AP ORB
1Y J.’ ACADEMIC PUBLISHER
'

Available online at www.orb-academic.org

International Journal of
Computer Science:
Theory and Application

ISSN: 2336-0984

Vol. 2, No 1, October 2014

Distributed and Typed Role-based Access Control
Mechanisms Driven by CRUD Expressions

Oscar Mortagua Pereira, Diogo Domingues Regateiro, Rui L. Aguiar

Instituto de Telecomunicagbes, DETI, University of Aveiro, Aveiro, Portugal.

Email: omp@ua.pt, diogoregateiro@ua.pt, ruilaa@ua.pt

ABSTRACT

Business logics of relational databases applications are an important source of security violations, namely in respect
to access control. The situation is particularly critical when access control policies are many and complex. In these
cases, programmers of business logics can hardly master the established access control policies. Now we consider
situations where business logics are built with tools such as JDBC and ODBC. These tools convey two sources of
security threats: 1) the use of unauthorized Create, Read, Update and Delete (CRUD) expressions and also 2) the
modification of data previously retrieved by Select statements. To overcome this security gap when Role-based
access control policies are used, we propose an extension to the basic model in order to control the two sources
of security threats. Finally, we present a software architectural model from which distributed and typed RBAC
mechanisms are automatically built, this way relieving programmers from mastering any security schema. We

demonstrate empirical evidence of the effectiveness of our proposal from a use case based on Java and JDBC.

KEYWORDS

RBAC — access control — information security — software architecture — middleware — distributed systems —

relational databases.
(© 2014 by Orb Academic Publisher. All rights reserved.

1. Introduction

Information systems are traditionally protected by several secu-
rity measures, among them we emphasize: user authentication,
secure connections and data encryption. Another relevant secu-
rity measure is access control [1][2], which “is concerned with
limiting the activity of legitimate users” [3]. In other words, ac-
cess control regulates every users’ requests to access sensitive
resources, in our case data stored in relational database man-
agement systems (RDBMS). Most of these requests are from
users running client applications that need to access data. When
client applications, and mainly business logics, are built from
tools such as ODBC [4], JDBC [5], ADO.NET [6], LINQ [7],
JPA [8] and Hibernate [9], users’ requests can be materialized
through several techniques provided by those tools (herein known
as access modes). Two of them are the most popular and, there-
fore, widely used: requests based on Create, Read, Update and
Delete (CRUD) expressions encoded inside strings (this is the
Direct Access Mode) and requests are trigged when content of
local data sets (LDS) retrieved by Select expressions are modified
and committed to the host database (this is the Indirect Access
Mode). Figure 1, Figure 2 and Figure 3 present typical usages
of JDBC, ADO.NET and LINQ, respectively. Similarly to the
other tools, JDBC, ADO.NET and LINQ are agnostic regarding
the schema of databases and also regarding the schema of access

control mechanisms. Programmers can write any CRUD expres-
sion (line 40, 28, 17) and execute it (line 44, 33, 17). In these
cases it is a Select expression and, therefore, a LDS is instantiated
(line 44, 33, 17). Once again, programmers can read attributes
(line 44, 35, 18), delete rows (line 51, -, -), update rows (line
53-54, 37-39, 20-21) and, finally, insert new rows (line 55-57, -,
-). After being committed, these modifications are replicated in
the host databases. There is no possibility to make programmers
aware of any established schemas (database and access control
policies). In situations where database schemas and/or security
policies are complex, programmers can hardly write source in
accordance with the established security policies. To overcome
this situation we propose an extension to basic Role-Based Ac-
cess Control (RBAC) policy [10], which has emerged as one of
the dominant access control policies [11]. In our proposed model,
a role comprises the required security information to supervise
the direct and the indirect access modes. Through this security
information and from a software architectural model, to be herein
presented, distributed security components are automatically built
to statically enforce the established RBAC policies. This way,
programmers are relieved from mastering any schema.

This paper is organized as follows: section 2 presents the
related work; section 3 presents our conceptual proposal; section
4 presents our implementation proposal; section 5 discusses some
aspects of the presented solution and, finally, section 6 presents

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

the conclusion.

32 [EHwveoid usedDBC() throws SQLException {

as

40 =2"z
41

4z

43 ResultSet.C

44 pa.setInt(l,id);

45 s .executeQuery() ;

46 if (rs.nmext()) {

47 grade=rs.getFloat("fName");
48

43 ra.deleceRow();

50

51 r3.updateFloat ("grade",value);
b rs.updateRow ()

53

54 ra.moveToInsertRow () ;

S5 rs.updateString ("fName", £l
-1

57 ra.insertRow();

58 1

ss b}

Figure 1. Typical usage of JDBC.

26 private void useADO()

idapter da = new 5

30 da.SelectCommand = new 5g

r cb = new S

C t ds = new DataSet():
da.Fill (ds, "Products"):

DataRow dr = ds.Tables["Products"].Rows[0];

35 productName = (String) dr["productName™]:
36 '/ ... more code
37 dr["productName"] = productName;

cb.GetUpdateCommand () ;
da.Update (ds, "Products"):
40 // ... more code

Figure 2. Typical usage of ADO.NET.

15 private void useLINQ()

1 Product prd =dc.Products.5ingle (p =>p.CategoryID==10):

18 productName = prd.ProductName;
19 // ... more code

20 prd.ProductName = productName;
21 dc.SubmitChanges () :

22 // ... more code

Figure 3. Typical usage of LINQ.

2. Related Work

This paper is an extension of [12]. The authors of this paper
have also been addressing the research issue of this paper for
some time [13][14][15]. While in [13] the focus is centered

on reusable business tier components, in [14][15] the presented
works deal with the direct and the indirect access modes, but none
of them is focused on how to enforce RBAC policies based on
CRUD expressions. The work presented in [15] can be seen as
the first step to achieve the objectives of the work presented in
this paper. Basically, it deals with CRUD expressions and also
with both access modes but does not address how to relate CRUD
expressions and policies based on RBAC. The work presented in
[15] also leverages [14] but it is mainly focused on addressing a
different security key aspect: the enforcement of access control
policies to the runtime values used on the direct and on the indirect
access modes.

