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Abstract

Grape metabolites can be affected by many extrinsic and intrinsic factors, such as grape
variety,  ripening  stage,  growing  regions,  vineyard  management  practices,  and
edaphoclimatic conditions. However, there is still much about the in vivo formation of
grape metabolites that need to be investigated. The winemaking process also can create
distinct  wines.  Nowadays,  wine  fermentations  are  driven  mostly  by  single-strain
inoculations, allowing greater control of fermentation. Pure cultures of selected yeast
strains,  mostly  Saccharomyces  cerevisiae,  are  added to  grape  must,  leading to  more
predictable outcomes and decreasing the risk of spoilage. Besides yeasts, lactic acid
bacteria also play an important role, in the final wine quality. Thus, this chapter attempts
to present an overview of grape berry physiology and metabolome to provide a deep
understanding of the primary and secondary metabolites accumulated in the grape
berries  and  their  potential  impact  in  wine  quality.  In  addition,  biotechnological
approaches for wine quality practiced during wine alcoholic and malolactic fermenta-
tion will also be discussed.

Keywords: grape physiology, grape metabolites, wine biotechnology, alcoholic fer-
mentation, malolactic fermentation, microbial metabolites

1. Introduction

Grape berry chemical composition is complex, containing hundreds of compounds. Water (75–
85%) is the main component followed by sugars and then organic acids. Other important
compounds include amino acids, proteins, and phenolic compounds. Berry sugar composition
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has a key role in wine quality, since it determines alcohol content in wines [1]. Grape sugar,
acidity, pH, and color are considered to mark harvest. Bouquet and flavor are related to the
winemaker’s expertise, stabilization, and storage processes, but primarily they are related to
grape varietal character and its particular expression in a given terroir.

Nowadays, wine fermentations are driven mostly by single-strain inoculations, allowing
greater fermentation control, leading to more predictable outcomes and decreasing the risk of
spoilage by other yeasts [2]. During must fermentation, Saccharomyces cerevisiae produces a
plethora of active-aroma secondary metabolites and releases many aroma compounds from
inactive precursors present in grape juice, which significantly affect the sensory quality of the
final wine [3, 4]. Besides yeasts, lactic acid bacteria (LAB) are members of the normal microbiota
that appears in all type of wines (white and red), and, therefore, they also play an important
role in their final quality. Malolactic fermentation (MLF), a long-standing process of deacidi-
fication in winemaking carried by LAB, is a reaction of l-malic acid decarboxylation to l-lactic
acid. Complex metabolic activities also occur, thus suggesting that MLF can positively or
negatively affect the final wine quality [5, 6].

2. Grape berry physiology and metabolome

2.1. Morphology and anatomy of grape berries

After successful pollination and fertilization of ovules within a flower berry development
initiates [7]. The formation and growth of grape (Vitis vinifera) berries follows a double sigmoid
pattern with three distinct phases [8]: I, rapid cell division and expansion in green berries; II
or lag phase, in which cell expansion ceases; and III, in which growth is reinitiated and the
fruit matures. The berry fruit comprises up to four seeds surrounded by the inner endocarp,
the middle mesocarp, pulp or flesh, and the outer exocarp or skin [8, 9] (Figure 1).

Figure 1. Structure of a ripe grape berry. Illustrated by Sílvia Afonso.

The exocarp consisting of a cuticle-covered epidermis, which represents 5–18% of the fresh
weight of the fruit [10] and several layers of underlying thick-walled cells of hypodermis,
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contains most of the skin flavonoids [11], notably anthocyanins in the outermost layers of the
red grape varieties [8], interspersed with cells rich in needle-like crystals (raphides) [12].
Epidermis has non-photosynthetic cells with vacuoles containing large oil droplets [8]. Small
berries have greater color, tannins, and flavor compounds than large berries because skin has
a higher percentage of the total mass of small berries [7]. Scanning electron microscopy showed
very few but functional stomata on young berries and wax-filled stomata on older berries [13],
which accumulate polyphenolics and abnormally high concentrations of silicon and calcium
in the peristomatal protuberances of up to 200 µm diameter [14].

At harvest, the cuticle of grape berry had an amorphous outer region and a mainly reticulate
inner region [15]. During fruit development, the composition of the cuticular waxes changed,
being oleanolic acid the main constituent, representing 50–80% of the total weight [16]. The
soft wax was a mixture of long chain fatty acids (C16 and C18 fatty acid esters [17]), alcohols,
aldehydes, esters, and hydrocarbons [18].

The mesocarp consists of thin-walled parenchyma [12]. The cells are round to ovoid and
contain large vacuoles, which are the primary sites for the accumulation of sugars and
phenolics [8], water, and organic acids [9] during grape berry ripening. According to Coombe
[19], the translucent and hydrated mesocarp composes 85–87% of the berry’s spherical volume.
Altogether these make up 99.5% of the juice mass and hence are the major determinants of
berry size and quality [9, 20]. The remaining 0.5% of berry components are phenolics, terpe-
noids, lipids, cellulose, and pectin [20]. The endocarp consists of crystal-containing cells
(druses) and an inner epidermis [12].

Grape seeds are contained in locules (Figure 1), and are composed of an outer seed coat, the
endosperm, and the embryo [9]. As with most seeds, the endosperm comprises the bulk of the
grape seed and serves to nourish the embryo during early growth. The normal or perfect
number of seeds in the grape is four [9], but lack of ovule fertilization or ovule abortion reduces
the number of developing seeds, generally resulting in smaller berry size [7]. Based upon recent
molecular evidence, auxin is synthesized in the ovule and transported to the pericarp upon
fertilization, where it induces gibberellin (GA) biosynthesis. The GA then degrades DELLA
proteins that repress ovary growth and fruit initiation [21]. The size of mature berries at harvest
is also a function of the number of cells divisions before and after flowering, extent of growth
of these cells [22], and the extent of preharvest shrinkage [23].

