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Abstract

Zinc  oxide  nanoparticles  (ZnO-NPs)  are  among  nanoscale  materials  displaying
exponentially growing production due to their applications in the field of cosmetology,
medicine, as antibacterial agent and catalyst. The ZnO nanomaterials release into the
aquatic ecosystems through domestic and industrial wastewaters has the potential to
induce pernicious effects  on fish and other  organisms.  Increasing concerns on the
environmental hazard to aquatic biota have been highlighted by the toxic potential of
some metal-based nanomaterials. Several characteristics of ZnO-NPs (e.g. size, shape,
surface charge and agglomeration state) play a central role in biological effects such as
genotoxic, mutagenic or cytotoxic effects. Overall, Zn bioaccumulation, histopatholog-
ical, and hematological changes with oxidative and cellular stress have been reported
in ZnO-NPs exposed animals.

This chapter provides an overview on applications of ZnO-NPs followed by a brief
outline on methods of synthesis and characterization, and the current knowledge on the
ZnO-NPs interaction with fish as they are valuable models in ecotoxicology, sensitive
to many contaminants, representing a potential source of food for humans. This chapter
intends to provide information for a critical overview of the pros and cons of using these
particles, factors influencing their effects, and potential human health implications.

Keywords: zinc oxide nanoparticles (ZnO-NPs), nano-ecotoxicology, fish, human
health
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1. Introduction

1.1. Applications of zinc oxide nanoparticles

Zinc oxide nanoparticles (ZnO-NPs) are commonly used in several domains of human activity
such as cosmetics, paints, optoelectronics, and pharmaceuticals, due to their low cost and
interesting properties (e.g., conductivity, chemical stability, catalytic properties, photonics and
optoelectronics, antibacterial, antifungal, and UV filtering properties). ZnO-NPs are highly
used in the cosmetic industry, typically in sunscreens and facial creams [1]. In the biomedical
field, ZnO-NPs have been applied in cell imaging [2, 3], drug delivery, and have demonstrated
promising results in cancer research (for review see [4, 5]).

ZnO-NPs have shown to decrease the viability of cultured cell lines derived from human
cancers. ZnO-NPs induced a 50% reduction in cell viability in MCF7 (breast cancer) and A549
(lung cancer) cell cultures, at a very low concentration (31.2 μg ml−1), with size-dependent
effectiveness [6]. A high toxicity on T98G (brain cancer) cells, moderate toxicity on KB (skin
cancer) cells, and low toxicity on normal human HEK cells have also been reported [7]. ZnO-
NPs have been proposed as genotoxic since they induced micronucleus in those cells. Apop-
tosis and intracellular production of reactive oxygen species (ROS) have been reported on
melanoma cancer cells after exposure to different doses of ZnO-NPs [8]. These nanomaterials
also exhibited activity against HepG2 (liver cells) cells depending on the dose [9]. A time-
dependent reduction in the viability of murine cancer cells after exposure of ZnO-NPs was
recently documented by [10]. ZnO-NPs strong protein adsorption properties may also lead to
its use in other biomedical applications. ZnO-NPs may be used to modulate metabolism and
cellular responses, and have been proven useful for the detection of low levels of biomarkers
(e.g., proteins/peptides [11]). ZnO-NPs have shown promising results as cholesterol sensors,
controlling diabetes and hyperglycemia, modulation of some allergic reactions, via inhibition
of mast cell degranulation [12] as well in tissue engineering scaffolds to enhance angiogenesis
[13].

As for other nanoparticles, ZnO-NPs may also be toxic for some microorganisms, making them
potential antibacterial, antifungal, and antiviral agents. This is an important feature of these
nanomaterials considering the increasing concerns related to the proliferation of pathogenic
microorganisms that are multiresistant to conventional antibiotics. ZnO-NPs may interact with
the bacterial surface and/or with the bacterial core, exhibiting different bactericidal mecha-
nisms. Antimicrobial properties of ZnO-NPs have been demonstrated on bacteria such as
Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens [14], Staphylococcus aureus and
Salmonella typhimurium, as well as on the fungi Aspergillus flavus and Aspergillus fumigatus [15].
In a study aiming to evaluate the immunological and antibacterial mechanisms of ZnO-NPs
against human pathogens, Rashmirekha et al. [16] reported a higher effect of ZnO-NPs against
Staphylococcus aureus when compared to Mycobacterium bovis-BCG. ZnO-NPs were able to
disrupt bacterial cell membrane integrity, decrease cell surface hydrophobicity, and downre-
gulate the transcription of oxidative stress-resistance genes in bacteria. The intradermal
administration of ZnO-NPs reduced the skin infection, bacterial load, and inflammation in
mice. ZnO-NPs treatment also increased the bacterial killing by inducing ROS. Virostatic
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potential of micro-/nanofilopodia-like ZnO structures against herpes simplex virus-1 was
reported by Mishra and colleagues [17]. Antoine and colleagues [18] synthesized 200 nm to 1
μm ZnO tetrapod-like structures, by flame transport method, to check the antiviral properties
of ZnO micro- and nanostructures against HSV-2. ZnO tetrapods blocked the HSV-2 entry into
the target cells and stopped the virus dispersal among already infected cells. The prophylactic
treatment showed a decrease in HSV-2 internalization in both UV-treated and in nontreated
conditions. The decreased internalization supports the preventive function of ZnO tetrapod
nanoparticles against the ability of viruses to enter into the susceptible cells. ZnO tetrapods
treatment decreased the cell fusion and syncytial formation of CHO-K1 cells.

ZnO-NPs synthesized by Nohynek et al. (2007), using wet chemical methods, revealed a high
antibacterial activity, due to its inherent ability to absorb UV irradiation and optical transpar-
ency. This makes ZnO-NPs an important compound for the cosmetic industry, namely in
formulations for sunscreens and facial creams [1]. The antibacterial activities of ZnO-NPs, as
mentioned above, significantly contribute to its value in food processing industry, as a potent
sanitizing agent for disinfecting and sterilizing food industry equipment and containers
against foodborne pathogenic bacteria. ZnO-NPs are able to disrupt E. coli and S. aureus cell
membrane causing cytoplasmic leakage and able to inhibit and kill the foodborne pathogens
[19].

At industrial level, ZnO-NPs have various applications in catalysis and electronics [20]. ZnO-
NPs can be used in infrared and chemical sensors, in the manufacture of rubber and cigarettes
(used as filter) and preparation of creams and ointments used to treat skin diseases. The range
of possible applications of ZnO-NPs also includes agriculture. Studies have shown potential
beneficial effects of ZnO-NPs on seed germination, water purification, and soil remediation.
Peanut seeds treated with 25 nm ZnO-NPs (1000 ppm) displayed high germination, seeding
vigor, and plant growth [21], while decreased ryegrass germination has been reported after
ZnO-NPs exposure [22]. Furthermore, the potential of ZnO-NPs to reduce microbial biomass
and diversity [23] must also be taken into account.

1.2. Synthesis and characterization of ZnO nanoparticles

ZnO-based materials have been the subject of several reviews in the past years. A detailed
survey on the literature concerning the synthesis and properties of nanosized ZnO can be
found elsewhere [24]. ZnO is an inorganic crystalline compound with a band-gap energy
located in the UV region that widens as the size of the particles decreases below a threshold
of a few nanometers. Both in the bulk form and as a nanoscale material, ZnO is an important
material for several applications including in electronics and optical devices [24]. ZnO-NPs
may be synthesized by a variety of methods, selected based on the desired application,
morphology, and size. Chemical and physical parameters (e.g., solvent type, precursors, pH,
and temperature) are of high relevance in the synthesis protocols. A variety of shapes (nano-
rods, nanosphere, nanotubes, nanowires, nanoneedles, nanorings, spirals, drums, polyhe-
drons, disks, flowers, stars, boxes, and plates) may be produced, each displaying
morphological-dependent physicochemical properties [25] that allow the exploitation of a
variety of applications.
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Some preparative methods include chemical vapor deposition, precipitation in aqueous
solution, hydrothermal synthesis, sol-gel method, and synthesis using microemulsions and
mechanochemical processes. These methods allow the production of particles differing in
shape and size. Some available reviews present a thorough explanation of the principles and
techniques involved in the different procedures [26]. Briefly, the mechanochemical method is
based on high-energy dry milling; the controlled precipitation method involves hydrolysis of
a Zn(II) solution, in conditions that limit uncontrolled growth of particles, eventually followed
by a thermal treatment to improve crystallinity; the hydrothermal method is a simple and
environmentally friendly technique that involves the thermal treatment of Zn(II) aqueous
solutions under auto-generated pressure, by using an autoclave as the reaction vessel. ZnO-
NPs have also been prepared using a Zn(II) precursor in the presence of plant extracts [27,
28] as cost-effective approaches, with promising results in terms of bioapplications. Selected
examples of synthesis methods for ZnO-NPs are presented below.

