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Abstract

The paper focuses on describing three methods of noise reduction in the speech signal
recorded in an open-air magnetic resonance imager (MRI) working in a weak magnetic
field during human phonation for the vocal tract modelling. This paper also analyses
and  compares  spectral  properties  of  the  acoustic  noise  produced  by  mechanical
vibration of the MRI device gradient coils. Then, the experiment with mapping of noise
sound pressure level (SPL) in the MRI neighbourhood is described. The changes in
acoustic noise spectral properties caused by loading of the holder of the lower gradient
coils by the weight of the examined person lying in the scanning area of the MRI device
is evaluated too. The influence of setting of the basic scan parameters of the used MR
sequence (TR and TE times) on the spectral properties of the generated acoustic noise
is also analysed. The results achieved are used to create a database of initial MR scan
parameters such as the filter bank for noise signal pre-processing and to design a
correction filter for noise suppression in the speech signal recorded simultaneously with
three-dimensional (3D) human vocal tract scanning.

Keywords: acoustic noise, spectral analysis, noise suppression in speech, statistical
analysis, magnetic resonance imager

1. Introduction

The non-invasive magnetic resonance imaging (MRI) technique enables scanning of the human
vocal tract showing the configuration of the supraglottal resonant cavities (pharynx, oral and
nasal cavities) during vowel phonation. The primary volume models of these acoustic spaces
created from the MR images can then be transformed into the three-dimensional (3D) finite
element (FE) models [1]. The FE models facilitate new possibilities in simulating and under-
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standing of speech production. Synchronicity between image and audio acquisition must be
ensured if the speech signal is recorded in parallel with 3D vocal tract scanning [2]. Further
speech analysis and vocal tract  modelling is  conceivable only under the condition of an
adequate  signal-to-noise  ratio  as  the  noise  is  an  inherent  part  of  imaging  by  magnetic
resonance  [3].  The MRI device  usually  consists  of  three  gradient  coils  to  produce  three
orthogonal linear fields for spatial encoding of a scanned object. The noise is produced by
these gradient coils due to rapidly changing Lorentz forces during fast switching inside the
large static magnetic field [4]. It results in a significant mechanical vibration that subsequently
propagates in the air as a progressive sound wave perceived by the human auditory system
as a noise. Due to harmonically related audio frequencies of the produced acoustic noise, it
can be analysed using similar methods as those used in speech signal processing.

There exist several approaches to reduce the acoustic noise produced during MRI scanning [5–
7]. In our case, the tested person is lying and articulating in the scanning area of the MRI
equipment while the scanning MR sequence is running to obtain an MR image of the human
vocal tract. The recorded speech signal with the superimposed noise is then subject to offline
analysis and processing. We have successfully used the noise reduction method based on the
idea that the acoustic noise produced by the gradient coils of the MRI machine is a periodic
signal and its fundamental frequency is represented by a typical peak in the real cepstrum in
a similar way as it is for the voiced speech [8]. Our first proposed noise reduction method is
based on the limitation of the real cepstrum of the noisy speech and clipping the “wrong peaks”
corresponding to the harmonic frequencies of the acoustic noise. This method works well when
the basic pitch period of the human voice differs from the repeating period of the running MR
scan sequence. However, if both fundamental periods are the same, then alternative techniques
must be selected. Our next tested approach to noise suppression uses subtraction between the
short-time spectra of the audio signals recorded by two microphones [9]: the first one recorded
the speech together with the acoustic noise and the second one recorded only the acoustic
noise. Another method of speech enhancement in the MRI environment is based on spectral
subtraction of the estimated periodic noise [10]. Therefore, we must know the statistical
parameters of spectral properties of the noise produced by the MRI device. This third proposed
method uses only one microphone picking up the noise of the running scan sequence that is
followed by recording of the speech signal of phonation with the same noise background. As
in the case of two-channel spectral subtraction, the natural logarithm and IFFT are applied on
the resulting spectrum after subtraction, whereby the limited real cepstrum is obtained [11].
The final clean signal is reconstructed by the cepstral speech synthesizer [12].

