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Abstract

We propose a model to account for the post‐traumatic stress disorder (PTSD) symptoms
of disinhibition, hyperarousal, and attention bias. We review the background literature
which is the foundation on which our model rests, present key results of our ongoing
research, and suggest testable hypotheses for further research. Our laboratory is in a
Veterans Affairs (VA) Medical Center, where we began our work with a search for the
significant causes and predictors of hyperarousal in combat veterans with PTSD using
eyeblink and autonomic conditioning protocols. We believe our studies will lead to
integration  of  a  treatment  intervention  for  war  veterans  (and  equally  as  well  for
treatment of the traumatically stressed in the general population). Our research has
begun to show strong associations between lowered heart rate variability (HRV) and
PTSD. Loss of bradycardia during normal vigilance is the cause of lowered HRV, which
impairs  appraisal  of  threat  value of  environmental  stimulation,  thereby leading to
disinhibition, hyperarousal, and attention bias toward and away from threat. The next
steps of research we plan are outlined and designed to elucidate how HRV biofeedback
is a promising intervention to increase HRV during vigilance of stimuli and restore
cognitive appraisal  and response selection,  thereby reducing PTSD symptoms and
normalizing behavior.

Keywords: autonomic cardiac regulation, PTSD, combat veteran, orienting, attention
bias
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1. Introduction

Brain‐based hypersensitivity to environmental stimulation underlies pathological states that
have been defined as “disorders of arousal” [1]. “Autonomic tuning” is the term that was
historically used to describe the process of normally balanced sympathetic and parasympa‐
thetic branches of the autonomic nervous system (ANS), in contrast to the disorders of arousal
which are characterized by ANS dysfunction, affective lability, anxiety, stress, and emotional
disorders:

It is a matter of everyday experience that a person’s reaction to a given situation
depends very much upon his own mental physical, and emotional state. One might
be said to be “set” to respond in a given manner … the autonomic response to a
given stimulus may at one time be predominantly sympathetic and may at another
time be pre‐dominantly parasympathetic.([2], pp. 90–91; quoted in [3], p. 179)

ANS dysregulation impacts on both physical (increasing cardiovascular risk) and mental
(compromising psychological well‐being) health at multiple levels. Loss of regulation of
normal autonomic control of cardiac adjustment to environmental stressors leads to negative
impacts on physiological function affecting arterial blood pressure, heart rate and rhythm, and
vagal afference. Allostatic load is a term that has been used for decades to describe “the wear
and tear on the body” which grows over time when the individual is exposed to repeated or
chronic stress [4]. Allostatic load is the physiological consequence of chronic exposure to
fluctuating or heightened neural or neuroendocrine response that results from repeated or
chronic stress. Thus, it is that chronic autonomic imbalance finally leads to allostasis of
affective, cognitive, and behavioral level of function. The effect of heart rate variability (HRV)
biofeedback (HRVB) is to manipulate peripheral autonomic state feedback to the central
nervous system circuits regulating emotional, cognitive, and sensorimotor activity. The study
of HRV and effects of HRVB provide important insights into the mechanisms of autonomic
arousal in normal, successful adaptation and pathological states such as PTSD.

2. Key concepts

The chapter is organized into several sections. In Section 3, the role of HRV in autonomic
cardiac control as it is found in normal adaptation is described. The specific topic headings in
this section are: Autonomic cardiac regulation; HRV and HRV coherence; Neurophysiological basis of
HRV: polyvagal and neurovisceral; HRV and orienting; Executive control of attention and defense; and
Autonomic cardiac regulation and fear. In Section 4, the topic headings Autonomic cardiac dysre‐
gulation in PTSD and PTSD and attention bias discuss the derangement of normal ANS cardiac
control by PTSD. Section 5 has only one topic heading titled Applied psychophysiological therapy
for PTSD and attention bias: HRV biofeedback which presents the case that application of the HRVB
intervention is intuitively and theoretically sound. In Section 6, Models of Autonomic Dysregu‐
lation in PTSD is a graphic representation of our ideas of how HRV influences orienting in
normal and in the PTSD phenotype. In Section 7, the topic heading Completed Research on HRVB
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and PTSD and Planned Research on HRVB and PTSD: The Action Cascade details the work that
has been done in our laboratory and the direction we are taking to further this important line
of clinical research.

3. Theories

3.1. Autonomic cardiac regulation

The ANS controls how the individual appraises the valence of environmental stimuli and
the responses selection consequent to the appraisal (e.g., maintenance of resting homeosta‐
sis, mobilization of defensive response, task performance, tonic immobilization, and/or af‐
filiation) by interplay between sympathetic (accelerative) and parasympathetic
(decelerative) influences on the heart. This model of adaptive behavior integrates polyvagal
theory [5–8]. Thus, cardiac adjustments to environmental stimuli affect the internal physio‐
logical and emotional state of the individual as well as the quality of information processing
that the individual can perform during the stimulus appraisal stage of the orienting re‐
sponse. Bradycardia is adaptive in early stages of orientation to novel or potential threat,
while greater HRV power serves to facilitate self‐regulation, stimulus information process‐
ing and appraisal, and appropriate response selection [9–11]. As we have previously mod‐
eled, this process occurs during the initial stage of the stimulus orienting response (OR), and
it can lead to autonomic and somatic‐motor conditioning [12].