ZnO-NPs were synthesized by Aneesh et al. [29] by hydrothermal treatment of Zn(CH3COO2)
2H2O (0.1 M) solutions. ZnO-NPs were prepared by varying the growth temperature and
concentration of the Zn(II) precursor. X-ray diffraction (XRD) performed on powdered sam-
ples revealed nanoparticles of wurtzite-type structure. This synthesis yielded particles of sizes
between 7 and 24 nm. Overall, particle size increased with growth temperature and decreased
with concentration of precursor. Ramimoghadam et al. [30] synthesized ZnO-NPs also by a
hydrothermal method, using palm olein as biotemplate. Different morphologies including
flake-flower and 3D star-like structure were obtained. The concentration of palm olein has an
effective role on observed morphological changes of the synthesized nanoparticles. These
changes are possibly due to the reaction between carboxylic groups of palm olein and hy-
droxyl groups at the surface of ZnO. The biotemplates could be also used to modify the sur-
face properties of ZnO-NPs.

Soni and Koser [31] used a hydrolysis method for the synthesis of ZnO-NPs, with different
concentrations of a surface-protecting agent (thioglycerol). UV-VIS spectroscopy revealed
blueshifts in the absorption bands of the samples, as compared to the spectrum of typical
bulk ZnO, as an indication for the presence of nanosized ZnO. The absorption band edge was
observed in the UV region at wavelength 365, 362, and 364 nm for ZnO-NPs synthesized
using 0.12, 0.3, and 0.5 ml of capping agent, respectively. The samples were composed of
particles with average sizes between 3.5 and 3.9 nm, depending on the amount of molar
concentration of the capping agent. Increasing the concentration of capping agent, the average
particle size decreased and the respective band gap widens due to quantum size effects [24].
Also using a hydrolysis method, Wang et al. [32] have synthesized nanometric ZnO using
cetyltrimethylammonium bromide (CTAB) as surfactant. These authors reported high-
crystalline nanoparticles of 50 nm average diameter. CTAB affected the process of nucleation
and growth of crystallites during the synthesis also preventing the formation of ZnO
agglomerates.

Giri et al. [33] synthesized hexagonal ZnO-NPs and nanorods by low-temperature oxidation
of metallic Zn powder in the presence of acetic acid and trifluoroacetic acid. The final colorless
powders were a first indication for the presence of ZnO. In this method, acetic acid and
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trifluoroacetic acid induced the growth of hexagonal-type ZnO-NPs and ZnO nanorods,
respectively, whose crystalline nature was confirmed by XRD. Transmission electron micro-
scopy (TEM) and scanning electron microscopy (SEM) images displayed hexagonal cross
section of the nanoparticles and nanorods. The samples showed strong UV absorption peaked
at 378 nm. A green synthesis method was used by Oudhia et al. [34] for ZnO nanotubes aiming
biomedical application. For this purpose, neem leaf extract as biotemplate was used. The XRD
pattern indicated the wurtzite-type structure of ZnO-NPs. The average crystalline size of the
synthesized nanotubes was estimated as 25 nm by using Debye-Scherrer equation applied to
the XRD patterns of the samples.

Barreto et al. [35] synthesized ZnO-NPs by microwave-assisted method and checked the effect
of precursor reagent, temperature, irradiation time, and additives on the morphology of
synthesized nanoparticles by using (Zn(NO3)26H2O, Zn(CH3COO2)2H2O, or ZnCl2) as precur-
sor. Radiation temperature of 80–140°C and increase in the irradiation time give high purity
and homogenous size and shape of nanoparticles. The final pH is another important variable
which causes significant changes in the morphology of the final particles. The addition of the
anionic surfactant (AOT, sodium di-2-ethylhexyl sulfosuccinate) to the reaction medium
allowed the synthesis of smaller particles. Kumar and Rani [36] synthesized ZnO-NPs by using
microemulsions as nanoreactor for the synthesis of ZnO using ZnSO4 salt. The stable reverse
micelle microemulsion was prepared by mixing a nonionic surfactant, Triton X-100, PVP (used
as co-stabilizing agent), cyclohexane, and distilled water. XRD diffraction analysis shows the
typical hexagonal wurtzite-type structure of ZnO. TEM revealed nanoparticles of 10–12 nm in
average size and rod shaped, and UV-VIS spectroscopy was use to estimate the optical band
gap of the samples.

Tsuzuki and Cormick [37] synthesized nanocrystallites of ZnO of 26 nm size by a mechano-
chemical method using ZnCO3 as the precursor. It was observed that a milling time of 4 h was
enough for the synthesis of ZnO-NPs. Song et al. [2] synthesized ellipsoidal ZnO-NPs with
high crystal quality by another mechanochemical method. It was observed that depending on
the solvent used, the ZnO-NPs remained dispersed with a mean diameter of 21 nm (nonpolar
solvents), whereas in more polar solvents the nanoparticles gradually aggregated to a diameter
of about 200 nm. Photoluminescence spectra of ZnO-NPs have been reported.

The routine methodologies used to characterize ZnO-NPs (colloids and powders) are those
commonly applied to characterize other types of nanoparticles and include dynamic light
scattering (DLS) techniques, UV-VIS absorption spectroscopy, selected area electron diffraction
(SAED), and powder X-ray diffraction (XRD). The size and shape of the nanoparticles are
directly analyzed by using microscopy (transmission electron microscopy—TEM, atomic force
microscopy—AFM, or scanning electron—SEM). The crystalline phase (typically wurtzite type)
can be identified by using XRD and the surface charge of the colloidal NPs through zeta
potential measurements. A number of processes involving NPs are mediated by the surface.
Although its characterization is not straightforward, important information can be acquired
by using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray
photoelectron spectroscopy (XPS) among other techniques.
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2. Nanoparticles in aquatic systems

