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Abstract

In  this  chapter,  the  ensemble-based  data  assimilation  methods  are  introduced,
including  their  developments,  applications  and  existing  concerns.  These  methods
include both traditional methods such as Kalman filter and its derivatives and some
advanced algorithms such as sigma-point Kalman filters and particle filters. Emphasis
is placed on the challenges of applying these methods onto high-dimensional systems
in the earth sciences.
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1. Introduction

In this chapter, we will talk about the modelling and simulation using both observed data and
numerical models, that is, the observations will be incorporated into numerical models for
optimal modelling and simulation. In statistics, this is called state-space estimation. In the
earth science, it is called data assimilation. For example, a strict definition of data assimilation
in atmospheric and oceanic sciences is the process to estimate the state of a dynamic system
such as atmospheric and oceanic flow by combining the observational and model forecast data
[1].

In general, assimilation methods can be classified into two categories: variational and sequen-
tial. This chapter is a tutorial on the sequential data assimilation methods such as ensemble
Kalman filter (EnKF) and its variants. A brief introduction of the particle filter (PF) is also
provided in this chapter.
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This tutorial places emphasis on the rationale behind each method, including: (i) the principle
for deriving the algorithm; (ii) the basic assumptions of each method; (iii) the connection and
relation between different methods (e.g. extended Kalman filter (EKF) and EnKF, EnKF and
sigma-point Kalman filters (SPKF), etc.); and (iv)the advantage and deficiency of each method.

This chapter has been written and organized through teaching for under-/graduatestudents in
earth science courses. It can also be a good reference to researchers in the field of modelling
and data assimilation.

2. The general framework of several assimilation approaches

Intuitionally, one might think that an optimal simulation scheme is to directly replace model
variables by observations during numerical integrations. Such a direct replacement is usually
not correct since observations are not perfect and contain errors. A simple replacement will
introduce observation errors into models, and ignore possible impact of observation errors on
model behaviours, easily resulting in imbalance of model dynamics and physics. Thus, the
application of observations into numerical models must consider both model and observation
errors that play a critical role in the assimilation process.

We will start to display the assimilation concept by a simple example. A detail introduction
can be found in [2].

For an unknown true state value, denoted by ��, there are two samples, denoted by �1(e.g.

model simulation) and �2(observation), which have the errors 1 and 2, respectively. Thus, we

have

1 1,tT T= +ò (1)

2 2.tT T= +ò (2)

We assume the measurement or observation is unbiased, and the variances of errors are known,
i.e. E( 1) = E ( 2) = 0, Var ( 1) = σ1

2, Var ( 2) = σ2
2. The question here is to seek an optimal estimate,

denoted by �� (called analysis in the assimilation field), for �� using �1 and �2. This optimal

estimate is the central issue of data assimilation.

There are several methods for this solution, as demonstrated below.

2.1. Least-squares method

Assume the analysis is a linear combination of both �1 and �2, that is, �� = �1�1+ �2�2. Due

to the assumption that both �1 and �2 are unbiased, �� should be unbiased, i.e. �(��) = �(��), so�1�(�1) + �2�(�2) = �(��), and then �1+ �2 = 1. The best (optimal) estimate should minimize

the variance of �� as below:
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here, we assumed that the errors of �1 and �2 are uncorrelated, i.e. E( 1 2)=0. To minimize ��2,
let ∂��2/ ∂�1 = 0, thus

2
2

1 2 2
1 2

a s
s s

=
+

(4)

Namely,

2
2

1 1 1 2 1 2 12 2
1 2

(1 ) ( ).= + - = + -
+

aT a T a T T T Ts
s s

(5)

Using Eq. (5), the variance of Ta could be minimized.

2.2. Variational approach

In general, assimilation methods can be classified into two categories: variational and sequen-
tial. Variational methods such as three-dimensional variational (3D-Var) method and four-
dimensional variational (4D-Var) method [3, 4] are batch methods, whereas sequential
methods such as Kalman filter (KF) [5] belong to the estimation theory.

They both have had great success. The European Centre for Medium-Range Weather Forecasts
(ECMWF) introduced the first 4D-Var method into the operational global analysis system in
November 1997 [6–8]. The ensemble Kalman filter (EnKF) was first introduced into the
operational ensemble prediction system by Canadian Meteorological Centre (CMC) in January
2005 [9].

This chapter is a tutorial of the ensemble-based sequential data assimilation methods, such as
EnKF and its variants. However, we will briefly demonstrate the idea of variational assimila-
tion by the above example.

First, a cost function should be defined for variational assimilation approach. For this simple
example, we define the cost function as below:

( )
2 2

1 2
2 2
1 2

1 ( ) ( )[ ]
2

T T T TJ T
s s
- -

= + (6)

1 1 2 2.T aT a T= + (7)
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The solution is to seek an analysis ��, determined by �1 and �2, leading to the cost function
minimum, i.e. � �� = min �(�) . Obviously, we have ∂ �(�)/ ∂�1 = 0 and ∂ �(�)/ ∂�2 = 0.
Substitute with (6), it is

1 2
2 2

1 1 1 2 1

( ) 0¶ - ¶ - ¶
= + =

¶ ¶ ¶
J T T T T T T T
a a as s (8)

Eq. (7) leads to ∂�∂�1 = �1. Thus, the solution of (8), denoted by ��, satisfies

2 2
2 1

1 22 2 2 2
1 2 1 2

.aT T Ts s
s s s s

= +
+ +

(9)

The above is a simple example of the 3D variational assimilation approach, where we only
consider the analysis error (cost function) for a single time. However, in many cases, we need
to consider the error growth during a period, i.e. the sum of errors during the period, in the
cost function Eq. (6). For example, the cost function of 4D-Var is defined as below:

2 2
1 2

2 21
1 2

1 ( ( ) ( )) ( ( ) ( ))( ) [ ].
2 =

- -
= +åN n n n n

n

T t T t T t T tJ T
s s

(10)

Meanwhile �(��) follows a dynamical model, saying �(��) =∫�0���(�(�))�� = ��(�(�0)), where

F is a nonlinear dynamical model, Mn is the integral operator and �0 is the initial time. Thus,

the cost function value of (10) is only determined by the initial condition. Namely, the objective
here is to seek optimal initial condition �(�0) that enables (10) minimum, i.e. minimizing (10)

subject to dynamical model F. This is a standard conditional extreme problem that can be
solved by Lagrange multiplier approach. However, the complexity of dynamical model
excludes the possibility to get the analytical solution. We have to solve the minimum problem
with aid of numerical methods, e.g. Newton conjugate gradient method. All of numerical

methods require the gradient value ∂ �∂�0  for solution.

Again, it is almost impossible for obtaining analytical solution of ∂ �∂�0  due to the complexity

of F. Usually researchers get the gradient value numerically using an approach of tangent linear
and adjoint models. The details on tangent linear and adjoint models can be found in relevant
references as cited above. It should be noticed that it is very difficult, even intractable some-
times, to construct tangent linear and adjoint models in some cases. Thus, more and more
researchers have started to apply sequential assimilation methods instead of 4D-Var in recent
years. Next, we will introduce the concept of the sequential assimilation method using the
above example.
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2.3. Bayesian approach

Assume �1 and �1 are the mean value and standard deviation of the model prediction that
implies a prior probability distribution of truth T,

2
1
2
1

( )
2

1

1( )
2

-
-

=
T T

p T e s

ps
(11)

Obviously, this is a Gaussian distribution function, which can be denoted by N(T1, �1) Given
the observation �2 and its standard deviation �2, the posterior distribution of the truth can be
expressed by Bayes’ theorem:

( ) ( ) ( )
( )

2 2
2 1
2 2
2 1

( ) ( )
2 2 2

2
2 2 1

| 1 1| . 
2 2

- -

= µ
T T T Tp T T p T

p T T e e
p T

s s

ps ps
(12)

�(�2) was ignored in (12) since it is independent of T, and usually plays as a normalization
factor. The likelihood function �(�2 |�) describes the probability that the observation becomes�2 given an estimation of T. It is commonly assumed to be Gaussian �(�, �2). The object here
is to estimate the truth by maximizing the posterior probability �(�|�2)(namely, we ask the
truth to occur as much as possible—maximum probability). Maximizing �(�|�2) is equivalent
to maximizing the logarithm of the right item of (12), i.e.