3.2. HRV and HRV coherence

The number of studies of the relevance of the ANS to stress and mental disorder has increased
markedly in the past 20 years [13, 14]. HRV is the quantification of the variance of inter‐beat
intervals (ibi) between cardiac pulses. HRV can be measured by electrocardiogram (ECG),
fingertip pulse photoplethysmograph (ppg), or beat‐to‐beat (continuous) changes in arterial
blood pressure. Instantaneous heart rate in beats per minute (bpm) can be calculated from a
single ibi (with unit of seconds) as HR (bpm) = (60 s/min) × (1/ibi) = 60/ibi. On the other hand,
neither ibi nor HRV can be calculated from HR in bpm because bpm is an averaged value. We
have been studying and recoding HR and HRV in combat veterans for several years.

Quantification of HRV is accomplished in several different ways. The two most common types
of HRV variables, and the most easily understood and physiologically interpretable, are the
time‐domain and frequency‐domain variables [14, 15]. In the time domain, variance of ibi’s, or
power, across a recording time period is simply derived from the time intervals of either
consecutive heartbeats (standard deviation of all N‐N intervals, SDNN) or the differences
between consecutive intervals (square root of the mean of the sum of squares of differences
between adjacent N‐N intervals, RMSSD. More variance = more power. In the frequency
domain, power in units of ms2/Hz is derived as the integral (area) under the curve of a given
frequency range. Frequency‐domain measures are computed with power spectral density
(PSD) analysis using fast Fourier transform of the tachygram of HR against time. The PSD
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graphically represents how variance or power is distributed as a function of frequency. Three
main spectral components are distinguished: very low frequency (VLF, 0.003–0.05 Hz), low
frequency (LF, 0.05–0.15 Hz), and high frequency (HF, 0.15–0.50 Hz). There is also an ultra‐low
frequency (ULF) band of HRV cycle frequency recognized between 0.00001 and 0.003 Hz—
that is, a period of months—that has been receiving some attention in recent years. Table 1
indicates how frequency ranges can be associated with physiologically and behaviorally
relevant time periods.

Sec/cycle

(Period) 

86400  600  300  60  15  10  6  5  4  1  .75 

Cycles/s (Hz)  0.00001  0.002  0.003 0.017 0.067 0.100  0.167  0.200 0.250 1.000 1.33 

Minutes/cycle  1440.0  10.00  5.00  1.00  0.25  0.17  0.1  8  0.07  0.02  0.01 

Cycles/min  0.0007  0.1  0.2  1  4  6  10  12  15  60  80 

Function  24 h          RFB and

BR 

Normal

respiration 

      Normal

HR 

RFB, resonant frequency breathing, BR, baroreflex.

Table 1. Correspondences of period, cycle, and physiological and behavioral functions in the HRV power spectrum.

There is general agreement that efferent parasympathetic output from the vagus cranial nerve
is the major contributor to the HF component. HF HRV power is an indicator of respiratory
sinus arrhythmia (RSA), the breath‐to‐breath heart rate fluctuation due to cardiac modulation
by vagal parasympathetic output associated with respiration; in the normal state, heart rate
accelerates on inspiration and decelerates on expiration during each respiratory cycle. Vagal
parasympathetic output results in cardiac deceleration and higher HF HRV power. Although
the mediation of HF HRV is complex, the primary source of HF HRV is mediated through the
vagus nerve, such that blocking vagal activity removes virtually all HF HRV [16]. RSA results
from interaction between lung and brainstem. Lung inflation activates afferent stretch
receptors which results in inhibition of vagal parasympathetic cardiac outflow and increased
HR; during expiration, the stretch is reduced and vagal inhibition removed leading to reduced
HR. The term “vagal tone” has been used to refer to HF HRV although parasympathetic
influence on cardiovascular function and HRV, through the baroreflex, extends into the LF
range as well.

LF HRV power is a mixture of activity of sympathetic and parasympathetic cardiac efference
and afference in feedback loops between heart and brain that control short‐term arterial blood
pressure changes. “This discrepancy is due to the fact that in some conditions associated with
sympathetic excitation, a decrease in the absolute power of the LF component is observed. It
is important to recall that during sympathetic activation the resulting tachycardia is usually
accompanied by a marked reduction in total power, whereas the reverse occurs during vagal
activation” [17]. Furthermore, after reporting complete abolition of the HF and the LF 0.1 Hz
peaks as a result of parasympathetic blockade, Akselrod concluded that “our data indicate that
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the parasympathetic nervous system (PNS) mediates heart rate fluctuations at frequencies
corresponding to the low‐ and high‐frequency peaks of the power spectrum” [16].

Figure 1. Example of an HRV spectrum showing HRV coherence.

HRV coherence is a physiological state of the individual that is produced when resonance occurs
in the cardiovascular feedback systems controlling heart rate, arterial blood pressure (baror‐
eflex), and vasomotor tone. When resonance occurs, the difference between the highest and
the lowest instantaneous heart rate within one respiratory cycle is maximized [18]. It can easily
be seen then that HRV coherence means that HRV of the individual is maximized. HRV
coherence is operationalized as the frequency spectrum of a sine wave‐like heart rate tachy‐
gram that has a narrow, high‐amplitude peak in the LF region of the HRV power spectrum,
around 0.1 Hz, with no other major peaks in the VLF or HF regions [19, 20]. An example of
HRV coherence from our own recording is shown in Figure 1. Although there are different
ways to calculate a value from the PSD that reflects HRV coherence, one well‐known method
of calculating a “coherence ratio” is to (1) identify the maximum peak in the 0.04–0.26 Hz range
of the HRV power spectrum (which represents parasympathetic function) and calculate the
integral in a 0.030‐Hz‐wide window centered on the highest peak in that region, (2) calculate
the total power of the entire spectrum, and (3) divide the parasympathetic power by (total
power minus parasympathetic power) [21]. In many if not most individuals who are free from
cardiovascular disease, HRV coherence can be reliably produced by diaphragmatic breathing
around the 0.1 Hz cycle (six breaths per minute), which is called resonant frequency breathing
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(RFB) because that is the frequency when resonance of the cardiovascular system occurs. RFB
is integral to the practice of HRVB (see below for more detail). HRV coherence is associated
with increased emotional self‐regulation and mental alertness [20].

