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Abstract

In this chapter, we consider lossy compression of multichannel images acquired by
remote sensing systems. Two main features of such data are taken into account. First,
images contain inherent noise that can be of different intensity and type. Second, there
can be essential correlation between component images. These features can be exploited
in 3D compression that is demonstrated to be more efficient than component-wise
compression. The benefits are in considerably higher compression ratio attained for the
same or  even less  distortions  introduced.  It  is  shown that  important  performance
parameters of lossy compression can be rather easily and accurately predicted.

Keywords: adaptation, automation, lossy compression, multichannel, remote sensing,
image processing

1. Introduction

Remote sensing (RS) is an application area where compression of images acquired on-board
of an aircraft or a spacecraft is a very important task [1]. Its actuality is explained by continuous
tendencies  of  improving  sensor  spatial  resolution,  more  frequent  observation  of  sensed
terrains, larger number of exploited channels (e.g., in multi- and, especially, hyperspectral
sensing),  etc.  [2].  Meanwhile,  the  communication  channel  bandwidth  and  time  of  data
transferring can be limited [1, 3, 4]. Facilities of data processing on-board can be restricted.
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Possibilities of image compression in a lossless manner are often limited as well [4]. Even the
best  existing  methods  of  lossless  compression  applied  to  hyperspectral  data  and  fully
exploiting interband correlation inherent for such images provide a compression ratio (CR) of
about 4.5 [4, 5], and this is often not enough. Thus, there is a need in efficient methods for lossy
compression of acquired multichannel images.

There are several peculiarities of lossy compression with application to multichannel remote
sensing images. First, if it is performed on-board, full or partial automation is required [1, 6].
Second, lossy compression is reasonable and useful only if introduced losses do not have
essential impact on the value of compressed data, i.e., if accuracy and reliability of information
extracted from compressed images are approximately at the same level as from original
(uncompressed, compressed in a lossless manner) data. In this sense, introduced losses should
be smaller, or in the worst case, comparable to the original image distortions due to noise [7].
This means that image-processing (compression) methods should be adaptive to noise
characteristics. Meanwhile, noise in images acquired by modern multichannel RS sensors is
not additive and has more complicated nature [8–11]. Thus, either blind estimation of its
characteristics or attraction of available a priori information is needed. Third, adaptation to
other specific properties of subband images is desired. Here, we mean that images in channels
might have considerably different dynamic ranges, signal-to-noise ratios, and interchannel
correlation factors [8, 12, 13].

All these influence efficiency of lossy compression and open perspectives of its improvement.
Meanwhile, all or some of the aforementioned peculiarities of multichannel RS images are
often ignored in the design of lossy compression techniques.

On the one hand, it is well understood that high interchannel correlation should be exploited
for more sparse representation of data and reaching higher CR than for component-wise
compression [14–16]. On the other hand, there are many different ways to realize this. Different
transforms can be used [17–20]. Component image grouping can be organized in different
manner [15, 21, 22] and till the moment there are no strict rules what is the best way to do this
and what benefit can be maximally achieved compared to component-wise compression in the
sense of CR under condition of the same or smaller distortions introduced.

Noise characteristics and different dynamic ranges of data in component images are often not
taken into account in lossy compression as well. Little attention has been paid to these aspects
in the design of lossy compression techniques for the considered application although it is
clear that they are important and restrict applicability of methods designed for other types of
multidimensional data [3, 20, 23].

Requirements to lossy compression of multichannel images and their priority have to be taken
into consideration as well. The main requirements [1, 3, 20] are the following. First, introduced
distortions should not negatively influence the efficiency of solving further tasks of multi-
channel image processing such as classification, object detection, visual inspection, etc. Only
under aforementioned condition, the compressed data remain to be practically of the same
value as original images. This means that introduced distortions should be less or of the same
order as noise in each component (channel) image. Second, there can be a necessity to provide
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CR not smaller than some limit value or a desire to provide as large CR as possible. Third, lossy
compression and operations associated with it (preliminary analysis of data, some transfor-
mations, and/or normalizations, etc.) have to be quite simple, especially if one deals with lossy
compression on-board. Fourth, there can be some recommendations or restrictions imposed
on standardization of lossy compression or mathematical basis. Currently, there are no
standards for lossy compression of multichannel RS images although special efforts are put
toward its creation [3]. In addition, it is understood that most of the aforementioned require-
ments can be met on the basis of 2D or 3D orthogonal transforms under condition of proper
preparation of multichannel images to compression [20].