For the best of our knowledge no similar work has been or
is being done around distributed and typed RBAC driven by
CRUD expressions. Therefore, in the remaining of this section
we present some of the most relevant works around access control
for relational database applications.

Chlipala et al. [16] present a tool, Ur/Web, that allows pro-
grammers to write statically-checkable access control policies as
CRUD expressions. Basically, each policy determines which data
is accessible. Then, programs are written and checked to ensure
that data involved in CRUD expressions is accessible through
some policy. To allow policies to vary by user, queries use actual
data and a new extension to the standard SQL to capture ‘which
secrets the user knows’. This extension is based on a predicate
referred to as ‘known’ used to model which information users are
already aware of to decide upon the information to be disclosed.
The validation process takes place at compile time, this way not
relieving programmers from mastering database schemas and
security policies while writing source code.

Abramov et al. [17] present a complete framework that allows
security aspects to be defined early in the software development
process and not at the end. They present a model from which
access control policies can be inferred and applied. Neverthe-
less, similarly to [16], the validation process takes place only
at compile time, this way entailing programmers to master the
established access control policies.

Zarnett et al. [18] present a different solution, which can be
applied to control the access to methods of remote objects via
Java RMI [19]. The server that hosts the remote objects uses Java
Annotations to enrich methods and classes with metadata about
the roles to be authorized to use them. Then, RMI Proxy Objects
are generated in accordance with the established access control
policies (they contain the authorized methods only). Fischer et
al. [20] present a more fine-grained access control, which uses
parameterized Annotations to assign roles to methods. These ap-
proaches, in contrast with our concept, do not facilitate the access
to a relational database because the developers still need to have
full knowledge of the database schema and also the authorized
accesses to database objects. A similar approach was presented by
Ahn et al. [21], where a tool is used to generate, from a security
model, source code to check if there is any security violation. The
verification process takes place only after writing the source code,
this way not addressing the key aspects of our work.

Oracle, in the Oracle DB, addressed access control by in-
troducing the Virtual Private Database [22] technology. This
technology is based on query-rewriting techniques, which means

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

that CRUD expressions are rewritten before their execution and
in accordance with the established access control policies. Au-
thorization policies are encoded into functions defined for each
relation, which are used to return where clause predicates to be
appended to CRUD expressions, this way limiting data access
at the row level. Virtual Privacy Database is an alternative to
database views by avoiding some of their drawbacks such as the
need for an additional view for each additional policy. With the
Virtual Private Database technique, the same CRUD expression
is shared by all users and automatically modified in accordance
with permissions of each user.

LeFevre et al. [23] propose a technique to control the disclos-
ing data process in Hippocratic databases. The disclosing process
is based on the premise that the subject has control over who is
allowed to see its protected data and for what purpose. It is based
on the query rewriting technique. Policies are defined using P3P
[24] or EPAL [25] and comprise a set of rules that describe to
whom the data may be disclosed and how the data may be used.
Two disclosure models are supported for cells: at the table level -
each purpose-recipient pair is assigned a view over each table in
the database and prohibited cells are replaced with null values; at
the CRUD expressions level - protected data are removed from
the returned relations of Select expressions, in accordance with
the purpose-recipient constraints. Rules are stored as meta-data
in the database. CRUD expressions must be associated with a
purpose and a recipient, and are rewritten to reflect the ACP.

SELINKS [26] is a programming language in the type of LINQ
and Ruby on Rails which extends LINKS [27] to build secure
multi-tier web applications. LINKS aims to reduce the impedance
mismatch between the three tiers. The programmer writes a
single LINKS program and the compiler creates the byte-code
for each tier and also for the security policies (coded as user-
defined functions on RDBMS). Through a type system object
named as Fable [28], it is assured that sensitive data is never
accessed directly without first consulting the appropriate policy
enforcement function. Policy functions, running in a remote
server, check at runtime what type of actions users are granted to
perform. Programmers define security metadata (termed labels)
using algebraic and structured types and then write enforcement
policy functions that applications call explicitly to mediate the
access to labeled data.

Rizvi et al. [29] present a query rewriting technique to deter-
mine if a CRUD expression is authorized but without changing
the CRUD expression. It uses security views to filter contents
of tables and simultaneously to infer and check at runtime the
appropriate authorization to execute any CRUD expression issued
against the unfiltered table. The user is responsible for formu-
lating the CRUD expression properly. They call this approach
the Non-Truman model. Non-Truman models, unlike Truman
models, do not change the original CRUD expression. The pro-
cess is transparent for users and CRUD expressions are rejected if
they do not have the appropriate authorization. The transparency
of this technique is not always desirable particularly when it is
important to understand why authorization is not granted so that
programmers can revise their CRUD expressions more easily.

Morin et al. [30] use a security-driven model-based dynamic
adaptation process to address access control and software evolu-

tion simultaneously. The approach begins by composing security
meta-models (to describe access control policies) and architecture
meta-models (to describe the application architecture). They also
show how to map (statically and dynamically) security concepts
into architectural concepts. This approach is mainly focused on
how to dynamically establish bindings between components from
different layers to enforce security policies. They did not address
the key issue of how to statically implement dynamic security
mechanisms in software artifacts, in our case business tiers based
on CLI.

There are several other works related to access control: a
distributed enforcement of the RBAC policies is proposed by
Komlenovic et al. in [31]; a new technique and a tool to find
errors in the RBAC policies are presented by Jayaraman et al. in
[32] and, finally, Wallach et al. in [33] propose new semantics for
stack inspection that addresses concerns with the traditional stack
inspection, which is used to determine if a dangerous call (e.g. to
the file system) is allowed.