3.3. Neurophysiological basis of HRV: polyvagal and neurovisceral

The polyvagal theory of Porges [7, 22–25] describes the neurophysiological basis of the
interface of autonomic state and behavior. Polyvagal theory presents the hierarchical relation
among three subsystems of the autonomic nervous system supporting adaptive behaviors in
response to the particular features of safety, danger, and life threat in environmental stimula‐
tion. The name of the theory “polyvagal” denotes that two vagal pathways operate in mam‐
mals. One of the vagal circuits is a vestige of an evolutionarily primordial circuit that associated
with defensive responding to threat; the other vagal circuit is a relatively recent evolutionary
development, one that is not observed in other animals than mammals. This newer vagal circuit
produces physiological states associated with safety and affiliation, and it is crucial for social
engagement. Thus, when an individual feels safe the somatic or vegetative conditions are
supportive of growth and restoration (“trophotropic” [26, 27]). This newer vagal circuit is
characterized by myelinated vagal efferent pathways, including the cardiac pacemaker to cause
heart rate deceleration and inhibit the fight‐flight mechanism of the sympathetic nervous
system. The stress response of the hypothalamic‐pituitary‐adrenal (HPA) axis (“ergotrophic”)
is dampened, and inflammation is reduced through modulation of cytokine and other immune
reactions. Second, integration of nuclei in the brainstem that regulate myelinated vagus with
nuclei controlling muscles of the face and head used in facial expressions occurs. As a result,
neural pathways are created that enable a social engagement system with bidirectional
coupling of bodily states and social behaviors such as facial expressions and prosodic vocali‐
zations [8].

The neurovisceral integration model (NvIM) suggests that vagally mediated HRV (vmHRV)
represents a psychophysiological index of cognitive inhibitory control and thus is associated
with emotion regulation capacity [25, 28, 29]. Executive brain areas located in prefrontal cortex
exert inhibitory influence on subcortical structures, importantly the amygdala, allowing the
individual to adaptively respond to demands from the environment and organize responses
effectively [30–32]. Thus, at rest, active cortical brain areas are indicative of greater inhibitory
and emotion regulation. The NvIM proposes that individual differences in vagal function, as
indexed by HRV at rest, reflect the activity of this flexible and integrative neural network which
enables effective integration of basic responses (behavioral, cognitive, and emotional) that
support goal‐directed behavior. The NvIM is founded upon a complex interplay between
cortical and subcortical regions of the brain that are grouped under the collective term “central
autonomic network” (CAN; [33]). The CAN links the ANS to a higher‐order cognitive func‐
tioning, especially the prefrontal cortex. Many specific brain nuclei and structures are included
and reciprocally interconnected in the CAN: the ventromedial prefrontal cortices, the central
nucleus of the amygdala, the anterior cingulate, the insula, the paraventricular nuclei of the
hypothalamus, the periaquaductual gray matter, the nucleus of the solitary tract (NST), the
nucleus ambiguus, and the medullary tegmental field. Output of the widespread CAN
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circuitry extends to autonomic inputs to the heart, including the vagus nerve. By exerting
inhibitory control over subcortical pathways, prefrontal cortex functions to enable the
individual to perceive and adapt to environmental challenges through higher levels of HRV
(i.e., greater vagal tone) at rest.

Converging evidence suggests that these core sets of neural structures are responsible for not
only inhibition but also the regulation of the ANS activity and reactivity. The heart and other
peripheral organs are under tonic inhibitory control by the ANS. More specifically, this
influence is characterized by a relative dominance of the parasympathetic nervous system
(PNS) over influences of the sympathetic nervous system (SNS). Vagal parasympathetic control
represents the major descending inhibitory pathway (DIP), adaptively regulating physiolog‐
ical functions shaped by psychological processes including emotion regulation. The NvIM
posits that vagally mediated HRV may be more than just a simple index of healthy heart
function, and also serves as readily available measure and index of the degree to which the
brain’s integrative system for adaptive regulation provides flexible control over the periphery.

3.4. HRV and orienting

Autonomic cardiac adjustments to environmental stimulation are an integral part of the
orienting response (OR) to stimulation in the environment. Deceleration of HR is identifiable
during the OR, while acceleration of HR reflects response selection of a defense response after
a stimulus is cognitively appraised to be dangerous or threatening. The direction of attention
(externally toward environmental information vs internally for information processing) and
change in heart rate (deceleration vs acceleration, respectively) are linked. Lacey and Lacey
[34, 35] put forward the “intake‐rejection hypothesis”, proposing that attention to cognitive
tasks can be directed toward the environment (intake of the environment) or it can be directed
toward internal processing (rejection of the environment). Cardiac deceleration occurs during
externally directed tasks (e.g., visual attention and search, empathic listening) due to activation
of the parasympathetic branch of the autonomic nervous system. Cardiac acceleration occurs
during internally directed tasks (e.g., mental arithmetic or imagery, response selection and
output or performance) due to activation of the sympathetic branch of autonomic nervous
system via release of norepinephrine from locus coeruleus to stellate ganglion of the heart [36].