High level of tannins is observed in the seed coat [9, 11]. Similar to the tannins and phenols
found in the flesh, these tannins also decline greatly on a per-berry basis after véraison [24].

Berry vascular tissue develops directly from that of the ovary. It consists primarily of a series
of peripheral bundles that ramify throughout the outer circumference of the berry and axial
bundles that extend directly up through the stem [8]. Grape berry is provided through the
berry stem or pedicel by a vascular system composed of xylem and phloem vessels [25]. Water,
minerals, hormones, and nutrients are transported from the root system throughout the vine
by the xylem tissue [25]. Present evidence indicates that in the final stages of grape develop-
ment, water movement through the xylem vessels decreases markedly [25]. But, it seems that
the fruit is not hydraulically isolated from the parent grapevine by xylem occlusion then,
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rather, is “hydraulically buffered” by water delivered via the phloem [9]. Berry is also supplied
by the phloem, which is the vasculature involved in photosynthate (sucrose) transport from
the canopy to the vine [25].

2.2. Grape primary and secondary metabolites

2.2.1. Sugars

One of the main features of the grape-ripening process is the accumulation of sugars in the
form of glucose and fructose within the cellular medium, specific in vacuole. In addition, sugar
content is an important indicator often used to assess ripeness and to mark grape harvest. But,
it is also possible to quantify small traces of sucrose in V. rotundifolia and hybrids between V.
labrusca and V. vinifera grapevines [26]. Liu et al. [27] analyzed sugar concentration of 98
different grape cultivars and concluded that glucose (45.86–122.89 mg/mL) and fructose (47.64–
131.04 mg/mL) were the predominant sugars in grape berries. During grape berry maturation,
sucrose is produced in leaves by photosynthetic carbon assimilation and is transported to the
berry in the phloem [24]. Sucrose is loaded into the phloem by either a symplastic or apoplastic
mechanism [28]. However, it is at véraison that begins the sugar accumulation and the imported
sucrose is converted into hexoses as a result of the activity of invertases [29].

Grape berries accumulate glucose and fructose in equal amounts at a relatively constant rate
during ripening [29]. In addition, after véraison there is a considerable accumulation of glucose
and fructose in the vacuoles of mesocarp cells, while 20 days after this period, the hexose
content of the grape berry is close to 1 M, with a glucose/fructose ratio of 1 [19, 30]. Grape sugar
concentration and composition is mainly determined by several factors, such as genotype [26,
31], vineyard management [32, 33], and climatic conditions [34, 35]. Moreover, in last years, as
a result of climate change, there is a tendency for a sugar increase in grapes [36]. But, according
to Mira de Orduña [35], the extremely high sugar levels reached at harvest today, especially
in warm climates, may be rather associated with the desire to optimize technical or polyphe-
nolic and/or aromatic maturity.

2.2.2. Organic acids and nitrogenous compounds

l-Tartaric and l-malic acids contribute to around 90% of the organic acid content in mature
grapes [37, 38]. Minor amounts of citric, succinic, lactic, and acetic acids are also present in
ripened grapes [39]. Despite l-tartaric and l-malic acids having similar chemical structures,
they are synthesized and degraded by evidently different metabolic pathways in the grape
berries. l-Tartaric acid synthesis in grape berries occurs during the period of grape growth [19,
40]. Tartaric acid pathway using l-ascorbic acid (vitamin C) is considered to be responsible for
>95% of grape l-tartaric acid production [41]. l-Malic acid synthesis indicates that-carboxyla-
tion of pyruvate or of phosphoenol pyruvate is the most important pathway [42]. Accumula-
tion of acids usually occurs at the beginning of berry development. The organic acid content
increases up to véraison and then declines. The content of organic acids is determined by a
balance between their synthesis and degradation. l-Tartaric acid was the most prominent
acid from véraison until the fruits were fully mature. l-Malic acid content increased gradually
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until véraison, after which it decreased with fruit ripening [37]. Grape acid composition is
influenced by many factors such as grape variety, environmental conditions, and cultural
practices [43]. High malate-producing grape varieties have been identified, such as Carignane,
Chardonnay, Grenache, Malbec, and Pinot Noir, as well as high tartrate-producing grape
varieties such as Merlot, Semillon, Riesling, and Thompson Seedless [44]. Temperature is a key
factor in the rate of l-malic acid degradation during the berries ripening; with low tempera-
tures, higher concentration of l-malic acid was observed [43]. l-Tartaric acid is presumed to
be more stable when exposed to higher temperature, being the slight decreases during ripening
due to dilution from berry expansion [45, 46].

Grapes nitrogenous compounds include ammonium cations and organic nitrogenous com-
pounds such as amino acids, hexose amines, peptides, nucleic acids, and proteins. As matu-
ration happens, organic nitrogen progressively increases while ammonia slightly declines. The
synthesis of amino acids, peptides, and protein occurs during the last 6–8 weeks of berry
ripening [47]. In grapes, the main free amino acids include proline (up to 2 g/L), arginine (up
to 1.6 g/L), and to a lesser extent, alanine, aspartic acid, and glutamic acid [48]. However,
compositional differences in amino acids were observed by Stines et al. [49] among grape
varieties, proline and arginine always being the major grape amino acids. In all grape varieties,
most of the proline accumulation happened late in ripening, nearby 4 weeks of post-véraison.
In opposite, arginine accumulation started before véraison and continued to maturity, exclud-
ing grape varieties in which a great level of proline accumulated [49]. The variation of amino
acid profile and their concentration in grapes depends on grape variety, but also on viticultural
management and environmental conditions [43, 50, 51].