3. Our Proposal: Conceptual Perspective

Access control is usually implemented in a three phase approach
[1]: security policy definition, security model to be followed and
security enforcement mechanisms. The organization of this sec-
tion is also organized in three sub-sections, each one addressing
one implementation phase.

3.1 Distributed RBAC Mechanisms

This paper is focused on distributed access control mechanisms.
Therefore, before presenting the solution for their implementation
it is advisable to clarify what are “distributed access control
mechanisms”.

Access control mechanisms are entities that act at runtime
and, therefore, before advancing with deployment architectures
it is important to find out if they can be represented by a general
model. From the surveyed commercial and scientific literature,
we can state that independently from any technique or solution,
access control mechanisms can always be represented by two
distinct processes: the enforcement process and the decision
process. Figure 4 presents a simplified block diagram for access
control mechanisms and their internal and external interactions.
The basic operation is as follows: (1) client-side applications
request the enforcement process to access to a protected resource;
(2) enforcement process asks the decision process to evaluate
if the request is authorized; (3) the decision process answers;
(4) if authorization is denied, the client application is notified;
(5) if authorization is granted, the request is executed by the
enforcement process and, finally (6) the result is delivered to
client-side applications. This block diagram and its operation is
clearly the approach followed by XACML. Anyway, as we will
see, it can also be used as the basic block diagram to represent
other solutions. We have also intentionally used a similar XACM
terminology (enforcement and decision) in order not to introduce
a new complete and different one. The enforcement process
is the process being used to enforce a decision about granting
or denying the access to the protected resource. The decision
process is the process being used to decide if the authorization to
access a protected resource is granted or denied. XACML Policy

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

Enforcement Points and XACM Policy Decision Points are the
equivalent entities for our enforcement and decision processes,
respectively.

RDBMS
5
6 * Access Control Mechanisms
- <
Client-side 4 Enforcement 3 Decision
Application N | Process 2 Process
—— — >

Figure 4. Access control mechanisms block diagram and their
interactions.

Several architectural solutions are available to implement
access control mechanisms. Some are provided by vendors of
RDBMS and others have been proposed by the scientific com-
munity. Basically there are three main architectural solutions: 1)
centralized architectures (such as: vendors of RDBMS, the use of
views and parameterized views [34], query rewriting techniques
[22][23][29][35][36], extensions to SQL [16][37]); 2) distributed
architectures [14][15][38][39][40] and 3) mixed architectures
[26][41].

In this paper we are interested in the distributed architecture
only, which is presented in Figure 5.

RDBMS
3 2

¥)

» Security Layer
(Enforcement and
P Decison Processes)

requestToDoSomenthing

Client-side/Business Logic

Figure 5. Block diagram for the distributed architecture.

In the distributed architecture, decision processes and enforce-
ment processes are both locally managed on client-side systems,
see Figure 5. A security expert crafts a security layer to be de-
ployed in each client system. Then, every request to access the
RDBMS is captured by the security layer (1) to evaluate if autho-
rization is granted or denied. If granted, the request is sent to the
RDBMS (2) and results returned to client-side applications (3).
In case of being denied, the request is prevented from being well
succeeded (4).

3.2 RBAC Policy

In this sub-section we present an extension to the basic RBAC pol-
icy that will be used to supervise requests to access data stored in
Relational Database Systems (RDBMS). The extension is aimed
at defining new properties to be supported by RBAC policies.
Traditionally, among other concepts, RBAC policies comprise:
users, roles (they can be hierarchized), permissions, delegations

and actions. Basically, legitimate (authenticated) users can only
execute some action if he has been authorized to play the role
that rules that action. In the end, in the last final stage, actions are
the four main operations on database objects (tables and views):
select, insert, update and delete. Depending on the granularity,
these actions can be defined at the level of database objects, at
the level of columns, at the level of rows and at the level of cells.
There are several approaches to authorize or deny these actions,
among them: constraints can be defined directly on database ob-
jects and also by using query re-writing techniques. In our case
actions are formalized by what can be done on the direct and on
the indirect access modes. In other words, actions are the CRUD
expressions that can be used (direct access mode) and also the
operations that can be done on LDS (indirect access mode). The
granularity of the direct access mode is defined by each CRUD
expression. The granularity of the indirect access mode must be
defined at the protocol level (read, insert, update and delete) and
also at the attribute level (except for the delete protocol, which is
always at the row level). The granularity at LDS level provides
a full control to define which protocols are to be made available.
This granularity when combined with the granularity at the at-
tribute level provides, for each LDS, the full control to define
which attributes are to be made available for each protocol. In
terms of cardinality, we define that each role comprises a set of
un-ordered CRUD expressions.

3.3 RBAC Model

In this sub-section we present a model to formalize the extension
to be supported by the RBAC policy. The extension can be formal-
ized by several approaches, depending on the practical scenarios
where they are going to be used to enforce RBAC policies. The
model herein presented is tailored to scenarios where a tool is
available to help and minimize the effort in defining the policies
to be enforced. We start by analyzing CRUD expressions because
every access to data starts through the direct access mode and
only then the indirect access mode can be used (only with Select
expressions). Each CRUD expression type (Select, Insert, Update
and Delete) can be expressed by general schemas but each indi-
vidual CRUD expression is represented by specializing one of the
general schemas. During the assessment we made to Call Level
Interfaces (CLI), in which JDBC is included, we found out that
the schema of each expression type can be built from a small set
of smaller schemas. The functionalities expressed by the smaller
schemas are: only Select expressions return relations; all CRUD
expressions types can use runtime values for clause conditions;
some CRUD expressions return the number of affected rows (In-
sert, Update and Delete) and, finally, some CRUD expressions
use runtime values for column values (Insert and Update). We
can also elicit other perspectives for LDS, such as some LDS are
scrollable (there are no restrictions on choosing which row is the
next selected row) while others are forward-only (only the next
row can be selected). To address this bundle of different smaller
schemas, the schema needs to be flexible and adaptable. This
challenge is addressed through the design of entities, herein re-
ferred to as Business Schemas. Business Schemas are responsible
for hiding the actual direct and indirect access modes and also for
providing new direct and indirect access modes driven by access

