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Abstract

Recently, organic/inorganic hybrid perovskite materials, APbX; (A = CH;NH; or
HC(NH,),; X =1, Br or Cl), have attracted much interest for their promising application
in solar cells as the light-absorbing component to their broad spectral absorption, strong
light-harvesting and long exciton diffusion length. The perovskite solar cells (PSCs) can
reduce the production costs and achieve high power conversion efficiency significantly
compared to standard silicon cells and other thin film cells. On the other hand, ZnO
based materials have been recently investigated in the PSCs devices as electron injection
layers for low-temperature, low-cost and flexible devices. This chapter aims to review
PSCs using ZnO materials as electron extraction layers. We will discuss the electron
transmission and effect of the electron-transporting layer in PSCs and the preparation
method of the ZnO. ZnO is a potential material for many applications due to their high
electron mobility, transparent and various nanostructure. The ZnO was introduced into
the PSCs structure to improve electron extraction efficiency. This chapter summaries the
effect and parameters of PSCs based on the ZnO layer/nanostructure prepared by
several methods as electron transport layers.

Keywords: perovskite, solar cell, ZnO, photovoltaic, hybrid

1. Introduction

Lead halide perovskites materials have been well known for many years [1], but the first
incorporation into photovoltaic applications was reported by Miyasaka et al. in 2009 [2]. The
lead halide perovskites, CH;NH;PbBr;, and CH;NH;Pbl; were coated on a mesoporous TiO,
electron-collector as photosensitized dyes and generated 3.8% power conversion efficiency
(PCE), which was based on a dye-sensitized solar cell (DSSC) architecture. However, the cells
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were only stable for a matter of minutes because of a liquid corrosive electrolyte. In 2009, using
the same dye-sensitized concept to improve upon the PCE, achieving 6.5% PCE [3].

In general, the word “perovskite” is used to describe any material with the same structure as
inorganic CaTiOs;. Organic halide perovskites present a general formula of AMX;, where A
and M are monovalent and bivalent cations, respectively, and X is a monovalent anion that
binds to both cations. M is coordinated to six X anions, and A is coordinated to 12 X anions
(Figure 1). Consequently, they form anionic M-X semiconducting frameworks and charge-
compensating cations [1]. In this case of lead halide perovskites, M is Pb atom and X is a halogen
atom (Cl, Br, I, or a combination of them). The PbX, octahedra consists of a three-dimensional
(38D) framework and small-sized organic or inorganic cations, which can fit into the PbX;
framework, such as CH;NH,", HC(NH,),*, and Cs+.
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Figure 1. Schematic representation of the 3D inorganic framework of organic halide perovskites.

A breakthrough came in 2012, Michael Grétzel and Park [4] contacted CH;NH,;PbI; perovskites
with a solid-state electrolyte, spiro-OMeTAD, as a hole-transporting layer (HTL) to improve
the device stability. The device structure is shown in Figure 2. The all-solid-state mesoscopic
solar cells showed the PCE exceeding 9% and began a new perovskite solar cell (PSC) subject
in the photovoltaic researches. Subsequently, Lee et al. [5], from the University of Oxford,
replaced the mesoporous TiO, with an inert Al,O; scaffold, resulting in increased open-circuit
voltage and a relative improvement in efficiency of 3-5% more than those with TiO, scaffolds,
as shown in Figure 3 [4]. One cell of Al,Os-based cells exhibited high efficiency (red solid trace
with crosses) and one exhibiting Voc > 1.1 V (red dashed line with crosses); for a perovskite-
sensitized TiO, solar cell (black trace with circles); and for a planar-junction diode with
structure FTO / compact TiO2 / CH;NH,Pbl, Cl, / spiro-OMeTAD / Ag (purple trace with
squares). They showed that the efficiencies of almost 10% were achievable using the ‘sensi-
tized’ TiO, architecture with the solid-state hole transporter, but higher efficiencies, above 10%,
were attained by replacing it with an inert scaffold. This showed the PSCs may not require the
mesoporous TiO, layer in order to transport electrons and the hypothesis that a scaffold is not
needed for electron extraction was proved later. A thin-film type PSCs, with no mesoporous
scaffold, of >10% efficiency were achieved [6-9].
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Figure 2. Solid-state device and its cross-sectional mesostructure. (a) Real solid-state device. (b) Cross-sectional struc-
ture of the device. (c) Cross-sectional SEM image of the device. (d) Active layer-underlayer-FTO interfacial junction
structure.
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Figure 3. (a) Schematic illustrating the charge transfer and charge transport in a perovskite-sensitized TiO, solar cell
(left) and a noninjecting Al,Os-based solar cell (right). (b) Current density-voltage characteristics under simulated
AM1.5 illumination for Al,O;-based cells, one cell exhibiting high efficiency (red solid trace with crosses) and one ex-
hibiting VOC > 1.1 V (red dashed line with crosses); for a perovskite-sensitized TiO, solar cell (black trace with circles);