( ) ( )

2 2
2 1

2 2 2
2 12 1

2 2
2 1

2 2
2 1

1 ( ) 1 ( )log( ( | )) log( ) log( )
2 22 2

1const .
2

- -
= - + -

é ù- -
ê ú= - +
ê úë û

T T T Tp T T

T T T T

s sps ps

s s

(13)

Obviously, the maximum of �(�|�2) occurs at the minimum of the second item on the right-

hand side of (13), i.e. the minimum of the cost function J of (6). Thus, under the assumption of
Gaussian distribution, maximizing a posterior probability (Bayesian approach) is equivalent
to minimizing cost function (variational assimilation approach). Further, if the model F is linear
and the probability distribution is Gaussian, it can be further proved that the Kalman filter is
equivalent to 4D-Var adjoint assimilation method.
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3. Optimal interpolation (OI) and Kalman filter (KF)

3.1. Optimal interpolation

The most special case in data assimilation is that the forecast model is linear and the errors are
Gaussian. The solution among sequential methods to this case is provided by Kalman filter.
Typically, the Kalman filter applies to the below state-space model:

1 ,t t tx Mx h+ = + (14)

,t t ty Hx z= + (15)

where M and H are linear operators of model and measurement, respectively. x is model state
and y is the observation, and the subscript implies the time step. �� and �� are the model errors

and observational errors, respectively, which have variance: 
. The objective here is to estimate model state x using y, making it

close to true state (unknown) as much as possible.

Assuming the estimate of model state �� at a time step is a linear combination of model forecast�� and observation ��, i.e. the filter itself is linear, so

.a b o bx x K y Hxé ù= + -ë û (16)

Eq. (16) is the standard expression of Kalman filter. K is called Kalman gain that determines

the optimal estimate and ��− ��� is called the innovation. An analysis step is essentially to
determine the increment to the forecast by combining the Kalman gain and the innovation.

Before deriving K, we denote the covariance matrix of the analysis error a by ��, i.e. Pa = < a ,

( a)T >, where a= ��− ��� and ��� is the true value of model state. Similarly, observed errors and

forecast errors are defined by o= ��− ���� and b= ��− ���, respectively. It should be noticed
that the forecast error b is different from the model error �� that is a systematic bias. Also, we

denote B = < b, ( b )T > as the background (forecast) error covariance and R = < o, ( o )T > as the
observational error covariance. It is also assumed that the observation error is not related to
forecast error, so < b, ( o )T > = < o, ( b )T > = 0.

Clearly, we are seeking for K that can lead to �� minimum. Subtracting ��� on both sides of Eq.
(16) leads to the below equation:

.a tr b tr o b tr trx x x x K y Hx Hx Hxé ù- = - + - + -ë û (17)
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Namely,

( ),a b o bK H= + -ò ò ò ò (18)

And

( ) ( )
( ) ( ) ( )( ) ( )( )

( ) .

T
a b o b b o b

T T T Tb b b o b T o b b o b o b T

T T T T

P E K H K H

E H K K H K H H K

B BH K KHB K R HBH K

é ù é ù= + - + -ë û ë û
é ù= + - + - + - -ê úë û

= - - + +

ò ò ò ò ò ò

ò ò ò ò ò ò ò ò ò ò ò ò (19)

Here, we used � = ��. The optimal estimate asks the trace of �� minimum, namely,∂ ����� �� / ∂� = 0. It can be computed that

1( ) .T TK BH HBH R -= + (20)

Substitute into (13)

( 1)( ) ( ) ( ) .a T T T T T TP B BH K KHB BH HBH R R HBH K I KH B-= - - + + + = - (21)

Here, we invoked the below properties:

T

T
Ax x A A
x x
¶ ¶

= =
¶ ¶

(22)

( )
T

Tx Ax A A x
x

¶
= +

¶
(23)

T T T
T

T

A x x A A
x x

¶ ¶
= =

¶ ¶
(24)

(trace[ ]) ( + )
T

TXAX X A A
x

¶
=

¶
(25)
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(trace[ ])T
TAX A

x
¶

=
¶

(26)

Thus, we have the optimal estimate filter:

,a b o bx x K y Hxé ù= + -ë û (27)

1( ) ,T TK BH HBH R -= + (28)

( ) .aP I KH B= - (29)

In the estimate (27)–(29), if the background error covariance B is prescribed, the estimate is
called optimal interpolation. The OI does not involve state equation (14) and B is unchanged
during the entire assimilation process.

3.2. Kalman filter

Now, we consider that B in (28) changes with the assimilation cycle. This is more realistic since
the model prediction errors should be expected to decrease with the assimilation.

From Eq. (14), we have

1 ,tr tr
t t tx Mx h+ = + (30)

1 ( )b a a
t t t tx E Mx Mxh+ = + = (31)

Eq. (30) indicates that even the true value is input at a time step, model cannot get a true value
for next step due to model bias ��. Eq. (31) shows a standard procedure for the model prediction
of next step starting from the analysis of previous step.

Subtracting (30) from (31) produces

1 ,b a
t t tM h+ = -ò ò (32)

( )( )1 1 1 [( )( ) ]+ + += = + + = +
Tb b a a T a T

t t t t t t t tB E E M M MP M Qh hò ò ò ò (33)
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where Pt
a = < t

a , ( t
a)T > represents the analysis error covariance for time step t. The above

equation considers the evolution of the background (prediction) error covariance with the time
controlled by the dynamical model operator M. The above equations constitute the framework
of Kalman filter (Table 1), namely

Analysis step ��� = ���+ �[��− ����],� = ����(���   ��+ �)−1,
��� = � − �� ��,

Prediction step �� + 1� = ����,�� + 1 = ������+ �
Table 1. The Kalman filter.

One Kalman filter cycle consists of two parts, namely, one analysis step (Eqs. (27)–(29)) and
one prediction step (Eqs. (31) and (33)). The analysis state ��� and covariance ��� are treated as
initial conditions for the prediction step, until the next observation is available. Sometimes, ��
is denoted by ��� in Kalman filter literatures.

3.3. Extended Kalman filter (EKF)

In deriving the Kalman filter, we assume the state model M and measurement model H are
both linear. Further, we also assume the error has Gaussian distribution. Therefore, classic KF
only works for linear models and Gaussian distribution. If the dynamical model and
measurement model are not linear, we cannot directly apply KF. Instead, linearization must
be performed prior to apply KF. The linearized version of KF is called extended KF (EKF),
which solves the below state-space estimate problem:

( )1 ,t t tx f x h+ = + (34)

( ) ,t t ty h x z= + (35)

where f and h are nonlinear models, and �� and �� are additive noises.

The filter is still assumed to be ‘linear’, i.e.
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[ ( )]a b o bx x K y h x= + - (36)

Actually, it is not a linear combination of the forecast �� and observation �� if his not linear.
However, we just extend the formulation of Eq. (16), and apply it intuitively in nonlinear cases.
Ignoring high-order terms, the following holds approximately

( ) ( ) ( )  hh x x h x x h x H x
x

d d d¶
+ = + = +

¶
(37)

where H is the linearization of h and ��, � = ∂ℎ�∂�� . So,

( ) ( ) ( ) ( )o b o tr b tr o tr b tr o by h x y h x x x y h x H x x H- = - + - = - - - = -ò ò (38)

( )a b o bx x K H= + -ò ò (39)

Eq. (39) is identical to Eq. (16). Similarly, subtracting ��� on both sides of Eq. (47) leads to the
below equation:

( )a b o bK H= + -ò ò ò ò (40)

which is the same as Eq. (18). Following the same derivation as that for Eq. (18), we can obtain
the equations similar to (27)–(29). Therefore, if the measurement model h is nonlinear, the KF
can be still applied with a linearization of h.

