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Abstract

The recent progress in functionalized LB films and supramolecular gels varies and
occupies  various  fields.  Self-assembly  technique  is  playing  an  important  role  in
preparing well-defined multilevel nanostructures and the functionalized nanomaterials
with the designed and controlled properties. In this chapter, various kinds of function-
alized  LB films  and supramolecular  gels,  including  gold  nanoparticles,  inorganic-
organic hybrid composites, and graphene oxide nanocomposites, have been demon-
strated and analyzed. We show main research contributions in recent years in two
sections: preparation and self-assembly of some functionalized LB films and prepara-
tion and self-assembly of some functionalized supramolecular gels. The above research
work may give the potential perspective for the design and preparation of new self-
assembly nanomaterials. Future research on preparation of LB films and supramolec-
ular gels will depend on the novel applications and special nanostructures in order to
produce novel functional nanomaterials and devices.

Keywords: LB film, supramolecular gel, self-assembly, nanomaterials, nanostructures,
properties

1. Introduction

The recent progress in functionalized LB films and supramolecular gels is varied and occupies
various fields. It is well known that the self-assembly techniques demonstrate important and
crucial role to prepare various functionalized nanostructures and nanomaterials with the
preferred properties. In comparison with the conventional self-assembly process of amphi-
philes  in  bulk  or  at  interfaces,  the  self-assembly  process  of  inorganic-organic  hybrids,
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nanoparticles and colloidal microspheres, and supramolecular nanostructures show special
properties, especially in preparing complicated nanocomposites or nanomaterials.

In the recent reports in our groups, some systems, including LB films and supramolecular gels,
have been designed and characterized. In addition, some useful analytical techniques and
synthetic treatments applied in supramolecular self-assembly field have been highlighted and
analyzed. In the present chapter, we summarize main work contributions in recent years in
two parts: (1) preparation and self-assembly of some functionalized LB films and (2) prepara-
tion and self-assembly of some functionalized supramolecular gels.

2. Preparation and self-assembly of some functionalized LB films

The Langmuir-Blodgett technique is an important method to produce macroscopic materials
organized on the molecular scale [1–5]. This approach allows amphiphilic molecules to be
oriented at the air-water interface and then transferred sequentially onto a solid support [6–
15]. In our research, some special amphiphiles, including bolaamphiphiles, gemini, and
amphiphiles with functional substituted groups, have been designed and synthesized, and
their organized supramolecular assemblies in LB films have also been investigated, which may
broaden the traditional research areas about LB film and give some perspectives and clues for
the relative research in the future.

Firstly, in our previous work, a bolaform and single chain Schiff base, abbreviated as BSC10
and HBOA, have been synthesized and their interfacial self-assembly in LB films and
interaction with barbituric acid (BA) was demonstrated [16]. It has been found that while
HBOA formed a monolayer at the air/water interface, the bolaform Schiff base formed a
multilayer film with ordered layer structure on water surface. The relative interfacial mor-
phologies were shown in Figure 1. The detailed investigations of the transferred multilayer
films were characterized by various spectral techniques. A clear conformational change of the
alkyl spacer in the bolaform Schiff base was observed during the complex formation with the
barbituric acid. In the obtained self-assembly unit, the alkyl spacer showed obvious bent/
gauche conformation due to the H-bond requirement. So, direct experimental data about
conformation change of alkyl chains in LB films were clearly demonstrated.

In addition, the interfacial films of a series of designed gemini amphiphiles containing the
Schiff base moiety have been investigated [17]. This series of gemini amphiphiles with Schiff
base headgroups linked by a hydrophobic alkyl spacer (BisSBC18Cn, n = 2, 4, 6, 8, 10) could
be spread to form stable monolayers and coordinated with Cu(II) ions in the monolayer. The
Langmuir films of gemini amphiphiles with the spacer length of six or eight methylene groups
demonstrated maximum limiting molecular area. Nanonail and tape-like morphologies were
observed for amphiphile films with shorter spacers (n = 2 and 4) on the water surface. Worm-
like morphologies were observed for gemini films with longer spacers of C8 and C10 when
coordinated with Cu(II) ions, as illustrated in Figure 2. For the compounds with short spacer,
the spacer showed parallel organization to the water surface. With length increment, the spacer
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part could show bent/gauche conformation. Therefore, the films with spacer lengths of C6 and
C8 on water and Cu(II) ions demonstrated maximum limiting molecular areas, respectively.