and for a planar-junction diode with structure FTO/compact TiO,/CH;NH;PbIL,Cl/spiro-OMeTAD/Ag (purple trace
with squares).

In 2013, both the planar and mesoscopic architectures, Figure 4, saw a large amount of
developments. Burschka et al. [10] and Bi et al. [11] demonstrated a deposition technique for
the mesoscopic-type architecture, exceeding 15% efficiency using a two-step solution process-
ing; Liu et al. [12] showed that it was possible to fabricate planar-type PSCs; using thermal
evaporation method at a similar time, over 15% efficiency was achieved. A number of new
deposition techniques and even higher efficiencies were reported in 2014 [13, 14]. A reverse-
scan efficiency of 19.3% was claimed by Zhou et al. [15] at UCLA using the planar thin-film
architecture. In November 2014, a device by researchers from KRICT achieved a record with
the certification of a non-stabilized efficiency of 20.1% [15, 16]. In December 2015, a new record
efficiency of 21.0% was achieved by EPFL [15]. Subsequently, in March 2016, researchers from
KRICT and UNIST created the highest certified record for a single-junction perovskite solar
cell with 22.1% [15].
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Figure 4. Structure diagram of (a) mesoscopic perovskite solar cell and (b) planar perovskite solar cell.

2. Electron transporting layer in perovskite solar cells

The electron-transporting layer (ETL), one of the most important components in the PSCs for
highly efficient performance, plays an essential role in extracting and transporting photogen-
erated electrons. Simultaneously, it also serves as a hole-blocking layer to suppress carrier
recombination. The characteristics of the ETL, especially its carrier mobility, energy band
alignment, morphology, trap states, and related interfacial properties are major factors to
determine the device behavior and photovoltaic performance of PSCs [17]. A relatively high
electron mobility is desirable for ETLs to efficiently transport and collect electrons transport,
contributing to the increase of short-circuit current density (Jsc), and fill factor (FF). The better
matching energy level between ETLs and the perovskite layer can facilitate electron extraction
and transport. Furthermore, the open-circuit voltage (Voc) can be determined by the energy
level differences between the Fermi levels (EF) of the ETL and EF of the hole-transporting layer
(HTL) [18-20]. Hence, the energy-level engineering is widely used to improve the Voc of a
photovoltaic device. Trap states in the ETLs also play important roles in charge transport.
Therefore, improving interface contact between ETLs and the perovskite layer is an efficient
method to optimize device performance and enhance charge transport. Morphologies of the
ETL are also considered to enhance its contact with the perovskite layer for achieving better
device behavior.

To date, TiO, materials have been used as ETLs in most frequently reported PSCs. The electron
injection rates between the perovskite absorber and TiO, ETLs are very fast, but the high
electron recombination rates are also seen due to the low electron mobility and transporting
properties [21]. In addition, a high-temperature process was required for high-quality meso-
scopic TiO, layer [16, 22]. Hence, these characteristics of TiO, materials may act as impediments
to improve device performance and their further application for developing low-cost perov-
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skite solar cells on various flexible substrates [23, 24]. On the other hand, ZnO is a wide-
bandgap semiconductor of the II-VI semiconductor group, which has several favorable
properties, including good transparency, high electron mobility, wide bandgap, and strong
room-temperature luminescence. Several types of morphologies in ZnO, such as thin film,
single-crystal, nanowire, and nanorod has been found and made using the low-temperature
solution processes. The native doping of the semiconductor due to oxygen vacancies or zinc
interstitials is n-type [25]. Moreover, ZnO is a well-known material that has similar energy
level as TiO, but has better electron mobility (bulk mobility: 200-300 cm?/V s [25-27]) than
TiO,, which lets it an ideal candidate for a low-temperature processed electron-selective
contact for transparent electrodes, organic solar cell, thin-film transistors, and light-emitting
diodes.