Autonomic cardiac adjustments to environmental stimulation are furthermore and more
basically an integral part of the OR. Orienting is the enhancement of stimulus reception by
information processing and appraisal. Early work in this area determined that a deceleration
of HR is identifiable during the orienting response, while HR acceleration reflects selection of
a behavioral defense response (DR) after stimulus information appraisal indicated the need
for it [37, 38]. The history of theory and research on the OR and DR (defense response) includes
the role of general psychophysiological measures and phasic cardiac responses in both humans
and animals. Obrist called this “cardiovascular learning” [39, 40]. Autonomic substrates of
cardiac responding have behavioral significance for the OR and DR, and reveal that cardiac
deceleration is necessary for stimulus appraisal after vigilance in orienting, and cardiac
acceleration is necessary for defensive response selection [41, 42].
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Currently, however, the construct of attention is considerably more complex than is described
by intake‐rejection hypothesis. Although attention is being defined and measured using varied
behavioral tasks, such as spatial cueing, sustained vigilance, and selective focus, the many
different types of attention have been grouped into three basic categories, labeled as “alerting,”
“orienting,” and “executive” [43]. Critically, the basic premise that cardiac deceleration is
necessary for successful externally directed attention has held up and found new life in the
widely accepted practice of employing HRVB for optimal performance enhancement, notably
sports preperformance preparation (e.g., [44]).

3.5. Executive control of attention and defense

The human brain is equipped with various executive functions such as selective attention to
deal with the vast amount of information flow from the external world in a seemingly effortless
manner [45]. Emotional stimuli with their perceptual properties and biological significance
must have attentional prioritization in order for adaptation to occur. For example, a dot‐probe
task was used to investigate whether task‐irrelevant auditory emotional information can
provide cues for orientation of auditory spatial attention [46]. In this experiment, participants
were significantly faster to locate a target when it replaced the negative cue compared to when
it replaced the neutral cue, while the positive cues did not produce a clear attentional bias. The
results indicate that negative affect can provide cues for the orientation of spatial attention in
the auditory domain. By way of possible mechanism for this effect, it has been shown that
negative emotion induced by visual stimuli can affect auditory event‐related potentials (ERPs)
as early as 20 ms after stimulus onset [47], and more generally that scalp potentials are
associated reflect autonomic activity associated with behavioral responding [48].

The pressures of evolution have hardwired in humans a set of inborn and automatically
activated defense behaviors, termed “the defense cascade.” The first step in the defense cascade
is arousal; if danger or threat is then perceived, the next step is activation of flight or fight,
while freezing is an alternate response at this stage, a “flight‐or‐fight response put on hold.”
Tonic, collapsed, or passive immobility (also called fear bradycardia) is the response of last
resort, when active fight or flight defense responses have failed and the threat to survival is
imminent and inescapable. Each of these defense reactions has a distinctive autonomic pattern
mediated by neural pathways. Freezing differs importantly from immobility in the cardiac
state: accelerated heart rate characterizes freezing and decelerated heart rate characterizes
immobility. The defense cascade is known to activate neural structures that are also central to
the CAN: the extended amygdala, hypothalamus, periaqueductal gray (PAG), ventral pontine
tegmentum, ventral and dorsal medulla, vagal and sympathetic nuclei, and spinal cord [49].

The hypothalamus (paraventricular nucleus) plays a major role in arousal by increasing
sympathetic viscereomotor tone and in striated muscles of the somatomotor nervous system.
The body becomes prepared for action by vasoconstriction of blood vessels to the salivary
glands (dry mouth) and tension one in the laryngeal muscles of the back. Smooth and striated
muscles contract, heart rate and respiration accelerate, and posture is stabilized [49].
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3.6. Autonomic cardiac regulation and fear

Fear is an emotion caused by the cognition that a stimulus perceived in the environment is
dangerous, threatening, or likely to cause pain. Fear causes a change in brain and autonomic
system, and ultimately a change in behavior, such as running away, hiding, or freezing.

Heart rate (HR) conditioning in rabbits (Oryctolagus cuniculus) is a widely used model of
classical Pavlovian fear conditioning of autonomic responding. Acquisition and retention of
conditioned bradycardia (deceleration of heart rate) in the rabbit is useful because the rabbit
is a species considered by many as an ideal intact preparation for the study of neural mecha‐
nisms of associative learning, and in particular, cardiovascular conditioning. The neural
mechanisms underlying HR conditioning have been widely researched in rabbits and other
species including humans, with studies concentrating on vagal‐mediated, parasympathetic
cardiovascular changes, sympathetic‐mediated changes, emotional/affective learning compo‐
nents involving the amygdala and prefrontal cortex and extrapyramidal system including
some but not all cerebellar structures [50].

Up until his death in 2011, Donald A. Powell was for decades a leading researcher in classical
(Pavlovian) conditioning of autonomic and somatomotor function and the founder of our
laboratory. His major findings (summarized below) continue to guide the work in our
laboratory at the present time. A fear conditioning paradigm was used to concomitantly
condition autonomic (cardiac adjustments) and somatic (eyeblink) function [51]. This approach
was applied to a classical conditioning model of PTSD in veterans and a parallel translational
lesion model of conditioning in rabbits [52, 53]. Dr. Powell’s research elucidated two separable
neural circuits with different fear conditioning parameters: the cortico‐limbic circuit control‐
ling autonomic conditioning and an extrapyramidal neural circuit controlling skeletal, or
somatomotor, conditioning.

Lesions of substantia nigra prevented acquisition of the eyeblink conditioned response and
had no effect on conditioned bradycardia [54, 55]. While medial prefrontal cortex (mPFC) is
not critical for acquisition of somatomotor conditioning [56], post‐training lesioning of mPFC
impaired performance of the conditioned eyeblink response [57–59]. Moreover, while deep
nuclei of the cerebellum are understood to be necessary for eyeblink conditioning [60],
manipulation of this extrapyramidal substrate does not affect heart rate conditioning [61].