Similar to Eqs. (30) and (31), the state model is as below:

1 ( )tr tr
t t tx f x h+ = + (41)

1 ( ( ) ) ( ).f a a
t t t tx E f x f xh+ = + = (42)

Subtracting Eq. (41) from Eq. (42) produces

1 ( ) ( ) ( ) ( )
( ) ( )

f a tr a tr a a
t t t t t t t t t

a a a a
t t t t t t

f x f x f x f x x x
f x f x M

h h
h h

+ = - - = - - + -
= - - - = -

ò
ò ò

(43)
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where ��, � = ∂��∂�� .
Comparing Eq. (31) with Eq. (33), it reveals that Eq. (33) still works. Thus, the EKF can be
summarized as below (Table 2).

The procedure to perform EKF is similar to that for KF, as listed above. The disparities and
similarities between EKF and KF include

i. Kalman gain K has the same form for both, especially the linear or linearized
measurement model should be used;

ii. the update equation of model error covariance has the same form, with linear and
linearized state model used;

iii. forecast model is different, with KF using linear Eq. (14) and EKF using nonlinear
model Eq. (34); and

iv. the filtering algorithm is different, linear measurement model H used in KF and
nonlinear model h in EKF.

It should be noticed that EKF is only an approximate of KF for nonlinear state model.

Analysis step ��� = ���+ �[��− ℎ(���)],� = ����(�����+ �)−1,��� = � − �� ��,��, � = ∂ℎ�∂�� .
Prediction step �� + 1� = �(���),�� + 1 = ������+ ���, � = ∂��∂�� ,
Table 2. The extended Kalman filter.

4. Ensemble Kalman filter (EnKF)

4.1. Basics of EnKF

A challenge in EKF is to update background (prediction) error covariance, which requires the
linearization of nonlinear model. The linearization of nonlinear model is often difficult
technically, and even intractable in some cases, e.g. non-continuous functions existing in
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models. Another drawback of EKF is to neglect the contributions from higher-order statistical
moments in calculating the error covariance.

To avoid the linearization of nonlinear model, the ensemble Kalman filter (EnKF) was intro-
duced by Evensen [10, 11], in which the prediction error covariance B of Eq. (33) are estimated
approximately using an ensemble of model forecasts. The main concept behind the formulation
of the EnKF is that if the dynamical model is expressed as a stochastic differential equation,
the prediction error statistics, which are described by the Fokker-Flank equation, can be
estimated using ensemble integrations ( [10, 12]; thus, the error covariance matrix B can be
calculated by integrating the ensemble of model states. The EnKF can overcome the EKF
drawback that neglects the contributions from higher-order statistical moments in calculating
the error covariance. The major strengths of the EnKF include the following:

i. there is no need to calculate the tangent linear model or Jacobian of nonlinear models,
which is extremely difficult for ocean (or atmosphere) general circulation models
(GCMs);

ii. the covariance matrix is propagated in time via fully nonlinear model equations (no
linear approximation as in the EKF); and

iii. it is well suited to modern parallel computers (cluster computing) [13].

EnKF has attracted a broad attention and been widely used in atmospheric and oceanic data
assimilation.

Simply saying, EnKF avoids the computation and evolution of the error covariance B as in Eq.
(33), and computes B using below formula as soon as it is required.

1

1 ( )( )
1

N b b b b T
i ii

B x x x x
N =

= - -
- å (44)

where ��� represents the i-th member of the forecast ensemble of system state vector at step t,

and N is the ensemble size. The use of Eq. (44) avoids processing M, the linearized operator of
nonlinear model. However, the measurement function H is still linear or linearized while
computing the Kalman gain K, which causes concern. To avoid the linearization of nonlinear
measurement function, Houtekamer and Mitchell [14] wrote Kalman gain by

1( ) ,T TK BH HBH R -= + (45)

1

1 [ ][ ( ) ( )] ,
1

NT b b b b T
i ii

BH x x h x h x
N =

º - -
- å (46)

1

1 [ ( ) ( )][ ( ) ( )]
1

,NT b b b b T
i ii

HBH h x h x h x h x
N =

º - -
- å (47)
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where ℎ(��) = 1�∑� = 1� ℎ(���). Eqs. (46) and (47) allow direct evaluation of the nonlinear

measurement function h in calculating Kalman gain. However, Eqs. (46) and (47) have not been
proven mathematically, and only were given intuitionally. Tang and Ambadan argued that

Eqs. (46) and (47) approximately hold if and only if ℎ(��) = ℎ(��) and ���− �� is small for� = 1, 2, ..., � [15]. Under these conditions, Tang et al. argued Eqs. (46) and (47) actually linearize
the nonlinear measurement functions h to H [16]. Therefore, direct application of the nonlinear
measurement function in Eqs. (46) and (47), in fact, imposes an implicit linearization process
using ensemble members. In next section, we will see that Eqs. (46) and (47) can be modified
under a rigorous framework.

Thus, the procedures of EnKF are summarized as below (Table 3):

1. Imposing perturbations on initial conditions and integrate the model, i.e. ��, 1 = � �0+ �� ,
where � = 1, 2..., �(ensemble size) and �0 is the initial condition.

2. Using � = ���(����+ �)−1 and Eqs. (46) and (47) to calculate Kalman gain K.

3. Calculating analysis using

( ) ,a b o i b
i i ix x K y h xeé ù= + + -ë û (48)

after K is obtained. It should be noted that each ensemble member produces an analysis;
the average of all (N) analyses can be obtained.

4. Using ��, � + 1� = �(���) to obtain new ensemble members for next round analysis.

5. Repeating Steps 2–4 until the end of assimilation period.

Analysis step ��� = ���+ �[��+ ��− ℎ(���)], � = 1,…,�� = ���(����+ �)−1,��� = 1� − 1 ∑� = 1� [���− ��][ℎ(���) − ℎ(��)]�,
���� = 1� − 1 ∑� = 1� [ℎ(���) − ℎ(��)][ℎ(���) − ℎ(��)]�

Prediction step ��, � + 1� = � ���+ �� ,   � = 1,…,�
Table 3. The ensemble Kalman filter.
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It should be noted that the observation should be treated as a random variable with the mean
equal to yo and covariance equal to R. This is why there is �� in Eq. (48). Simply, �� is often drawn

from a normal distribution �� ∼ �(0, �).
From the above procedure, we find that Eq. (44) is not directly applied here. Instead, we use
Eqs. (46) and (47) to calculate K. This is because Eqs. (46) and (47) avoid the linearization of
nonlinear model and also avoid the explicit expression of matrix B, which is often very large
and cannot be written in current computer sources in many realistic problems. The measure-
ment function, h, projecting model space (dimension) to observation space (dimension), greatly
reduces the number of dimension.

4.2. Some remarks on EnKF with large dimensional problems

4.2.1. Initial perturbation

The success of EnKF highly depends on the quality of ensemble members produced by initial
perturbations. It is impractical to represent all possible types of errors within the ensemble
because of the computational cost, the method of generating initial perturbations must be
chosen judiciously.

The first issue is the amplitude of initial perturbations. Usually, the following two factors are
considered when selecting the amplitude of initial perturbations: the amplitude of observation
error and the amplitude of model errors induced by model parameters and uncertainty in
model physics. If a model is perfect, the amplitude of the perturbations should be the same as
the amplitude of observation errors. This combined error is used to determine the amplitude
of perturbations.