In this chapter, we focus on the aspects of automation and adaptation of lossy compression
with application to multichannel image processing. First, we show that noise is signal de-
pendent where its signal-dependent component is either of the same order as signal inde-
pendent (additive) or is dominant [6, 8, 9]. Second, we show how this property can be taken
into account at lossy compression stage by applying proper variance stabilizing transform
(VST) in component-wise manner [20, 24]. Third, we analyze peculiarities of lossy compression
in the neighborhood of the so-called optimal operation point (OOP) where introduced losses
characterized by mean square error are of the same order as equivalent noise variance [25].
Fourth, we demonstrate that there is quite strict relation between OOP existence and com-
pression ratio (CR) in it and some statistical parameters of noisy images [25, 26]. Moreover,
there are quite easy methods to provide a desired CR by exploiting this statistics [27]. Fifth,
we discuss and compare component-wise and 3D compression. Advantages of the latter
approach have been paid special attention [28, 29] and more discussion on group size is
provided.

2. Image and noise models and their parameters

While 10–20 years ago, it was usually assumed that noise is additive in all components of
multichannel remote sensing data [30], studies carried out by different researchers [9, 10]
indicate that the following image/noise model is more adequate

noisy true rue( ), 1,..., , 1,..., , 1,...,t
k ij k ij k ij kijI I n I i I j J k K= + = = = (1)

Here, �� ��noisy denotes the ��th sample of the kth component for a considered multichannel image,�� �� is the ijth value of the signal-dependent noise in the kth component image. To indicate

that noise is signal dependent, we use notation �� ��(�����rue) where �����rue is the true value for the

kijth voxel, I and J define the data size, and K denotes the number of components. For multi-
and hyperspectral images, model (1) transforms to
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noise true SI SD ,kij kij kij kijI I N N= + + (2)

where ����SD  and ����SI denote signal-dependent (SD) and signal-independent (SI) noise compo-

nents. SI is usually associated with dark and electronic noise and is assumed zero mean, white,
and Gaussian. The situation with the SD component is more complicated since it is associated
with wave power estimation by sensors and system calibration. For photon-counting detectors
it can be assumed that this noise component is also zero mean, white, and its variance is

proportional to �����rue. Thus, one gets the following model for the noise variance:

2 2 rue ,t
kij k kijIs s g= + (3)

where ��2 denotes the SI noise variance and � is the SD noise proportionality factor. Then, it

becomes possible to determine the input MSE for each component images as

inp noise true 2

1 1
MSE ( ) / ( ), 1,...,

I J

k k ij kij
i j

I I IJ k K
= =

= - =åå

and the input PSNR

np 2 np
10PSNR 10log ( / MSE ), 1,..., ,i i

k k kD k K= = (4)

where �� determinates image dynamic range.

One can estimate equivalent noise variance for SD component as

Im Im Im Im
2 rue n
eqSD Im Im Im Im mean

1 1 1 1

ˆ ˆ( ) ( ) / ( ) ( ) / ( ) ( ) ( )
I J I J

t
kij kij

i j i j
k k I I J k I I J k I ks g g g

= = = =

= » =åå åå)
(5)

where �Im, �Im denotes the image size, �(�) is the SD noise component parameter estimate

assumed accurate enough, and �mean(�) is the image mean. If there is also an estimate of SI

component variance ��2, then one can obtain an estimate of the input MSE as

inp 2 2
qSD

ˆMSE ( ) ,k e kks s» +) ) (6)
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where  denotes the SI noise variance estimate (assumed accurate enough) for a kth compo-
nent of multichannel image.

It is important to know how large is relative contribution of SD noise component into the input

MSE. To get imagination about this, the values  have been derived and graphically
compared to  [25]. The plots for AVIRIS [31] (224 subbands in optical visible and
infrared ranges) and Hyperion [32] (242 subbands in the same ranges, for some very noisy
subbands the estimates have not been obtained) sensors are represented in Figure 1 in
logarithmic scale (since there is a very wide limit of variation for these estimates). The values

of  for subbands for which negative estimates of �(�) have been obtained by the method
[10] are assigned unity values (zero values in logarithmic scale).