Figure 1. AFM images of monolayer LB films of bolaform Schiff base (HBOA) from pure water subphase and 1.0 mM
BA subphase.

Figure 2. Schematic illustration of the packing modes of BisSBC18Cn in organized films.

In another research work, a tyrosine-based bolaamphiphile (abbreviated as C10BT) has been
designed and its interfacial assemblies were investigated [18]. It was interesting to find that
metal ions, such as Ag(I) and Cu(II) ions, in the subphase can greatly modulate the molecular
packing of C10BT and the morphology of the subsequently deposited LB films. The X-ray
diffraction and X-ray photoelectron spectra verified the orderly layer structure and the relative
molar ratios compared with different metal ions. Quantitative analysis of XPS data indicated
the values of 1:1.95 for C10BT:Ag(I) and 1:1.08 for C10BT:Cu(II). Considering the coordination
process and spectral results, as shown in Figure 3, a rational self-assembly process has been
proposed. For the Cu(II)-coordinated film, the molecules were connected by coordination sites
with spacer in bent conformation. On the other hand, for Ag(I)-complexed film, the molecules
were orderly stacked by cooperative forces.

Next, we have also investigated the interfacial self-assembly of a block-type polymer abbre-
viated as PEO45-b-PDMA69 by the LB technique [19]. Accompanied by a pancake-to-brush
transition of PEO conformation, the worm-like surface micelles are compression induced, as
shown in Figure 4. The micelles as the building blocks can be arrayed parallel to generate a
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long-range ordered structure, further bended and twisted upon compression. The obtained
nanostructure change could be assigned to the special coil-semirod molecular structures and
the unique capability of the PDMA part. The research work gives exploration for preparing
functional polymers and nanostructures in organized films.

Figure 3. Cartoon illustration of the packing modes for C10BT complex films on different subphases: (a) Ag(I) ions sub-
phase; (b) Cu(II) ions subphase.

Figure 4. SEM images of the LB films at various molecular areas: (A) 28 nm2/molecule; (B) 21 nm2/molecule; (C) 16 nm2/
molecule; (D) 13 nm2/molecule; (E) 7 nm2/molecule; (F) 5 nm2/molecule.

In another work, two coumarin derivatives were synthesized and their interfacial self-
assemblies were investigated [20]. Owing to the different substituent position of the long
octadecyloxy chain in the coumarin parent, the two compounds showed obviously different
interfacial behaviors. The spreading films on the water surface were transferred onto solid
substrates and characterized by various spectra and atomic force microscopy (AFM). Different
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packing of the molecules in the multilayer films was observed, as shown in Figure 5. Photo-
reaction could not occur in 4-CUMC18 film due to possible large steric hindrance, while
photochemical reaction produced in 7-CUMC18 film because of the face-to-face stacking of
benzene ring and steric matching.

Figure 5. Illustration of the possible packing and photoreaction in the LS films.

In addition, preparation and characterization of gemini amphiphiles-gold nanostructure
composite films have been demonstrated [21]. The as-formed composite monolayer films with
gold nanoparticles generated by chemical or photochemical reduction in film were transferred,
as shown in Figure 6. When UV illumination was used, gold nanoparticles can be produced.
Upon subsequent reduction process in solution, the preformed nanoparticles could grow into
different nanostructures as seeds and further self-assemble into larger structures in solution.
This research work provided a simple way to control the aggregates and optical properties of
gold nanostructures by adjusting the initial irradiation time.

Figure 6. Schematic illustration on the generation of gold nanoparticles by photochemical and chemical reduction in
GN2/AuCl4

− complex film.