Increase in production and applications of ZnO-NPs is expected to result in its increased
release into the environment. Ultimately, the aquatic ecosystems will probably be the main
recipients, mainly as a result of industrial and domestic wastewaters [38]. As one of the most
produced nanoparticles in the European Union, with an estimated production of around 1600
t [39], ZnO-NPs environmental release may occur as early as their production, production of
products containing nanoparticles, during their use and end of life of those products. Despite
the knowledge that nanoparticles are increasingly being used in different fields of human
activity, the quantification of their release in the environment, at any given time, is quite
challenging due to the limited data on their current and expected prevalence in commercial
products [40–42]. The technical difficulties associated with quantification of ZnO-NPs levels
in the environment led to the need to predict environmental concentrations based on market
penetration of nanomaterials, known usage of the products as well as fate/behavior. According
to the available data, the theoretically predicted average environmental concentration of ZnO-
NPs in European surface waters is 0.09 μg L−1 (with 85% confidence intervals: 0.05–0.29) [39].
No standards have yet been established for permissible levels of nanoparticles in the environ-
ment. Nonetheless, in addition to dose, physicochemical properties of nanoparticles (e.g., size,
shape, chemical composition, aggregation) as well as ionic strength and pH of receiving media
play determinant roles on their behavior, bioavailability, and biological effects of nanoparti-
cles [43]. Once released into the environment, ZnO-NPs may display different behaviors.
Nanoparticles in the environment may stay in suspensions as individual particles; dissolve;
aggregate; form larger particles and ultimately sediment; adsorb onto water constituents (e.g.,
dissolved organic matter); transform chemically (e.g., due to redox reactions) or biologically
(e.g., in the presence of microorganisms) in the marine environment [44]. Once in the envi-
ronment, most ZnO-NPs are likely to precipitate due to its poor colloidal stability [45]. The
available studies indicate that aggregation of ZnO-NPs, as for other nanoparticles, increases
with ionic strength. In high ionic strength environments, reduction in electrostatic repulsion
forces between the nanoparticles occurs, promoting aggregation and sedimentation. However,
the presence of natural substances such as humic acids may help to steric and electrostatic
stabilization of ZnO-NPs, aiding in their transport, mobility, and dispersion [46]. Other highly
relevant alterations that may occur in the environment and lead to toxic effects of ZnO-NPs
are the dissolution and redox transformations. ZnO-NPs may dissolve, releasing Zn ions which
may induce toxic effects [47], with reported faster dissolutions at smaller sizes [48]. Redox
reactions on ZnO-NPs’ surface may lead to the production of ROS, which are able to oxidize
organic compounds and lead to oxidative stress. Thus, for risk assessments of nanoparticles
such as ZnO-NPs, different factors have to be taken into account based on the wide variety of
reactivities and properties of a particular type of nanoparticle [49].

The available studies on the behavior of ZnO-NPs in water systems have been performed under
laboratory conditions, focusing mostly on freshwater. Available data indicate that dissolution
is dependent on concentration, with the lowest dissolution percentage at the highest ZnO
concentrations [50].
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3. Interaction of nanoparticles with aquatic organisms

Among aquatic species, fish have been considered as the ideal sentinels to detect toxicological
effects, due to their wide distribution, known physiology, and sensitivity to exposure to
contaminants via food or water. In this chapter, some of the available studies with fish at
different life stages (embryos, juveniles, and adults) are presented in Table 1.

Primary

particles

Study aim Test organisms Exposure

protocol

Assessed

endpoints

Main effects References

Size:

<100 nm

To assess

developmental

toxicity, oxidative

stress, and DNA

damage

Danio

rerio

(Zebrafish) 

Waterborne

exposure to 1, 5,

10, 20, 50, and

100 mg L−1 up to

144 h

postfertilization

Embryo/larvae

survival, hatching,

and malformation

rates; ROS

measurement;

DNA damage;

antioxidant

enzymes; lipid

peroxidation

mRNA levels of

genes encoding

antioxidant

proteins and

regulation of ROS

production

Reduction of hatching

rate and induction of

malformations; ROS

generation; DNA

damage

[51]

Size: 25

nm

To identify

potential

mechanisms of

cardiorespiratory

effects of ZnO-NPs

and characterize

the

ecophysiological

importance of

ZnO-NPs toxicity

Catostomus

commersonii

(White sucker)

Waterborne

exposure for 25 h

to 10 mg L−1; for

15 and 30 h to 1

mg L−1

Gill morphology,

cardiorespiratory

function

Damage to the gill

epithelium; decreased

heart

acetylcholinesterase

activity; reduction of

aerobic capacity

[52]

Size: 25

nm

To assess the

effects of ZnO-

NPs exposure in

the liver of a

freshwater fish

Catostomus

commersonii

(White sucker)

Waterborne

exposure for 29.5

h to 1 mg L−1

Biomarkers of

oxidative stress

and antioxidant

response

Changes in levels of

hepatic enzyme

activities,

antioxidants, and

[53]
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Primary

particles

Study aim Test organisms Exposure

protocol

Assessed

endpoints

Main effects References

lipid peroxidation

products

Size: 20

nm

To study stress

proteomic

responses

Oryzias

melastigma

(Medaka fish)

Waterborne

exposure to 4 and

40 mg L−1 for 96 h

Molecular

biomarkers (SOD,

MT and HSP70)

Upregulation of

HSP70

[54]

Size: 30

nm

To evaluate

bioaccumulation

and subacute

toxicity compared

with bulk particles

Cyprinus carpio

(Juvenile carp)

Waterborne

exposure (5–1000

mg L−) for 30

days

Accumulation in

different tissues

(gill, liver,

intestine, muscle,

and brain);

histopathological

changes; enzyme

activities (e.g., Na
+/K+ATPase, and

SOD)

nonenzymatic

antioxidants and

oxidative damage

Higher

bioaccumulation,

oxidative effect, and

histopathological

changes than bulk

ZnO

[55]

Size: 30

nm

To study Zn

accumulation and

the mechanism of

hepatic

detoxification in

comparison with

bulk ZnO and Zn2+

Carassius auratus

(Gold fish)

Waterborne

exposure for 30

days to 2 mg L−1

Zn concentration

and its subcellular

distribution gills,

liver, gut, and

muscle

Tissue-specific

bioaccumulation

dependent on the

exposed material

[56]

Size: 15–

350 nm

To compare the

effects of zinc

compounds in the

form of nano-,

microparticles and

ions

Brachydanio

(Danio) rerio

(zebrafish)

Waterborne

exposure to 0.2,

2, 10 and 20 mg L
−1 for 120 h

Embryo/larvae

survival, hatching,

and malformation

rates

Retardation of

hatching and

deviations in

embryonic

development;

adherence of the

particles on the egg

surface at high ZnO-

NPs concentrations

[57]

Size: 50–

60 nm

To compare the

effect of different

Ctenopharyngodon

idella (Grass carp)

Diet exposure

(4% body weight

Lethality, growth

performance, food

Improvement in

growth performance

[58]

Toxicology - New Aspects to This Scientific Conundrum88



Primary

particles

Study aim Test organisms Exposure

protocol

Assessed

endpoints

Main effects References

forms zinc (ZnO,

ZnSO4, ZnO-NPs)

on growth and

hematological

indices

for 90 days conversion ratio

and efficiency,

hepatosomatic

index; blood

parameters

and red blood cell

count with

supplementation with

ZnO-NPs compared

to oxide and sulfate

form

Size:

<100 nm

To evaluate the

acute toxicity and

hematological

effects

Oreochromis

mossambicus

(Tilapia)

Waterborne

exposure to 30,

50 and 70 mg L−1

for 96 h

Blood parameters 96 h LC50 of ZnO-NPs

between 100 and 110

mg L−1; chromosomal

damages, changes in

blood parameters

[59]

Size:

<100 nm

To evaluate the

long-term effects

of 3 sublethal

concentrations

Cyprinus carpio

(Carp)

Exposure for 21

days of three

sublethal

concentrations

from the 96 h

LC50 value (4.897

mg L−1)

Histopathological

changes in the

liver 

Dose-dependent

histological

alterations generally

associated with the

response of

hepatocytes to

toxicants

[60]

Size:

<100 nm

To study the acute

toxicity (LC50) and

gill histopathology

Cyprinus carpio

(Carp)

Waterborne

exposure for 96 h

to 2, 4, 8, and 16

mg L−1;

waterborne

exposure to

sublethal

concentrations for

21 days

Lethality; gill

histopathology

A 96 h LC50 of 4.897

mg L−1.

Histopathological

alterations in the gills

at sublethal

concentrations at

higher concentrations

[61]

Size: 30

nm

To quantify the

trophic transfer of

ZnO-NPs by

feeding D. rerio

with D. magna

exposed to ZnO-

NPs prior to the

feeding

experiments

Danio rerio (Zebra

fish) and Daphnia

magna (Water

flea)

Fish exposure

through diet for

14 days to D.

magna (4–5 days

old) preexposed

to ZnO-NPs and

ZnO-octyl NP (1.0

mg Zn L− for 24 h)

Zn content on fish

body burden

Uptake of both ZnO-

NPs and ZnO-octyl

NP with values

exceeding by tenfold

the levels obtained

through aqueous

exposure in other

studies

[62]
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Primary

particles

Study aim Test organisms Exposure

protocol

Assessed

endpoints

Main effects References

Size: 50

nm

To determine lethal

concentration and

histopathological

lesions

Cyprinus carpio

(Carp)

Waterborne

exposure for 24 h

to 10–50 mg L−1

Lethal

concentrations and

histopathological

alterations in gills,

liver, kidney, and

pancreas

Histopathological

lesions in the kidney

and gills; necrosis in

liver, and hemorrhage

in pancreas

[63]

Abbreviations: HSP70: heat shock protein 70; MT: metallothionein; NPs: nanoparticles; ROS: reactive oxygen species;
SOD: superoxide dismutase.