When the perturbation amplitude is determined, the practical initial perturbation field
generating each ensemble member could be constructed by a normalized pseudorandom field
multiplied by the prescribed amplitude. Considering the spatial coherence, the pseudorandom
field is red noise as proposed by Evensen [17], summarized as below:

1. Calculate the statistical characteristics for the pseudorandom field to meet its variance of
1 and mean of 0 by solving the following nonlinear equation:

2 2 2

2 2 2

2( ) /

,1
2( ) /

,

cos( )
,

- +

-

- +
=

å
å l p

l p

k r
l hl p

k r
l p

e k r
e

e

s

s (49)

where �� = 2���� = 2����Δ� , �� = 2���� = 2����Δ� , and �� and �� are the number of grid points

in the x-axis (lon.) and the y-axis (lat.). The l and p are wavenumbers, changing from 1 to
the maximum value of �/2 and �/2. Δ� and Δ� are the intervals of two adjacent points,

often set to 1, and �ℎ is the decorrelation length. The purpose of Eq. (49) is to derive �2 for
the other feature:
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k e s (50)

2. After c and �2 are obtained, we can construct a two-dimensional pseudorandom field:

( )
( )

( ) ( )
2 2

2 2 ,
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, .

Δ

+
- + D=å

l p

l n p m

k r
i k x r yi l p

n m
l p

cW x y e e e k
k

p js (51)

3. While ��, �� cover the whole domain, Eq. (51) produces a �� *�� two-dimensional

random field with spatial coherence structure and the variance of 1 and mean of 0. If the
realistic uncertainty (error) has an amplitude β, the perturbation should be βW. Similarly,
Eq. (51) is often used for the error perturbation �� used in the fourth step of the EnKF

procedure.

Sometimes, we need to consider the vertical coherence of pseudorandom fields between
adjacent levels in oceanic models. A simple method for this purpose is to construct the
pseudorandom field at the kth level �� by following equation:

2
1 1 ,k k kWe ae a-= + - (52)

where �� � = 1, ..., ��  is the pseudorandom field at the kth level without considering vertical
coherence, constructed using the above method. Initially, for the surface perturbation (� = 1),
the vertical coherence is not considered, i.e. equals to zero since �� − 1 does not exist. Eq. (52)
indicates that a practical pseudorandom at the kth level (��) is composed of �� and �� − 1. As
such the �� is correlated with �� − 1, i.e. the practical pseudorandom fields of two adjacent
levels (�� − 1 and ��) are coherent with each other. Their correlation or coherent structure is
determined by the coefficient � ∈ [0, 1]. Eq. (52) generates a sequence that is white in the vertical
direction if � = 0(i.e. �� = ��), but a sequence that is perfect correlated in vertical if � = 1(i.e.�� = �� − 1). Eq. (52) is also often used to construct random field that is temporally coherent,
for example, a continuous random noise that has coherence in time, as used for �� in the forecast
model [17]. The random noise �� in the EnKF procedure can also be replaced by the random
noise imposed in model forcing. For example, the random noise is continuously added to wind
forcing for oceanic models. Even for some atmospheric models with transition processes, there
are inherent random noises making �� not necessary. One important criteria for �� and the
amplitude β is to examine ensemble spread by some sensitivity experiments.
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4.2.2. The computational cost of Kalman gain

The Kalman gain K has dimension of � *�, where L is the number of model variables and m is
the number of observational variables. In many realistic problems, L and m are very large
numbers (� ≫ �, the ensemble size), making the inversion very expensive.

A simple procedure is to rewrite the Kalman gain K, as below:

1( ) ,T T T T TK xx H Hxx H ee -= +% % % % (53)

where � indicates that the model ensemble predictions removed the ensemble mean

(�� = [���− ��], for � = 1, 2, ..., �). � = 1���� was invoked here. If we assume the ensemble

prediction error (��− ��� ≈ ��− �� = �) is not correlated to observation error, i.e. ��� = 0, the
following is valid [17]:

( ) ( )( ) ,T T T THxx H Hx Hxee e e+ = + +% % % % (54)

where (�� + �) has dimension �*�. Usually, ensemble size N is much less than m. Using the
singular-value decomposition (SVD) technique, we have

( ) Σ THx U Ve+ =% (55)

Eq. (54) then becomes

( )T T T T T T T THxx H U V V U U U U Uee+ = S S = SS = L% % (56)

So,

1 1( )T T T THxx H U Uee - -+ = L% % (57)

where  and Λ are the eigenvector and the square of eigenvalues of (�� + �). There are N non-
zero eigenvalues for (�� + �), therefore the dimension is not large, allowing us to efficiently
compute the inversion for a global analysis in most practical situations.

4.2.3. Stochastic EnKF and deterministic EnKF

In EnKF introduced in the previous section, the observation assimilated into dynamical model

should be treated to be stochastic variable, as expressed by ��+ �� in Eq. (48). It is a must if the
classic EnKF algorithm is used. It has been proven that if the EnKF assimilates deterministic
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observations (i.e., observation �� not changed at each ensemble member), the analysis error
covariance will be systematically underestimated, typically leading to filter divergence, as
indicated by below [11, 18]:

* ( ) ( )a TP I KH B I KH= - - (58)

Eq. (58) gives the analysis error covariance if the observed is not perturbed. Comparing Eq. (58)

with Eq. (29), a theoretically unbiased estimate, �� * is always less than ��.

However, the perturbed observation approach (i.e. ��+ ��) introduces an additional source of
sampling error that reduces analysis error covariance accuracy and increases the probability
of understanding analysis error covariance [19, 20]. Thus, an approach that only uses a single
observation realization but avoids systematical underestimation of analysis error covariance
was pursued. There are several approaches to implement this goal, as summarized by Tippettet
al. [20]. Below, we will introduce an approach developed by Whitaker and Hamill [19], called
Ensemble squareroot filter (EnSRF).

Denote the deviation of analysis from the analysis mean by �� = ��− ��, it is easy to write

a b o bx x K y Hxé ù= + -ë û
%% % % % (59)

where �� = ��− ��. If a single observation realization is assimilated in all ensemble members,�� = 0 and

( ) ,a b b bx x KHx I KH x= - = -% %% % % % (60)

( ) ( )* .
TaP I KH B I KH= - -% % (61)

We seek a definition for � that will result in an ensemble whose analysis error covariance equals
to (� − ��)�, i.e.

( )( ) ( ) .TI KH B I KH I KH B- - = -% % (62)

The solution of Eq. (62) is
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1(1 ) .T
RK K

HBH R
-= +

+
% (63)

Therefore, EnSRF is summarized as below (Table 4):

�� = ��+ � ��− ���
�� = ��− ����
�� = ��+ ��
� = ���(����+ �)−1, ,
��� = 1� − 1∑� = 1

� [���− ��][ℎ(���) − ℎ(��)]�

���� = 1� − 1∑� = 1
� [ℎ(���) − ℎ(��)][ℎ(���) − ℎ(��)]�

� = (1 + ����� + �)−1�
Table 4. The analysis scheme of EnSRF.

It should be noted that there are two Kalman gains used in EnSRF, the original K for updating
ensemble mean and a new � for updating the anomalies. It indicates that one single observation
realization of classic EnKF has the same ensemble analysis mean as stochastic observations.

Initially, the term EnKF refers, in particular, to the stochastic ensemble Kalman filter that
requires perturbing the observations. Subsequently, several deterministic EnKFs that avoid the
use of perturbed observations were developed, e.g. the ETKF [21], the EAKF [22] and the
EnSRF. These filter designs are labelled as variants of the EnKF because they are also based on
the Kalman filtering formula and ensemble representations.
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4.2.4. Inflation approach

The forecast error covariance is defined by (44)

1

1 1( )( ) * .
1 1

N b b b b T T
i ii

B x x x x X X
N N=

= - - =
- -å % % (64)

Eq. (64) is an approximation to B using forecast ensemble. Due to limited computational source,
the ensemble size N is often restricted to a small value for many realistic issues. A small
ensemble size may cause a very small ensemble spread, causing the approximation of B by Eq.
(64), which is seriously underestimated. To solve this problem, B is multiplied by an inflator
factor λ (slightly greater than 1). λ is empirically determined, such as some sensitivity
experiments, with the typical value of 1.01. λB is used to replace B in EnKF formula. This
approach is equivalent to the below approach:

( )b b b b
i ix x x xl= - + (65)

4.2.5. Localization of EnKF

When EnKF is applied to high-dimensional atmospheric and oceanic models, the limited
ensemble size will cause the estimated correlations to be noisy [11]. When the ensemble size
is insufficient, it will produce spurious correlations between distant locations in the back-
ground covariance matrix B. Unless they are suppressed, these spurious correlations will cause
observations from one location to affect the analysis in locations an arbitrarily large distance
away, in an essentially random manner [23]. This needs to be remedied by the localization
method.