Figure 1. Variance estimation results for Hyperion dataset EO1H2010262004157110KP (a) and for AVIRIS images Lunar
Lake (b), Cuprite (c), and Moffett Field (d).

Analysis of data presented in Figure 1 shows the following. For Hyperion data (Figure 1a), in
most subbands of visible and near infrared ranges (these are subbands with indices from 13

to 61),  Is larger than , i.e., the SD component contribution is prevailing. In infrared
range (these are subbands with indices from 78 to 230; Figure 1a), there is approximately equal
percentage of subbands where the influence of SD or SI components is dominant. According
to our experiments, similar conclusions can be drawn for other real-life images acquired by
the Hyperion sensor.
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The results for three widely known test datasets acquired by the sensor AVIRIS are given in
Figure 1(b)–(d). Their analysis allows concluding the following. All three dependences of the
same type (for instance, ) are very similar to each other. Then, if hyperspectral images are
acquired during the same session, one can assume that noise characteristics do not change. In

addition,  are larger than  for most images acquired by visible range AVIRIS sensor
(spectrometer A, indices 1, …, 32). The same conclusion is valid for most subbands of the
second AVIRIS spectrometer (B, indices 33, …, 96). Contributions of the considered noise
components are comparable for the third spectrometer images (C, indices 97, …, 160). SI noise
is dominating for most subband images acquired by the fourth AVIRIS spectrometer (D,
indices 161, …, 224). Thus, contributions of noise components depend upon wavelength and
sensor used in a hyperspectral system. But in any case, assumption on additive character of
the noise is not valid. Moreover, for hyperspectral imaging, there is a tendency to increasing
the relative contribution of SD component [33].

Figure 2. Dependence of cross-correlation factor R on k for the 166th subband image.

One more important property of multichannel RS images is that signal components in them
are often cross-correlated. Meanwhile, the cross-correlation factor also depends upon noise
intensity in both images and decreases if noise is intensive in one or both component images.
Keeping this in mind, we have chosen for analysis the subband image with k = 166 that
corresponds to far-infrared range and is acquired by the fourth spectrometer of AVIRIS. This
image is quite noisy and the input PSNR for it is less than 30 dB (dynamic range of this image
is small and this is the second reason of low input PSNR). The dependence of the cross-
correlation factor R on k is presented in Figure 2.
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The factor R(166) = 1 and for this subband image the signal-independent noise component is
prevailing with the input MSE about 11. But we are more interested in R(k) for other subbands.
Analysis of data presented in Figure 2 shows that R(k) varies in rather wide limits. On average,
values of R(k) are the largest for the subband images acquired by the fourth spectrometer of
AVIRIS imager for which k > 160. Meanwhile, cross-correlation factors are large enough for
subbands relating to other ranges as well.

Although cross-correlation of images in multichannel images is often high, there can also be

sufficient variation in the dynamic range �� usually defined as �� = ��max− ��min where ��max
and ��min are maximal and minimal values in the kth subband image, respectively. For hyper-
spectral data, the values Dk and Dk+1, i.e., for neighbor subbands, are usually close enough. As
it follows from analysis of noise components in Figure 1, neighbor channels commonly have

quite close values of input MSEs (equal to noise variance ��2 if the noise is pure additive). Thus,

input PSNR values determined as PSNR�inp = 10log10(��2/MSE�inp) are usually close to each
other for neighbor images of hyperspectral and multispectral data.

3. Considered performance criteria and peculiarities of lossy compression
of noisy images

After lossy compression of a multichannel image, one obtains {�� ���  , i = 1, …,I, j = 1,…,J, k = 1,
…,K}. If one deals with lossy compression of a noise-free image, then quality of compressed
image is worse for a larger compression ratio (smaller bpp, larger quantization step or scaling
factor for DCT-based coders). The reason is that more distortions are introduced for larger CR.