Table 1. Examples of research studies on the effects of ZnO-NPs on fish.

As shown in Table 1, examples of recent research on ZnO-NPs interaction with fish have
essentially focused on freshwater organisms such as Cyprinus carpio, Oreochromis mossambicus,
Tilapia zillii, Oreochromis niloticus, Ctenopharyngodon idella, Carassius auratus, and Danio rerio.
Several techniques and approaches were used in those studies including, mainly, analytical
methods for detection of metal in tissues as well histopathological, hematological, and
oxidative stress endpoints to study the effects of ZnO-NPs, and histopathological, hematolog-
ical, and oxidative stress as relevant endpoints to evaluate the possible interrelationships.

The effects of ZnO-NPs have been associated with two main mechanisms: oxidative stress and
nanoparticle-protein interactions [52]. Although some of the effects have been associated with
the release of Zn ions as a result of particle dissolution, not all studies confirm that the toxic
effects are due to dissolution. Higher bioaccumulation and effects have been observed after
exposure to nanoparticle form when compared to bulk form, confirming the complexity and
specificity of mechanisms associated with experimental conditions. Nonetheless, it is clear that
more studies are needed, with lower concentrations and longer exposure periods, representing
a more environmentally relevant scenario. There is also a clear need for studies on combined
effects of abiotic factors variation (e.g., temperature, salinity, UV radiation), classical environ-
mental contaminants (e.g., organic compounds, pesticide and pharmaceuticals), and ZnO-
NPs, to represent an environmentally relevant scenario. There is also a need to assess the effects
of ZnO-NPs in organisms present in high ionic strength environment (e.g., estuaries and
marine environments). The information obtained in trophic transfer studies supports the
concerns of potential effects of nanoparticles, to higher trophic levels in which humans may
also be a target.

Considering the tested endpoints, the available data revealed that histological and hemato-
logical responses occur. After ZnO-NPs exposure, both juvenile and/or adult fish have shown
its accumulation on tissues such as brain, liver, muscle, and gills [55, 56]. Hao et al. [55] reported
ZnO-NPs accumulation on tissues of juvenile carp (Cyprinus carpio), and cellular oxidative
stress response was denoted as the main toxic mechanism of nano-ZnO. The bioaccumulative
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behavior of ZnO-NPs and their potential trophic transfer from Daphnia magna to zebrafish
(Danio rerio) was reported by Skjolding et al. [62].

Several parameters such as hematological approaches have been used for the monitoring of
health conditions of fish [58, 59]. Blood parameters as red and white blood cells count,
hemoglobin content, and hematocrit value, and red blood cell indices are usually assessed on
some toxicological studies. Although enhancement on red blood cell count was reported on
the grass carp Ctenopharyngodon idella with supplementation of NPs from [58], deleterious
changes on blood parameters were documented on Tilapia Oreochromis mossambicus exposed
for 96 h to ZnO-NPs (100–110 mg L−1) [59].

Additionally, histology is also an important tool for the evaluation of fish health, showing the
initial signs of lesions not easily noticeable during the macroscopic observation of tissues and
organs [55]. Gills are vital organs for respiration and osmoregulation. Gill histopathological
alterations can be considered as indicators of the ZnO-NPs–induced toxicity in the common
carp [60]. Among other relevant organs, hepatic histopathological changes were documented
as a result of exposure to ZnO-NPs [55, 61, 63].

As reported in Table 1, the ecotoxicological impacts of ZnO-NPs on fish include in most studies
histopathological, hematological, and oxidative stress under different doses, protocols, and
exposure [53, 55]. Tomilina et al. [57] reported decreased motility and increased curvature of
tail in Brachydanio (Danio) rerio embryos exposed for 24 h to 0.01 mg L−1 ZnO-NPs and affected
dynamics of hatching of Brachydanio (Danio) rerio prelarvae at higher concentrations.

In contrast, scarce data have demonstrated positive biological effects of ZnO-NPs. Reports on
fish (C. idella) growth performance improvement after 90 days ZnO-NPs exposure, through
diet, compared to oxide and sulfate form of Zn were recently published [58], suggesting a
potential application of these particles on aquaculture.

4. Potential impacts on public health

The hazard potential of ZnO-NPs to humans in comparison with microparticulate and
dissolved Zn has been evaluated in the context of major accident prevention [64]. Based on the
analysis of endpoints of subtoxic events (inflammation, oxidative stress response, or gene
expression profiling) over different timescales, the authors concluded that the hazard poten-
tials of nano- and microparticles of ZnO are identical during acute (medium) and chronic (low)
toxicity. Inhalation of ZnO fume and dust over the permissible exposure limit of 5 mg m−3

appears to be the riskiest toxic exposure, since Zn fume fever could be lethal [65]. ZnO is quite
soluble in acids and alkalies, thereby the toxicity of ZnO-NPs was also compared to that of
zinc(II) ions. When considering the concentration of dissolved Zn, no significant differences
between exposure to ZnO and ZnO-NPs have been found in EC50 and LC50 values, using
Daphnia and fish, respectively, as testing organisms. Clinical reports on human intoxication by
ZnO-NPs are hardly any in the literature. Conversely, information regarding the toxicity of Zn
ions for humans has been gathered during the last 60 years, since the first clinical reports on
Zn fume fever [66].
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Zn is an essential trace element and micronutrient for humans. Under physiological conditions,
it exists as a redox neutral divalent cation that is reactive as a Lewis acid. The continuous
external supply of this metal ion is vital for many metabolic pathways, given that there is no
body storage depot for zinc and its exchange between tissues is limited. The man body Zn
content is approximately 2 g, and the recommended daily intake is 8–11 mg (tolerable upper
intake level, 40 mg day−1). Bones and skeletal muscles contain more than half of the total body
Zn, while the highest concentrations (>1 mg g−1 dry weight) are achieved in prostate gland [67].
Around 0.1% of the total body zinc is replenished daily through diet, and it is equivalent to
the percentage that is hold in blood serum (90 μg dL−1) [68].

Zinc homeostasis is tightly controlled at the whole body down to the subcellular level. In cells,
half of the Zn content is in the cytoplasm, while nucleus and plasma membrane accounts for,
respectively, 35 and 10% of the total cellular Zn [69]. Since this metal ion is mainly bound to
proteins (i.e., metallothioneins) and sequestered in organelles (i.e., mitochondria, endoplasmic
reticulum, Golgi apparatus, secretory granules, and other vesicular compartments), the
cytosolic free Zn concentration is in the picomolar/nanomolar range. In the cytosol, Zn
concentrations fluctuate in wave and spark manners, of which regulatory mechanism still not
completely understood. Zinc transporters (ZnTs) are of outstanding importance for the cellular
and subcellular zinc homeostasis (Table 2), since ions cannot be synthesized or broken down
by cells. ZnT transporters (ZnT1-ZnT10) belong to the Solute Carrier Family 30A (SLC30A).
This protein “Family” also comprises another group of proteins that translocate Zn across
membranous barriers, the ZIP transporters (ZIP1-ZIP14). However, ZIP transporters are
involved not only in Zn transport but also in the homeostasis of cadmium, manganese, iron,
and calcium [70].