Another reason for using localization is that the treatment of localization artificially reduces
the spatial domain of influence of observations during the update. The localization dramati-
cally reduces the necessary ensemble size, which is very important for operational systems.
Two most common distance-based localization methods used in practice are local analysis and
covariance localization.

Using local analysis, only measurements located within a certain distance from a grid point
will impact the analysis in this grid point. This allows for an algorithm where the analysis is
computed grid point by grid point. It was found that severe localization could lead to imbal-
ance, but with large enough radius of influence (decorrelation length) for the measurements,
this was not a problem. Hunt et al. use the local analysis method in their ETKF algorithm and
developed a local ensemble transform Kalman filter (LETKF) [23].

To eliminate the small background error covariance associated with remote observations,
Houtekamer and Mitchell uses a Schur (element-wise) product of a correlation function with
local support and the covariance of the background error calculated from the ensemble [14].
That is, the matrix B in Eq. (48) is replaced by ρ  B, where “ ” represents the element-wise

An Introduction to Ensemble-Based Data Assimilation Method in the Earth Sciences
http://dx.doi.org/10.5772/64718

171



product and the elements ρ relates to the distance r of the grid point to the observation r as
below:

( )
2 2

1 .
3

rrr r e aar a -æ ö
= + +ç ÷
è ø

(66)

Here, α is a scalar parameter. To the best of author’s knowledge, this is the first case that the
covariance localization is used in EnKF.

Nowadays, a typical covariance localization approach is used to represent prior covariances
using an element-wise product of ensemble covariance and a correlation function with
compact support [24]. Anderson applied this approach to the Data Assimilation Research
Testbed system [25], which has been used for realistic cases.

5. General form of ensemble-based filters for Gaussian models

In proceeding sections, we introduced Kalman-based filters. Originally Kalman filter applies
linear model and linear measurement function. Further, EKF and EnKF were developed to
address nonlinear models. However, the measurement functions are still assumed to be linear.
Eqs. (46) and (47) can directly evaluate nonlinear measurement functions but they were
proposed intuitionally and not proven yet. In this section, we will present a general form for
nonlinear measurement function and further prove Eqs. (46) and (47) mathematically using
the general form.

For generality, we assume the nonlinear model as Eqs. (34) and (35):

( )1 ,t t tx f x h+ = + (67)

( ) ,t t ty h x z= + (68)

where f and h are nonlinear operators of model and measurement. x is model state and y is the
observation. �� and �� are the model errors and observed errors, respectively, which have

variance . Assuming the estimate of model state �� at a

time step is a linear combination of model forecast �� and observation ��, i.e. the filter itself is
linear, so

( )a b o bx x K y h xé ù= + -ë û (69)

Denoting �� = ��− ��, �� = ��− ��, � = ��− ℎ(��), we have
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ˆ ˆ ˆa bx x Ky= - (70)

( ( )( )

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

[ )

[ ( ) ( )

é ùù= = - -û ê úë û
= - - +

= - - +

Ta a a T b b

b b T b T T b T T T

b T T
xy yx yy

P E x x E x Ky x Ky

E x x x y K Ky x Kyy K
P P K KP KP K

(71)

The optimal estimate asks the trace of �� minimum, namely,

ˆˆ ˆ ˆ ˆ ˆ
[trace( )] 2 0,

a

xy yx yy
P P P KP

K
¶

= - - + =
¶

(72)

where we invoked the below properties:

( ) ( )
trace

2 ,
é ù¶ ë û = + =
¶

T

T
XAX

X A A XA
X

(73)

(trace[ ]) (trace[ ]) .,¶ ¶
= = =

¶ ¶

T T
TXA AX A A

X X
(74)

Thus, we have the optimal estimate filter:

( )a b o b
t t tx x K y h xé ù= + -ë û (75)

ˆˆ ˆ
1
ˆxy yyK P P-= (76)

ˆˆ ,  
a b

xyP P KP= - (77)

Eqs. (75)–(77) give a general algorithm for Gaussian nonlinear model and nonlinear measure-

ment function. The first term of Eq. (74) can be interpreted as the cross-covariance ��� between

the state and observation errors, and the remaining expression can be interpreted as the
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error covariance ��� of the difference between model observation and observation itself. Here,� is defined as the error between the noisy observation �� and its prediction ℎ �� .

If the model is linear, obviously,

1 ,,b a
t t tx Mx h+ = + (78)

1 .a T
t tB MP M Q+ = + (79)

If the measurement function is linear, i.e.

( )ˆ ˆo b o b tr b by y h x y Hx Hx Hx Hxz z z z= - - = - - = - - = - (80)

ˆˆ   ,  ˆ ˆb T b T
xyP x y P H=< >= (81)

ˆ ˆ
Tˆ ˆ  ,   b T

yyP y y HP H R= < > = + (82)

So, Kalman gain

1( )b T b TK P H HP H R -= + (83)

Eq. (83) is identical to Eq. (28). Therefore, Eq. (28), or KF, EKF and EnKF, is a special case of Eq.
(76) under the assumption of linear measurement function.

In the standard KF, the state error covariance is updated at each analysis cycle during the
measurement update process. Updating the error covariance matrix is important because it
represents the change in forecast error covariance when a measurement is performed. The
EnKF implementation does not require the covariance update equation because it can directly
calculate the updated error covariance matrix from a set of ensemble members. Evensen [17]
has derived the analysis of covariance equation that is consistent with the standard KF error
covariance to update Eq. (28). But the true representation of the updated error covariance
requires a large ensemble size, which is often computationally infeasible.

The general form of the Kalman gain makes use of the reformulated error covariance. In a
broad sense, the above algorithm implicitly uses the prior covariance update equation (or the
analysis error covariance matrix) to calculate the forecast error covariance. Thus, the above
algorithm is fully consistent with the time update and measurement update formulation of the
Kalman filter algorithm. On this basis, one can develop a new type of Kalman filter that chooses
the ensemble members deterministically in such a way that they can capture the statistical

Nonlinear Systems - Design, Analysis, Estimation and Control174



moments of the nonlinear model accurately. In the next subsection, we will discuss the new
type of Kalman filter, called sigma-point Kalman filter, based on the above algorithm.

6. Sigma-point Kalman filters (SPKF)

6.1. Basics of SPKF

EnKF was developed in order to overcome the linearization of nonlinear models. As intro-
duced earlier, the idea behind EnKF is to ‘integrate’ Fokker-Plank equation using ensemble
technique to estimate the forecast error covariance. Theoretically, if the ensemble size is infinite,
the estimate approaches the true value. However, in reality, we can only use finite ensemble
size, even very small size for many problems, leading to truncation errors. Thus, some concerns
exist such as how to wisely generate finite samples for the optimal estimate of prediction error
covariance, how much the least ensemble size is for an efficient estimate of error covariance
and how much the true error covariance can be taken into account in the EnKF, given an
ensemble size. In this section, we will introduce a new ensemble technique for EnKF, which is
called sigma-point Kalman filter (SPKF).

The so-called sigma-point approach is based on deterministic sampling of state distribution to
calculate the approximate covariance matrices for the standard Kalman filter equations. The
family of SPKF algorithms includes the unscented Kalman filter (UKF [26]), the central
difference Kalman filter (CDKF [27]) and their square root versions [28]. Another interpretation
of the sigma-point approach is that it implicitly performs a statistical linearization of the
nonlinear model through a weighted statistical linear regression (WSLR) to calculate the
covariance matrices [29]. In SPKF, the model linearization is done through a linear regression
between a number of points (called sigma points) drawn from a prior distribution of a random
variable rather than through a truncated Taylor series expansion at a single point. It has been
found that this linearization is much more accurate than a truncated Taylor series linearization
[28]. Eqs. (80)–(82) construct a core of SPKF. A central issue here is how to generate the optimal
ensemble members for applying these equations. There are two basic approaches aforemen-
tioned, UKF and CDKF. For an L-dimensional dynamical system represented by a set of
discretized state-space equations of (67), it has been proven that 2� + 1 ensemble members,
constructed by UKF or CDKF, can precisely estimate the mean and covariance. We ignore the
theoretical proof and only outline the UKF scheme as below.