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

control policies. Additionally, after some research we came to
the conclusion that the relationship between Business Schemas
and CRUD expressions is many to many. This means that one
Business Schema can manage one or more CRUD expressions
and one CRUD expression can be managed by one or more Busi-
ness Schemas. Now we give one example for each case. Let us
consider the next two Select expressions:

1. Select * from table;
2. Select * from table where col>10;

First we analyze the direction “one Business Schema -> many
CRUD expressions”. From the direct access mode perspective,
there is no difference between the two expressions. Both are Se-
lect expressions and both have zero runtime values. Additionally,
the schema of the returned relations is equal in both cases. Then,
the same Business Schema can be shared by both expressions if
the security policy to be applied on the indirect access mode is the
same for both cases. Now we analyze the direction “one CRUD
expression -> many Business Schemas”. This case is simpler to
explain. We can use any of the two Select expressions. In cases
where different security policies are applied to the same Select ex-
pression, then we can use it in in more than one Business Schema.
For example, the same CRUD expression is managed by two
Business Schemas where the updated protocol is provided only
in one of them. Finally, Figure 6 presents the general extension to
be included in concrete RBAC models. This extension does not
need to be exactly as presented. The only important issues are the
relationships and cardinalities between roles, Business Schemas
and CRUD expressions. By this we mean that it is not compulsory
to keep them adjacent as presented. Other entities can be included
between them. Moreover, the policies to be followed to authorize
or not to authorize roles are also out of scope of this paper. It is
up to the security expert to decide the granting and the denying
models to be followed.

Role BusinessSchema CRUD

Figure 6. Extension for the RBAC model.

3.4 Software Architectural Model

In this sub-section we present the software architectural model,
shown in Figure 7, for building the enforcement mechanisms from
the extended RBAC model. The presented architectural model
represents the implementation of one role. It is up to each sys-
tem architect to decide how to expand it to support several roles.
Moreover, it is focused on how to implement RBAC mechanisms
and not how to build complete and feasible implementations. For
example, the architectural model does not address key issues such
as the scrolling policy on LDS and database transactions. These
and other issues are out of the architectural model context. We
start by describing the Business Schema interface, herein known
as IBusinessSchema, which is the most complex entity. From it
we will present and describe the architectural model. This inter-
face, as we can infer from what has been already presented, needs

to cope with the two access modes. The functionalities to be pro-
vided depend mainly on the CRUD expressions type and on the
necessary runtime values. This is translated into the architectural
model this way: IBusinessSchema extends two interfaces IDAC
(direct access mode) e IIAM (indirect access mode).

IDAC

This interface manages the direct access mode. Depending on
the type of CRUD expressions and on the runtime values, it can
extend 1, 2 or 3 interfaces:

o IExecute - This interface is mandatory. It is responsible for
the execution of CRUD expressions of any type and also
for setting the runtime values for clause conditions.

e ISet — This interface is used with Insert and Update ex-
pressions when there is the need to set runtime values for
columns.

e [Rows — This interface is used only with Update, Insert and
Delete expressions to notify applications about the number
of affected rows

ITAM

This interface manages the indirect access mode. Depending on
the mechanisms to be implemented, it can extend at most four
interfaces:

e [Read — This interface is mandatory. It can comprise ser-
vices to read any sub-set of attributes of returned relations.

e [Update — This interface is only available if the established
access control policies authorize the attributes of LDS to
be updated. In this case, only the updatable attributes can
be updated.

e IInsert - This interface is only available if the established
access control policies authorize the insertion of new rows
on LDS. In this case, only the insertable attributes can be
inserted.

e IDelete — This interface is only available if the established
access control policies authorize the rows of LDS to be
deleted.

Regarding the relation between Business Schemas and, Roles and
CRUD expressions, we can see from Figure 7 that the architec-
tural model is consistent with the RBAC model. Please remember
that the architectural model represents the implementation of one
role only. The model says that one role comprises one or more
Business Schemas and each Business Schema comprises one or
more CRUD expressions. From the presented architectural model
and also from the RBAC model, security components can be
automatically built, see Figure 8. To achieve this goal, a tool is
necessary to automate the process. It is not part of our proposal
but the tool is a key component to transform modeled RBAC
policies into security components.

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

Only for Insert, Update
and delete expressions

Only if insertable and
only insertable attributes

Only if deletable

I |Execute
7

I
I V4
| " l - 4
IRows O «interface» | «interface» o’ Delete
IDAC linsert O [IAM
1Set O— —C~ Update

«interface»

Only if updatable and
only updatable attributes

/
’ AL j L
IRead
Only for Insert and IBusinessSchema ~2
~
-

Update expressions

~

]

1

*

1

Only for

«interface»
IRole

Select expresions

|CRUD expressionsl

Figure 7. Extension for the RBAC model.

7N
Architectural model —9» + g RBAC model
~
\ > N
Security Automated tool
Component

Figure 8. Automated building process of security components.

4. Our Proposal: Implementation Perspec-
tive

In this section we present our implementation perspective, which
consists of several different components, as shown in Figure 9.
Next we present a brief explanation about our proposal. Then, we
will present a more detail explanation about each component.

