response
[44]. Mononuclear cell activation leads to the production of TNF-α and IL-12 by neutrophils.
These cytokines stimulate innate immune cells, such as natural killer (NK) cells and γδ T cells
(including γδ NKT cells), to rapidly produce IFN-γ. As a consequence, IL-12 and IFN-γ activate
monocytes and macrophages to enhance the phagocytosis of infected RBCs (reviewed in [45,
46]) and produce reactive oxygen and nitrogen radicals, which kill parasites [47].

The activation of the cellular components of the innate immune system, such as dendritic cells
(DCs), is important for the establishment of acquired immunity [40]. In the spleen, DCs present
their processed antigens to naïve T cells (Th0) and induce a pro-inflammatory response (Th1)
with mainly CD4+ T cells that produce IFN-γ. This lymphocyte subtype is involved in the
beginning of malarial infection by further stimulating Th1 differentiation and subsequently
stimulating B cells to produce specific antibodies to eliminate malaria parasites [46]. In
addition, CD8+ T cells act in the effector phase, contributing to permeability changes in the
blood-brain barrier (BBB) through perforin-dependent mechanisms [48].

Beyond leukocytes and lymphocytes, endothelial cells also play a crucial role in the inflam-
matory response during severe malaria. In the erythrocytic phase, endothelial activation
accounts for many factors involved in the development of severe malaria [49], such as increased
adhesion of infected RBCs [50], increased expression of chemokines [51], and increased
adhesion of leukocytes to peripheral organ microvasculature [52]. Several soluble proteins
have been described such as inflammatory markers of endothelial activation during severe
malaria. The angiopoietin (Ang)-Tie2 axis is a critical regulator of endothelial quiescence,
activation and dysfunction in infectious and oncologic diseases, atherosclerosis, and pulmo-
nary hypertension [53, 54]. Ang-1 signals through its cognate receptor Tie-2 (a tyrosine kinase
with immunoglobulin and endothelial growth factor homology domains), which is expressed
on endothelial cells [53]. In addition, Ang-2 (partial/weak agonist of Tie-2) is released by
endothelial cells and acts as an Ang-1 antagonist [55]. During cerebral malaria (CM), Ang-1
exerts anti-inflammatory effects by decreasing adhesion molecule expression and maintaining
the integrity of the BBB by reinforcing VE-cadherin tight junctions [53, 54]. In contrast, Ang-2
is stored in Weibel-Palade bodies (WPB) within endothelial cells and is involved in the response
to inflammatory stimuli. High levels of Ang-2 are observed in children with severe malaria
[56]. In healthy subjects, the basal Ang-1 level is higher than that of Ang-2, while the opposite
ratio is observed in fatal cases of severe malaria [57]. Another inflammatory marker of
endothelial activation during sever malaria is the activation of endothelial cell protein C
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receptor (EPCR). EPCR is widely expressed on endothelial cells and leukocytes, and its
activation is associated with severe malaria [58, 59]. EPCR is referred to as the cell surface
conductor of cytoprotective coagulation factor signaling because it enhances the conversion of
protein C into its activated state, activated protein C (APC). The EPCR/APC complex has anti-
inflammatory and endothelial cytoprotective activities that help maintain vascular integrity
[60, 61]. The binding of infected RBCs to EPCR impairs the formation of the EPCR/APC
complex, which may lead to sequestration, complement activation, and endothelial dysfunc-
tion, as reflected by Weibel-Palade (WP) body exocytosis, with the release of von Willebrand
factor (vWF) and angiopoietin-2 and the increased expression of other endothelial receptors,
such as ICAM-1 [60].

3. Organ-specific inflammatory responses

The inflammatory features described above occur in different organs and at different intensi-
ties. Although there are few examples of leukocyte adhesion in the brain vasculature in the
development of human cerebral malaria [62], necropsy in fatal cases of severe malaria reveals
marked inflammatory cell infiltration in lung tissue [11]. Endothelium/leukocyte interactions
in the lung differ from their interactions in the brain, likely due to differences in the BBB and
the blood-air barrier tight junction compositions of the brain and lung endothelium. However,
the malaria-induced inflammatory response that is responsible for kidney dysfunction is not
related to inflammatory cell accumulation in renal tissue but depends on immunocomplex
deposition and infected RBC adhesion to the renal vasculature [63].

3.1. Inflammatory components in the development of cerebral malaria

Cerebral malaria is mainly attributed to P. falciparum infection, especially in children under
five years [64]. Cerebral complications during malaria are triggered by the mechanisms
described above; however, the inflammatory response observed in the brain is unique.