In contrast, lesion studies demonstrated that conditioning of autonomic cardiovascular control
requires intact function of a cortico‐limbic circuit [62, 63]. Acquisition of conditioned brady‐
cardia in the rabbit is dependent on a prefrontal‐amygdala pathway, and the major structures
in this pathway are medial prefrontal cortex [64–66] and central nucleus of the amygdala.
Interestingly, subiculum of the hippocampus was not found to be necessary for acquisition of
conditioned bradycardia in this paradigm [67]. Furthermore, autonomic cardiac conditioning
is rapid compared to somatomotor eyeblink conditioning. In animals, conditioned slowing of
heart rate was shown to occur within the first 3–5 conditioning trials, whereas eyeblink
conditioning requires many more trials, in the range of 50–60 [68]. Similarly, heart rate
conditioning in humans was more quickly acquired with shorter interstimulus interval than
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eyeblink [69]. At the single neuron recording level, mPFC processing of stimulus information
appears to be driving decelerative heart rate‐conditioned responding [70].

Since the same set of stimulus contingencies will classically condition both autonomic function
and somatomotor behavior, the existence of a process that integrates the two would be
expected. The septo‐hippocampal system may be the brain circuit that performs this activity.
Extinction of classically conditioned bradycardia is delayed by vasopressin, which increases
peripheral vascular resistance and arterial blood pressure, a result that seemingly increases
the autonomic conditioning cortico‐limbic circuit to include hypothalamus and pituitary [71].
Intraseptal injection of the antimuscarinic anticholinergic scopolamine in the concomitant
autonomic and somatomotor conditioning paradigm enhanced cardiac deceleration and
impaired eyeblink conditioning [72]. Thus, there may be a central border zone cardiac‐somatic
linkage [39] that couples and uncouples cortico‐limbic (stimulus registration and appraisal)
from neostriatal (response selection) activities [73]. More research is needed in this area to
integrate these crucially important past and current constructs of arousal, attention, and
behavior.

4. Clinical implications

4.1. Autonomic cardiac dysregulation in PTSD

Unlike animals, which generally are able to restore their standard mode of functioning once
a fear‐provoking stimulus is past, humans often are not, and they may find themselves stuck
in the autonomic profile associated with response that was tied to the original danger or
trauma. This is traumatization of the nervous system. When the nervous system is trauma‐
tized, current environmental stimuli, or associatively conditioned reminders of the original
danger, repetitively trigger the behavioral response to past fearful events. A simple working
definition of PTSD then, apart from the formal clinical diagnostic criteria, is that the ANS of
the traumatized individual has become stuck in, or is easily shifted into, a state of ergotropic
behavioral response to fear, dominated by sympathetic outflow and its accelerative effects
on cardiac adjustment. As a result, PTSD influences on autonomic control of heart rate and
HRV impact orienting and stimulus appraisal [9].

The effect of PTSD on HRV has been studied since the late 1990s. Our own meta‐analysis
assessed all available studies of sympathetic and parasympathetic influences on HRV to
determine effect sizes and the utility of HRV as a potential psychophysiological indicator of
PTSD, summarized below [74]. Using keywords “PTSD” and (“heart rate or HRV or vagal or
autonomic nervous system”), 453 potentially relevant studies were identified; after inclusion
criteria were added, 39 studies were considered; exclusion criteria reduced the study sample
to 19, all of which were then included in the meta‐analysis. The meta‐analysis was performed
according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses)
and Cochrane Handbook guidelines, using Comprehensive Meta‐analysis Software, ver. 2.0.
We calculated the Hedges’ g effect size with 95% confidence interval (CI), statistical significance
(p), and heterogeneity for each effect size estimate. Several HRV variables were considered,
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and for each an individual, meta‐analysis was performed. Heart rate (HR) was significantly
elevated in PTSD patients. The available scientific literature clearly showed that reductions in
SDNN, RMSSD, and HF power, and increased LF/HF ratio, have utility as indicators of
autonomic effects of PTSD, which can be associated with impaired vagal activity. The positive
LF/HF effect size indicates increase in sympatho‐vagal function under PTSD as compared with
controls, and also reflects, we believe, non‐linearity in co‐occurring shifts in LF and HF power
with proportionately greater reduction in HF than LF [74].

HRV has been shown to be significantly correlated with eyeblink conditioning in normal
adults [11, 69]; in combat veterans with and without PTSD (PTSD+ and PTSD‐, respectively),
EB conditioning was associated with resting HRV. In the PTSD+ veterans, frequency and
amplitude of eyeblinks, HRV, and immediate memory on a verbal learning test were all lower
than in the control group [12]. Factor analysis revealed four separable factors corresponding
to (1) eyeblink amplitude, (2) HRV, (3) immediate memory, and (4) self‐report of mood state
(depression and anxiety), and eyeblink frequency was significantly predicted by HRV and
immediate memory. Furthermore, and importantly, in this study reduced HRV was also shown
to be associated with poorer performance on the immediate verbal memory test [12]. Further
analysis revealed the effects of eyeblink conditioning on heart rate responding in the same
study [10]. In this paradigm, which was discriminative conditioning, a light signal was
presented for 5 s followed by a tone conditioning stimulus (CS) that was paired with either an
eyepuff (CS+) or no eyepuff (CS‐). Thus, there was a 5‐s vigilance period before onset of the
tone CS. A linear HR deceleration from baseline during the 5‐s vigilance period before onset
of the tone CS was found in the PTSD‐ subgroup but was not present in the PTSD+ subgroup.
This is strong evidence that PTSD disrupts bradycardia during vigilance.