According to Hsu and Heatherbell [52], grapes contain naturally a wide range of different
proteins, up to 41 protein fractions with molecular mass ranging from 11.2 to 190 kDa and
isoelectric point from 2.5 to 8.7 [53, 54]. Soluble proteins in grape are globular proteins, mainly
albumins [55, 56]. There is a significant increase in grape total protein content after véraison
being a small content of proteins synthesized significantly during grape ripening [55, 57]. The
most abundant grape proteins synthesized during ripening are pathogenesis-related proteins,
including chitinases (32 kDa) and thaumatin-like proteins (24 kDa) [29, 57, 58].

2.2.3. Aroma and flavor compounds

Free and bound terpene grape content has been used to measure berry flavorant development
and potential. Numerous types of flavorants existed in the form of glycosidic precursors.
Analysis of the total precursor content by assessment of the glycoside glucose (GG) content of
the grapes may yield a more complete depiction of the grape flavorant potential [59]. During
grape maturity, changes in the concentration and diversity of aroma precursors and volatile
compounds occurred [60, 61]. Lacey et al. [60] observed that grapes grown under cool
temperatures showed higher grape methoxypyrazine concentration than grapes grown under
hot temperatures. Grape methoxypyrazine levels were relatively high at véraison but decreased
markedly with grape ripening. However, since grape maturation is genetically controlled, it
is considerably influenced by environmental conditions [60].

Grape and Wine Metabolites: Biotechnological Approaches to Improve Wine Quality
http://dx.doi.org/10.5772/64822

191



2.2.4. Phenolic compounds

Phenolic compounds are very important for wine quality because they are responsible for most
of the wine sensory characteristics, particularly color and astringency. These groups of
compounds constitute a diverse group of secondary metabolites that exist in grapes, mainly
in the grape berries’ skins and seeds [62] and also in grape stems [63]. The phenolic compounds
in V. vinifera grapes include two classes of phenolic compounds: non-flavonoids and flavo-
noids. The non-flavonoid compounds include phenolic acids divided into hydroxybenzoic
acids and hydroxycinnamic acids, but also other phenol derivatives such as stilbenes (Figure
2). Non-flavonoids incorporate C6-C3 hydroxycinnmates acids, C6-C1 hydroxybenzoic acids,
and C6-C3-C6 stilbenes trans-resveratrol, cis-resveratrol, and trans-resveratrol glucoside.

Figure 2. Main non-flavonoid compounds found in V. vinifera grapes.

For flavonoid compounds, there are a large number of subclasses, such as flavonols, flavanols,
and anthocyanins [64]. Flavonols are the most abundant phenolic compounds in grape skins
[65], while grape seeds are rich in flavan-3-ols [66]. Flavonoids are characterized by a basic
structure of 15 carbon atoms comprising two aromatic rings bound through a three carbon
chain (C6-C3-C6). The major C6-C3-C6 flavonoids in grapes include conjugates of flavonols
quercetin, and myricetin; flavan-3-ols (+)-catechin and (−)-epicatechin; and malvidin-3-O-
glucoside and other anthocyanins (Figure 3a–c).

According to Pastrana-Bonilla et al. [67], the average concentration of the total phenolic
compounds in different grape fractions varied from 2178.8 mg/g gallic acid equivalent in seeds
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to 374.6 mg/g gallic acid equivalent in skins. In addition, it is also possible to found low
concentrations of phenolic compounds in pulps (23.8 mg/g gallic acid equivalent).

Figure 3. (a) Main flavonoid compounds (anthocyanidins) found in V. vinifera grape varieties. (b) Main flavonoid com-
pounds (flavan-3-ols and procyanidins) found in V. vinifera grape varieties. (c) Main flavonoid compounds (flavonols)
found in V. vinifera grape varieties.

In general, the phenolic composition of grapes is influenced by different factors, such as grape
variety [68, 69], sunlight exposition [70], solar radiation [71] altitude [72], soil composition [73],
climate [70, 74–76], cultivation practices [43, 74], exposure to diseases [77], and the degree of
grape ripeness [63, 69].

The quantification of phenolic acids, stilbenes, monomeric anthocyanins, flavan-3-ols, and
proanthocyanidins in red grape varieties is summarized in Tables 1–3 and the quantification
of phenolic acids, stilbenes, flavan-3-ols, and proanthocyanidins in white grape varieties is
summarized in Table 4.
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Phenolic compounds Grape variety Concentration References

Phenolic acids Negroamaro 7.3a

Gallic acid Susumaniello 45.0a Nicoletti et al. [78]

Malvasia Nera 77.3a

Aglianico 151.9a

Merlot 66.6a

Carménère 2.8b Obreque-Slier et al. [79]

Cabernet Sauvignon 3.5b

Merlot 9.8c Montealegre et al. [80]

Cencibel 7.3c

Cabernet Sauvignon 9.0c

Shiraz 6.8c

Protocatechuic acid Negroamaro 42.0a Nicoletti et al. [78]

Susumaniello 8.5a

Malvasia Nera 46.0a

Aglianico 37.4a

Cesanese 31.1a

Merlot 328.7a

Cencibel 1.5b Montealegre et al. [80]

Cabernet Sauvignon 2.4b

Merlot 1.7b

Shiraz 2.4b

Merlot 8.7c Montealegre et al. [80]