Meanwhile, many researchers [34–36] have stressed that there are peculiarities in lossy
compression of noisy images. Lossy compression leads to a specific noise removal effect that
can be large enough under certain conditions. Due to this, it might be possible that MSE for
compressed image

rue 2

1 1
MSE ( ) / ( ), 1,...,

I J
c c t
k k ij kij

i j
I I IJ k K

= =

= - =åå (7)

is less than MSE��np and MSE��  be minimum for some value of a parameter that characterizes
compression for a given method. This can be quantization step (QS), scaling factor (SF), or bits
per pixel (bpp)—this depends on a coder used. Then, such a parameter is associated with the
so-called optimal operation point (OOP). Figure 3 presents dependences of

2
10PSNR 10log ( / MSE ), 1,...,c c

k k kD k K= = (8)
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Figure 3. Dependences PSNR�(QS) for the coder AGU and test images Airfield, Aerial, and Frisco corrupted by
AWGN with noise variance equal to 100.

on QS for the lossy DCT-based coder AGU [37] applied to three standard grayscale test noisy
RS images, Airfield, Aerial, and Frisco. All three images were corrupted by additive white
Gaussian noise (AWGN) with variance 100. Note that the test image Frisco has a simpler
structure while the test images Aerial and Airfield have more details. This is the reason why
the denoising effect of lossy compression is considerably greater for the image Frisco and the

dependence for it has an obvious global maximum. This is OOP according to the metric PSNR�
that coincides with OOP according to the metric MSE�—see Figure 8. For the test image Aerial,
the OOP is not so “obvious” although it exists. Finally, for the test image Airfield, there is no

OOP formally but the dependence PSNR�(QS) has local maximum. Note that in all cases maxima
occur QSOOP ≈ 4�. This is the choice recommended for the coder AGU [24] and for a more

complex coder ADCT [38]. This recommendation allows compressing lossy images by the
aforementioned DCT-based coders component-wise in one iteration under assumption that
noise characteristics for component images are known or preestimated with an appropriate
accuracy. Note that there are many modern methods for blind estimation of parameters of
additive noise [39, 40] and signal-dependent noise [41–43]. Availability of these techniques
gives rise to fully automatic compression based on noise parameter estimation [20, 44].

For the recommended QSOOP ≈ 4�(or QSOOP ≈ 4�equiv, �equiv2 = MSEinp, used if noise is signal

dependent and VST is not applied before compression), it can be interesting to study such

parameters as PSNR�OOP and �PSNR�OOP determined as

OOP OOP inpPSNR PSNR PSNRk k kd = - (9)
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where positive �PSNR�OOP means that OOP exists according to a corresponding metric. Such a

study has been carried out recently [26]. It has been established that �PSNR�OOP can vary in

rather wide limits, from about –3 to 5–6 dB. Negative values show that OOP does not exist and
this happens if a compressed image has a rather complex structure and/or noise is not intensive.
On the contrary, positive values indicate that there is OOP and it takes place for quite simple

structure images and/or quite intensive noise. It has also been shown in [26] that �PSNR�OOP
can be quite accurately predicted before compression using different statistics of DCT
coefficients determined for a limited number of 8 ×8 pixel blocks.

Let us consider dependences of CR on QS for the same test noisy images as in Figure 3. These
dependences are represented in Figure 4. The first observation is that lossy compression with
the recommended QS leads to sufficiently different compression ratios for different images.
Recall that the recommended QS is equal to 40 for σ2=100 and to 56 for σ2=200. Simpler structure
and/or noisier images are compressed with larger CR. For QS=40 (σ2=100), one has CR about
17 for the image Frisco and about 7 for two other test images. If noise intensity is greater (QS=56,
σ2=200), larger CR values are attained: about 26 for Frisco and 14 for other two images. Thus,
noisier images are compressed in OOP with larger CR. This means that image complexity and
noise intensity should be taken into account in practice. Some ways to do this will be described
in the next section.