4.2. PTSD and attention bias

Healthy adaptation requires people to allocate attention to genuine threats in the environ‐
ment while ignoring other similar stimuli. Traumatic events offset this delicate balance and
induce cognitive biases that give rise to threat avoidance and threat‐related hypervigilance,
among other clinical symptoms. Attentional problems are a common complaint of patients
with a PTSD diagnosis, and clinical research data support this. Vietnam veterans with PTSD
were found to be significantly worse on controls without PTSD on tasks measuring focused
and sustained attention [75]. Using the attentional network test [43], PTSD participants were
found to be impaired in inhibiting irrelevant information, a function of the executive atten‐
tional network [76].

PTSD may be associated with hypervigilance to salient and threat‐related stimuli, but results
of attention bias studies in PTSD have found biases both toward and away from threat.
Hypervigilance manifest as attention biased toward threat cues while avoidance of threat‐
related stimuli. Attention bias indexes the degree to which attention fluctuates between
vigilance and avoidance and is based on reaction time data derived from variants of the classic
dot‐probe task. In this task, pairs of threat and neutral (or positive) stimuli are simultaneously
presented across repeated trials. Each stimulus pair is followed by a target probe appearing at
the location of either the threat stimulus (congruent trials) or the neutral stimulus (incongruent
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trials). An attention bias score is calculated as the difference between the mean reaction times
of these two types of trials.

Attentional bias toward threat in PTSD could reflect either difficulty disengaging from
threat‐related stimuli or facilitated engagement of such stimuli, although there is some evi‐
dence that attentional bias toward threat in PTSD reflects difficulty disengaging as opposed
to facilitated engagement [77]. Early dot probe studies in PTSD in adults and children re‐
ported mixed findings. Some studies found bias toward trauma or threat‐elated stimuli in
PTSD [78–82], while others reported an association between PTSD and a bias away from
trauma or threat [83, 84]. Still others have failed to find significant attentional bias differen‐
ces between PTSD and control groups, consisting of healthy individuals and a group of re‐
cent trauma survivors that included individuals both with and without acute stress disorder
[85, 86]. Difficulty disengaging from threatening stimuli has been associated with the 5‐
HTTLPR serotonin transporter gene polymorphism [87], although the significance of this
finding has not been explained.

Iacoviello [88] derived a measure of attention bias by grouping, or “binning,” consecutive 20‐
trial sequences on the dot‐probe task and calculating a bias score for each bin. The standard
deviation of the bias scores across bins was then divided by the participant’s mean reaction
time to generate the measure of attention bias for each subject throughout the session. Results
of this study revealed greater attention bias in participants with PTSD than in trauma‐exposed
participants without PTSD and nonexposed healthy participants. Attention bias was also
positively correlated with PTSD symptom severity.

Different selective attentional orienting mechanisms underlying anxiety‐related attentional
bias have been identified, such as engagement and disengagement of attention [89]. These
mechanisms are thought to contribute to the onset and maintenance of general anxiety dis‐
orders and have relevance for the study of attention bias in PTSD. General anxiety seems to
be associated with a preferential bias for negativity. The measure of attention bias has re‐
cently been refined by employing a moving average technique, rather than the previously
employed binning method, to generate a more stable index that is influenced less by the
number of trials in any particular study [90]. However, attention bias is still something of a
novel measure, and we know of no reports of test‐retest reliability. Overall, attention bias
may be best conceptualized as reflecting natural plasticity built into the threat‐monitoring
system that is influenced by different contexts and situations, rather than indexing a stable
trait.

Attentional training (sometimes called attention bias modification, ABM) is aimed at reduc‐
ing symptoms and behaviors associated with anxiety by systematically reducing negative
attentional biases and training selective attention to orient away, or to disengage, from
threat [91]. Attention control training, but not attention bias modification, was found to sig‐
nificantly reduce attention bias and reduce PTSD symptoms [92]. Thus, further study of
treatment efficacy for attention bias, and its underlying neurocognitive mechanisms, seems
warranted.
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5. Applied psychophysiological therapy for PTSD and attention bias: HRV
biofeedback

The scientific and clinical data supporting the facts of diminished vagal and increased
sympathetic activity in PTSD increased notably in the past decade and continue to mount [13].
In developing a treatment intervention, it is important to understand the signature patterns of
normal and deranged stimulus processing and appraisal, and response output type, whether
immobility, defense, or affiliative. Effective interventions aim to activate, deactivate, or modify
one or more components of the abnormal cardiac adjustment pattern. Because the process of
treatment intervention pertains to humans, we may speak of an intervention that shifts the
response pattern of cardiac adjustment as being a “mind‐body intervention.”

In our clinical research, we use HRVB as a psychophysiological intervention to study the effects
of psychological trauma and its potential amelioration. HRVB is a very well‐tolerated, easy‐
to‐use, and effective mind‐body technique that appears to have achieved acceptance as an
integrative health procedure for routine healthcare. HRVB training teaches the practitioner to
self‐regulate his or her own HRV by monitoring visual feedback indicating whether or not
HRV coherence is attained, and then associating that feedback with self‐regulation of emo‐
tional state. With practice, the individual learns how to voluntarily and quickly produce HRV
coherence using RFB, focused attention, and conscious voluntary positive emotional state.
HRVB is an interactive procedure that uses hardware/software systems to monitor and display
the individual’s HRV patterns in real time. Visual feedback of HRV (either quantitative display
or animated challenge games) is provided as participants practice techniques of attention
focusing (such as mindfulness), RFB, and induction of a positive emotional state. Acquisition
of the skill of self‐regulation of HRV coherence takes anywhere from 1 to 6 weekly sessions of
about 45 min each. Summaries of the evidence for the efficacy of HRVB in reducing mental
and physical symptom burden are available [93–95].