Cencibel 3.3c

Cabernet Sauvignon 7.1c

Shiraz 6.2c

Caftaric acid Primitivo 1.89a Nicoletti et al. [78]

Negroamaro 8.5a

Susumaniello 171.7a

Malvasia Nera 171.9a

Aglianico 320.4a

Cesanese 28.8a

Alphonse 645.0a

Merlot 746.3a

Carménère 0.6b Obreque-Slier et al. [79]
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Phenolic compounds Grape variety Concentration References

Cabernet Sauvignon 0.7b

Stilbenes Primitivo 30.7a Nicoletti et al. [78]

Trans-piceid Negroamaro 4.14a

Susumaniello 150.3a

Uva di Troia 15.3a

Malvasia Nera 98.0a

Aglianico 75.7a

Cesanese 12.0a

Merlot 26.3a

Alphonse Lavallée 24.1a

Castelão 67.24c Sun et al. [81]

Syrah 10.43c

Tinta Roriz 11.57c

Trans-resveratrol Primitivo 13.9a Nicoletti et al. [78]

Negroamaro 3.6a

Susumaniello 63.0a

Uva di Troia 4.6a

Malvasia Nera 48.5a

Aglianico 61.1a

Cesanese 8.1a

Merlot 9.2a

Alphonse Lavallée 40.0a

Blauer Burgunder 0.5d Mikeš et al. [82]

Lemberger 0.3d

Saint Laurent 1.0d

Saint Laurent 2.3d Balík et al. [83]

Blauer Portugieser 0.4d

Andre 0.4d

Castelão 6.8d Sun et al. [81]

amg/kg of berry dry weight.
bmg/kg of fresh grape skin.
cmg/kg of fresh grape seed.
dmg/kg dry skin.

Table 1. Quantification of phenolic acids and stilbenes in red grape varieties.
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Monomeric anthocyanins Grape variety Concentration References

Delphinidin 3-O-glucoside Cabernet-Sauvignon 431.6a Ortega-Regules et al. [84]

Merlot 231.7a

Syrah 258.0a

Cabernet Sauvignon 4.67b Revilla et al. [85]

Garnacha 2.26b

Graciano 6.81b

Mencia 5.13b

Merlot 7.53b

Tempranillo 10.9b

Castelão Francês 6.2c Jordão et al. [86]

Touriga Francesa 0.9c

Cyanidin 3-O-glucoside Cabernet-Sauvignon 53.1a Ortega-Regules et al. [84]

Merlot 48.2a

Syrah 27.9a

Cabernet Sauvignon 0.90b Revilla et al. [85]

Garnacha 1.02b

Graciano 1.28b

Mencia 2.15b

Merlot 5.52b

Tempranillo 3.26b

Castelão Francês 2.6c Jordão et al. [86]

Touriga Francesa 0.1c

Petunidin-3-O-glucoside Cabernet-Sauvignon 337.4c Ortega-Regules et al. [84]

Merlot 270.9a

Syrah 385.2a

Cabernet Sauvignon 4.21b Revilla et al. [85]

Garnacha 3.73b

Graciano 7.21b

Mencia 6.68b

Merlot 7.0b

Tempranillo 11.11b

Castelão Francês 8.5c Jordão et al. [86]

Touriga Francesa 2.5c

Peonidin 3-O-glucoside Cabernet-Sauvignon 259.5a Ortega-Regules et al. [84]
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Monomeric anthocyanins Grape variety Concentration References

Merlot 381.9a

Syrah 299.2a

Cabernet Sauvignon 4.87b Revilla et al. [85]

Garnacha 12.69b

Graciano 12.79b

Mencia 14.85b

Merlot 14.27b

Tempranillo 7.81b

Castelão Francês 11.7c Jordão et al. [86]

Touriga Francesa 3.6c

Cabernet-Sauvignon 2506.3a Ortega-Regules et al. [84]

Malvidin 3-O-glucoside Merlot 1834.7a

Syrah 2889.7a

Cabernet Sauvignon 41.45b Revilla et al. [85]

Garnacha 64.69b

Graciano 53.69b

Mencia 47.40b

Merlot 35.54b

Tempranillo 46.35b

Castelão Francês 59.2c Jordão et al. [86]

Touriga Francesa 46.3c

aµg/g grape skin.
bRelative amount of anthocyanidins (%).
c% weight of anthocyanins/weight grape.

Table 2. Quantification of monomeric anthocyanins in red grape varieties.

Phenolic compounds Grape variety Concentration References

Flavan-3-ols Baboso Negro 51.61a

(+)-Catechin Listán Negro 54.25a Pérez-Trujillo et al. [87]

Negramoll 51.31a

Tintilla 50.10a

Vijariego Negro 49.09a

Touriga Nacional 0.012–0.021b Mateus et al. [88]

Touriga Francesa 0.012b
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Phenolic compounds Grape variety Concentration References

Merlot 240.0c Montealegre et al. [80]

Cencibel 82.0c

Cabernet Sauvignon 270.0c

Shiraz 120.0c

(−)-Epicatechin Baboso Negro 16.50a Pérez-Trujillo et al. [87]

Listán Negro 13.77a

Negramoll 15.07a

Tintilla 20.55a

Vijariego Negro 16.13a

Touriga Francesa 0.010b Mateus et al. [88]

Merlot 210.0c Montealegre et al. [80]

Cencibel 60.0c

Cabernet Sauvignon 130.0c

Shiraz 130.0c

Proanthocyanidins Touriga Nacional 0.013b Mateus et al. [88]

Procyanidin B3 Merlot 64.0c Montealegre et al. [80]