In another research work, two luminol derivatives with different substituted chains (abbrevi-
ated as LC11 and TF46) were mixed with glycolipid compound GC11 to form monolayers at
the air-water interface [22]. The pure and mixed interfacial Langmuir films were studied by
measuring the surface pressure-molecular area isotherms, and their morphologies were
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characterized by Brewster angle microscopy (BAM), as shown in Figure 7. Dot-like domains
were observed by BAM for TF46 Langmuir films, contrariwise to some strip-like aggregated
domains in the case of LC11. These different morphologies may be attributed to distinct
aggregation modes induced by differences in molecular structure.

In addition, in order to insert the noninhibitory anti-choline oxidase immunoglobulin (anti-
ChOD IgG), mixed IgG-TF46 vesicles have been prepared and spread on a phosphate buffered
saline (PBS) subphase [23]. The formation of the interfacial film, after disruption of the IgG-
TF46 vesicle membranes at the air-liquid interface, has been evidenced by liposome fusion
process and LB method. When acting as an electrochemiluminescent (ECL) sensor, the de-
signed self-assembly films demonstrated capability of biomimetic sensor, as shown in Fig-
ure 8. The relative research work showed the exploration of application of luminol derivatives
to form functional films for ECL detection.

In addition, some Schiff base compounds with trigonal molecular skeletons were prepared
and the interfacial self-assembly process were characterized [24]. The Cu(II)-coordinated films
could be transferred and characterized by various spectral and morphological methods. As
shown in Figure 9, depending on different substituted headgroups and subphase solutions,
various morphologies were obtained. Moreover, on different pH subphases, the interfacial
assembly and nanostructures varied obviously. And reasonable explanation about the self-
assembly behaviors have been proposed.

Figure 7. BAM images of LC11 and mixed LC11/GC11 monolayers at different surface pressures. For LC11 monolayer:
(a) 5 mN/m; (b) 18 mN/m; (c) 24 mN/m; (d) 36 mN/m. For mixed LC11/GC11 monolayer: (e) 23 mN/m; (f) 28 mN/m; (g)
29 mN/m; (h) 31 mN/m.
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Figure 8. Reagentless detection principle of choline oxidase activity by ECL reaction triggered directly in the sensing
layer.

Figure 9. AFM images of one layer TSB-Sal, TSB-Np and TSB-C16 films deposited from pure water surface (a, d, g),
aqueous 1.0 mM Cu(Ac)2 subphase (b, e, h), and aqueous 1.0 mM Zn(Ac)2 subphase (c, f, i) at 15 mN/m, respectively.

In addition, we have reported the design and preparation of LB films of an aromatic Schiff base
compound and relative Cu(II)-complex [25]. We found that the synthesized compound
abbreviated as m-NpSB could form stable monolayer on pure water surface with novel phase
transition process. The detailed changes of nanostructures were demonstrated around the
phase transition region. Many methods have been used to characterize the ligand and the
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corresponding complex films. A reasonable model was proposed to explain the novel phase
transition process, as shown in Figure 10. When the ligand m-NpSB was spread on water
surface, a smooth plain film was formed, which had also been verified by the AFM and XRD
data. With the increment of surface pressure near the transition point, due to the spatial
hindrance and lower energy level induced by the molecular rigidity and size, some molecules
changed their conformational alignment and became more declined to surface, which could
be well monitored by the AFM measurement at different surface pressures. After the point,
the molecules completely aggregated to form fiber-like superstructure due to the high surface
pressure and strong π–π stacking of aromatic moieties. Then, a change from two-dimensional
(2D) to three-dimensional (3D) morphology was accomplished. The research work results
provide distinct clues for the design and the fabrication of the aligned film structures at the
air/water interface.

Figure 10. Schematic illustration of the phase behaviors of m-NpSB at air/water interface.