Transporters

Name Main functions at subcellular level Entries: Protein/Gen*

ZnT1 Zn2+ efflux through plasma membrane. Negative regulation of Zn2+ and
Ca2+ transmembrane import and neurotransmitter secretion

Q9Y6M5
(ZNT1_HUMAN)/
SLC30A1

ZnT2 (2
isoforms)

Zn2+ transmembrane transport (accumulation in endosomes, lysosomes,
and secretory vesicles in mammary epithelial cells). Regulation of
sequestering of and response to Zn2+

Q9BRI3 (ZNT2_HUMAN)/
SLC30A2

ZnT3 Zn2+ transporting ATPase (accumulation in synaptic vesicles, late
endosomes, and lysosomes). Regulation of sequestering of and response to
Zn2+

Q99726 (ZNT3_HUMAN)/
SLC30A3

ZnT4 Zn2+ transmembrane transport (transport out of the cytosol—accumulation
in endosomes, lysosomes, secretory vesicles, and trans-Golgi network)

O14863 (ZNT4_HUMAN)/
SLC30A4

ZnT5 (4
isoforms)

Zn2+ transmembrane transport into lumens of
the Golgi apparatus and early compartments of
the secretory pathway such as COPII-coated
vesicles (putative transporter of Zn2+ into β cells in
order to form insulin crystals). Required with

Q8TAD4
(ZNT5_HUMAN)/
SLC30A5
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Transporters

Name Main functions at subcellular level Entries: Protein/Gen*

ZnT7 for the activation of Zn-requiring enzymes,
alkaline phosphatases, and ZnT6 and ZnT7 for
the activation of TNAP

ZnT6 (4
isoforms)

Zn2+ efflux transporter that allocates it to trans-Golgi network and vesicular
compartment. Regulation of sequestering of and response to Zn2+

Q6NXT4
(ZNT6_HUMAN)/
SLC30A6

ZnT7 Zn2+ transmembrane transport into lumens of Golgi apparatus and
vesicular compartments. Required for activation of alkaline phosphatases
and with ZNT5 and ZNT6 for the activation of TNAP

Q8NEW0
(ZNT7_HUMAN)/
SLC30A7

ZnT8 (4
isoforms)

Zn2+ efflux transporter which allocates it to intracellular vesicles (i.e.,
accumulation into insulin granules in pancreatic β cells, providing Zn2+ to
insulin maturation and/or storage). Regulation of sequestering of and
response to Zn2+. Responsiveness to glucose, γ-interferon, and interleukin-1

Q8IWU4
(ZNT8_HUMAN)/
SLC30A8

ZnT9 Role in the p160 coactivator signaling pathway that mediates
transcriptional activation by nuclear receptors. Transcriptional activation of
Wnt-responsive genes

Q6PML9
(ZNT9_HUMAN)/
SLC30A9

ZnT10 (3
isoforms)

Zn2+ transmembrane transport into Golgi apparatus and early endosomes.
Regulation of sequestering of and response to Zn2+

Q6XR72
(ZNT10_HUMAN)/
SLC30A10

ZIP1 (2
isoforms)

A major Zn2+ uptake transporter in many cells; responsible for the rapid
uptake and accumulation of physiologically effective Zn in prostate cells

Q9NY26
(S39A1_HUMAN)/
SLC39A1

ZIP2 (2
isoforms)

Zn2+ transport through the plasma membrane (uptake mediated by Zn2+-
HCO3

− symport). It is involved in contact inhibition of normal epithelial
cells, and loss of its expression is related to tumorigenesis

Q9NP94
(S39A2_HUMAN)/
SLC39A2

ZIP3 (2
isoforms)

Zn2+ transport through the plasma membrane (influx to cytosol). It is
involved in cell morphogenesis and T cell homeostasis

Q9BRY0
(S39A3_HUMAN)/
SLC39A3

ZIP4 (2
isoforms)

Zn2+ transmembrane transport (influx to cytosol)
It is involved in the regulation of cellular Zn homeostasis in response to
Zn2+ availability (cycles between endosomal compartments and the plasma
membrane)

Q6P5W5
(S39A4_HUMAN)/
SLC39A4

ZIP5 Zn2+ transmembrane transport (serosal to mucosal) through basolateral cell
membrane in polarized cells

Q6ZMH5
(S39A5_HUMAN)/
SLC39A5

ZIP6 (2
isoforms)

Zn2+ transport through the plasma membrane (influx to cytosol) Q13433 (S39A6_HUMAN)/
SLC39A6

ZIP7 Zn2+ transmembrane transport from the endoplasmic reticulum/Golgi
apparatus to the cytosol that is stimulated by growth factors (EGF),
Ca2+and exogenous Zn2+

Q92504 (S39A7_HUMAN)/
SLC39A7
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Transporters

Name Main functions at subcellular level Entries: Protein/Gen*

ZIP8 (3
isoforms)

Zn2+ transport through the plasma membrane and endosomal and
lysosomal membranes (influx and release to cytosol)

Q9C0K1
(S39A8_HUMAN)/
SLC39A8

ZIP9 (3
isoforms)

Zn2+ transport through the plasma membrane and trans-Golgi network
membrane (influx and release to cytosol)

Q9NUM3
(S39A9_HUMAN)/
SLC39A9

ZIP10 (2
isoforms)

Zn2+ transport through the plasma membrane (influx to cytosol). Positive
regulation of B cell proliferation, B cell receptor signaling pathway, and
protein tyrosine phosphatase. Negative regulation of B cell apoptotic
process

Q9ULF5
(S39AA_HUMAN)/
SLC39A10

ZIP11 (3
isoforms)

Zn2+ transport through the trans-Golgi network membrane (release to
cytosol)

Q9NUM3
(S39A9_HUMAN)/
SLC39A9

ZIP12 (5
isoforms)

Zn2+ transport at the plasma membrane, nucleus, and Golgi apparatus
(influx and release to cytosol). Regulation of microtubule polymerization,
neuron projection development, and signal transduction

Q504Y0
(S39AC_HUMAN)/
SLC39A12

ZIP13 (2
isoforms)

Zn2+ transmembrane transport in the Golgi apparatus (release to cytosol) Q96H72
(S39AD_HUMAN)/
SLC39A13

ZIP14 (3
isoforms)

Zn2+ transport through the plasma membrane (influx to cytosol). Broad-
scope metal ion transporter with a preference for Zn2+ uptake (cellular
uptake of nontransferrin-bound Fe)

Q15043 (S39AE_HUMAN)/
SLC39A14

Zn-finger proteins

Family;

subfamily

Representative protein and its function Protein

entry*

ZNF593/

BUD20 C2H2

Zinc finger protein 593 negatively modulates the transcriptional regulatory activity of

Oct-2

O00488

Teashirt C2H2 Teashirt homolog 2 is a putative transcriptional regulator in developmental processes,

acting as transcriptional repressor

Q9NRE2

Sp1 C2H2 Transcription factor Sp9 positively regulates FGF8 expression in the apical ectodermal

ridge and contributes to limb outgrowth in embryos

P0CG40

Snail C2H2 Transcriptional repressor scratch 1 binds E-box motif CAGGTG and modulates the basic

helix-loop-helix transcription factors during neuronal differentiation

Q9BWW7

Sal C2H2 Sal-like protein 4 is an important transcription factor in the maintenance and self-renewal

of embryonic and hematopoietic stem cells

Q9UJQ4
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Zn-finger proteins

Family;

subfamily

Representative protein and its function Protein

entry*

Odd C2H2 Protein odd-skipped-related 1 is a transcription factor in the regulation of embryonic heart

and urogenital development

Q8TAX0

Krueppel

C2H2;

ZFX/ZFY

Zinc finger Y-chromosomal protein is a transcriptional activator through binding to the

consensus sequence 5’-AGGCCY-3’