Denote 2� + 1 sigma points at time k for producing ensemble members by�� = [��, 0, ��, 1+ , ..., ��, �+ , ��, 1− , …, ��, �− ], which that is defined according to the following expres-

sions:

,0
a

k kXc = (84)
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, ,[ ]a a
k i k X k iX c Pc + = + (85)

, ,[ ]- = -a a
k i k X k iX c Pc (86)

where � = ��+ ��+ �� is the sum of the dimensions of model states, model noise and

measurement noise. The augmented state vector � = [�; �; �] is a L-dimensional vector. ��, ��
is the covariance of the augmented state vector (analysis) at the previous step. [ ��, �� ]� is the

ith row (column) of the weighted matrix square root of the covariance matrix (L dimension).
c is a scale parameter that will be specified later. The key point here is to produce (2� + 1)
ensemble members by integrating model with 2� + 1 initial conditions of Eqs. (84)–(86); by
these ensemble members, the filter Eqs. (80)–(82) will be performed.

The procedure is summarized as below:

1. Initially, perturb a small amount, denoted by �0 on initial condition �0, using Evensen

method [17]; and also randomly generate perturbation for q and r, drawn from normal
distributions of �(0, �) and �(0, �). Thus, we can construct the augmented state vector
and corresponding covariance (� = 0)

0 0;0;0 ;aX x= é ùë û (87)

0 0 0 ;
x TP x x= % % (88)

0

,0

0 0
0 0 .
0 0

x

X

P
P Q

R

æ ö
ç ÷

= ç ÷
ç ÷
è ø

(89)

2. From the above formula, we can calculate sigma points using Eqs. (84)–(86). Note that
each set of sigma points, denoted by ��, has dimension L, e.g. the ith sigma point can be

expressed by ��, � = [��, �; ��, �; ��, �].
3. Using the 2� + 1 sigma points to integrate state-space model. For the ith sigma point, we

have �� + 1, �� = �(��, �, ��, �). When i varies from 1 to 2� + 1, we produce 2� + 1 ensemble

members, from which analysis mean and covariance will be obtained, which are in turn

Nonlinear Systems - Design, Analysis, Estimation and Control176



used to produce sigma points for next step (� + 1), to form a recursive algorithm. Suppose

we have 2� + 1 ensembles, the analysis mean and the covariance are calculated as follows:

2 ( )
1 1,0

Lf m f
k i k ii
x w x+ +=

=å (90)

2 ( )
1 1, 1 1, 10

( ) [ ][ ]Lf c f f f f T
xx k i k i k k i ki
P w x x x x+ + + + +=

= - -å (91)

( )1, 1, 1,,f f
k i k i k iy h x z+ + += (92)

2 ( )
1 1,0

Lf m f
k i k ii
y w y+ +=

=å (93)

2 ( )
1 1, 1 1, 10

( ) [ ][ ]L c f f f f T
yy k i k i k k i ki
P w y y y y+ + + + +=

= - -å (94)

2 ( )
1 1, 1 1, 10

( ) [ ][ ]L c f f f f T
xy k i k i k k i ki
P w x x y y+ + + + +=

= - -å (95)

1
1 ,k xy yyK P P-
+ = (96)

1 1 1 1 1
a f f
k k k k kx x K y y+ + + + +é ù= + -ë û (97)

1 1 1 1( ) ,a f T
k xx k k yy kP P K P K+ + + += - (98)

where

c L l= + (99)

( )
0
mw

L
l
l

=
+

(100)
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( ) 2
0 1cw

L
l a b
l

= + - +
+

(101)

( ) ( ) 1 , 1,2,...2
2( )

m c
i iw w i L

L l
= = =

+
(102)

( )2λ ,L La k= + - (103)

α and κ are tuning parameters. 0 < � < 1 and � ≥ 0. Often κ is chosen 0 as default value
and � = 2.

4. From �� + 1� , as well choosing random perturbation for model noise η and observation

noise �, drawn from Gaussian distribution of �(0, �) and �(0, �), we calculate sigma points
using Eqs. (84)–(86), and repeat Step 2 and Step 3 and so on until the assimilation is
completed for the entire period.

6.2. Remarks of SPKF

SPKF was recently introduced into the earth sciences [15, 30]. The main differences between
SPKF and EnKF include

i. SPKF chooses the ensemble members deterministically while EnKF uses random
perturbation to generate ensemble members;

ii. the number of sigma points is a fixed value as 2� + 1, while the ensemble size in EnKF
is pre-specified;

iii. SPKF uses Eq. (98) to update the error covariance matrix, while EnKF does not update
explicitly the error covariance matrix; and

iv. Sigma points are calculated using Eqs. (84)–(86) every time when the observation is
available, while the ensemble members in EnKF only perturbed in the initial time.
Recent application of SPKF on a realistic oceanic model indicates that the SPKF is
better than the EnKF in the similar level of computational cost [31].

In SPKF, the number of sigma points is 2� + 1, here L is the dimension of the augmented state
vector � = [�; �; �], i.e. � = ��+ ��+ �� is the sum of model state, model noise and observation

noise. Usually, L is the order 103–104, so the computational expense is a huge challenge in SPKF
for realistic problems. A solution is to use the truncated singular-value decomposition (TSVD)

to reduce the sigma points. As seen from Eqs. (84)–(86), the ��, ��  is a � * � matrix, thus the

dimension of ��, ��  determines the ensemble size. Suppose that ��, ��  can be expressed as
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, , ,( )a a a T
X k X k k X kP E E= S (104)

where �� = diag(��1, ��2, ..., ���) is a diagonal matrix of eigenvalues that are sorted in descending

order, i.e. ��1 ≥ ��2 ≥ ... ≥ ���, and ��, �� = [��, �, 1� , ��, �, 2� , ..., ��, �, �� ]. Truncating the first m modes,

so we can write the sigma points (84)–(86) as below:

,0
a

k kXc = (105)

, , ,
a i a

k i k k X k iX c ec s+ = + (106)

, , ,
a i a

k i k k X k iX c ec s- = - (107)

� = 1, 2, ..., �. Thus, the ensemble size becomes 2 *� + 1, where � < < �. Some fast SVD
algorithms can be used here, such as Lanczos and block Lanczos [32]. The application of the
truncated SVD was also found in [33, 34].

Further simplifying ��, ��  based on its definition (or Cholesky decomposition), i.e.��, �� = ��, �� * (��, �� )�, where ��, ��  is the data that has subtracted the ensemble mean. Thus,

Eqs.(82)–(84) can be written as follows:

,0
a

k kXc = (108)

, ,[ ]a a
k i k X k iX cAc + = + (109)

, ,[ ]a a
k i k X k iX cAc - = - (110)

where [���, �� ]� = [���; ��; ��]�, � = 1, 2, ..., �, (���)� = (���)�+ ��[��− ���]. Eqs.(109) and (110)

transfer the covariance matrix ��, ��  to data matrix ��, ��  in constructing sigma points. The

largest advantage is to avoid explicit expression of ��, �� , which could be a very large matrix

beyond memory of current computers. However, Eqs.(109) and (110) cannot reduce the
ensemble size 2� + 1 . A solution is to decompose, such as principal component analysis, as
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used in [14]. Further discussions on optimal construction of sigma points should be conducted
for a realistic application of SPKF.