In addition, some achiral Cu(II)-coordinated Schiff base complexes containing aromatic
structures were synthesized and their interfacial self-assemblies at the air/water interface were
investigated [26]. The Schiff base complex molecules with naphthyl groups tended to form J-
aggregate in the Langmuir-Blodgett (LB) films transferred from water surface. By investigation
of atomic force microscopy shown in Figure 11, a multilayer film or three-dimensional
structures were observed. It was interesting to note that the LB films of achiral compound Cu-
NA with naphthyl segment and without methyl groups transferred from water surface showed
chirality, which could be due to a cooperative stereoregular π–π stacking of the functional
groups in a helical sense.

In another research work, a naphthyl-containing Schiff base derivative was synthesized, and
its coordination with various metal ions at the air/water interface has been investigated [27].
Different nanostructures and interfacial coordination were obtained in the monolayers with
metal ion subphase. And only the Cu(II)-coordinated composite film demonstrated supramo-
lecular chirality. A possible organization mechanism at the air/water interface was suggested,
as shown in Figure 12. When spreading on the subphase containing Cu(II) ion, an in situ
coordination occurred between Cu(II) ion and the two hydrophilic groups. Due to this coordi-
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nation and spatial hindrance, the long side of the triangle molecule would contact with the
water surface, and the adjacent molecules are suggested to align cooperatively in a helical
sense. Although both the left- and right-handed helical sense will occur due to the confine-
ment of a two-dimensional platform, one kind of the helical sense could possibly be predomi-
nant, and thus we got a macroscopic chirality of the complex films.

Figure 11. AFM images of one-layer LB films on pure water surface at surface pressure of 15 mN m−1. (a) Cu-SA; (b)
Cu-SAM; (c) Cu-NA; and (d) Cu-NAM.

Figure 12. A possible schematic illustration on the formation of the chiral assemblies: (a) ligand molecule; (b) in situ
Cu(II)-coordinated complex; (c) stacked in a helical sense to form chiral assembly; (d) preformed Cu(o-NpSB); (e)
stacked in a random way.
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3. Preparation and self-assembly of some functionalized supramolecular
gels

In recent years, supramolecular gels have demonstrated more attentions due to the organized
three-dimensional nanostructures and potential wide applications on functionalized drug
delivery substrates and wastewater treatment [28–32]. The main driving forces in gel forma-
tions are cooperative noncovalent interactions, such as hydrogen bonding, π–π stacking, host-
guest interaction, and so on [33–37]. The designed properties need the preparation of various
functional gels with organized and controllable nanostructures [38–41]. In this section, we have
showed some typical gel systems, including amide amphiphiles, binary gelators, graphene
oxide composites, and AuNPs composites.

Firstly, two cholesterol amide derivatives with azobenzene substituent groups have been
synthesized, and their gelation behaviors have also been investigated [42]. The experimental
data revealed that the compound with headgroups of hydrogen units could only form gel in
DMF, whereas the other compound with headgroups of methyl units cannot gelate any used
solvent. Under UV light irradiation, the change of trans-cis isomerization in azobenzene
segment appeared, which resulted in the gel-sol transition, as shown in Figure 13. In addition,
the gel could be recovered by the reverse cis-trans isomerization process after visible light
exposure. At the same time, the bulk solution with the macroscopic gel to sol transition became
transparent.

Figure 13. Left, Photographs of Ch-azo in hot DMF solution (a), formed gel in room temperature (b), after UV irradia-
tion for 170 min (c), and subsequent visible irradiation for 40min (d). Right, Schematic representation of photo-induced
gel-sol transition of DMF gel of Ch-azo.

Figure 14. Rational assembly modes of CH-PY organogels in stretched stacking (a) and twisted stacking (b), respective-
ly.
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In addition, we have characterized the gelation behaviors of some bolaform cholesteryl amide
compounds with large conjugated spacer [43, 44]. We found that the formed nanostructures
and self-assembly process in organogels could be regulated by solvent change. Morphological
characterization showed different aggregates, including wrinkle, belt, and fiber. We proposed
possible self-assembly modes in gels, as shown in Figure 14. Different solvents could adjust
molecular conformation to self-assemble and form twisted stretched stacking nanostructures.

Figure 15. Photographs of organogels of GC16 (a), GC14 (b), and GC12 (c) in different solvents.