This chapter is focused on comparison of the mentioned three methods of acoustic noise
suppression in a speech signal recorded simultaneously with MRI scanning for 3D modelling
of the human vocal tract. The main motivation of the work was to perform optimization of a
correction filter to increase suppression of the acoustic noise while preserving spectral
properties of the reconstructed speech and thus ensuring its good quality. The successfulness
of different noise reduction methods can be evaluated subjectively—by visual comparison of
spectrograms, spectral envelopes, etc. or with the help of objective approaches—numerical
matching of determined differences between spectral envelopes, comparison of spectral
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distance values calculated between the obtained periodograms, etc. The special aspect of voice
recording in the weak magnetic field environment is also discussed here. Next, the detailed
analysis of basic and supplementary spectral features of the acoustic noise produced by the
MRI device was carried out. The auxiliary measurement experiments also mentioned in this
chapter include mapping of the acoustic noise pressure level in the MRI neighbourhood,
analysis of the influence of different setting of scan sequence parameters as well as the influence
of different body mass of the examined person situated in the scanning area on spectral
properties of the generated noise signal.

2. Equipment and methods

The conventional whole-body MRI scanner with its specific acoustic noise makes speech
recording in such an environment quite a challenging task that needs special solutions. One
possible way of implementation is a construction of a special sound collector [13]; however,
this realization requires a completely passive metal-free element without moving parts so that
not to cause any artefacts in the scanning image due to induced magnetic field inhomogeneity.
In practice, another solution was applied—speech signal collection by optical arrangements
using special fibre optical microphones located in the scanning space [14]. In all cases, it allows
for real-time processing of the speech signal simultaneously with obtaining of MR images.
However, the practical implementation is significantly complicated (synchronization of both
processes, special hardware for MRI device, etc.) and more expensive. In our case, when the
tested open-air MRI device works with a weak magnetic field with the static magnetic
induction up to 0.2 Tesla [15], an easier way to fulfil the condition about elimination of
interaction with metal elements may be found. From this point of view, the most feasible
solution for speech and noise recording is to use a condenser microphone located in the
sufficient distance from the static magnetic field—see the overall view of the MRI equipment
in Figure 1a.

In addition, due to the low basic magnetic field B0 in the used MRI equipment, the scanning
times are longer than those in the MRI devices working with 1.5 or 3 Tesla superconductive
magnets. Prior to the start of each scan sequence, the quality factor (QF) parameter is auto-
matically pre-calculated to obtain sufficient quality of a picture—see the obtained MR image
of the human vocal tract in Figure 1c. The current setting of the scan parameters together with
the chosen type of the sequence has also influence on the final scanning time. Typical scanning
time is about 1 min, although for the 3D or Hi-Res scan sequences more than 2 min are
necessary. However, phonation is performed in blocks with mean duration of 8, 15 or 30 s
depending on physical condition of a tested person. The assumed physical position of the
tested subject during the MRI session is typically the supine position, that is lying on the back
with the neck placed inside the RF coil and between two gradient coils—see an arrangement
photograph in Figure 1b. The previously performed experiments and measurements [8, 15]
have shown that setting of the basic parameters of the scanning sequences—repetition time
(RE) and echo time (TE)—has significant influence on the spectral properties of the acoustic
noise produced by the MRI device. Values of these parameters result primarily from the chosen
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type of the scanning sequence as well as from other settings (field of view, slice thickness,
number of sagittal images, etc.). The value of TR time affects mainly the basic noise frequency
F0N in a similar manner as the vocal chords vibration affects the fundamental frequency F0 of
the speech signal. On the other hand, setting of TE time, number of averages, etc. have effect
on noise signal higher frequencies manifested as the changes of the first two formant positions
(formant frequencies in a speech signal). From another experimental measurement and
analysis follows that the mass of the examined person lying on the lower plastic holder of the
gradient coil and the permanent magnet in the scanning area of the MRI device also changes
the basic spectral properties of the generated acoustic noise [16].