Cencibel 43.0c

Cabernet Sauvignon 50.0c

Shiraz 55.0c

Procyanidin B1 Baboso Negro 15.95a Pérez-Trujillo et al. [87]

Listán Negro 15.00a

Negramoll 14.69a

Tintilla 13.64a

Vijariego Negro 13.39a

Touriga Nacional 0.184–0.260b Mateus et al. [88]

Touriga Francesa 0.090–0.138b

Merlot 170.0c Montealegre et al. [80]

Cencibel 74.0c

Cabernet Sauvignon 150.0c

Shiraz 100.0c

Procyanidin B4 Merlot 80.0c Montealegre et al. [80]

Cencibel 39.0c

Cabernet Sauvignon 57.0c

Shiraz 33.0c
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Phenolic compounds Grape variety Concentration References

Procyanidin B2 Baboso Negro 10.39a Pérez-Trujillo et al. [87]

Listán Negro 5.74a

Negramoll 7.55a

Tintilla 9.92a

Vijariego Negro 7.44a

Touriga Nacional 0.020b Mateus et al. [88]

Touriga Francesa 0.011–0.015b

Merlot 37c Montealegre et al. [80]

Cencibel 21.0c

Cabernet Sauvignon 41.0c

Shiraz 23.0c

aMolar percentages.
bmg/g dry weight.
cmg/kg of fresh grape seed.

Table 3. Quantification of flavan-3-ols and proanthocyanidins in red grape varieties.

Phenolic compounds Grape variety Concentration References

Phenolic acids Grüner Veltliner 3.9a

Gallic acid Hibernal 4.0a Mikeš et al. [82]

Malverina 3.5a

Müller Thurgau 2.6a

Rheinriesling 2.1a

Welschriesling 1.8a

Neuburger 3.9a

Protocatechuic acid Chardonnay 4.8b Montealegre et al. [80]

Sauvignon Blanc 4.4b

Moscatel 3.6b

Gewürztraminer 6.0b

Caftaric acid Moscato 48.4c Nicoletti et al. [78]

Stilbenes Chardonnay 1.1a Balík et al. [83]

Trans-piceid Welschriesling 0.4a

Pinot Gris 0.6a

Trans-resveratrol Moscato 3.89c Nicoletti et al. [78]

Grüner Veltliner 0.1a Mikeš et al. [82]

Hibernal 0.3a
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Phenolic compounds Grape variety Concentration References

Malverina 0.3a

Müller Thurgau 0.3a

Rheinriesling 0.2a

Welschriesling 0.5a

Neuburger 1.5a

Chardonnay 0.3b

Welschriesling 1.6b Balík et al. [83]

Pinot Gris 1.1b

Flavan-3-ols Chardonnay 123a

(+)-Catechin Welschriesling 61.0a Balík et al. [83]

Pinot Gris 481a

Ugni blanc 2.6–222.0d De Freitas and Glories [89]

Sémillon 12–35.2d

Chardonnay 390.0c Montealegre et al. [80]

Sauvignon Blanc 200.1c

Moscatel 350.0c

Gewürztraminer 500.0c

Riesling 400.0c

Viogner 120.0c

(−)-Epicatechin Chardonnay 144a Balík et al. [83]

Welschriesling 84.3a

Pinot Gris 251a

Ugni blanc 0.04–3.0d De Freitas and Glories [89]

Sémillon 0.03–1.6d

Chardonnay 310.0c Montealegre et al. [80]

Sauvignon Blanc 130.0c

Moscatel 120.0c

Gewürztraminer 150.0c

Riesling 160.0c

Viogner 110.0c

Proanthocyanidins Ugni blanc 0.2–0.3d De Freitas and Glories [89]

Procyanidin B3 Sémillon 0.01–0.2d

Chardonnay 52.0c Montealegre et al. [80]

Sauvignon Blanc 52.0c

Moscatel 39.0c

Gewürztraminer 56.0c
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Phenolic compounds Grape variety Concentration References

Riesling 43.0c

Viogner 51.0c

Procyanidin B1 Ugni blanc 1.1–1.9d De Freitas and Glories [89]

Sémillon 0.02–0.4d

Chardonnay 380.0c Montealegre et al. [80]

Sauvignon Blanc 250.0c

Moscatel 330.1c

Gewürztraminer 460.0c

Riesling 620.0c

Viogner 200.0c

Procyanidin B4 Ugni blanc 0.04d De Freitas and Glories [89]

Chardonnay 71.5c Montealegre et al. [80]

Sauvignon Blanc 54.0c

Moscatel 40.0c

Gewürztraminer 70.0c

Riesling 95.0c

Viogner 53.0c

Procyanidin B2 Ugni blanc 0.06–0.2d De Freitas and Glories [89]

Chardonnay 33.0c Montealegre et al. [80]

Sauvignon Blanc 19.0c

Moscatel 15.0c

Gewürztraminer 22.0c

Riesling 33.0c

Viogner 19.0c

amg/kg fresh grape weight.
bmg/kg of fresh grape seed.
cmg/kg of berry dry weight.
dmg/g dry weight.

Table 4. Quantification of phenolic acids, stilbenes, flavan-3-ols, and proanthocyanidins in white grape varieties.

3. Biotechnological approaches for wine quality

More than 800 volatile compounds have been identified in wines, with a concentration range
from hundreds of mg/L to the µg/L or ng/L [90]. The wine bouquet is formed by secondary
metabolites synthesized by an extensive range of microbial species (yeasts and bacteria). Wine
alcoholic fermentation (AF) is the key for innovation or creation of biotechnology that will
change the expanding market [91] (Figure 4).
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Figure 4. Grape juice is converted into wine by the action of wine yeast and bacteria during alcoholic and malolactic
fermentations. Some wine components are wholly generated by these microorganisms as part of metabolism, while
others are essentially synthesized by the grapevine. Wine quality and style is determined by the quality and quantity
of compounds produced or modified by must/wine microflora.