Figure 16. Rational assembly modes of CH-C1, CH-C3, and CH-C4 in gels. Experimental values of CH-C1 in 1,4-diox-
ane and nitrobenzene (a, b), CH-C3 in nitrobenzene (c), and CH-C4 in nitrobenzene (d).

In another work, we have demonstrated gelation behaviors of some glutamic acid diethyl ester
amide compounds [45]. The obtained data indicated that the length of substituted alkyl chains
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in gelator skeletons showed obvious regulation in gel formation. The photographs of all
organogels in different solvents are shown in Figure 15. The reasonable explanation for the
strong gelation behaviors for GC16 can be due to the enhanced hydrophobic force and
organized spatial conformation.

Next, the gelation behaviors of some bolaform cholesteryl amide compounds with different
kinds of spacers were demonstrated [46–50]. The obtained experimental results showed that
these suitable flexible/rigid segments in spacers were helpful to form gels. Considering the all
obtained data, some possible packing modes of these gelators were proposed and schemati-
cally shown in Figure 16. Due to the flexibility of spacers in the molecular skeleton and different
intermolecular forces with solvents, after the intermolecular hydrogen bonding and orderly
stacking in different solvents, various repeating units with different lengths were obtained.

In another research work, some binary organogels based on glutamic acid derivatives and acids
with different molecular skeletons were designed and prepared [51]. The obtained results
demonstrated that the suitable solvents or volume ratios in binary solvents were favorable for
gel formation due to cooperative intermolecular interactions. In addition, the gelation behav-
iors in ethanol/water mixed solvents were also investigated, as shown in Figure 17. Interest-
ingly, the results indicated the present mixtures can also form opaque organogels in mixed
solvents with different volume ratios of mixed solvents. For example, GC2 can form gels in
ethanol/water mixed solvents from the range of 2:1–1:5. The present experimental results
suggested that some factors, such as solvents as well as the volume ratios of mixed solvents,
aromatic/alkyl cores, and molecular skeletons in acid derivatives, could efficiently change and
regulate the gelling abilities of these binary mixtures. Rational assembly modes in organogels
were proposed and discussed.

Figure 17. Photographs of GC2 organogels from ethanol/water mixed solvent with the volume ratios of 5:1, 2:1, 1:1, 1:2,
1:5, and 1:10 (a, b, c, d, e, and f, respectively).

In another continuous work, the gelation behaviors of binary organogels composed of
azobenzene amino derivatives and fatty acids with different alkyl chains in various organic
solvents were designed and investigated [52]. Their gelation behaviors in 20 solvents were
tested as new binary organic gelators. Longer alkyl chains in molecular skeletons in present
gelators are favorable for the gelation of organic solvents. Morphological studies revealed that
the gelator molecules self-assemble into different aggregates from lamella, wrinkle, to belt with
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change of solvents, as shown in Figure 18. In addition, it is interesting to note that these belt
aggregates showed a tendency to aggregate together due to highly directional intermolecular
interactions and/or solvent evaporation. The difference of morphologies can be mainly due to
the different strengths of the intermolecular hydrophobic force between alkyl chains of fatty
acids, which have played an important role in regulating the intermolecular orderly stacking
and formation of special aggregates.

In another system, we have investigated the gelation behaviors of binary gelators, including
glutamic acid amino derivative/azobenzene amino compounds and fatty acids [53, 54].
Considering the obtained XRD data, two possible assembly modes of Glu-C18 were proposed
and schematically shown in Figure 19. For the Glu-C18 gels in some solvents, such as toluene,
the layer distance in gel structures appeared at 3.2 nm due to the penetration of alkyl chains
of the neighboring gel molecules. In another kind of gel, repeating unit with 2 nm length was
obtained because of parallel chains.

Figure 18. SEM images of xerogels: (a and c–f): C18-Azo, C16-Azo, C14-Azo, C18-Azo-Me, and C16-Azo-Me in etha-
nolamine, respectively; (b) C16-Azo in nitrobenzene.