The Policy Server is a relational database that contains a re-
alization of the proposed extension to the RBAC model. The
Policy Extractor is an automated tool responsible for building
automatically Security Data Structures. These data structures are
built from data extracted from the Policy Server and also from the
software architectural model. The data structures are responsible
for relieving programmers from mastering any database schema
and any RBAC policy while they are writing source code. The
Security Layer is responsible for implementing the access control
mechanisms (enforcement and decision processs). It comprises
a component, herein known as the Security Engine, that builds
the mechanisms at runtime from Policy Server and also from the
software architectural model. These mechanisms effectively con-
trol users’ requests, at runtime, when they issue requests through
the direct and the indirect access modes. The Policy Manager is a
component that receives commands from the Security Engine and
retrieves the relevant information from the Policy Server, e.g. the
list of Business Schemas authorized for the client application’s
role. The Policy Watcher is a DLL that resides in the DBMS and

allows the Policy Server database to send messages when changes
occur to the established access control policies. These messages
are then resent to the Policy Manager, which updates the access
control mechanisms of the affected clients.

TN
~—" Policy

“

Security

< Policy Extract <
Data Structures olicy Extractor l Server
A
Arquitectural
Modelm‘
’T Policy Policy
v Manager Watcher
Security | A T
Client Application Engine

71 TN
J\ W Data
‘ S

N

A

Mechanisms

A 4

Security Layer

Client Server

Figure 9. Implementation architecture.

4.1 Policy Server

The Policy Server contains a realization of the proposed extension
(shown in Figure 6) for a simplified RBAC model, see Figure
10. Our model uses some of the most relevant features of RBAC
models: subjects (users), applications, sessions, permissions and
delegations. A user can play a role only if that role is explicitly
authorized (permitted or delegated) to him when he is running
a session of an application. Permissions and delegations can be
dynamically modified at runtime. CRUD expressions are kept
in Crd_crud and Business Schemas are stored as Java interfaces
(based on the architectural model) in Bus_BusinessSchema. This

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

method of storage is not mandatory. Business Schemas can be
represented in any other metadata model. Additionally, the Policy
Server contains triggers to wake up the Policy Watcher whenever
changes occur in the established access control policies (when
Business Schemas are added/deleted from roles or delegations
are created/deleted).

Del_Delegation Sub_Subject

Ses_Session

Per_Permission

-

1

Crd_Crud Bus_BusinessSchema

Figure 10. Simplified security RBAC model.

4.2 Policy Watcher

The Policy Watcher is a DLL that resides in the DBMS. It is
responsible for dealing with the triggers that have been put on
the Policy Server. These triggers are responsible for detecting
modifications being taken at the level of the established access
control policies. This is very important because whenever a mod-
ification takes place, it is necessary to update the enforcement
and decision processes of client systems affected by the modi-
fication. Basically, the Policy Watcher sends a message to the
server component responsible for the updating process (Policy
Manager).

4.3 Policy Manager

Policy Manager is a component that runs in the server side and
handles requests from two different sources: the Security Layer
of the client systems and from the Policy Watcher. Messages from
clients systems alert the Policy Manager about a client requesting
information for its enforcement and decision processes (Mech-
anisms). The Policy Manager identifies the application and the
user profile and from them it knows which security metadata to
send to the client system. Messages from the Policy Watcher alert
the Policy Manager about modifications in policies. In this case,
the Policy Manager determines the list of client systems affected
by the modifications and it sends to each client system the list of
changes to be implemented in the enforcement and decision pro-
cesses. Figure 11 shows some of the interfaces implemented by

the Policy Manager. For example, the handleDelegationDelete()
is a method called when the Policy Watcher informs the Policy
Manager that a role delegation is no longer in effect, and the
clients of the affected role will have the related authorizations
revoked.

132/ &) handleDelegation (String input) void +
133| |&) handleDelegationDelete (String[] inr
134| &) handleDelegationInsert (String[] input
135 &) handleDelete (String input)

136 |&) handleEnd (String input
137 &) handleGetBEUrl (String i
138| |&) handleGetBESIDs (String ir
139 |&) handleGetBus ()

140 @) handleGetCRUDs (String ins

141/ &) handleGetJar (String input)

142 |&) handleGetJarForInfo (String inpur)
143| @) handleGetRoles (String input)

wvoid

void

void
void

void
void

void
wvoid

input)

void|=
void
void

Figure 11. Policy Manager handle methods.

4.4 Policy Extractor

In this subsection we will present the Policy Extractor, which is
responsible for building automatically the Security Data Struc-
tures to convey a complete awareness of the security mecha-
nisms to programmers. We have implemented two different Pol-
icy Extractors: one as a standalone application and other based
on Java annotations. Independently from the used technique,
programmers are always provided with the same Security Data
Structures. In our implementation, Security Data Structures are
Java interfaces that formalize roles and mechanisms to be im-
plemented on both direct and indirect access modes. Figure 12
shows the data structures for a role identified by Role_IRole_B1
(line 7). This role is defined as a Java interface, as previously
mentioned, that extends the role Role_[Role_A. We use this Java
property to allow hierarchization of roles. Beyond extending
the role Role_IRole_A, Role_IRole_BI comprises two Business
Schemas: i_orders (9-10) and s_customers (15-16). The first
Business Schema manages one CRUD expression identified by
i_orders_I_Orders_withCustomerID (line 11-12) and the second
manages s_customers_S_Customer_all (line 17-18). Again, these
Business Schemas are formalized through Java interfaces. From
these data structures (some not explicitly shown) programmers
write source code as the one shown in Figure 13. From this figure
we can see that the Business Schema Role_IRole_B1.s_customers
is instantiated for a user playing the role B1 (line 53). The CRUD
expression is selected by selecting one supported by the selected
Business Schemas (line 54). In this case the CRUD expression is

identified by the integer Role_IRole_B1.s_customers_S_Customers_all.

A runtime value is set for a clause condition (line 55) and the
CRUD expression is executed (line 55) (this is the direct access
mode). Programmers continue to be aware of the policies on
the indirect access mode (line 56-68). Some readable, updatable
(with prefix u) and insertable (with prefix i) attributes are shown.
As a final note, in our implementation, CRUD expressions are
identified by integers, this way hiding information about database
schemas. This aspect can be very relevant in critical database ap-
plications where schemas of databases need to be hidden. CRUD
expressions only exist at the level of Security Layers.