Again, we look at sigma-point generation, i.e. Eqs. (106) and (107) or (109) and (110). As we
defined, an augmented matrix is applied here [�; �; �]. Without losing the generality, rewrite
them as below:

,0 ,0

,0

,0

0
0

k k

k

k

x x
h
z

é ù é ù
ê ú ê ú=ê ú ê ú
ê ú ê úë ûë û

(111)
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k i k i

x x x
ch h

z z

é ùé ù é ù
ê úê ú ê ú= + ê úê ú ê ú
ê úê ú ê úë ûë û ë û

(112)

Similarly, we can write Eq. (107) or (110) using individual variables. From Eqs. (111) and (112),
we can draw

• Noise and model state analyses in constructing sigma points at k step are independent. It

should be noted that ��� is from Eq. (97) and noise are draw from a Gaussian distribution. If

we assume that noise is taken randomly each time, ��� is only relevant to noise that is drawn

at time step k, and independent with model noise and observation noise drawn for analysis
of the time step � + 1, thus, ��, � is a diagonal block matrix, i.e.

,

0 0
0 0
0 0

x
k

X k

P
P Q

R

æ ö
ç ÷

= ç ÷
ç ÷
è ø

(113)

• There are no update equations for noise, so they are randomly taken from Gaussian
distribution, i.e. the index i in �� and �� actually does not have meaning. Thus, it should be

a reasonable assumption that the �� and ��, used for constructing sigma points at time step� + 1, are not related to ��, � (time step of k), as argued above. Thus, Eq. (108) always holds

unless the noise is designed considering the temporal coherence such as red noise in time.

• Based on the above, the actual ensemble size is 2��+ 1, and not 2� + 1. This is because

neither model noise nor observation noise can produce ensemble alone. Model errors �� and��, ��  must be joined together to produce ensemble members with ��. Let us see this in details:
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at the initial time, initial perturbation on model states plus drawn noise for model errors
and measurement errors are with mean and variance as follows:

0

0 0 ,0

0 0
;0;0 , 0 0

0 0

x

a
X

P
X x P Q

R

æ ö
ç ÷

= =é ù ç ÷ë û
ç ÷
è ø

(114)

Theoretically, there are 2(��+ ��+ ��) + 1 ensembles, denoted by the ith column of ��, 0
(� = 1, ..., ��; �� + 1, ..., ��+ ��; ��+ ��+ 1, ..., ��+ ��+ ��) and formula (84)–(86). Howev-

er, at the ith column, the elements of the row, indicating the model inputs (�, �, �), only have
the non-zero values of ��. Obviously, the sigma points of zero-values makes the update

equation �� + 1, � = �(��, �) invalid, thus, the actual ensemble size is 2��+ 1.

When truncation technique is applied to reduce the ensemble size, the ensemble spread might
be shrunk due to relatively small ensemble size. Like EnKF, an inflation approach of SPKF
might be helpful. It is interested in developing such a scheme for SPKF. Also, we can localize
SPKF, like localized EnKF, to solve memory and computation issues.

All of the remarks of SPKF are from the authors’ thinking and understanding. It is interesting
to further test and validate these ideas and properties using simple models.

7. Beyond Kalman filters: particle filter and its derivatives

7.1. Standard particle filter

We have introduced the Kalman filter (KF), extended Kalman filter (EKF), ensemble Kalman
filter (EnKF) and sigma-point Kalman filter (SPKF) in previous sections. All of those filters
belong to the sequential data assimilation method, i.e. observation data is assimilated into the
model system as soon as it is available. The Bayesian estimation theory provides a general
framework of the sequential data assimilation methods. If we assume the state-space model is
given by Eqs. (34) and (35), the analysis step of a Bayesian-based assimilation method is
deduced by Bayes’ theorem:

( ) ( ) ( )
( )
|

| ,t t t
t t

t

p y x p x
p x y

p y
= (115)

where �(��) plays as a normalization factor.

Recalling Section 2.3, Eq. (12) actually assumes that the prior probability density function �(��)
and the likelihood function �(�� |��) are Gaussian distribution functions, and thus the posterior
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probability density function �(�� |��) is also a Gaussian. Based on the Gaussian assumption,

the cost function of 3D-Var (i.e. Eq. (6)) can be derived, and it is equivalent to the Kalman filter
Eqs. (27)–(29). All the Kalman-based filters (e.g. EKF, EnKF, EnSRF, SPKF, etc.) contain the
inherent Gaussian assumption, and they are derived and validated for Gaussian systems in
theory. However, this Gaussian assumption is often not applicable for nonlinear systems. Even
for an initial Gaussian error, it often becomes non-Gaussian while propagating forward with
nonlinear models.

The particle filter (PF) is a sequential data assimilation method that is able to deal with the
nonlinear and non-Gaussian state estimation problem. Like EnKF, PF also uses an ensemble,
but it is used to approximately estimate the full probability density function rather than only
the error covariance B. An ensemble member is also referred to as a particle in PF literatures.
Suppose the prior probability density is the sum of Dirac delta functions

( ) ( )1

N i
t t ti

p x x xd
=

= -å (116)

where ��� , � = 1, 2, ..., �  are particles drawn from �(��). The posterior probability density is

derived by applying the Bayes’ theorem directly, that is

( ) ( ) ( ) ( ),1
| | N i
t t t t t t i t ti

p x y p y x p x w x xd
=

µ = -å (117)

in which ��, � ∝ �(�� |���), and a normalization step, is required to make ��, �, � = 1, 2, ..., �  sum

up to 1. If we assume the likelihood function is Gaussian, ��, � can be computed by

11( | ) exp{ 1 / 2[ ( )] [ ( )] }.
2

-= - - -i i i T
t t t t t tp y x y h x R y h x

Rp
(118)

Or else we can use any specified probability density function of �(�� |��) to compute the

likelihood.

With the posterior probability density function �(�� |��), the analysis value and covariance can

be computed by

,1
* ( | ) N i

t t t i ti
x x p x y dx w x

=
= =åò (119)

( ) 2 2 2 2
,1

var * ( | ) ( )N i
t t t t i t ti
x x p x y dx x w x x

=
= - = -åò (120)
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and higher-order moments of the posterior state can also be estimated.

Before stepping forward to next stage, a resampling step is required to make each particle with
uniform weight. A typical resampling strategy is the sequential importance resampling (SIR)
that removes particles with very small weights and duplicates those with large weights. A
detailed algorithm of SIR can be found in [35]. The resampling algorithm gives the indices and
number of copies of those particles that should be duplicated, i.e. computes �1, �2, …, ��
according to the weights, where each �� ∈ 1, 2, …, �. And then ����, � = 1, 2, ..., �  are regarded as

new particles.

In summary, the algorithm of standard particle filter is given below:

1. generate the initial ensemble �0� , � = 1, 2, ..., �  as EnKF does;

2. integrate the model until the observation is available;

3. use Eq. (118) to compute the weight for each particle, and normalize them;

4. use Eq. (119) to obtain the analysis and Eq. (120) to obtain the covariance if necessary;

5. apply the resampling algorithm to derive the resampling indices, and derive the new

ensemble ����, � = 1, 2, ..., � ; and

6. repeat Steps 2–5 until the end of assimilation period.

The standard particle filter [36] is also known as the bootstrap particle filter or SIR particle
filter.

7.2. Variants of PF

The particle filter is a highly promising technique because it does not invoke any Gaussian
assumptions. It has been widely used and studied in many other fields. The PF estimates the
full probability density function of the forecasted state based on an ensemble of states with
different weights. However, the PF suffers from the problem of filter degeneracy, i.e. the
procedure collapses to a very small number of highly weighted particles among a horde of
almost useless particles carrying a tiny proportion of the probability mass. Even if resampling
techniques are used, the degeneracy cannot be completely avoided with limited ensemble size.
The number of particles must grow substantially with the dimension of the system to avoid
degeneracy [37, 38], a requirement that is apparently too costly for large models such as GCMs.
Various efforts have been made to resolve this issue, as documented in an excellent overview
[39].