3. ZnO film/nanostructure as electron transporting layer

In 2013, ZnO was firstly applied as ETL of PSCs. Kumar et al. [28] reported flexible PSCs
employing the ZnO compact layer as a hole-blocking layer and a ZnO nanorods mesoscopic
scaffold layer as an electron transporter. The ZnO compact layer was formed by electrodepo-
sition and ZnO nanorods grown by chemical bath deposition, which allow the processing of
low-temperature, solution-based ETLs. The planar device, which only uses the ZnO compact
layer can also be made, but they presented lower Jsc and FF than nanorod-based devices.
Conversion efficiencies of 8.90% were achieved on rigid substrates, while the flexible ones
yielded 2.62%. In the same year, Bi et al. [29] used well-aligned ZnO nanorod arrays as ETLs.
They consider that the perovskite material has better solar cell stability and is therefore more
suited as a sensitizer for ZnO nanorod arrays. Therefore, their results showed the ZnO
nanorod-based PSCs had a good long-term stability of PSCs. It was found that the electron
transport time and lifetime vary with the ZnO nanorod length, a trend which is similar to that
in DSSCs, suggesting a similar charge transfer process in the ZnO nanorod array/
CH;NH;Pbl; interface as in conventional DSSCs. However, a solar cell efficiency of only 5.0%
was achieved under AM 1.5 G illumination due to more recombination losses than TiO,
devices. The reason indicated that the ZnO nanorod array grown by different processes may
affect the PSC performance.

A breakthrough came in the end of 2013, Liu and Kelly [30] reported that a room temperature
solution-processed thin compact ZnO ETL was used to fabricate a highly efficient planar
perovskite solar cell with a champion efficiency of 15.7%, an average efficiency of 13.7%, and
the flexible ones yielded 10.2%, in which ZnO prepared by a co-precipitation method had
superior electron mobility, and the ETLs were fabricated without any sintering steps, as
shown in Figure 5. Besides solution-based co-precipitation ZnO ETLs, a sol-gel solution-
processed ZnO ETLs were reported by Kim et al. [31] in 2014. Moreover, a vacuum-processed
ZnO ETL has been prepared for high-efficiency PSCs, such as an atom layer deposition (ALD)
[32] or sputtering method [33, 34]. Several types of ZnO nanostructures have been studied to
replace the mesoporous TiO, nanostructures in the conventional PSCs [35-38].
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On the other hand, the electrical characteristics of ZnO can be increased by extrinsically doping
a small amount of impurities [39, 40], such as Al The ionic radius of AI’*is 0.54 A, which is
smaller than that of Zn? (0.74 A). Therefore, AI** can replace Zn* in the lattice point and acts
as a donor to increase the conductivity of ZnO [41, 42], and at the same time, it remains the
excellent transparence in the visible-light region. This is why a high-quality Al-doped ZnO
(AZO) thin film can also be used as a transparent conductive oxide (TCO) electrode, just like
other IIIA elements (B, Ga, and In)-doped ZnO [41]. Al-doped ZnO thin film, which was
deposited using the electrospraying method, was also used as ETLs in PSCs to suppress charge
recombination at the ZnO/perovskite interface, resulting in better efficiency than pure ZnO
devices [43]. The charge recombination of the ZnO-based device was also suppressed by
appropriate Mg-doping. It mainly attributed to the conduction band offset at the interface
between ZnO ETL and perovskite layer [44].
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Figure 5. ]-V curves of devices on (a) glass and (b) flexible PET substrates in the illumination (red line) and dark (black
line) for the highest-performing ITO/ZnO/CH,;NH,Pbl,;/spiro-OMeTAD/Ag devices in reference [31]. (c) Photograph of
a device prepared on a flexible PET substrate.

The electron extraction by the ETL in perovskite cell strongly depends on the work function
(WF) of the ETL. An energy barrier mismatch (a Schottky barrier) between the WEF of the ETL
and the lowest unoccupied molecular orbital (LUMO) of perovskite absorber could lead to
inefficient electron extraction. Therefore, matching the WF of ETL with the absorber could
reduce a Schottky barrier or form an Ohmic contact [45, 46] to facilitate the electron injection
or collection [47]. Nitrogen-doped ZnO electron materials combined with a dipole layer can
increase electron concentration to improve perovskite infiltration and reduce the work
function [38]. Above all, doping is an effective way to modify the electrical properties of ZnO.