6. Models of autonomic dysregulation and treatment of PTSD

Figure 2 is a model of HRV, orienting, and PTSD. The process begins in the upper left corner
of the figure, when a stimulus in the environment is registered A normal OR is initiated in less
than a second, and proceeds (blue arrow) to appraisal through cortical processing with an
output of cardiac adjustment that depends on the appraisal: stimulus is not further perceived
with return to baseline vigilance or appraisal of life threat with no escape (immobilization) or
appraisal of affiliative engagement or appraisal of danger with freeze, fight, or flight response.
Each of the latter appraisal outcomes is associated with an autonomic state, respectively: return
to preregistration baseline, bradycardia modulated by dorsal vagal nucleus, bradycardia
modulated by ventral vagus and nucleus ambiguus, cardiac acceleration modulated by
withdrawal of rostroventral lateral medulla, and activation of sympathetic nervous system.
This process is shown in schematized and highly simplified form in the right upper portion of
Figure 2 (for more detail of the vagal afferent and efferent neural circuits controlling cardiac
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function, see [19, 31]; see [96] for a thorough discussion of the centrally key role of the
paraventricular nucleus of the hypothalamus in autonomic dysfunction). In the individual
with PTSD, however, cortical appraisal is short‐circuited (red arrows) with repetitive activation
of sympathetic nervous system and freeze of fight/flight. We propose that the beneficial effects
of HRVB on PTSD symptoms, including attention bias, occur according to the model shown
in Figure 3.

Figure 2. Model of HRV, orienting, and PTSD.

Figure 3. Dysregulation of heart rate deceleraton by PTSD and reduction if PTSD symptoms by HRVB.
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7. Research

7.1. Completed research on HRVB and PTSD

In our meta‐analysis of PTSD and HRV [74], we also examined the effects of treatment of PTSD
on various HRV parameters. The first finding was that very few controlled studies examining
changes in HRV variables pre‐ and posttreatment on PTSD have been published [97–100].
However, all of these studies employed some form of HRV biofeedback as the treatment
intervention. The study by Lande [98] was excluded because HRV data were not included in
the study report. Using conservative random effect modeling for the meta‐analysis, a signifi‐
cant increase in RMSSD could be discerned and a decrease in HR was nearly significant (p 1‐
tailed = 0.08).

Our small‐scale controlled study of the co‐occurrence of reduction in HRV parameters and
sustained attention in Iraq combat veterans with and without PTSD. We [97] tested the effects
of HRVB using as outcomes HRV coherence and a small battery of attentional tests patterned
on Mirsky’s model of attention [101]. Veterans met with an HRVB professional once weekly
for 4 weeks for HRVB. HRV coherence was achieved in all participants, and the increase in
coherence ratio was significant post‐HRVB training. Furthermore, significant improvements
were observed as increased digit span backwards and fewer commission errors on continuous
performance testing, with a significant interaction of training with PTSD on word list learning
that demonstrated combat veterans with PTSD were able to benefit from HRVB to a greater
degree than veterans without PTSD.

Based on the findings of that small‐scale study, we recently performed a 3‐year study of HRV
and HRVB in combat veterans with PTSD, funded by the US Department of Defense. Below
are some of the key findings from that study which have not been previously published
anywhere else. Operation Iraqi Freedom (OIF)/Operation Enduring Freedom (OEF) veterans
21–45 years old with and without PTSD were recruited from our veterans’ hospital outpatient
population. PTSD+ veterans receiving standard of care for PTSD were assigned to one of two
treatment groups: active HRVB training and sham HRVB training. PTSD‐ veterans served as
a baseline control group only and did not receive any HRVB training. The length of training
was 6 weekly sessions. A follow‐up assessment was made 8 weeks post‐training to test for
persistence of effects (no HRVB was administered during the 8‐week period post‐training until
follow‐up). Pre‐training (baseline), post‐training, and follow‐up PTSD symptom levels were
assessed by licensed clinical psychologist raters using the Clinician Administered PTSD Scale
(CAPS). Raters were blind to the training assignment groups. The study used DSM‐IV‐TR
criteria, not DSM‐5 criteria, because the latter were not in existence at that time. Enrollment
was planned for 30 PTSD+ veterans in each of the two HRVB groups (active and sham), and
15–20 PTSD‐ veterans in the control group; final results included 29 and 32 PTSD+ combat
veterans in the active and sham HRVB subgroups, respectively, and 12 PTSD‐ combat veterans
in the control group.

Some of the important findings from this study are summarized here and are being prepared
for submission as a research article elsewhere. HRV coherence was quantified as log10 of the
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peak LF power, thus the measures of HRV analyzed were SDNN, RMSSD, log10 HF, and log10
peak LF. Nonparametric statistical tests revealed that all four pre‐training HRV measures were
significantly intercorrelated; overall, SDNN was most strongly correlated to the other three
HRV variables, and the largest correlation coefficient with log10 peak LF was SDNN (rho =
0.765, p(1‐tailed)<0.001). Pre‐training SDNN, RMSSD, and log HF were all significantly lower
in the PTSD+ compared to the PTSD‐ subgroup (Mann‐Whitney U, all ps < 0.020); however,
SDNN discriminated best between groups with and without PTSD.