P08048

Krueppel

C2H2; ZFP57

Zinc finger protein 57 homolog is a transcription regulator that binds to a 5’-TGCCGC-3’

consensus sequence and recognizes the methylated CpG within this element. It is

important for the maintenance of maternal and paternal gene imprinting through control

of DNA methylation during the earliest multicellular stages of development at multiple

imprinting control regions

Q9NU63

Krueppel

C2H2; ZBTB18

Zinc finger and BTB domain-containing protein 18 is a transcriptional repressor that binds

to the consensus DNA sequence 5’-[AC]ACATCTG[GT][AC]-3’ containing E-box core. It is

involved in the recruitment of chromatin remodeling multiprotein complexes, the

regulation of skeletal myogenesis, progenitor cell division, and postmitotic cortical

neurons survival

Q99592

Krueppel

C2H2; Hic

Hypermethylated in cancer 1 protein is a transcriptional repressor that recognizes and

binds to the consensus sequence ‘5-[CG]NG[CG]GGGCA[CA]CC-3’. It regulates the Wnt

signaling pathway, p53/TP53-dependent apoptotic DNA damage responses, and the

transcription of CCND1/cyclin-D1 and CDKN1C/p57Kip2 in quiescent cells. May act as a

tumor suppressor and is involved in development of head, face, limbs, and ventral body

wall

Q14526

Krueppel

C2H2

Krueppel-like factor 1 is a transcription regulator of erythrocyte development and switch

factor during erythropoiesis. When sumoylated, acts as a transcriptional repressor by

promoting interaction with CDH2/MI2β and represses megakaryocytic differentiation

Q13351

Ikaros C2H2 DNA-binding protein Ikaros has transcription regulator activity, via binding to γ-satellite

DNA, which is isoform-specific and modulated by dominant-negative inactive isoforms. It

increases normal apoptosis in adult erythroid cells and confers early temporal competence

to retinal progenitor cells

Q13422

GLI C2H2 Both isoforms of zinc finger protein GLI1 are transcriptional activators that bind to the

DNA consensus sequence 5’-GACCACCCA-3’, but activate different sets of genes. Isoform

1 plays a role in cell proliferation and differentiation, through SHH signaling pathway,

whereas isoform 2 activates CD24 expression. Promotes cancer cell migration

P08151

EGR C2H2 E3 SUMO-protein ligase EGR2 is a transcription factor that binds to two sequence-specific

DNA sites located in the promoter region of HOXA4. Supports SUMO1 conjugation to

P11161

Environmental Fate of Zinc Oxide Nanoparticles: Risks and Benefits
http://dx.doi.org/10.5772/65266

95



Zn-finger proteins

Family;

subfamily

Representative protein and its function Protein

entry*

coregulators NAB1 and NAB2, whose sumoylation downregulates EGR2 own

transcriptional activity

DZIP C2H2 Zinc finger protein DZIP1 interaction with DAZ supports the participation in

spermatogenesis and primary cilia formation through Hedgehog signaling pathway

Q86YF9

Delta-EF1/

ZFH-1 C2H2

Zinc finger E-box-binding homeobox 1 is a transcriptional repressor that positively

regulates neuronal differentiation and promotes tumorigenicity

P37275

CTCF Transcriptional repressor CTCF plays important roles in gene silencing, chromatin

remodeling, interchromosomal association, regulation of epigenetic modifications, oocyte

and preimplantation embryo development. It is also a putative tumor suppressor

P49711

AEBP2/jing

C2H2

Zinc finger protein AEBP2 is a DNA-binding transcriptional repressor that stimulates

PRC2 complex activity

Q6ZN18

Enzymes

Recommended name EC

number**

Comments

D-Lactate dehydrogenase (acceptor) 1.1.99.6 Alanine metabolism

Formaldehyde dismutase 1.2.98.1 Contains a tightly but noncovalently bound NADP(H) cofactor,

as well as Zn2+ and Mg2+

Peptide-methionine (R)-S-oxide

reductase

1.8.4.12 Selenoprotein. Prevention of oxidative stress damage caused by

reactive oxygen species by reducing the oxidized form of

methionine back to methionine and thereby reactivating

peptides that had been damaged

Superoxide dismutase 1.15.1.1 Degradation of reactive oxygen species and superoxide radicals

Histone acetyltransferase 2.3.1.48 Different specificities toward histone acceptors

RING-type E3 ubiquitin transferase 2.3.2.27 Degradation of misfolded protein

Protein geranylgeranyltransferase type I 2.5.1.59 Zn metalloenzyme. Zn2+ is required for peptide, but not for

isoprenoid, substrate binding. Inhibition induces simultaneous

p53-dependent apoptosis and autophagy in airway smooth

muscle cells

Tyrosine transaminase 2.6.1.5 Involved in multiple metabolic pathways

Riboflavin kinase 2.7.1.26 Mg2+ is preferentially required for activity. Essential in

recruiting Nox1 to death receptor4/5, critical role in the KD548-
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Enzymes

Recommended name EC

number**

Comments

Fc-mediated reactive oxygen species accumulation and coupling

of TNF-receptor-1 to NADPH oxidase

Rhodopsin kinase 2.7.11.14 Inhibited by Zn2+

β-Adrenergic-receptor kinase 2.7.11.15 Inhibited by Zn2+

tRNase Z 3.1.26.11 Involved in both, nuclear and mitochondrial tRNA 39 end

maturation and in the p53 signaling pathway

N-acetylphosphatidylethanolamine-

hydrolyzing phospholipase D

3.1.4.54 Contains Zn2+ and is activated by Mg2+ or Ca2+. It does not

hydrolyze phosphatidylcholine and phosphatidylethanolamine

Aminopeptidase B 3.4.11.6 Exopeptidase strictly specific for the removal of N-terminal

basic residues from peptides and proteins

Xaa-Trp aminopeptidase 3.4.11.16 Zn2+containing glycoprotein from renal and intestinal brush

border membranes

Aminopeptidase I 3.4.11.22 Activity is stimulated by both Zn2+ and Cl−

N-acyl-aliphatic-L-amino acid

amidohydrolase

3.5.1.14 Contains Zn2+ (completely inactivated by metal removal,

whereas addition of Zn2+, Mn2+, or Fe2+ restores activity). It is

involved in the hydrolysis of N-acylated or N-acetylated amino

acids (except L-aspartate)

Cu2+-exporting ATPase 3.6.3.4 Zn binds with a stoichiometry of 6–1 and induces a

conformational change in the N-terminal domain that is

different from those observed for Co binding, leading to a loss

of secondary structure in the domain

Mitochondrial protein-transporting

ATPase

3.6.3.51 A nonphosphorylated, non-ABC (ATP-binding cassette) ATPase

involved in the transport of proteins or preproteins into

mitochondria using the TIM protein complex

Porphobilinogen synthase 4.2.1.24 Contains Zn2+ at the active site. Essential for respiration and a

primary target in Pb intoxication

Ubiquitin-protein ligase 6.3.2.19 Crucial role in the recognition and degradation of target

proteins by 26S proteasomes

*UniProtKB/Swiss-Prot—European Bioinformatics Institute.
**Enzyme Database—BRENDA and IUBMB Enzyme Nomenclature.

Table 2. Illustrative examples of human Zn transporters, Zn-finger proteins, and enzymes that require Zn.
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Zn ions are important for the regulation of central biochemical processes (gene transcription
and the metabolism of lipids, proteins, and nucleic acids), which impacts a variety of physio-
logical functions (e.g., neuronal, endocrine, skeletal, reproductive, immune, and healing). It is
estimated that the 10% of the proteins (around 3000 proteins) encoded in the human genome
are zinc proteins [71]. According to the last release of the UniProtKB/Swiss-Prot database, more
than one hundred of human proteins are zinc finger (ZnF) macromolecules (Table 2). Apart
from the structural role of Zn in ZNFs [72], which contributes to shape the zinc-binding repeats
as molecular scaffolds for tight binding of their target molecules (DNA, RNA, other proteins,
or lipids), this metal ion is also essential for enzyme catalysis and cell signaling (Table 2) [73,
74]. In enzyme catalytic centers, Zn often promotes substrate activation by stabilizing negative
charges due to strong Lewis acid properties. The metal ion acts as endocrine, paracrine,
autocrine, and intracrine mediator. In cells, the distribution of Zn is modified by the stimulation
that triggers its release in the central nervous and neuroendocrine systems. Zn is also a
ubiquitous cytosolic second messenger, leading to fast alteration of signaling enzyme activities
(i.e., phosphodiesterases, mitogen-activated protein kinase, protein kinase C, protein tyrosine
phosphatases, calcineurin, caspases) and afterward to the biosynthesis of proteins that control
its cytosolic concentrations. Interestingly, Zn accumulation in specific subcellular compart-
ments appears to occur during both physiological and pathological conditions. For instance,
the Zn spark that follows the calcium wave during fertilization is thought to be crucial for
further cell cycle resumption in eggs [75]. Accumulation of Zn in lysosomes is a common
observation during neurodegenerative processes and intoxication [76].