Figure 4. Dependences of CR on QS for three test images of different complexity for two values of noise variance σ2

(100 and 200).
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4. Efficiency for 3D compression

4.1. Main dependences and benefits

As mentioned above, the compression of multichannel RS images can be carried out compo-
nent-wise and using variants of 3D approach. In the former case, there are certain benefits.
First, it is easier to handle data. For example, QS or bpp can be set individually for each
component image. Second, a part of operations can be performed in parallel. For example,
orthogonal transforms and quantization of coefficients can be performed separately for each
component image and, thus, this part of processing can be parallelized. In the latter case, 3D
compression can be applied to multichannel image as a whole [14] or as to a set of component
image groups [15, 22]. Each variant has its own positive features and drawbacks. If groups are
used, it is easier to parallelize computations (since processing can be partly performed
separately in each group) and adjust compression parameters.

Figure 5. Noise-free (a) and noisy (b) three-channel test image in pseudocolor representation.

Let us analyze some peculiarities of 3D compression for a rather simple three-channel test
image (presented in Figure 5a). This image has been considered noise free and it has been
composed from three channels of visible range of Landsat RS data associated with red, green,
and blue components for visualization. The noisy image with artificially added AWGN having
the same variance equal to 130 in all components is shown in Figure 5(b). Noise is seen well
in quasihomogeneous regions.

The plots of MSE�� (QS) are presented in Figure 6(a). Notation 2d relates to two-dimensional,

i.e., component-wise compression. For all three components, the plots almost coincide and,
therefore, we present the averaged dependence. In turn, notation 3d concerns 3D compression
using 3D version of AGU coder [15]. Again, the dependence averaged for all three components
is given.
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There are several interesting observations for these plots. If QS is rather small, e.g., less than

2σ, the dependences MSE�� (QS) practically coincide, i.e., there is almost no difference between

2D (component-wise) and 3D (volumetric) compression. Then, for larger QS, differences start
to appear. And they become quite large for QS about 4σ, i.e., when OOP can be observed. First,

OOP is observed (see Figure 6a) for both 2D and 3D compression. But MSE�� (QS) in OOP for

3D compression is considerably (by almost two times) smaller. This means that noise-filtering
effect due to 3D compression is sufficiently better compared to 2D compression. This can be
noticed in Figure 7 that presents images compressed in OOP for 2D and 3D AGU coder
versions. Second, OOP in the case of 3D compression is observed for the same conditions as
for 2D compression. More examples confirming this can be found in the paper [29].

Figure 6. Averaged dependences MSE�(QS) (a) and CR(QS) (b) for 2D and 3D compression.

Figure 7. Images compressed in OOP for 2D (a) and 3D (b) compression.

Consider now the plots of CR(QS) represented in Figure 6(b). For QS less than 2σ there are
almost no benefits of 3D compression. However, for larger QS, the benefits become obvious.
CR provided by 3D compression occurs to be almost twice larger than for component-wise
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processing. A question is why this happens? Another question is can we predict CR and
situations when 3D compression might be beneficial compared to component-wise coding.

4.2. Prediction of compression parameters

There are two main compression parameters for which prediction is desirable for compression

in OOP neighborhood, namely, �PSNR�OOP and CR. An approach to predict �PSNR�OOP for

component-wise compression has been recently proposed [26]. Its essence is the following.
Suppose that one has a parameter that is able to jointly characterize complexity of image to be
compressed and noise intensity in it. Suppose also that this (input) parameter can be calculated
easily (quickly, considerably faster than compression is performed) and it is tightly connected
to output (predicted) parameter (indicator) that characterizes compression from a desired
viewpoint. This connection is expressed either as some analytical dependence allowing to
determine (predict) output parameter easily and quickly. Then, it becomes possible to estimate
the input parameter for a considered image, to use it as argument for calculating the output
parameter, and to carry out some decision based on this prediction [26].

Having described the general strategy of prediction, let us give some details. First of all, there
are many parameters that can be used as inputs [45–47]. Under condition that noise parameters
(variance) are known in advance or preestimated with appropriate accuracy, statistical
parameters of the family ��� can be used. These are mean probabilities that absolute values

of DCT coefficients calculated in Nbl blocks of size 8 × 8 pixels are less than a threshold �� where� is the parameter (in our experiments it has been equal to 0.5, 1.0, 1.5, or 2.0). The input
parameter ��� is indirectly connected with number of zeroed DCT coefficients in image

filtering [45] that influences denoising efficiency performed by lossy compression applied to
noisy images. There is also parameter �0�—mean probability that DCT coefficients calculated

in Nbl blocks of size 8 × 8 pixels are equal to zero after quantization with a used QS.