Self-assembled monolayer (SAM) is well-known that surface treatments can decrease the
number of charge carrier traps and tune the surface WF of ETLs. Modification of the interface
of solar cells using functional SAMs is an effective method to improve device performance.
Modifying the ZnO ETL with 3-aminopropanoic acid monolayer can improve the interfacial
energy level alignment due to the formation of permanent dipole moments, which decreased
the WF of ZnO from 4.17 to 3.52 eV, and help to obtain highly crystalline perovskite layer with
reduced pin-hole and trap-state density [48]. The stoichiometry of ZnO thin film was also
affected the photovoltaic device performance. Tseng et al. [33] used sputtered ZnO thin films,
which stoichiometry was controlled by adjusting the ratio of working gases (Ar and O,) during
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radio frequency (RF) magnetron-sputtering process, as an ETL in PSCs. As mentioned earlier,
the native doping of the ZnO due to oxygen vacancies shows n-type semiconductor. The
surface conductivity of ZnO film was affected by the presence of oxygen vacancy of the lattice,
which will show even more accentuated variations of the electrical behavior in a thin film. ZnO
film with more oxygen vacancies has higher surface conductivity; therefore, device based on
ZnO using pure Ar deposition has smaller series resistance. Furthermore, ZnO using pure Ar
deposition has lower WF of 4.33 eV than that using Ar/O, mixed gas deposition (4.48) but both
have a same bandgap. Therefore, ZnO using pure Ar deposition lower conduction band level
(down-shift) than that using Ar/O, mixed gas deposition to increase the driven force of electron
injection (or charge separation) from perovskite (or ZnO/perovskite interface) and lower
valance edge can block the hole more efficiently. Both better conductivity and lower conduction
band level of ZnO result in high charge extraction efficient; therefore, the corresponding device
has high Jsc. (Figure 6a and b) The hole-blocking ability of ZnO film using pure Ar deposition
was also supported by the dark current of the corresponding device illustrated in Figure 6c.
Cell-based ZnO-Ar electron-transporting layer has smaller dark current indicated that ZnO-
Ar has better hole-blocking ability when other components in the cell are supposed to be the
same.
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Figure 6. (a) I-V curves, (b) illustration of the frontier orbitals energy levels for ZnO prepared using pure Ar and 20%
O,, and (c) Dark current curves of perovskite solar cell using pure Ar, 10%, and 20% Ar/Ar + O, ratio mixed gas as the
electron transport layer. The illustration of the frontier orbitals energy levels for ZnO-Ar, ZnO-20%, and perovskite.

Despite the excellent characteristics of ZnO, in 2015, Yang et al. [49] found the thermal
instability of PSCs fabricated using ZnO ETLs. They show that the basic nature of the ZnO
surface leads to proton-transfer reactions at the ZnO/CH,;NH,Pbl; interface, which results in
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decomposition of the perovskite film Pbl,, as shown in Figure 7. The decomposition process
is accelerated by the presence of surface hydroxyl groups and/or residual acetate ligands. To
reduce the decomposition, Cheng et al. [50] introduced a buffer layer in between the ZnO-NPs
and perovskite layers. They found that a commonly used buffer layer with small molecule like
[6,6]-phenyl-C,;-butyric acid methyl ester (PCBM) can slow down but cannot avoid the
decomposition completely. On the other hand, a polymeric buffer layer using poly(ethyleni-
mine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal
formation with thermal annealing. Today, thermal instability of PSCs using ZnO ETLs remains
the major challenge limiting their further application and device performance.

3

Figure 7. (a) Optimized geometrical structure of the ZnO/CH;NH,Pbl, interface. The inset shows a magnified view of
the deprotonated methylammonium cations. (b) Photographs of CH;NH,Pbl, films deposited on ZnO layers and heat-
ed to 100°C with different times (from a to g).

4. Conclusions

In summary, we have given an overview of the efforts focused on the ZnO of ETLs. Their doping
effect and interface modification between the ETL and perovskite layer have been developed
and applied in PSCs. Because charge extraction, transfer, and recombination mainly occur at
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the interfaces of a cell, the interfacial layer between the perovskite layer and the bottom
electrode needs to be closely aligned by introducing efficient interfacial materials. For con-
ventional PSCs, a ZnO ETL, good electron-transport ability and a low recombination rate at
the interface, works well for high-performance PSC.
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