Taylor and coworkers have been studying the pathogenesis of cerebral malaria (CM) and have
observed three different pathologies: (i) CM1—presence of sequestered parasitized erythro-
cytes in the cerebral microvasculature; (ii) CM2—presence of sequestered parasitized eryth-
rocytes in the cerebral microvasculature and vascular pathology; and (iii) CM3—non-malarial
components involved in cerebral damage. Inflammatory mediators are involved in CM1 and
CM2. As described above, adhesion molecules and EPCR expressed in brain endothelial cells
induce parasitized erythrocyte adhesion [58]. Likewise, during CM2, leukocytes are observed
in the intravascular space, and plasmatic proteins are found in the brain tissue, suggesting
edema formation [62]. The role of leukocytes in the pathogenesis of cerebral malaria is unclear.
A main characteristic of brain anatomy is the presence of the BBB, which confers protection
against circulating cell diapedesis into brain tissue. Nevertheless, the BBB composition of
postcapillary venules allows leukocyte diapedesis during non-malarial brain injury [65, 66].
However, leukocytes are not observed within brain tissue during CM2 [62, 67], suggesting an
indirect contribution of these cells to the development of cerebral malaria. Cytokine production
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by leukocytes during P. falciparum infection may contribute to brain endothelial cell activation,
indicating that leukocyte involvement in cerebral malaria does not depend on cell-cell contact
[68, 69]. Wassmer and colleagues hypothesized that higher endothelial responses to TNF-α
increase the probability of a patient developing cerebral malaria. The authors suggest that
endothelial activation by TNF-α increases the expression of adhesion molecules, which
facilitates the binding of parasitized erythrocytes, leading to CM1/CM2. Thus, CM1/CM2 is a
pathogenesis triggered by parasitized erythrocytes but sustained by a local inflammatory
response (Figure 1).

Figure 1. Inflammatory response during cerebral malaria—during cerebral malaria, it is possible to observe the pres-
ence of sequestered parasitized erythrocytes in the cerebral microvasculature, vascular pathology, leukocytes in the in-
travascular space and plasmatic proteins in brain tissue, suggesting edema formation. Figure created in the Mind the
Graph platform (www.mindthegraph.com).

Although experimental models of severe malaria could not be used to predict human pathol-
ogy, they have been extensively used to elucidate cellular and molecular pathophysiological
processes. Several findings observed in human cerebral malaria are also observed in experi-
mental models, including cytokine activity [70], endothelial activation [71], and edema
formation [72]; however, the sequestration of parasitized erythrocytes during experimental
cerebral malaria (ECM) is not well understood. Recent evidence showed that Plasmodium
berghei-ANKA infected RBCs adhere to brain microvascular endothelial cells in a VCAM-1-
dependent manner [73]. In addition, another study suggests transient contact between infected
RBCs and the endothelium [74]. The expression of Pf-erythrocyte membrane protein (EMP)s
and their ability to adhere to host adhesion molecules depends on the expression of structural
proteins, such as knob-associated histidine-rich protein (KAHRP), that allow the formation of
knobs on erythrocyte membranes [75]. Plasmodium species incapable of forming knobs in
infected erythrocytes (knobless Plasmodium) show a passive adhesion of infected RBCs to
activated endothelial cells [75]. Thus, knobless Plasmodium activates endothelial cells to the
same extent as knob-forming Plasmodium [66, 73], which suggests that ECM may also be
induced by parasitized erythrocytes.
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The participation of leukocytes and lymphocytes in ECM has been extensively described [76].
Different from that observed in humans, during ECM, the adhesion of leukocytes and
lymphocytes in the brain vasculature is well described [71, 74, 77]. In fact, monocytes, CD4+ T
cells, CD8+ T cells and platelets adhere in brain post capillary venules but do not transmigrate
to the brain tissue of P. berghei infected mice, supporting the idea that the brain disorder is due
to leukocyte induced-endothelial dysfunction. Thus, strategies targeting endothelial stabili-
zation revert ECM and prolong survival in mice [71, 78].

3.2. The inflammatory response in severe malaria-induced ARDS

Beyond the brain, the lungs are the most affected organ in severe malaria. Lung dysfunction
occurs in 20% of all cases of adults with falciparum [3] or vivax [27] severe malaria. In knowlesi
severe malaria, more than 50% of patients develop acute respiratory distress syndrome (ARDS)
(reviewed in [3]). Recently, the methods for ARDS diagnosis are redefined, and ARDS is now
classified as mild, moderate, or severe according to chest imaging, the origin of edema,
oxygenation, and respiratory dysfunction timing [79], which supports the idea that the
epidemiological data regarding malaria-induced ARDS may be underestimated. Nevertheless,
ARDS can be caused by direct lung injury (pulmonary infection, aspiration, lung contusion,
etc.) or by indirect lung injury (systemic inflammation, transfusion, burn injury, etc.) (reviewed
in [80]). Thus, during severe malaria, lung dysfunction can be triggered directly by adhesion
of infected RBCs to the lung vasculature or indirectly as a consequence of the activity of
endothelial activators (Figure 2).