Data showing correlations between HRV variables and measures of PTSD in a sample this size
have not, to the best of our knowledge, been previously published. When the four pre‐training
HRV variables were tested for associations with pre‐training PTSD, we found that Log10 HF
power was most closely correlated with severity of PTSD measured as total CAPS score (p =
‐0.370, p(1‐tailed) = 0.001); HF power is a traditional measure of parasympathetic activity and
consistent with the research hypotheses, the correlation between parasympathetic activity
(which indicates vagal tone) was negative. Thus, as vagal tone increased, total PTSD severity
decreased. Closer examination revealed that the pre‐training HRV variables associated
differentially with the three pre‐training CAPS clusters: intrusive thoughts (e.g., nightmares,
daytime memories), avoidance/numbing (e.g., depression, avoidance behaviors), and arousal
(e.g., irritability, exaggerated startle). Log10 HF power was also the only HRV variable to
significantly correlate with all three clusters (p(1‐tailed) < 0.05, all correlations negative). The
time‐domain HRV variables SDNN and RMSSD were both significantly negatively correlated
with the arousal cluster. The intrusive thoughts cluster was negatively correlated with log10
HF power, yet was not correlated with either of the time domain variables. The pre‐training
coherence indicator, log10 peak LF, did not correlate significantly with CAPS total or any of
the clusters, presumably because none of the subjects had received any training at that point
in time.

With respect to differences between the active and sham HRVB subgroups, whereas pre‐
training differences in the two HRVB subgroups were nonsignificant (p = 0.913), the post‐
training active HRVB active group had significantly higher coherence compared to the Sham
group (p = 0.007). This is strong evidence that active HRVB training produced coherence in
those veterans who received it.

Active HRVB produced increased HRV SDNN and RMSSD post‐training, and reduced PTSD,
while sham HRVB produced little or no change. Results showed that the interaction of group
(Sham vs HRVB+) x time period of assessment (pre‐, post‐, follow‐up) interaction effect was
significant, with clinically significant improvements in PTSD severity in the active HRVB
subgroup relative to the sham HRVB subgroup. The mean CAPS score of PTSD+ subgroup
receiving active HRVB training improved from 79.4 to 57.3. Within the active HRVB group,
the mean PTSD severity did rebound between post‐training and follow‐up 8 weeks later to
60.8, but this increase was not statistically different from the post‐training mean, and at follow‐
up, the PTSD severity mean was statistically lower and clinically improved relative to the pre‐
training mean. Within the sham HRVB group, there were no statistical or clinical
improvements in the mean PTSD severity score post‐training or at follow‐up.
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7.2. Planned research on HRVB and PTSD: the action cascade

The basic results presented above provide evidence that HRVB reduces formal DSM‐IV
symptoms, yet there remains a gap in our understanding of stimulus appraisal, attention, and
orienting aspects of PTSD. The orienting reflex could facilitate attention and perception toward
a stimulus on one hand, whereas it could bias attention away from the percept on the other
hand. Our planned research on the autonomic stages of the OR in combat veterans with PTSD
uses the action cascade, a software program of our own creation. The action cascade is a
computerized test that presents the subject with stimulus trials that produce an experimental
analog of the naturalistic stages of orienting and response: Rest, Alert, Vigilance, Orienting
and Appraisal, and Response Selection and Output. Each trial lasts about 25 s (Figure 4). Heart
rate and HRV are recorded continuously and simultaneously with task performance on the
action cascade by linking the physiological recorder to the computer stimulus presentation
program.

Figure 4. Action cascade: HRV during stages of rest, alert, vigilance, stimulus orienting/appraisal and response.

We have developed HRV Cascade Action Software to measure HRV during the stages of Rest,
Alert, Vigilance, Orienting/Appraisal and Response. Durations of the Rest, Alert, and Vigilance
stages vary to reduce the anticipatory predictability of the task. The action cascade is a close
analog of the defense cascade paradigm, but modified stimulus valence (e.g., pleasant,
unpleasant or fear‐provoking)—which would provoke emotionally laden ANS responding—
to be instead only informational (Go, No Go) and thereby guiding the action of stimulus
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appraisal into the cortical (mPFC) portion of the cortico‐limbic circuit controlling autonomic
cardiac regulation. The action cascade protocol is in preliminary data collection stage at this
time. The working hypothesis, illustrated in Figure 4, is that cardiac deceleration will be absent
or at least attenuated in the PTSD+ subjects pre‐training HRVB, and this deficit will be
normalized or at least improved post‐training HRVB. Results may bridge the gap in under‐
standing the role that ANS dysfunction plays in the adverse effects of PTSD on arousal,
attention, and response disinhibition.

8. Summary and conclusions

Our chapter has reviewed evidence underlying the theory that ANS control of cardiac
adjustments to environmental stimulation is a central factor in the symptom complex of PTSD.
HRV is measured and quantified in terms of power (variance) and the coherence ratio of
parasympathetic to total variance in the tachygram. Understanding of vagus nerve as the major
control point of responsivity to environmental stimulation, with inputs and outputs affecting
emotions, cognition, and behavior, fits into the evolutionary framework that includes the range
of response outputs—fight or flight, freezing, tonic immobility, and affiliation. The neurovisc‐
eral integration model specifies the neuroanatomical networks of vagal afference and efference
which control the rhythm of cardiac acceleration and deceleration. The entire system of ANS‐
regulated defense cascade is due to the executive ability of prefrontal cortex. Fear is a normal
and adaptively healthy aspect of the defense cascade, well‐understood and modeled by
translational models. Dysregulation of the normal fear response by traumatization deranges
the ANS and its control of HRV and subsequent defense cascade. As a result, attentional bias
both toward and away from reminders and fear‐provoking stimulation occurs. HRVB is
theoretically and intuitively beneficial in the restoration of ANS function to adaptive para‐
sympathetic and sympathetic levels. While these complex relations can be heuristically
modeled, the reader is cautioned that PTSD is a very heterogeneous and multifactorial disorder
and numerous other approaches to modeling and treatment (epigenetic, neuro‐inflammatory,
cognitive‐behavioral, to name a few) are certain to add to our understanding and successful
treatment outcomes. Our research provides preliminary evidence that HRVB improves HRV
and reduces PTSD symptoms, and we intend to further develop our model with an experi‐
mental paradigm.
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