In addition to yeasts, LAB also appears in all type of wines, being responsible for MLF that
normally occurs after AF but may also occur simultaneously [92]. During the winemaking
process, indigenous populations of LAB vary quantitatively and qualitatively [93], through a
succession of species and strains before, during and after the AF [94]. After a phase of latency,
the surviving cells begin to multiply and entering the exponential growth phase, reaching
populations from 106 to 108 cfu/mL, almost exclusively, constituted by strains of Oenococcus
oeni, species that dominate this stage and performs the MLF. Normally, a great diversity of
strains of Oenococcus oeni at the beginning of the MLF is detected, while at the end only one or
two predominate [95].

3.1. Yeasts metabolites: the imperceptible search of perfection

Wine yeasts contribute to wine aroma by a number of mechanisms: (i) they utilize grape juice
constituents and transform them into flavor-impacting components, then (ii) they produce
enzymes capable to transform neutral grape compounds into flavor-active compounds, and
finally (iii) they can synthesize many flavor-active compounds such as primary and secondary
metabolites [96].

Esters, in wine, are mainly originated from yeast metabolism during AF. But, some esters are
also found in grape berry [97], where they occur in small amounts, contributing to the aroma
of V. vinifera varieties [98]. Esters are formed via an intracellular process, catalyzed by an acyl
transferase or ester synthase [99]. The concentration of esters usually found in wine is mostly
well above their sensory threshold levels. Fruity and floral terms in Chardonnay wines were
related to 2-phenylethyl acetate, as a rose-like/honey aroma [100] (Table 5). In red wines, ethyl
butyrate (pineapple aroma), ethyl 2-methylbutyrate (sweet, floral, fruity, and apple), ethyl 3-
methylbutyrate (strawberry, ethereal, buttery, and ripe), isoamyl acetate (banana-like aroma),
ethyl hexanoate (anise seed, apple, or pineapple aroma), and ethyl octanoate (sweet, cognac,
and apricot aroma) made a main contribution to the fruity character of wines [101] (Table 5).
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These esters also appear in higher levels in wines after bio-reduction (deacidification) of wine’s
volatile acidity [102]. A study of overexpression S. cerevisiae alcohol acetyltransferases genes,
ATF1p, ATF2p, and Lg-ATF1p, was performed by Verstrepen et al. [103]. Analysis of the
fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affected
the production of ethyl acetate and isoamyl acetate. But, factors such as oxygen and temper-
ature that allow ester and higher alcohol synthesis must be monitored during AF [104].

Compounds  Odor description  Det. Threshold
(µg/L) 

References 

Isoamyl acetate Banana 30 Guth [115]

2-Phenylethylacetate Roses, honey 250 Guth [115]

Ethylpropionate Ethereal, fruity, rum-like 1800 Etievant [116]

Ethylisobutyrate Strawberry, ethereal, buttery,
ripe

15 Etievant [116]; Ong and Acree [117]

Ethyl butyrate Pineapple 20 Guth [115]

Ethyl 2-methylbutyrate  Sweet, floral, fruity, apple 1–18 Guth [115]; Ferreira et al. [118]

Ethylisovalerate Fruity 3 Ferreira et al. [118]

Ethyl hexanoate Anise seed, apple, pineapple 5–14 Guth [115]; Ferreira et al. [118]

Ethyl octanoate Sweet, cognac, apricot 2–5 Guth [115]; Ferreira et al. [118]

Diethylsuccinate Fruity, melon 1200 Peinado et al. [119]

Acetaldehyde Grass, green, apple, sherry 100,000 Carlton et al. [120]

Benzaldehyde Almond 3500 Delfini et al. [121]

Linalool Rose, lavender 25 Ferreira et al. [118]

α-Terpineol Lily of the valley 300 Mateo and Jiménez [122]

Citronellol Citronella 100 Guth [115]

Geraniol Rose-like; geranium flowers ~75 Pardo et al. [109]

2-phenylethanol Roses 10,000 Guth [115]

Isoamyl alcohol Marzipan, burnt, whisky
-like

30,000 Guth [115]

Butyric acid Rancid, cheese 173 Ferreira et al. [118]

Isovaleric acid Rancid, sweaty 33.4 Ferreira et al. [118]

Hexanoic acid Sweaty, cheesenotes 420–3000 Guth [115]; Ferreira et al. [118]

Octanoic acid Grass acid- like 500–8800 Etievant [116]; Ferreira et al. [118]

Decanoic acid Soapy 1000–15,000 Guth [115]; Ferreira et al. [118]

Table 5. Major wine-yeast aromatic compounds, odor description, and detection thresholds in white and red wines.

Ethanol and glycerol are quantitatively the largest group of alcohols found in wine. Both
contribute to the textural aspects of wines [1]. The search of yeast that can impart specific
desirable characteristics to wines led to investigations such as the production of optimal levels
of glycerol (the overexpression of GPD1, GPD2, and FPS1, together with the deletion of the
ALD6 acetaldehyde dehydrogenase gene) [105].
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Medium-chain fatty acids and their ethyl esters are natural components of alcoholic beverages.
Fatty acids (butyric, isovaleric, hexanoic, octanoic, and decanoic acids, among others; Table
5) are produced by yeasts as intermediates in the biosynthesis of long-chain fatty acids,
important components of yeast membrane [106]. Their aroma goes from vinegar to pungent,
rancid, and soapy, sweetie, fruit and butter [106] (Table 5). One of the major problematic
volatile acids is acetic acid. It can be formed as a by-product of AF, MLF, or as a product of the
metabolism of acetic bacteria. Acetic acid affects the quality of certain types of wine when it is
present above a given concentration [107] due to its unpleasant vinegar aroma.