Figure 2. Inflammatory components observed in severe malaria-induced ARDS—in the lungs of patients with severe
malaria who develop ARDS, increases in vascular permeability, infected erythrocytes, and intense neutrophil infiltra-
tion are often observed. Figure created in the Mind the Graph platform (www.mindthegraph.com).

Although CM is common in children, ARDS is often observed in adults [81]. In fact, the
pathology observed in the lung tissue differs between adults and children. In children, few
cases of pneumonia are observed [11], while an intense inflammatory cell infiltration is
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frequently noted [11, 82]. Milner and coworkers hypothesize that ARDS in children is an
indirect effect of the inflammatory response induced by CM because non-specific lung
dysfunction is observed. In fact, it has already been demonstrated that the inflammatory
response triggered by brain injury directly affects the respiratory system by altering vascular
permeability and allowing leukocyte influx into the lung parenchyma [83]. However, in adults,
the presence of infected RBCs likely induces a local inflammatory response. Gillrie and
coworkers proposed that merozoite-derived histones bind to pathogens-associated molecular
patterns (PAMPs) expressed on endothelial cell membranes, leading to MAPK activation and
the consequent production of pro-inflammatory mediators. In addition to the production of
inflammatory mediators, Plasmodium also induces cell death and alterations in the expression
of junctional proteins, which facilitates the influx of leukocytes to pulmonary tissue [84, 85].

Experimental models of severe malaria have revealed that ARDS begins when merosomes
activate endothelial cells within pulmonary capillary beds [86, 87]. Thus, some authors suggest
that the erythrocytic cycle starts in the lung capillaries [86]. In addition to merosomes,
hemozoin and the close contact between infected erythrocytes and pulmonary endothelial cells
trigger an inflammatory response 24 h after infection. This is characterized by intense leukocyte
infiltration, as well as the production of proinflammatory mediators in the lung tissue, which
persists for at least five days after infection [88–91]. Different from that observed in brain
pathology, the inflammatory cellular infiltration in the lungs is mainly composed of neutro-
phils [90]. In fact, depletion of neutrophils impairs experimental severe malaria-induced ARDS
and prolongs survival in mice [92, 93]. The participation of leukocytes in lung dysfunction
during malaria may be explained, in part, by their interaction with the endothelium. In the
brain, there is no leukocyte transmigration, while in the lung, tight junctional constitution and
adhesion molecules expressed in the endothelium allow leukocyte transmigration and the
consequent accumulation of these cells in the lung parenchyma. Thus, despite constitutional
differences, the preservation of endothelial integrity in both the lungs and the brain may
contribute to the attenuation of severe malaria symptoms.

3.3. The inflammatory response observed in severe malaria-induced acute kidney injury

Systemic disorders often result in secondary damage, such as functional and structural changes
in the kidneys and consequent acute renal failure (ARF). The term ARF was replaced by the
term acute kidney injury (AKI), which represents more than renal failure characteristics,
according to the risk, injury, failure, loss, and end-stage renal failure (RIFLE) criteria [94, 95].
At present, the RIFLE criteria are widely used to diagnose AKI [96]. Severe malaria-derived
AKI (smAKI) is more common in adults than in children [81]. Beyond the AKI reported in
severe cases of P. falciparum and P. vivax malaria [97, 98], there have previously been reports of
AKI in conjunction with the rare complications derived from infection with P. ovale, P. malar‐
iae, or P. knowlesi [35, 99, 100]. AKI is diagnosed in almost 50% of severe malaria cases. Currently,
smAKI is diagnosed according to the WHO 2006 criteria; however, Thanachartwet and
colleagues suggest that, according the RIFLE criteria, these numbers are underestimated.
Instead, according the RIFLE criteria, almost 75% of severe malaria patients are developing
AKI [96].
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The pathophysiology of smAKI is still unclear. Because AKI can develop as a secondary effect
of a systemic disease, some authors suggest that the systemic inflammatory response induced
in peripheral organs during severe malaria contributes to smAKI development [101]. However,
ultra-structural and histological studies of renal tissue in fatal cases of severe malaria reveal
an intense inflammatory cell accumulation, indicating that smAKI can also be locally induced
[18, 102].