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

Finally, Figure 14 shows the example presented in Figure 1 but
now based on our proposal. Unlike Figure 1, now programmers
are completely aware of constraints enforced by mechanisms,
being relieved from mastering any schema.

public abstract interface Role_IRole Bl extends Role IRole A {

7
8 ¥ R =
] Orders Busir Sch rela Ji
9

public static final java.lang.Class<II_Orders>

10 i orders = II_Orders.class;
11 public static final int
12 i orders I Orders withCostumerID = 1;
13
14 § Customers Business Schema and related CRUDs
15 public static final java.lang.Class<IS_Customers>
16 3 customers = IS5_Customers.class;
17 public static final int
18 s_custome:'s_s_cv_zstome:’s_byfomt:}' = 2:
19 }
Figure 12. Implemented security data structures.
53 § Cust = ss.businessService (Role_IRole_Bl.s customers,
54 Role_IRole Bl.s customers S Customers byCountry);
55 S Cust.execute (country):
56 a L
L) m iPhone (String arg0) void
58 m iPostalCode (String arg0) void
59 m & iRegion (String arg0) void
60 m Phone () String
Gi m PostalCade () String
:; m Region () String
64 m ulddress (String argl) void
65 m uCity (String arg0) void
66 m uContactName (String arg0) void
67 m uContactTitle (String arg0) wvoid
L1 m nCanntru (Srrina aranl i A
ca Dot, semicolon and some other keys will also close this lookup ar TT
Figure 13. Environment conveyed to programmers.
100 & Cust = ss.businessService (Role_IRole Bl.s customers,
101 Role_IRole Bl.s customers S Customers byCountry):
102 & Cust.execute (country);
103 if(& movelNext()) |
104
105
106 code
107 beginUpdate();
108 uCustomerName (custlame) ;
109 ate re attribute
110 .updateRow() ;
11y . code
112 Cust.beginInsert();
113 7 .iCustomerName (custiame) ;
114 nsert more attributes
IS S Cuost.endInsert(true);
116 ... code
117 § Cost.deleteRow():
118 }

Figure 14. Example of Figure 1 based on our proposal.

4.5 Security Layer
Our security layer comprises three sub-components: 1) a gen-
eral manager (not shown in Figure 9), which is responsible for

providing client applications with standard interfaces to access
internal functionalities; 2) Security Engine, which is responsible
for building at runtime the necessary access control mechanisms
(enforcement and decision processes), always in accordance with
the established policies for the running user profile and, finally,
3) the Mechanisms (enforcement and decision processes), which
comprise: classes that implement Business Schemas and also the
authorized CRUD expressions. Unlike Security Data Structures,
these mechanisms implement the necessary source code to super-
vise requests issued through both access modes. If any mismatch
exists between what users want to request and the implemented
policies, runtime exceptions are raised. In our implementation,
security layers provide generic type safe methods to allow appli-
cation tiers to instantiate Business Schemas and execute CRUD
expressions, see Figure 13 (line 53-54). These methods look up
in local libraries for the requested Business Schemas and CRUD
expressions and, if found, classes that implement the requested
Business Schemas are instantiated through reflection. If they are
not found, it means that that user, for some security reason, is no
longer authorized to play that role. In this case, an exception is
raised.

5. Discussion

The approach herein presented was successfully evaluated against
the objective initially defined. There are other relevant issues that
also deserve to be discussed, although they are not key aspects
of this work. As such, a brief description is presented about
eight different aspects: scalability, maintainability, autonomic
computing, configurability, usability, applicability, separation of
concerns and trustworthy.

e Scalability: Unlike some approaches to implement access
control mechanisms, such as those based on the centralized
and mixed architectures, their implementation in our pro-
posal is completely distributed. Each client application is
responsible for two fundamental aspects: to decide upon
granting or denying the access to protected data and to
enforce the decision. There is no central system interfering
in this process. It is completely distributed.

e Maintainability: Security layers are automatically built and
updated at runtime. This is clearly different from what hap-
pens with other approaches where maintenance activities
are required at the level of client systems whenever mod-
ifications occur at the level of business logics or security
requirements.

o Autonomic Computing: An autonomic system is charac-
terized by making decisions on its own. It permanently
checks the context and, based on policies, it automatically
adapts itself. Our proposal is not an autonomic system but
systems based on our proposal are easily integrated in auto-
nomic systems. An autonomic system prepared to detect
situations where policies need to be dynamically adapted
can use our proposal to dynamically adapt the implemented
mechanisms.

e Configurability: The configuration process of metadata is
substantially automated if an enhanced tool similar to the

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

one presented in [20][21] is used. The new tool would
automatically create the required metadata from CRUD
expressions. Moreover, the tool could also automate the
process to obtain the basic metadata to access databases on
a table basis as O/RM tools and LINQ do. Additionally,
tools similar to those presented in [38] could also be used
to validate the authorized CRUD expressions.

e Usability: tools similar to JDBC are very poor regarding
their usability [20][21]. Our solution overcomes some of
the most relevant aspects of their lack of usability. For
example, unlike JDBC, our solution transforms runtime
errors of getter and setter methods into compile errors.

e Applicability: IDBC was the main API used in our solution.
In order to evaluate the possibility of using other tools than
JDBC, a successful attempt was achieved with ADO.NET.
The implementation in ADO.NET was mainly carried out
to evaluate if the main aspects of the software architectural
model are flexible enough to be used with different middle-
wear tools and frameworks. There were some technical
implementation aspects that needed some adjustments but
the final result is a fully functional security layer based on
ADO.NET. Nevertheless, some paradigms, such as O/RM,
can be used but should not be considered as an option.
O/RM tools are mostly oriented to handle database tables
as entity classes which is too restrictive to most database
applications. CRUD expressions can also be handled by
O/RM tools but that is not the focus of O/RM.

e Separation of Concerns: the architecture here presented,
clearly separates the roles played by programmers of client
systems from roles played by security experts. Security ex-
perts act at the level of the policy model while programmers
act only at the level of application tiers. Eventually, for
some organizational reasons, the two roles can be played
by the same person or group of persons during the develop-
ment process. Anyway, security experts can always have
the last word by inspecting and validating the content of
security models, which can be an automated process.

e Trustworthy: From a security perspective, our solution, in
this current version, by itself cannot be used in practice.
We emphasize that it is not aimed at providing a reliable
access control. It is aimed at easing programmers work dur-
ing the development process of client systems in database
applications protected by access control policies.