Several strategies are often employed to address the problem of filter degeneracy in applica-
tions of the particle filter. For example, Papadakis et al. proposed a weighted ensemble Kalman
filter (WEnKF) [40] that uses an ensemble-based Kalman filter as the proposal density from
which the particles are drawn. Van Leeuwen et al. developed a fully nonlinear particle filter
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by exploiting the freedom of the proposal transition density, which ensures not only that all
particles ultimately occupy high-probability regions of state-space but also that most of the
particles have similar weights [41]. The implicit particle filter uses gradient descent minimi-
zation combined with random maps to find the region of high probability, avoiding the
calculation of Hessians [42]. Luo et al. have proposed an efficient particle filter that uses
residual nudging to prevent the residual norm of the state estimates from exceeding a pre-
specified threshold [43]. These particle filters were very recently proposed and have attracted
broad attention in the community of atmos./ocean. data assimilation. Below, we will briefly
introduce the equivalent weights particle filter (EWPF) by Van Leeuwen [39, 41].

The equivalent weights particle filter is a fully nonlinear data assimilation method that works
in a two-stage process. It uses the proposal density to ensure that the particles have almost
equivalent weights, by which the filter degeneracy can be avoided.

In the standard PF, the particles at time step t are propagated by the original model, i.e.�� + 1� = �(���) + ��, which implies that the particles at time step � + 1 are drawn from the

transition density �(�� + 1 |��). In that case, the weight of each �� + 1�  varies greatly and filter

degeneracy is very likely to happen.

In EWPF, another transition density, call the proposal density, is introduced. The proposal

density depends on the future observation �� + 1 and all previous particles ��� , � = 1, 2, ..., � .

With the help of proposal density, the particle ��� is propagated using a different model

( )1 1, .i i
t t t tx g x y h+ += + (121)

The model g can be anything, for instance, one can add a relaxation term and change random
forcing:

( ) ( )( ) ( )1 1 , 1,...,i i i i
k k k t kx f x A y H x k p kh+ += + + - = (122)

where �(�) is a function of the time between observations, and each k implies each model step
without observation. A is a relaxation term that will ‘drag’ the particle towards future obser-
vation. In [44], it is given by

( ) 1,TA p k QH R-= (123)

where the matrices Q and R correspond to the model error covariance and observation error
covariance, respectively.
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The second stage of EWPF involves updating each particle at the observation time � + 1 via the
formula

1
1 1( ) ( ) ( ( ( )))i i T T i i

t t i t t tx f x QH HQH R y H f xa h-
+ += + + - + (124)

where �� are scalers computed so as to make the weights of the particles equal. Using the
expression for weights and setting all weights equal to a target weight (e.g. 1/�)

( )( )1 1 target| i
i t t iw p y x wa+ += = (125)

�� can be solved by numerical methods.

Eqs. (122)–(125) show an example of how to construct the proposal model g in(121)), it can also
be done by running 4D-var on each particle (implicit particle filter), or using the EnKF as
proposal density. Those methods refer to Morzfeld et al. [42] and Papadakis et al. [40].

7.3. Remarks of PF

7.3.1. Combined method of EnKF and PF

The ensemble Kalman particle filter (EnKPF) is a combination of the EnKF and the SIR particle
filter. It was recently introduced to address non-Gaussian features in data assimilation for
highly nonlinear systems, by providing a continuous interpolation between the EnKF and SIR-
PF analysis schemes [45].

As stated above, both EnKF and PF methods are based on the Bayesian estimation theory, but
they approximate the probability density function of the state in different ways. The EnKF only
approximates the mean and covariance of the state through a series of equally weighted
ensemble members. And the particle filter considers the weights of the ensemble members
according to the likelihoods. The EnKF contains the Gaussian assumption but requires
relatively small ensemble size to prevent filter degeneracy, which is in contrast with the PF.

The EnKPF takes advantage of both methods by combining the analysis schemes of the EnKF
and the SIR-PF using a controllable index (i.e. tuning parameter). In contrast with both the
EnKF and the SIR-PF, the analysis scheme of the EnKPF not only updates the ensemble
members but also considers the weights.

Assume that the forecast ensemble ���, � = 1, 2, …, �  and the observation data y are available,

and that the forecast covariance �� can be calculated using the ensemble, the analysis scheme
of EnKPF is given below.

1. Choose � ∈ [0, 1] and apply the EnKF that is based on the inflated observation error
covariance �/� as follows:
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( ) 1 1
1 ( / ) ( )f T f T f T f TK P H HP H R P H HP H Rg g g g- -= + = + (126)

1( )( )f f
i i iv x K y Hxg= + - (127)

1 1
1 ( ) ( )TQ K RKg g
g

= (128)

2. Compute the weights �� for each updated member �� as follows:

; ,
1

T
i i

Rw y Hv HQHf
g

æ ö
= +ç ÷-è ø

(129)

and normalize the weights by �� = ��/∑� = 1� ��, in which ϕ is the probability density

function of a Gaussian.

3. Calculate the resampling index �(�) for each member �� according to �� using the SIR

algorithm, then set

( ) 1,
( ) 1

iu
i s ix v K g

g
= +

ò
(130)

where 1, i is a random observation error drawn from the Gaussian �(0, �).
4. Compute �2(1 − �) = (1 − �)���[(1 − �)����+ �]−1, and generate 2, i from �(0, �) and

EnKF with the inflated observation error again as follows:

( ) 2,
2 1 1

ia u u
i i ix x K y Hxg

g

é ù
= + - + -ê ú

-ê úë û

ò
(131)

γ can be determined recursively to match the optimal performance of EnKPF. More details of
EnKPF can be found in [45, 46].

7.3.2. Localization in PF

Previous sections have introduced the localization technique in EnKF, which greatly improves
the performance of EnKF in high-dimensional models. The advantages of localization motivate
the search for a localization procedure in particle filtering.
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Van Leeuwen had a deep discussion on this topic [39]. He argued that one can calculate the
weights locally, but it is not easy for resampling. In the resampling step low-weight particles are
abandoned and high-weight particles are duplicated. However, with local weights, different particles are
selected in different parts of the domain. The problem is that we have to have continuous (in space) model
fields to propagate forward in time with the model. Just constructing a new particle that consists of one
particle in one part of the model domain and another particle in another domain will lead to problems
at the boundary between these two.

The problem of spatial discontinuity makes the localization in particle filter not feasible
currently. Most of the advanced particle filters (e.g. EWPFand implicit particle filter) are using
the idea of global weight, i.e. the weight for each member is a scalar.

However, there are still some attempts on the localization in particle filter. For example,
Poterjoy developed the localized particle filter (LPF) that updates particles locally using ideas
borrowed from EnKF [47]. The paper has demonstrated some advantages of the new filter over
EnKF, especially when the observation networks consist of densely spaced measurements that
relate nonlinearly to the model state. This is a very interesting work about the particle filter, it
also has a potential to work with large atmos./ocean. data assimilation systems.

8. Remarks and conclusions

Data assimilation is the process by which observations of the actual system are incorporated
into a numerical model to optimally estimate the system states. In this chapter, we introduced
several ensemble-based data assimilation methods that are widely used in the earth sciences.
One can read it as an introduction to ensemble-based data assimilation methods, but also can
view it as a brief review of the application of these ensemble-based assimilation methods on
the earth sciences. It is author’s effort to write such a ‘review’ chapter with introductory
language, making it more readable. As found in the chapter, many discussions, derivations
and analyses are actually very thoughtful, not only introducing these methods, but also
deepening the understanding to them. This is emphasized by the analysis of the rationale
behind each method, including: i). the principle for deriving the algorithm; ii) basic assump-
tions of each method; iii). the connection and relation of different methods (e.g., EKF and EnKF,
EnKF and SPKF etc.); iv). the advantages and deficiencies of each method. Especially we put
rather weights to discuss potential concerns, challenges and possible solutions when these
methods are applied to high-dimensional systems in the earth sciences. This chapter can be a
“textbook” for the beginners to learn these data assimilation algorithms, and also a good
reference for researchers for better understanding and applying these methods.
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