In general, endothelial cell swelling, hypertrophy, and cytoplasmatic vacuolation suggest
endothelial activation and are characteristic of smAKI [18, 102]. Such characteristics are similar
between affected organs [3, 62]; however, unlike brain endothelial cells [103], kidney endo-
thelial cells do not phagocytose infected RBCs. Regarding leukocytes, smAKI is characterized
by the intense presence of mononuclear cells in peritubular capillaries, but not neutrophils,
platelets, or eosinophils (Figure 3). Increased levels of plasmatic TNF-α [104], soluble uroki-
nase-type plasminogen activator receptor (suPAR) expression [105], and mononuclear
activation markers correlate with AKI in patients with severe malaria, suggesting that
mononuclear activation induces tissue damage. Furthermore, mononuclear cells do not
infiltrate the renal tissue interstitium as they do in the lungs [3], likely because, despite the
activation of the renal endothelium, the tight junctions in renal tissue are not fully disrupted
during severe malaria [106]. Another inflammatory characteristic that is mainly attributed to
AKI is the deposition of immune complexes in the kidneys. The nephropathy associated with
the deposition of immunoglobulin (Ig) isotypes G and M in the kidneys has previously been
described in patients with severe malaria; however, the pathological events that result in
immune complex deposition depend on the Plasmodium species and the time of patient death
[107, 108].

Figure 3. Severe malaria-induced AKI—during severe malaria-induced AKI, there is an intense mononuclear cell accu-
mulation in renal tissue, endothelial cell swelling, hypertrophy, and cytoplasmatic vacuolation, suggesting endothelial
activation. Different from that observed in the lungs and brain, this suggests that AKI results from deposition of immu-
noglobulins in the kidneys. Figure created in the Mind the Graph platform (www.mindthegraph.com).

Current Topics in Malaria92



Inflammatory components of AKI are also observed in experimental models of severe malaria.
Endothelial dysfunction assessed through the evaluation of increased vascular permeability
[109] and the expression of adhesion molecules [110] is also observed in experimental models
of severe malaria. The activation of the glomerular endothelium may be involved in the
accumulation of inflammatory cells and infected erythrocytes in glomeruli [111]. Furthermore,
inflammatory cells present in the kidneys produce pro-inflammatory cytokines that perpetuate
renal damage [111]. In fact, studies in which mice were rescued from severe malaria, i.e., were
cured of P. berghei infection, showed that renal dysfunction persists for at least 14 days after
cure, suggesting that severe malaria-induced AKI is mainly sustained by inflammatory
components [112].

Overall, further studies are required to unveil the pathophysiology of smAKI. To date, it is not
clear how kidney tissue damage begins. SmAKI may be a secondary effect of the systemic
inflammatory response, may begin locally, or may be the sum of both of these processes;
however, once established, smAKI persists even after parasite clearance by antimalarial drugs
[24], which raise the possibility for new therapeutic approaches that target the inflammatory
response in the kidney.

4. Conclusions

The findings presented above show the influence of the inflammatory response in the devel-
opment and perpetuation of severe malaria. It has been shown that Plasmodium-associated
molecular patterns such as homozoin/parasite DNA and proteins expressed on membrane of
infected red blood cells trigger inflammatory response including macrophage activation, T cell
differentiation, endothelial cell activation, and the production of several pro-inflammatory
mediators. Plasmodium-induced inflammatory response occurs systemically, however, due to
different anatomical and physiological characteristics, each organ develops a particular

Figure 4. According to the WHO, severe malaria can be caused by P. falciparum, P. vivax, and P. knowlesi. However, the
five Plasmodium species that infect humans are able to induce organ dysfunction due to a particular inflammatory re-
sponse. Figure created in the Mind the Graph platform (www.mindthegraph.com).
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inflammatory response that may lead to organ dysfunction (Figure 4). Although brain
dysfunction is associated with activation of endothelial cells by the cytoadhesion of infected
erythrocytes, severe malaria-induced ARDS is correlated with inflammatory cell accumulation
in lung parenchyma.

Even though artemisinin derivatives are the treatment of choice for severe malaria, it accounts
only for antimalarial purpose. In the last few years, host-directed therapies for malaria and
other infectious diseases have been studied [113]. Several approaches aiming the inflammatory
response have been studied in patients diagnosed with uncomplicated malaria [114, 115];
however, the treatment of severe malaria includes only supportive treatment. On the other
hand, the use of experimental models of severe malaria suggested that the induction of
cytoprotective pathways in brain as well the administration of anti-inflammatory drugs
improve the survival of P. berghei-infected mice, especially when administrated as adjunctive
treatment to antimalarial drugs [71, 76, 116, 117]. Indeed, a robust clinical evidence is yet
necessary to provide the effectiveness of the treatment with inflammatory modulators as an
adjunctive therapy to antimalarial drugs to improve patient outcomes.
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