6. Conclusion and Future Work

In this paper we addressed the key issue of easing programmers
work when they develop source code for client systems of rela-
tional database applications with complex schemas and/or com-
plex access control policies. A solution was presented for dis-
tributed and typed RBAC policies when programmers use tools,
such as JDBC, Hibernate, ADO.NET. We started by defining an
extension to traditional RBAC policies, then we defined the re-
spective extension to traditional models and, finally, we described
how to enforce policies. In our solution, each role comprises a

set of CRUD expressions and the authorized actions on LDS of
each Select expression. Thus, access control mechanisms act at
the level of the direct and also at the level of the indirect access
modes, this way covering the two most used access modes. A
proof of concept based on JDBC was also presented. From it, we
can realize that programmers are now relieved from mastering
not only any RBAC policy but also any database schema. Ac-
cess control mechanisms are automatically built and statically
implemented at the level of business logics of relational database
applications.

The work here presented cannot by itself ensure that the mech-
anisms are completely safe. We have already developed a new
security layer, which seats above this one, to ensure that the dis-
tributed mechanisms are completely secure. This work is already
concluded and ready to be published in the near future.

References

11 SAMARATI, Pierangela et DE VIMERCATI, Sabrina Capi-
tani. Access control: Policies, models, and mechanisms. In :
Foundations of Security Analysis and Design. Springer Berlin
Heidelberg, 2001. p. 137-196.

DE VIMERCATI, Sabrina De Capitani, FORESTI, Sara et
SAMARATI, Pierangela. Recent Advances in Access Control
- Handbook of Database Security. In : Handbook of Database
Security, Gertz, M. et Jajodia, S., Eds. Springer, 2008. p.
1-26.

131 SANDHU, Ravi S. et SAMARATI, Pierangela. Access con-
trol: principle and practice. Communications Magazine,
IEEE, 1994, vol. 32, no 9, p. 40-48.

41 Microsoft, Microsoft Open Database Connectivity,
1992. [Online]. Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx.

PARSIAN, Mahmoud. JDBC Recipes: A Problem-Solution
Approach. NY, USA: Apress, 2005.

CASTRO, Pablo, MELNIK, Sergey, et ADYA, Atul. ADO.
NET entity framework: raising the level of abstraction in data
programming. In : Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM,
2007. p. 1070-1072.

[7l MEIJER, Erik, BECKMAN, Brian, et BIERMAN, Gavin.
Ling: reconciling object, relations and xml in the. net frame-
work. In : Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data. ACM, 2006. p.
706-706.

8] YANG, Daogji. Java Persistence with JPA. Outskirts Press,
2010.

1 O’NEIL, Elizabeth J. Object/relational mapping 2008: hiber-
nate and the entity data model (edm). In : Proceedings of the
2008 ACM SIGMOD international conference on Manage-
ment of data. ACM, 2008. p. 1351-1356.

(101 SANDHU, Ravi S., COYNE, Edward J., FEINSTEIN, Hal
L., et al. Role-based access control models. Computer, 1996,
vol. 29, no 2, p. 38-47.

2

—_—

[5

—

[6

—_

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

FUCHS, Ludwig, PERNUL, Giinther, et SANDHU, Ravi.
Roles in information security—a survey and classification of
the research area. Computers & Security, 2011, vol. 30, no 8,
p. 748-769.

PEREIRA, Oscar M., REGATEIRO, D. D., et AGUIAR,
Rui L. Role-Based Access Control Mechanisms Distributed,
Statically Implemented and Driven by CRUD Expressions.
In : ISCC’14 - 9th. IEEE Symposium on Computers and
Communications. 2014.

PEREIRA, Oscar Mortagua, AGUIAR, Rui L., et SAN-
TOS, Maribel Yasmina. Reusable Business Tier Components:
based on CLI and driven by a single wide typed service. In-
ternational Journal of Software Innovation (1JSI), 2014, vol.
2,no 1, p. 37-60.

PEREIRA, Oscar M., AGUIAR, Rui L., et SANTOS, Mari-
bel Yasmina. ACADA - Access Control-driven Architecture
with Dynamic Adaptation. In : SEKE’I12 - 24th Interna-
tional conference on Software Engineering and Knowledge
Engineering. 2012. p. 387-393.

PEREIRA, Oscar Mortégua, AGUIAR, Rui L., et SANTOS,
Maribel Yasmina. Runtime Values Driven by Access Control
Policies Statically Enforced at the Level of the Relational
Business Tiers. In : SEKE’13 - International Conference on
Software Engineering and Knowledge Engineering. 2013. p.
1-7.

CHLIPALA, Adam et IMPREDICATIVE, L. L. C. Static
Checking of Dynamically-Varying Security Policies in
Database-Backed Applications. In : The USENIX Conference
on Operating Systems Design and Implementation. 2010. p.
105-118.

ABRAMOV, Jenny, ANSON, Omer, DAHAN, Michal, et al.
A methodology for integrating access control policies within
database development. Computers & Security, 2012, vol. 31,
no 3, p. 299-314.