In humans, symptoms of Zn deficiency include: severe anemia, persistent diarrhea, immune
insufficiency ensuing recurrent inflammations and impairment of wound healing, growth
retardation, hypogonadism, skin and eyes abnormalities, baldness mental lethargy, brain
dysfunctions, and behavioral changes. Zn deficiency still continues a global public health
concern, particularly in developing countries where it causes mortality among young children
[77]. Conversely, minor Zn deficiency among elderly population and individuals who undergo
gastric bypass surgery for obesity seems to be increasing in industrialized countries. Thereby,
development of high efficient Zn-enriched nutritional supplements could be advantageous in
decreasing the incidence of degenerative and immunodeficiency disorders, infections, and
persistent diarrhea. Current Zn formulations better absorbed through supplements are in the
form of picolinate or chelates of amino acids. Duodenum is the principal site for Zn absorption.
Therefore, intestinal pathologies that cause poor micromineral absorption, such as Crohn’s
disease, can also induce Zn malabsorption. Other metal ions, such as Ca2+, Fe2+, and mostly
Cu2+ compete with Zn2+ during translocation from the apical surface of the villae to the
basolateral surface of enterocytes. In matter of fact, Zn intake close to the recommended dietary
allowance (15 mg/day) may cause copper and iron deficiency and adversely affect HDL
cholesterol concentrations. Overt symptoms of Zn poisoning (i.e., nausea, vomiting, epigastric
pain, lethargy, and fatigue) usually occur only after exposure to extremely high Zn levels [78].

Zn-related diseases might be prompted either when its scarcity and overload go beyond the
limited cellular Zn buffering capacity, which seems to be rather sensitive to environmental
factors. Apparently, healthy individuals tolerate up to 10-fold changes of the recommended
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daily intake of Zn [79]. Whether exposure to Zn concentrations outside the physiological range
promotes salutary or injurious effects depends on Zn concentration. Different ranges of Zn
concentration appear to be required for exhibiting beneficial properties as antioxidant,
antiinflammatory, and antiapoptotic agent [80]. Intriguingly, both Zn excess and scarcity
undermine the loosely equilibrium toward prooxidant, proinflammatory and proapoptotic
actions.

Lung toxicity after inhalation of ZnO-NPs is likely the most documented deleterious effect in
the literature. The severity of ZnO-NPs-induced inflammatory condition is significantly
correlated with the mass and surface area of the nanoparticles, suggesting that the toxic effect
of ZnO-NPs is mainly caused by the release of Zn ions [81]. It is also claimed that intact ZnO-
NPs have a unique way of inducing inflammatory effects compared with dissolved Zn ions
[82]. For example, ZnO-NPs may either stimulate the production of IFN-γ and subsequent
macrophage activation, neutrophilic infiltration, and fibrosis (Th1 inflammatory response) or
cause a mixed inflammatory cell immune response by triggering a Th2 response [83]. Inhaled
ZnO-NPs, through the olfactory bulb–brain translocation pathway, could also induce neuro-
toxic effects by activation of astrocytes and microglia, which causes neuroinflammation [84,
85].

Recently, a battery of tests, including hemolytic and oxidative stress markers, in vitro ROS
generation and the comet assay, has been applied to evaluate cytotoxic and genotoxic effects
of ZnO-NPs on human erythrocytes and lymphocytes [86]. The authors concluded that,
similarly to dissolved Zn, ZnO-NPs concentrations above 50 ppm. are cytotoxic and genotoxic,
due to the enhancement of oxidative stress induced by ROS generation. In addition to
disruption of cellular Zn homeostasis, alteration of multiple enzymatic activities, and interac-
tion with biomolecules, exacerbation of oxidative stress is the most recognized mechanism
through which ZnO-NPs induce toxic effects. Accordingly, it has been demonstrated that the
cytotoxic effect of ZnO-NPs is more pronounced in human cells previously exposed transiently
to sublethal doses of H2O2, a standard oxidative stress-inducing agent [87]. One important
scenario of the consequences of human exposure to ZnO-NPs was anticipated by the authors:
individuals who suffer from diseases associated with increased oxidative stress (i.e., asthma,
atherosclerosis, cardiovascular diseases, chronic obstructive pulmonary disease, and neuro-
degenerative diseases) should be considered at additional risk upon exposure to ZnO-NPs.

The pharmaceutical industry makes use of Zn(II) compounds (ZnCl2, ZnO, zinc pyrithione,
Zn(CH3CO2)2) as active substances, lubricants, and emollients for a long time [88]. Usually,
zinc-containing medicines are intended to topic application as wound healings, anti-infectious,
disinfectants, and lubricants (Table 3). Apart from ZnO-NPs use in pharmaceutical formula-
tions (i.e., drug delivery) and medicine (i.e., bioimaging), they are also present in a large
number of consumer products (protective sunscreens, hair care formulations, cosmetics,
supplements, food additives, etc.), as already mentioned above (Section 1). Recently, the
European Council on Cosmetic Products (The European Commission (2016), Commission
Regulation (EU) 2016/621 of 21 April 2016) restricted the use of ZnO-NPs in spray products
because it could lead to exposure of the consumer’s lungs to ZnO-NPs by inhalation, and
encouraged only oral and dermal use of ZnO-NPs, up to a maximum concentration in ready
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for use preparation of 25%, with the following characteristics: (i) purity ≥96%, with wurtzite
crystalline structure and physical appearance as clusters that are rod-like, star-like, and/or
isometric shapes, with impurities consisting only of carbon dioxide and water, while any other
impurities are less than 1% in total, (ii) median diameter of the particle number size distribution
D50 (50% of the number below this diameter) >30 nm and D1 (1% below this size) >20 nm; (iii)
water solubility <50 mg L−1; and (iv) uncoated or coated with triethoxycaprylylsilane, dime-
thicone, dimethoxy diphenylsilane triethoxycaprylylsilane crosspolymer, or octyl triethoxy
silane.

Up to date information highlights not only the genotoxicity and cytotoxicity of ZnO-NPs due
dissolution, ROS generation, immunomodulatory, and apoptotic responses, but also their
selective cytotoxicity [82, 89–93]. In general, cytotoxicity is thought to be a collateral effect to
avoid. To evaluate the specific risks and benefits of human exposure to ZnO-NPs, its size,
shape, degradability, agglomeration/aggregation propensity, adsorption ability, specific
surface area, and interfacial chemical and physical reactivity should be considered intrinsic
properties, which likely influence their biopersistence, cellular interactions, and bioactivities
when compared with microparticulate and dissolved Zn during intentional and unintentional
human exposures. For instance, ZnO-NPs sized 20–25 nm appear to exhibit higher antibacterial
and antifungal activity than other ZnO forms [15]. Sublethal concentrations of ZnO-NPs
(surface area of 10.7 ± 0.7 nm) reduce the mitochondrial membrane potential, leading to a dose-
dependent increase in gluconeogenesis and glycogenolysis, which could not be only attributed
to dissolution of ZnO-NPs in extracellular fluids [94]. Kao et al. [85] proposed that ZnO-NPs
are mainly internalized by endocytosis and dissolved in endosomes, raising the cytosolic
free Zn2+ concentration, which is further sequestrated by mitochondria leading to cell apop-
tosis, due to mitochondrial dysfunction and caspases activation. ZnO-NPs readily dissolve in
artificial lysosomal fluid (pH 4.5), but form aggregates and precipitates in the slight alkaline
interstitial fluid [95].