Obtaining dependence between output and input parameters is a special stage performed in
advance (offline). This stage presumes getting a scatterplot where the horizontal axis corre-
sponds to an input parameter and vertical relates to a predicted output parameter. Scatter-plot
points correspond to a test image corrupted by AWGN with a certain variance compressed in
a specified way. An example of the scatterplot is shown in Figure 8. �2� serves as an input

parameter and �PSNROOP as an output parameter.

Having such a scatterplot, curve fitting is applied to obtain a desired dependence. At this
substage, several subtasks should be solved. They can be, in general, treated as providing good
fit and include choice of proper type and parameters of approximating functions, accounting
for restrictions, etc. Different criteria of fitting quality can be used [48] where R2 (goodness of
fit that has to approach unity for good fit) is one of the commonly employed parameters. The
example for 2D image compression presented in Figure 8 shows that the scatter-plot points
are not spread a lot and it can be assumed that the dependence is a smooth function. Then,
polynomials of the fourth and fifth orders and some other functions provide appropriate
results (the fitted polynomial expression is presented in Figure 8). The performance of
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prediction for different input parameters should be analyzed and compared since considerably
different values of R2 can be potentially and practically produced [27]. Some analysis has been
already carried out [27] but this study is far from completeness.

Figure 8. Scatterplot of �PSNROOP on �2� and the fitted fourth-order polynomial.

Figure 9. Scatterplots of CR vs �1� (a) and �0� (b) and the fitted curves.

Similar strategy has been applied in the prediction of CR for 2D compression. The first attempt
to predict CR for lossy compression of noisy images in OOP for AGU and ADCT [38] coders
has been made in 2015 [26] using two input parameters, �2� and �2.7�. A more thorough study

has been carried out later [27]. Below we present two scatterplots from the aforementioned
paper (Figure 9). As it can be seen, both scatterplots have small spread and, according to their
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visual inspection, CR has the tendency to increase if the input parameters �1� or �0� (consid-

ered here as example) become larger. Fitting is excellent in both cases although the results for�0� are slightly better. Here, tight connection of CR with �0� is easily understood. A larger �0�
shows that there are more zeros in a sequence to be coded and this in turn [49] leads to a larger
CR.

Figure 10. Dependences �0� on QS for 2D and 3D compression.

Thus, we can expect that benefits of 3D compression compared to 2D deal with more zeros
after 3D DCT (better decorrelation of the data) than in component-wise compression. To check
this hypothesis, we have determined �0� for 3D compression and for 2D component-wise

compression for the test image in Figure 5(b). The results are given as dependences of �0� on

QS for 3D AGU (notation 3D) and for two components, red and green (notations 2D-R and 2D-
G, respectively). As it can be seen, the curves for “red” and “green” channels practically
coincide. In 3D compression, more zeros are observed for any QS. For optimal QS=56 one has�0� about 0.87; the predicted CR is about 13 (see Figure 9b) and this practically coincides with

the value of practically attained CR (Figure 6b). In turn, for 3D compression, �0� is about 0.92;

the predicted CR is over 20 (see Figure 9b), and this is in good agreement with the value of
practically attained CR (Figure 6b). Certainly, a more thorough study is needed. However, we
can expect that the prediction of CR using �0� can work for 3D DCT-based compression as

well (Figure 10).

4.3. Experimental data

The observations described above have also been verified for two types of multichannel
images. The first type is Landsat TM data [50]. Different variants of uniting eight images of the
same resolution into groups for further 3D compression have been considered. It has been
shown that there are benefits in CR (it sufficiently increases for the same level of introduced
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distortions) only if images combined into a group are highly correlated and have similar
dynamic range [50]. Then, there is an increase in the percentage of zeros �0� for 3D coder

compared to �0� for component images within this group. This increase can serve as an

indicator of expedience to apply 3D compression. Meanwhile, there are component images
(e.g., in channel nine, wavelength 1360–1390 nm) for which separate compression is expedient
since adding it to any group does not improve the compression performance.