Figure 1. Overall view of the open-air MR imager with the tested water phantom inserted in the RF coil inside the
scanning area including an installed pick-up microphone (a), one microphone arrangement of the speech and noise
recording experiment with the lying person (b) and obtained MR image of the human voice tract in a sagittal plane
after 90° rotation obtained using the MR scan sequence 3D SSF (c).

2.1. Reduction in the gradient coil noise by cepstrum limitation and clipping

The first analysed approach of noise reduction in the recorded speech is based on clipping of
the cepstrum peaks corresponding to the frequencies of the acoustic noise produced by the
MRI gradient system. This method works in six steps—see the block diagram in Figure 2:

1. Calculation of the real cepstrum (including the energy) of the speech with the superim-
posed noise signal.

2. Detection of the pitch-period L0 and the voiceness type of the speech signal.

3. Determination of the necessary minimum number of N0 cepstral coefficients for sufficient
log spectrum approximation.

4. Determination of the cepstral peaks corresponding to the frequencies of the acoustic noise
in correspondence with estimated LN value.

5. Limitation of the real cepstrum and cutting off the peaks.

6. Reconstruction of the cleaned speech signal by the pitch-synchronous cepstral speech
synthesizer.
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Figure 2. Block diagram of the noise reduction method based on clipping of the real cepstrum peaks.

The period LN of the superimposed noise part of the analysed signal must be estimated
externally, usually from the known repetition period (given by the currently chosen TR
parameter) of the used MR scanning sequence.

Figure 3. Graphic examples of noise reduction in the recorded speech by clipping and limitation of the real cepstrum;
Lo = pitch-period of the speech signal (long vowel “a” articulated by a female person), Ln = period of the superimposed
noise and NFFT = 1024.

For cepstral analysis of the speech with the superimposed noise signal, the FFT of the Ham-
ming-weighted signal frames is used for power spectrum computation and the natural
logarithm followed by the inverse FFT is applied to get the symmetric real cepstrum—see an
example in Figure 3. Limitation of the real cepstrum to its first N0 + 1 coefficients can be
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described by the Z-transform as C(z) = c0 + c1 z−1 + c2 z−2 + …+ cN0 z−N
0. The truncated cepstrum

represents an approximation of the log spectrum envelope
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where the first cepstral coefficient c0 corresponds to the signal energy.

The reconstruction of the speech signal is realized by a digital filter implementing approximate
inverse cepstral transformation. The system transfer function is defined as

( ) ( )
0

0

1=

= ×Õ
N

c
F i

i
G z e G z (2)

and it can be implemented as a cascade connection of N0 elementary filter structures. The
system transfer function of the elementary filter is given by an exponential relation
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where the exponent is the Z-transform of the truncated speech cepstrum
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and {ŝn} represents the minimum phase approximation of the real cepstrum.

Figure 4. Block diagram of the cepstral speech synthesizer.
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The transfer function of the vocal tract model is approximated by Padé approximation of the
continued fraction expansion of the exponential function. For the voiced speech, the filter is
excited by a combination of an impulse train and a high-pass filtered random noise, and for
unvoiced speech, the excitation is formed by a random noise generator—see Figure 4. The
error of the inverse cepstral approximation depends on the number and the values of the
cepstral coefficients and the used approximation structure [12]. Still, the speech signal
reconstruction must be carried out pitch synchronously to obtain correct proportionality
between duration of voiced and unvoiced parts in the original and the resynthesized signal
and to minimize the transient effect.

2.2. Two-channel noise reduction based on spectral subtraction

This method is based on the main idea that the noisy speech signal x(n) is interpreted as an
addition of a clean speech signal q(n) and an additive noise n(n).