Terpenes are one of the major grape components that contribute to wine aroma. This is
especially valid to wines of Gewürztraminer and Muscat varieties, but these flavor compounds
are also present in other grape varieties, where they supplement other varietal flavors and
aromas. They are present in two forms: a free volatile and a non-volatile sugar-conjugated
[108]. Geraniol (geranium flowers aroma) and linalool (rose or lavender-like aroma) are
considered to be the most important of the monoterpene alcohols as they are present in higher
levels and have lower perception thresholds than other major wine monoterpenes [109].
Monoterpenes can be released from their glycosides either by acid or by enzymatic hydrolysis.
Hydrolysis during winemaking is caused by grape [110] or microorganisms enzymes taking
part in the process [111]. In the yeasts that were selected in the past years, glycosidase activities
have been used for the hydrolysis of glycoconjugated aromatic precursors in order to enhance
wine sensorial quality [112]. Fungi are considered a promising genetic source for commercial
production of recombinant β-glucosidase [113]. In a work by Zietsman et al. [114], an yeast
strain (S. cerevisiae VIN13) was built to express and secrete the Aspergillus awamori encoding a
B-type α-l-arabinofuranosidase (AwAbfB) in combination with either the β-glucosidases BGL2
from Saccharomycopsis fibuligera or the BGLA from Aspergillus kawachii. Coexpression of
AwAbfB and BGL2 in VIN13 increased free monoterpenes in wines. Panelists confirmed wine
aroma profile improvement, mainly in floral character [114]. Recently, Pardo et al. [109] found
that the expression of Ocimum basilicum (sweet basil) geraniol synthase (GES) gene in an S.
cerevisiae wine strain greatly changed terpene profile of wine made from a non-aromatic grape
variety.

3.2. Lactic acid bacteria metabolites: beyond malolactic fermentation

The complexity and diversity of LAB metabolic activities in wine illustrates that MLF is more
than a mere decarboxylation of l-malic acid into l-lactic acid, and it may affect positively and/
or negatively the quality of wine [123] (Table 6). Besides to the decrease in acidity, MLF also
improves sensorial characteristics and increases wines microbiological stability that under-
gone this important second fermentation [124, 125].

Aromatic modifications are due to l-lactic acid, less aggressive, and due to the increase of a
number of other compounds such as diacetyl, acetoin, 2,3-butanediol, esters mainly ethyl
lactate and diethyl succinate, and some higher alcohols and aromatic aglycones released by
the action of β-glucosidases [126–128]. Sumby et al. [129] have verified the impact that different
strains of O. oeni had on wine aroma and related that to their ester hydrolysis and synthesis
abilities. For the aromatic complexity of wines, the production of volatile sulfur compounds,
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particularly 3-methylsulfanyl-propionic acid with chocolate and toasted odors [130], and the
activity of taninoacil hydrolase enzyme, commonly termed tannase, reducing wine astringen-
cy and turbidity [131], also contribute.

Compounds Odor description Det. threshold

(µg/L)

References

4-Ethylguaiacol Bacon, spice, clove, or smoky

aromas

33 Dai et al. [26]; Bartowsky [123]

4-Ethylphenol Horse and barnyard odor 440 Barthelmebs et al. [147], [148]

Tetrahydropyridines Mousy off-odor 60 Swiegers et al. [149];

Harrison and Dake [150]

3- Methylsulfanyl-

propionic acid

Chocolate and toasted odors 244 Pripis-Nicolau et al. [151]

Ethyl lactate Lactic, raspberry 154–636 Ferreira et al. [118]; Bartowsky [152]

Diethyl succinate Fruity, melon 1200 Peinado et al. [119]; Bartowsky [152]

Diacetyl Butter 200–2800 Martineau and Henick-Kling [153];

Bartowsky and Henschke [154]

Acetoin No negative organoleptic

influence. Unpleasant buttery

flavor at concentrations higher

than threshold

150 Swiegers et al. [155]; Ehsani et al. [156]

2,3-Butanediol Neutral sensory qualities 150 Swiegers et al. [155];

Romano and Suzzi [157]

Table 6. Major LAB aromatic compounds, odor description, and detection thresholds in wine.

Concerning to negative effects on wine quality, LAB may be responsible for the formation of
ethyl carbamate by the degradation of arginine [124] and for the formation of biogenic amines
such as histamine, tyramine, and putrescine by the degradation of precursor amino acids [132,
133]. Also, although less frequent nowadays, bitterness by acrolein formation from glycerol

Grape and Wine Metabolites: Biotechnological Approaches to Improve Wine Quality
http://dx.doi.org/10.5772/64822

205



degradation [134], butter aroma due to excessive production of diacetyl [135], flocculent
growth [136], mannitol taint [137], ropiness [138], tartaric acid degradation [137], mousy off-
odor by acetamide production of tetrahydropyridines [139], the geranium off-odor [140], and
the formation of 4-ethilguaiacol and 4-ethylphenol volatile phenols [141, 142] are spoilage
phenomenons that may occur after malolactic fermentation. Nevertheless, it is thought that
the time between the completion of alcoholic fermentation and the start of malolactic fermen-
tation is the most likely time that Brettanomyces multiplies and produces “Brett character,” 4-
ethylphenol of flavor, in wine [143].