ZARNETT, Jeff, TRIPUNITARA, Mahesh, et LAM, Patrick.
Role-based access control (RBAC) in Java via proxy objects
using annotations. In : Proceedings of the 15th ACM sym-
posium on Access control models and technologies. ACM,

2010. p. 79-88.

RMI-Remote Method Invocation. [Online]. Available:

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp.

FISCHER, Jeffrey, MARINO, Daniel, MAJUMDAR, Rupak,
et al. Fine-grained access control with object-sensitive roles.
In : ECOOP 2009-Object-Oriented Programming. Springer
Berlin Heidelberg, 2009. p. 173-194.

AHN, Gail-Joon et HU, Hongxin. Towards realizing a formal
RBAC model in real systems. In : Proceedings of the 12th
ACM symposium on Access control models and technologies.
ACM, 2007. p. 215-224.

ORACLE. Using Oracle Virtual Private Database
to Control Data Access. 2011. [Online]. Available:
http://docs.oracle.com/cd/B28359_01/network.111/b28531
/vpd.htm#CIHBAJGI.

10

[23]

[25]

LEFEVRE, Kristen, AGRAWAL, Rakesh, ERCEGOVAC,
Vuk, et al. Limiting disclosure in hippocratic databases. In
: Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30. VLDB Endowment, 2004.
p. 108-119.

41 W3C. The Platform for Privacy Preferences 1.0
(P3P1.0) Specification. 2002. [Online]. Available:
http://www.w3.org/TR/P3P/.

W3C. Enterprise Privacy Authorization Lan-
guage (EPAL 1.2). 2003. [Online]. Available:

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

http://www.w3.org/Submission/2003/SUBM-EPAL-
20031110/.

CORCORAN, Brian J., SWAMY, Nikhil, et HICKS, Michael.
Cross-tier, label-based security enforcement for web appli-
cations. In : Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of data. ACM, 2009. p.
269-282.

COOPER, Ezra, LINDLEY, Sam, WADLER, Philip, et al.
Links: Web programming without tiers. In : Formal Methods
for Components and Objects. Springer Berlin Heidelberg,
2007. p. 266-296.

SWAMY, Nikhil, CORCORAN, Brian J., et HICKS, Michael.
Fable: A language for enforcing user-defined security poli-
cies. In : IEEE Symposium on Security and Privacy, 2008. p.
369-383.

RIZVI, Shariq, MENDELZON, Alberto, SUDARSHAN,
Sundararajarao, et al. Extending query rewriting techniques
for fine-grained access control. In : Proceedings of the 2004
ACM SIGMOD international conference on Management of
data. ACM, 2004. p. 551-562.

MORIN, Brice, MOUELHI, Tejeddine, FLEUREY, Franck,
et al. Security-driven model-based dynamic adaptation. In :
Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 2010. p. 205-214.

KOMLENOVIC, Marko, TRIPUNITARA, Mabhesh, et ZI-
TOUNI, Toufik. An empirical assessment of approaches to
distributed enforcement in role-based access control (RBAC).
In : Proceedings of the first ACM conference on Data and
application security and privacy. ACM, 2011. p. 121-132.

JAYARAMAN, Karthick, TRIPUNITARA, Mahesh,
GANESH, Vijay, et al. Mohawk: abstraction-refinement and
bound-estimation for verifying access control policies. ACM
Transactions on Information and System Security (TISSEC),
2013, vol. 15, no 4, p. 18.

WALLACH, Dan S., APPEL, Andrew W., et FELTEN, Ed-
ward W. SAFKASI: A security mechanism for language-
based systems. ACM Transactions on Software Engineering
and Methodology (TOSEM), 2000, vol. 9, no 4, p. 341-378.

ROICHMAN, Alex et GUDES, Ehud. Fine-grained access
control to web databases. In : Proceedings of the 12th ACM
symposium on Access control models and technologies. ACM,
2007. p. 31-40.

WANG, Qihua, YU, Ting, LI, Ninghui, et al. On the cor-
rectness criteria of fine-grained access control in relational

Distributed and Typed Role-based Access Control Mechanisms Driven by CRUD Expressions

databases. In : Proceedings of the 33rd international confer-
ence on Very large data bases. VLDB Endowment, 2007. p.
555-566.

BARKER, Steve. Dynamic meta-level access control in SQL.
In : Data and Applications Security XXII. Springer Berlin
Heidelberg, 2008. p. 1-16.

(371 CHAUDHURI, Surajit, DUTTA, Tanmoy, et SUDARSHAN,
S. Fine grained authorization through predicated grants. In
: Data Engineering, 2007. ICDE 2007. IEEE 23rd Interna-
tional Conference on. IEEE, 2007. p. 1174-1183.

[38] CAIRES, Luis, PEREZ, Jorge A., SECO, Jodo Costa, et
al. Type-based access control in data-centric systems. In :
20th European conference on Programming Languages and
Systems: part of the joint European conferences on theory
and practice of software. Springer Berlin Heidelberg, 2011.
p- 136-155.

¥ ZHANG, D., ARDEN, O., VIKRAM, K., et al. Jif:
Java + information flow (3.3). 2012. [Online]. Available:
http://www.cs.cornell.edu/jif/.

(401 RIBEIRO, Carlos, ZUQUETE, Andre, FERREIRA, Paulo,
et al. SPL: An Access Control Language for Security Poli-
cies and Complex Constraints. In : Network and Distributed
System Security Symposium. San Diego, CA,USA. 2001. p.
89-107.

411 OASIS. XACML - eXtensible Access Control Markup
Language. 2012. [Online]. Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

1421 PEREIRA, Oscar M., AGUIAR, Rui L., et SANTOS, Mari-
bel Yasmina. CRUD-DOM: A Model for Bridging the Gap
Between the Object-Oriented and the Relational Paradigms -
an Enhanced Performance Assessment Based on a case Study.
Int. J. Adv. Softw., 2011, vol. 4, no. 1&2, p. 158-180.

[36]

11