Figure 19. Two possible assembly modes for Glu-C18 organogels in different solvents.
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In recent years, graphene oxide (GO)-based nanomaterials have drawn abundant attentions.
In recent report, we have prepared organogels through cationic gemini compounds-GO
composites [55]. The obtained data demonstrated that the gelation behaviors could be
regulated by change of substituted headgroups in compounds. In addition, different self-
assembly nanostructures were obtained, as shown in Figure 20, indicating special assembly
modes in gels. Moreover, it is well known that the thickness of GO sheet (about 0.5–1.0 nm) is
larger than the theoretical value of graphene layer (0.34 nm). This is mainly due to the abundant
oxygen-containing groups (hydroxyl and epoxy groups) remaining on the surface of the GO
sheets. A possible mechanism for headgroup effects on self-assembly and as-prepared
nanostructures is proposed.

Figure 20. AFM images with section analysis of xerogels. C16Py-GO gels, BPy-GO gels, and CTAB-GO gels in DMF (a,
b, and c) and in THF (d, e, and f).

In another continuous work, we have reported the preparation of composite supramolecular
organogels by self-assembling cationic functional gemini compound-GO nanocomposites [56].
The gel formation properties of as-prepared nanocomposites present in different organic
solvents could be controlled by regulating symmetry in skeletons of amphiphilic compounds.
In combination with the spectral and morphological data of as-prepared organogels, some
possible and reasonable self-assembly modes for present gemini compound-GO nanocompo-
site gels are given and demonstrated in Figure 21. As for C18-6-0/GO composite and C18-6-6/
GO gel with shorter substituent alkyl chain in gemini molecules, due to the intermolecular
weak van der Waals interaction of substituent alkyl chains caused by asymmetric molecular
skeletons, disorderly stacking appeared in the interlayer of self-assembled nanocomposite
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units, which seemed to be difficult to connect each other as fundamental building blocks to
fabricate three-dimensional organized net to form gel state. So C18-6-6/GO composite can only
fabricate one kind of gel in present 20 organic solvents. With the increment of alkyl chain to
carbon 12 and 18, for the case of C18-6-12/GO and C18-6-18/GO composites, longer alkyl chains
in molecular skeletons helped to increase hydrophobic force and flexibility in self-assembly
process. After integration with GO, organized stacking units appeared in various solvents with
the strong van der Waals force of gemini compounds with functional oxygen-containing
chemical groups on surface or at edge.

Figure 21. Schematic pictures of different assembly modes in C18-6-6/GO gels with asymmetric skeleton (a) and
C18-6-18/GO gels with symmetric skeleton (b).

Figure 22. Schematic depiction of the formation of GO/PEI gels. (A) GO and (B) amine-rich PEI was combined to give
(C) GO/PEI hydrogels. (D and E) Gelation pictures.

In another work, the preparation of GO/polyethylenimine (PEI) and GO/chitosan (CS) hydro-
gels as dye adsorbents for wastewater treatment was reported [57, 58]. The GO/PEI hydrogels
were obtained through both hydrogen bonding and electrostatic interactions between amine-
rich PEI and GO sheets. Figure 22 depicts the complete preparation process of GO/PEI hydro-
gels by combining the GO suspension and the PEI aqueous solution. The as-prepared GO/PEI
hydrogels exhibited good removal rates for both MB and RhB in accordance with the pseudo-
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second-order model. More importantly, the dye-adsorbed hydrogels can be conveniently sep-
arated from an aqueous environment, suggesting potential large-scale applications of the GO-
based hydrogels for organic dye removal and wastewater treatment.

In a recent report, some composite hydrogels through GO and multiamine molecules have
been designed and prepared from the self-assembly of GO in the presence of multiamine
molecules, including diethylenetriamine (DETA) and triethylenetetramine (TETA) [59]. The
micro/nanostructures in nanocomposite hydrogel were characterized by morphological
investigation. The characteristic bands of graphene samples in Raman spectra appeared, as
shown in Figure 23. This change can be mainly attributed to the self-assembly of GO in the
net-like composite nanostructures. The next adsorption properties demonstrate that these
designed and synthesized GO-based composite hydrogels can act as efficient absorbents for
dye removal from wastewater in well accordance with the pseudo-second order model.