As what happens to other food products, some researchers defend the use of autochthones
LAB strains, more adapted and efficient to regional vinification conditions, for keeping the
typicity of wines, instead of using universal ones that may impart similar characteristics and
thus leading to final products that are too similar and also for preserving the local microbial
biodiversity [144, 145]. According to Marcobal and Mills [146], the knowledge of some wine
LAB whole genome, including the PSU1 O. oeni strain, allows deeper phylogenetic analyses
and their relation with key pathways involved in carbon and nitrogen metabolism, which will
foster modeling of O. oeni growth and metabolism in order to predict optimum strategies for
efficiently performing the MLF with a desired flavor outcome.

4. Composition of grapes and wines: new analytical techniques

Several different analytical approaches are increasingly used to profile the volatile, non-
volatile, and elemental composition of grapes and wines (see recent reviews, e.g., [158, 160]).

According to a review made by Ebeler [159], we can group these analytical approaches in (i)
targeted analysis of compounds, (ii) non-targeted analysis and profiling of metabolites, (iii)
elemental analysis, and (iv) relating chemical composition and sensory attributes (Table 7).

Therefore, wine composition and hence wine origin are possible by combining several
analytical techniques (Table 7) that offer significant advantages for trace quantification of
important aroma-active volatiles [174], [175] and taint compounds [163]. It is also possible to
comprehensively profile metals [178], including those that affect chemical stability and
oxidative reactions, and to characterize aroma qualities of complex mixtures [182]. Each of
these tools, alone and in combination, is providing significant new insights into variables
influencing grape and wine composition and flavor. Moreover, concerning to specific grape
compounds, in past years, several methodologies were also developed focused on the
identification, quantification, and also in extraction techniques. For example for phenolic
compounds, substantial developments for individual phenolic analysis, such as benzoic and
cinnamic acid, coumarins, tannins, lignins, lignans, and flavonoids, have occurred over the last
25 years. Thus, several extraction techniques have been employed namely for grape phenolic
compounds, such as ultrasounds and microwaves [183], supercritical fluid extraction [184],
subcritical water extraction [185], high hydrostatic pressure extraction [186], pulsed electric
fields [187], and enzymatic treatment [188].
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Analytical
approaches

Analytical techniques Examples and references

Targeted analysis of
compounds (i)

Selected ion monitoring and tandem
mass spectrometric, MS/MS or MSn

Analysis of trace analytes, with important sensory
properties—Ebeler [160] and Robinson et al. [161, 162]—
such as 2,4,6-trichloroanisole (TCA)—Hjelmeland et al.
[163]

Combination of liquid
chromatography, LC with mass
spectrometry, MS. MS/MS is the
combination of two mass analyzers
in one mass spectrometry instrument,
LC-MS/MS/LC-MS/MS.
Supercritical fluid chromatography
(SFC)

Smoke-derived volatile phenols—guaiacol and their
glycoside precursors, and anthocyanins from grapes and
wines—Kennison et al. [164–166], Hayasaka et al. [167],
and Pati et al. [168].
Polyphenols from grape seed extracts—Kamangerpour et
al. [169]

Non-targeted
analysis and
profiling of
metabolites (ii)

Ultra-high performance liquid
chromatography, UHPLC wish
operates in the 20,000 psi range,
combined with quadrupole time-of-
flight mass spectrometry, qTOF and
UHPLC-qTOF-MS

Varietal classification of wines—Vaclavik et al. [170] and
Flamini [171]

Ion cyclotron resonance mass
spectrometry, ICR-MS

Characterization of Pinot Noir grapes and wines and
chemodiversity comparison of different appellations:
Vintage vs terroir effects—Roullier-Gall et al. [172, 173]

Gas chromatography combined with
time-of-flight mass spectrometry, GC
GC-TOF-MS

Identification of over 350 volatile compounds in
Australian Cabernet Sauvignon wines—Robinson et al.
[174, 175]

Nuclear Magnetic Resonance, NMR 1H NMR metabolite profiling to relate chemical
composition to sensory perception of body and
mouthfeel of white wines—Kogerson et al. [176]

Elemental analysis
(iii)

Inductively coupled plasma mass
Spectrometry, ICP-MS

Relating elemental composition of wines to the vineyard
that the grapes were grown or in wish winery they were
made—Hopfer et al. [177].
Leaching of metals from stainless steel containers and
from closures—Hopfer et al. [178]

Relating chemical
composition and
sensory attributes
(iv)

Categorical principal components
analysis, CATPCA; principal
components analysis, PCA and
partial least squares analysis, PLS

One or more compounds that correlate with specific
aroma or flavor attributes—Polaskova et al. [179] and
development of a flavor lexicon using new statistical
nonparametric approaches—Vilela et al. [180] and
Monteiro et al. [181]

In-instrument gas chromatography
recomposition-olfactometry, GC-RO

Perceptual characterization and analysis of aroma
mixtures—Johnson et al. [182]

Table 7. Analytical approaches, analytical techniques used to profile the volatile, non-volatile and elemental
composition of grapes and wines.
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5. Final remarks

The study of the grape berry physiology and metabolome will provide a deep understanding
of the primary metabolites including sugars, organic acids and amino acids, and some
secondary metabolites accumulated in the grape berries such as phenolic compounds. This
issue is of particular importance for viticulturists and oenologists in order to know how grape
composition could affect wine quality. In addition, biotechnological approaches for wine
quality, practiced during wine AF and MLF, are also a promising tool available for oenologists
that improve wine quality, namely, their sensorial value.
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