Zinc

compound

Route of

administration

Role in formulation Target organ Clinical recommendations

Zinc acetate Topic Active ingredient:

antibacterial action

Skin Treatment of inflammatory acne,

characterized by bacterial involvement

Zinc chloride Topic Active ingredient:

antibacterial, analgesic, and

healing actions

Mouth/

oropharynx

Treatment of gingivitis and stomatitis;

relief of toothache; oral hygiene

Zinc oxide Topic Active ingredient: adjuvant

of healing

Skin Treatment of diaper dermatitis

Topic Emollient/lubricant:

antihemorrhoidal action

Anus/lower

rectum

Symptomatic treatment of hemorrhoids

Topic Emollient/lubricant:

soothing, smoothing, and

moisturizing actions

Skin Symptomatic treatment of dry and scaly

lesions, especially of ichthyosis,

psoriasis, and eczema Disinfection and
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Zinc

compound

Route of

administration

Role in formulation Target organ Clinical recommendations

hygiene of the skin and mucous

membranes, superficial wounds, and

diaper dermatitis

Zinc pyrithioneTopic Active ingredient:

antibacterial and antifungal

actions

Skin Treatment of pityriasis versicolor, tinea

pedis, psoriasis, seborrheic dermatitis,

eczema, and vitiligo

Table 3. Commonly used medications that contain Zn for topical application.

In contract with small molecules that are translocated across the plasma membrane by passive
diffusion or active transport, nanosized particles are internalized by cells mainly through
endocytosis. This feature of NPs offers a myriad of opportunities for specific cellular targeting,
controlled drug delivery, and bioimaging. The endocytotic capability varies significantly
among cellular populations. Phagocytes (i.e., macrophages, monocytes, neutrophils, dendritic,
and mast cells) are chemotaxing cells that move toward site of infections causing inflammation,
play a central role in innate immunity response, and stimulate lymphocytes to produce
antibodies (adaptive immunity) by antigen presentation. ZnO-NPs coating that favors
interaction with opsonin, scavenger, or Toll-like receptors should enhance selective internali-
zation by phagocytes. Uncoated ZnO-NPs should also be engulfed by lymphocytes, erythro-
cytes, fibroblasts, epithelial, and endothelial cells. Given that ZnO-NPs are microscopic particle
with at least one dimension less than 100 nm, they can be internalized by any living cell by
micro- and pinocytosis. The subcellular availability of ZnO-NPs should greatly depend on the
specific endocytotic pathway (i.e., clathrin-dependent, caveolae-dependent, clathrin- and
caveolae-independent, receptor-mediated) involved in the internalization process. For
instance, ZnO-NPs loaded in caveolae vesicles may reach the endoplasmic reticulum and the
nucleus, since caveosomes are pH neutral multivesicular bodies [96]. Conversely, internaliza-
tion of ZnO-NPs through LDL receptor-mediated endocytosis should raise the cytosolic zinc
ion significantly, due to dissolution of ZnO in the acidic lysosomal environment. Accordingly,
it has been experimentally demonstrated by using ICP-MS and fluorescent-labeled ZnO
dissolution occurs in endosomes, and that nondissolved ZnO-NPs enter caveolae in BEAS-2B
cells (human bronchial epithelial cells) and enter lysosomes in RAW 264.7 cells (mouse
leukemic monocyte macrophage cell) in which smaller particle remnants dissolve [90]. In the
support of cell-specific behavior of stable aqueous solutions of monodispersed ZnO-NPs is the
fact that ZnO-NPs doses exhibiting negligible cytotoxic effects to osteogenically differentiated
mesenchymal stem cells were lethal to proliferating pluripotent mesenchymal stem cells [97].
As already mentioned above (Section 1), ZnO-NPs selectively induce apoptosis, mediated by
reactive oxygen species via p53 pathway, in cancer cells (human hepatocellular carcinoma
HepG2, human lung adenocarcinoma A549, and human bronchial epithelial BEAS-2B), but
did not affect normal astrocytes and hepatocytes [98]. Thereby, to better explore therapeutic
advantages and prevent unwanted cytotoxic effects and the potential of ZnNPs in terms of
clinical diagnosis, it is important to perform a holistic analysis of the characteristics of ZnNPs,
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the administration route, the zinc body burden, the target cells, and the relevant physiological
processes in each specific case.

5. Conclusions, next steps, and opportunities

The ever increasing literature on ZnO-NPs clearly demonstrates the current value and
applications of these particles and tremendous potential for future applications. There are a
large number of challenges associated with its safe use, when compared with commonly tested
substances. As for other nanoparticles, the advantages have to be carefully weight against
potential pernicious effects. The currently available data clearly demonstrate the ability of
ZnO-NPs to induce acute effects on fish, although at concentrations higher than those esti-
mated to be present in the environment. Nonetheless, the long-term effects are yet to be
explored. The considerable lack of information in terms of how these particles are released in
the environment, at which levels, and in what form make the establishment of maximum
allowed concentration a difficult task, based on available toxicity tests. More studies have to
be conducted to explore the behavior of particles upon alterations of receiving media charac-
teristics (e.g., ionic strength UV/radiation) and their fate. This information is essential for
environmentally relevant ecotoxicological studies.

It is expected that, in the very near future, advances in analytical techniques allow quantifica-
tion and accurate characterization of nanoparticles in environmental matrices which will allow
the establishment of potentially impacted areas, monitoring of levels and effects on biota from
those sites. Also, the need to the development of more effective wastewater treatments will
potentially reduce the risk of the increased production of nanoparticle containing materials.

As can be seen from the literature, a broad range of applications of nanomaterials, in particular
ZnO-NPs, exists on human activities. In this chapter, the benefits of ZnO nanomaterials are
clearly recognized on a myriad of applications, having a great potential for the diagnosis,
imaging, drug delivery, and treatment of several pathologies. Other areas within agricultural
domain and energy resources have also relevant applications. Moreover, great potentials for
their applications on aquaculture improving fish growth were documented.

The disposal and fate of ZnO-NPs into the environment may represent a risk to aquatic biota.
This chapter highlights the significance in considering their fate and behavior into water bodies
and its role on aquatic organisms, particularly fish. The published literature undoubtedly
illustrates that ZnO-NPs have different toxic effects on microorganisms, rodents, human cells,
and fish depending on their physicochemical features. In addition, the trophic transfer of these
nanomaterials to humans through diet (i.e., by consuming contaminated fish) warrants special
care. Therefore, disposal of ZnO-NPs deserves more attention since bioaccumulation of these
elements may occur on aquatic species with impact on both human and environmental health.
Precaution and more strict rules must be delimited for disposal of ZnO-NPs into the aquatic
environments.

Zinc ion homeostasis is vital for humans and is closely linked with the homeostasis of other
metal ions, particularly iron and copper. Nowadays, hypozincemia and hyperzincemia are two
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pathophysiological conditions of which enduring prevalence is also related to malnutrition
during aging and emerging lifestyle diseases (i.e., obesity) in industrialized countries. While
the risks of using ZnO-NPs are not fully understood, the advantages of its emerging applica-
tions, including in the therapeutic and diagnostic areas, are already widely recognized.
Probably, the toxicity of ZnO-NPs for man is not superior to the zinc ion itself, and nanopar-
ticulate forms appear to enable interaction with specific cell cycle states (i.e., proliferating cells)
and selective interference with important physiological processes, allowing not only selection
of the administration route of ZnO-NPs but also the cellular internalization pathway and
further intracellular distribution.

The balance of the positive aspects of these nanomaterials and risks caused in some aquatic
species, particularly on fish, targeting possible implications for human health deserve a
continuous monitoring. Although safety measures have been assumed during industrial
production, storage, and removal of these nanomaterials, a constant monitoring of possible
risks for aquatic life and ultimately humans is needed.

As a general conclusion, it is expected that in the near future, there is an increase in the use of
ZnO-NPs for various purposes. Comprehensive understanding of their toxic effect is needed
for their prolonged use.
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