( ) ( ) ( )= +x n q n n n (5)

This noisy signal is segmented into the frames weighted by windows to obtain its short-time
spectrum using the absolute value of the fast Fourier transform |X(k)|of the signal x(n)
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where NFFT represents the number of the points processed by FFT for calculation of the short-
time spectrum X(f, n). The enhanced speech spectrum can be obtained by subtracting the noise
magnitude spectrum (recorded by the microphone Mic. 2) from the noisy speech magnitude
spectrum (recorded by the first microphone Mic. 1)

( ) ( ) ( )( ) ( ),, , , f= - × n f nS f n X f n N f n e (7)

where ϕn(f, n) represents the phase of the noisy speech spectrum and n is the index of the
processed frame. After the subtraction, the natural logarithm and IFFT are applied on the
resulting spectrum, whereby the limited real cepstrum is obtained. Finally, the clean signal is
reconstructed by the cepstral speech synthesizer—see the block diagram in Figure 5.

2.3. One-channel noise reduction by spectral subtraction

The alternative proposed method uses only one microphone picking up the noise of the
running scan sequence without phonation that is followed by recording of the speech signal
during phonation with the noise produced by gradient coils of the MRI device with the same
setting of the used MR scanning sequence.

Analysis of Acoustic Noise and its Suppression in Speech Recorded During Scanning in the Open-Air MRI
http://dx.doi.org/10.5772/64628

211



Figure 5. Block diagram of two-channel noise reduction by spectral subtraction and cepstral speech parameterization.

Figure 6. Block diagram of one-channel spectral subtraction method based on statistical analysis of noise spectral prop-
erties.

The algorithm contains practically the same processing of the speech signal with noise and the
final cepstral analysis after spectral subtraction as it was in the previous two-channel method.
However, totally different is processing of the pure noise signal part (typically shorter than the
recoded speech signal of the long vowel articulation) is used to calculate the basic mean
periodogram using the Welch method. After determination of the absolute spectrum |S(k)|,
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the basic spectral envelope is obtained. The pure noise signal is next segmentally analysed to
determine the basic and supplementary spectral properties. The obtained spectral features are
subsequently statistically processed, and the achieved values are used to modify the basic
spectral envelope of the noise signal that is further subjected to spectral subtraction as
described by the block diagram of the proposed method in Figure 6.

Figure 7. Block diagram of calculation and statistical processing of basic and complementary spectral properties of the
noise signal.

The cepstral analysis (see the left part of the block diagram in Figure 2) can also be used for
determination of basic and additional noise parameters. The basic as well as the supplementary
spectral properties is usually determined from the frames (after segmentation and widowing
—see the computation scheme in Figure 7). These noise spectral properties can be described
with the help of the statistical parameters:

– The spectral spread (Sspread) parameter represents the dispersion of the power spectrum
around its mean value

( )2 2
spread m s= - =S E x (8)

where μ is the mean value or the first central moment and σ is the standard deviation (std) or
the second moment of the spectrum values, and E(t) represents the expected value of the
quantity t in the processed data vector.

– The spectral skewness (Sskew) is a measure of the asymmetry of the data around the sample
mean, and it can be determined as the third moment
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– The spectral kurtosis (Skurt) expressed by the fourth central moment represents a measure
of peakedness of the shape of the spectrum relative to the normal distribution for which
it is 3 (or 0 after subtraction of 3).
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– The measure Sgama2 can be also applied to describe the statistical properties of the spectrum.
It is defined using the spectral kurtosis and the spectral spread as follows

( )2gama2 kurt spread=S S S (11)

– The basic spectral properties include also the spectral decrease (tilt—Stilt) representing the
degree of fall of the power spectrum. It can be calculated by a linear regression using the
mean square method.

The supplementary spectral properties describe the shape of the power spectrum |S(k)|2

calculated from the noise signal:

– The spectral centroid (Scentr) is defined as a centre of gravity of the spectrum, that is the
average frequency weighted by the values of the normalized energy of each frequency
component in the spectrum. The Scentr in [Hz] can be calculated as
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where fs is the sampling frequency.

– The spectral flatness (Sflat) determined as a ratio of the geometric and the arithmetic mean
values of the power spectrum
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can also be used for determination of a degree of periodicity in the signal. The Sflat values
lie in the range of <0 ~ 1>: the zero value represents the signal that is totally periodical (e.g.
a pure sinusoidal signal); in the case of Sflat = 1, the totally noisy signal is classified (e.g.
the white noise signal).