The second type of analyzed data is hyperspectral images acquired by the Hyperion sensor
(the dataset EO1H1800252002116110KZ). Hyperion produces bad-quality (very noisy) data in
some bands (for example, in subbands with indices q=1–12). These component images are
usually discarded in analysis and we have not processed them too.

Hyperspectral data can be compressed with and without utilizing VST to take into account
signal-dependent nature of the noise. Below we consider data obtained for the procedure that
employs VST for both 2D and 3D compression. In both cases, after determining the parameters
of the noise in all subbands (if needed), the generalized Anscombe transform and/or normal-
ization is carried out [20]. Note that original data are presented as 16-bit values and this is
taken into account in CR calculation and prediction.

We have considered four variants to compress the data. The first variant is to perform com-
ponent-wise compression. The second is to divide this hyperspectral image into two groups.
The first group includes subbands with indices from 13 to 57 while the second one contains
subband images with indices from 83 to 224. The third variant is to use groups of size eight
subbands. The fourth is to apply 16-channel groups. Some subbands left in both ranges formed
groups of smaller size. CR for all subbands of each group is assumed to be the same since all
images are compressed jointly.

The obtained results are presented in Figure 11. Their analysis shows several interesting facts.
First, CR for component-wise compression is, on average, sufficiently smaller than for any of
3D compression variants. If component-wise compression is applied, CR for neighbor
subbands are close to each other although the total range of CR variation is rather wide—from
about 4 to about 27. In general, there is correlation between CR values for 2D and 3D com-
pression. If CR for 2D compression is larger, CR for variants of 3D compression is usually larger
too. However, there are a few exceptions when CR for a particular subband image compressed
separately is larger than for 3D compression. This happens for subband images with low-input
SNR and low correlation with data in neighbor subbands [50].

It is difficult to understand from visual inspection of plots (see Figure 11) what variant of 3D
compression is preferable. More thorough analysis has shown that the CRs for groups of size
8 (18.34 and 12.72) and 16 (20.81 and 14.65) subbands are quite close. CRs for the case of using
only two large unequal size groups are slightly smaller (17.43 and 13.00).

We have also determined the percentage of zeros for 3D compression in groups of size 8 and
16 subbands. The results are presented in Figure 12. As can be seen, there is tight correlation
between CR for a group and the corresponding percentage. This allows expecting that it is
possible to predict CR for 3D compression in groups by analyzing �0� for these groups. Note
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that �0� varies from 0.3 (30%) for subbands compressed with small CR till almost 0.9 (90%) for

subbands compressed with very large CR.

Figure 11. CR values for subbands of hyperspectral Hyperion data for component-wise and 3D lossy compression, 8
channels (blue), 16 channels (yellow), and all channels in group(violet) and component-wise (red).

Figure 12. Percentages of zero values for quantized DCT coefficients for hyperspectral data compression in groups of
size 8 and 16 channels.
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Examples of real-life images before and after compression for particular subbands can be
found in the paper [22]. If noise intensity is high and noise is visible, lossy compression pro-
vides noticeable filtering effect. If noise is invisible, original and compressed images look al-
most the same.

5. Conclusions

The task of lossy compression of multichannel remote sensing images is considered. It is shown
that this type of data has some peculiarities to be taken into account in compression. The main
peculiarities consist in signal-dependent nature of the noise, wide limits of variation of data
dynamic range and SNR in subband images, and sufficient correlation of data in neighbor
channels. Lossy compression should be carried out in automatic manner especially if it has to
be performed on-board. Then, it has to adapt to noise properties where the simplest adaptation
mechanism is to set QS proportional to noise standard deviation (before or after VST depend-
ing upon whether it is applied or not). A good decision in compression of noisy images is to
perform compression in the neighborhood of optimal operation point. It is shown that OOP
exists for both component-wise and 3D compression where the latter approach is preferable
since it produces better denoising and considerably larger CR. Parameters of compression can
be predicted rather easily before execution compression with quite high accuracy. This allows
adapting compression to image and noise properties and to undertake decision does com-
pression performance meet requirements.

Meanwhile, there are several tasks to be solved in the future. The main of them could be
adaptive grouping. Another task is QS adjusting to provide a desired CR.
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