Figure 23. TG curves (A) and Raman spectra (B) of lyophilized GO sheet, GO-DETA hydrogel, and GO-TETA hydrogel
at concentration of 0.25 wt%, respectively. (C) and (D) are D/G and 2D/G ratios of the Raman spectra shown in B, re-
spectively.

In addition, we have reported the synthesis of RGO/PEI/Ag and RGO/CS/Ag composite gel
materials and evaluated its dye degradation capacity [60, 61]. The CS molecule was chosen for
its functional amine segments in the molecular skeleton that can form porous gel nanostruc-
tures through interactions such as hydrogen bonding. The photographs of the GO aqueous
solution, GO/CS gel, RGO/CS gel, and RGO/CS/Ag composite gels are demonstrated in
Figure 24. The formed composite gels can provide enough space among its 3D nanostructure
for the adsorption and degradation of organic dyes. In addition, the in situ formed silver
nanoparticles were homogeneously anchored on RGO surface to form a ternary nanocompo-
site material. The data of photocatalytic capacity experiments suggest that the prepared 3D
GO-based hydrogels can efficiently remove dyes and exhibit good photocatalytic performance
for presently used RhB and MB single or mixed solutions in accordance with the pseudo-
second order model.
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Figure 24. SEM and TEM images for the lyophilized GO/CS hydrogel (a, e), RGO/CS hydrogel (b, f), and RGO/CS/Ag
hydrogel (c, g). (d) EDXS taken on the RGO/CS/Ag hydrogel shown in part (g). (h) Photographs of the following: GO
aqueous solution, GO/CS, RGO/CS, and RGO/CS/Ag composite hydrogels (from left to right).

Figure 25. Photographs and morphological characterization of the obtained collagen-AuNPs composite hydrogel: (a)
photographs of the formation and color change of the collagen hydrogel versus time when a collagen aqueous acidic
solution was mixed with an aliquot of HAuCl4 solution under ambient conditions; (b) and (c) SEM images at low and
high magnification of a typical collagen-based hydrogel; (d) TEM image of the AuNP spreading throughout the hydro-
gel network; (e) UV–vis absorption spectrum of the collagen-based hydrogel containing AuNPs, showing the charac-
teristic SPR absorbance.
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In a recent work, in order to enhance the mechanical behaviors of hydrogels, we have de-
signed and prepared an injectable and self-healing collagen-protein-based hydrogel by a
gold-biomineralization-triggered self-assembly [62]. The locally synthesized gold nanoparti-
cles are demonstrated to tune the mechanical properties of the collagen-based hydrogels, in
which reversible weak interactions between collagen chains and gold nanoparticles endow
the hydrogels with shear-thinning and self-healing functions. The photographs and mor-
phological characterization were shown in Figure 25. Such biocompatible collagen-based
hydrogels have been developed as a novel tool for localized delivery and sustained release
of therapeutic drugs, with the advantages to reduce the drug dosage, to lower the toxicity,
and to improve the bioavailability.

4. Conclusion and perspective

We are working on the design, preparation, and self-assembly of functionalized LB films and
supramolecular gels. In this chapter, various kinds of LB films including bolaform amphi-
philes, gemini-type compounds, inorganic-organic hybrid composites, and supramolecular
gels through functionalized amide amphiphiles/binary gelators/graphene oxide nanocompo-
sites have all been demonstrated and investigated. The above research work may give the
potential perspective for the design and preparation of new self-assembly systems and
nanomaterials. In closing, LB films and supramolecular gels can be regarded as good research
platforms for various assembly systems. In addition, supramolecular self-assembly demon-
strate charming applications, such as physics, biosensors, catalysis, nanomaterials, environ-
mental treatment, and so on. It can be expected that future research systems of LB films and
supramolecular gels will be relative to the novel applications and special nanostructures to
obtain new functional nanocomposites and nanostructures. The development of preparation
of functionalized nanomaterials with self-assembled nanostructures has been fascinating in
future.
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