2.4. Comparison of noise reduction methods by spectrograms and spectral envelopes

Several methods can be utilized for visual comparison of effectiveness of different approaches
for noise reduction in the speech. A spectrogram is a typical representative graph for compar-
ison in the time/frequency domain. The approach of visual comparison of the whole spectro-
grams has a disadvantage in the subjectivity (strong dependence on the person who makes
the matching). To decrease this subjectivity, the detailed analysis of only the selected part–the
nearest region of interest (ROI) area—is necessary. In this manner, more precise matching of
differences can be obtained—see an example in Figure 8.

Figure 8. Example of speech and noise signal processing (fs = 16 kHz): the whole recorded signal (a), the corresponding
spectrogram (b), the selected ROI in 250-ms time interval (c) and the calculated spectral density together with its enve-
lope and a tilt in degrees (d).

Generally, it can be said that the periodogram represents an estimate of the power spectral
density of the input signal. When the NFFT-point FFT algorithm is used for computing of the
PSD as S(e jω)/fs(with sampling frequency fs in [Hz]), we can obtain the resulting spectral density
in logarithmic scale expressed in [dB/Hz]. These PSD graphs can be used for visual comparison
as well as for numerical matching with the help of the calculated spectral difference (ΔP) or
using other additional spectral parameters (spectral tilt). To obtain the smoothed spectral
envelope, the Welch mean periodogram in [dB] can be used, too, as documented by the right
graph in Figure 9d. The resulting spectral envelopes can be used for subsequent comparison.
For exact numerical comparison (objective matching method), it is possible to calculate the
difference between the spectral envelopes, for example between the original noisy speech
signal and the signal after noise suppression. It holds also in this case of comparison that
evaluation in selected frequency sub-ranges must be applied for obtaining more precise results.
Therefore, the comparison of spectral envelopes was divided to three ranges: the full frequency
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range up to fs/2 (0–8k), the low-frequency sub-band up to 2.5 kHz (0–2k) and the middle
frequency sub-band of 2~6 kHz (2–6k)–when the sampling frequency is fs = 16 kHz. Then, the
spectral distances DRMS (by the RMS method) between these envelopes were calculated to
compare the noise suppression methods for all three frequency ranges. In the case of the low-
frequency band of 0–2k, the frequency Fmax corresponding to the maximum difference ΔPmax

was localized and determined, as documented by an example in Figure 9.

Figure 9. Example of visualization and calculation of differences between two spectral envelopes of the speech signals
with the acoustic noise in the full frequency range 0~fs/2 (a), in the middle frequency sub-band of 2~6 kHz (b), in the
low-frequency band 0~2.5 kHz (c) and the spectral distance between envelopes in the low-frequency band (d).

3. Performed noise measurements and speech recording experiments

The open-air MRI equipment E-scan OPERA working with the weak magnetic field of
0.178 Tesla [17] was used for realization of all the experiments and measurements. This type
of the MRI device includes also an adjustable bed, which can be positioned in the range from
0° (at the left corner near the temperature stabilizer) to 180°—see the overview photograph in
Figure 1a and a principal angle diagram of the MRI scanning area in Figure 10c. The temper-
ature stabilizer produces an additional acoustic noise, but its sound pressure level L0 is almost
constant so it can be easily subtracted as a background. As the noise depends on the position
of the measuring microphone, the directional pattern of the noise source in the MRI scanning
area must be measured first. On the basis of the obtained results, the design of the final
arrangement of the recording experiment is carried out. It means that the optimal recording
microphone position and parameters (the distance from the central point of the MRI scanning
area, the direction angle, the working height and the type of the microphone pickup pattern)
must be chosen. Therefore, the performed analysis of the acoustic noise produced by the
gradient system of the MRI device consists of two phases. The first step is the auxiliary
measurement of the acoustic noise distribution in the MRI scanning area and the mapping of
the noise sound pressure level (SPL) in the MRI neighbourhood (see the arrangement photo-
graph and principal angle diagram of the MRI scanning area in Figure 10):
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• Directional pattern of the acoustic noise in the MRI neighbourhood in the angle intervals of
12.5° at the distances of {45, 60 and 75 cm} from the central point of the scanning area, at the
height of 85 cm from the floor.

• Directional pattern of the acoustic noise in the angle intervals of 12.5° at the distance of 60 cm
in three measurement heights of {75, 85 and 95 cm} from the floor corresponding to the sound
level meter location on the level of the bottom gradient coil, in the middle between both coils
and finally on the level of the upper coil.

• Noise SPLs at the directions {30°, 90° and 150°} at the distance of 60 cm in the height of 85 cm
with different male/female testing persons lying in the scanning area of the MRI device
without phonation; comparison with values obtained by the measurement using the water
phantom.

Figure 10. Arrangement photograph of the SPL distribution measurement in the MRI Opera neighbourhood with the
sound level meter at the position of 30° in the 45 cm distance from the middle point of the scanner (a), detailed photo-
graph of the MRI scanning area with a testing water phantom inserted in the RF coil (b) and a principal angle diagram
of the MRI scanning area (c).

The sound level meter of the multi-function environment meter Lafayette DT 8820 (with the
range set to 35–100 dB) was used for the noise SPL measurement and mapping. In the first two
experiments, the spherical phantom weighing about 0.75 kg filled with doped water solution
was placed in the RF knee coil (see the photograph in Figure 10b), and the measurement was
carried out during the MR scan sequence SSF 3D execution (the patient bed was at the position
of 180).

Afterwards, three basic types of noise and speech signal recordings were realized:

1. The noise produced by the gradient coils recorded by one pick-up microphone only—the
tested person in the scanning area of the MRI device without phonation—the Mic. 1
located at 150.

2. The signals recording by the two pick-up microphones during execution of a scan MR
sequence and phonation of the person lying in the scanning area of the MRI device (the
noise and speech by Mic. 1 located at 90 and the noise only by Mic. 2 at 180 behind the
lying person to minimize crosstalk of the speech signal).

3. The phonation signal with an additive noise recording by one pick-up microphone (Mic.
1 at 90—see the middle photograph in Figure 1b).
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The demonstration examples of typical speech and noise waveforms for all three above-
mentioned noise reduction methods are shown in Figure 11.

The electrical signals from the pick-up 1 ‘Behringer dual diaphragm condenser microphone
B-2 PRO (as Mic. 1) and the RØDE NTK 1’ condenser microphone (Mic. 2–in the case of two-
way noise reduction method, both with a cardioid directional pattern) were recorded by means
of the Behringer XENYX 502 analogue mixing console connected to a notebook by the USB
interface UCA 202. Synchronization of the noise and/or speech recording and the MR scan
process was realized manually by the console operator. The noise as well as speech signals was
originally recorded at 32 kHz and then resampled to 16 kHz. A typical duration of the recorded
signal was about 30 s, and for further signal processing, the stationary parts lasting 15 s were
selected using the sound editor program Sound Forge 8.0.

Figure 11. Examples of typical speech and noise waveforms for three analysed noise reduction methods: one-channel
recording of the speech with noise (a), one-channel consecutive recording of an acoustic noise (without phonation) and
the superimposed speech signal with noise (b) and the speech with noise and the noise signals recorded by two micro-
phones in two separate channels during phonation of a vowel “a” by a male person (c), the used scan MR sequence 3D
SSF.

Two corpora of the recorded signals were created by the described methods. The first one
consists of the recorded noise signals only. These signals were used in two auxiliary experi-
ments:
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1. Analysis of noise supplementary spectral properties for different weights of the examined
persons lying in the MRI device scanning area.

2. Analysis of the influence of the basic scan parameters (TR and TE times of the used MR
sequence) on the spectral properties of the generated acoustic noise.

The noise signals brought about by one type of the MR scan sequence with different settings
of TR = {10, 20, 30 and 40 ms} and then TE = {10, 14, 18 and 22 ms} were processed. From the
recorded pure noise signals, the spectral envelopes and supplementary spectral properties
were calculated and compared. The obtained values were next analysed statistically, and their
histograms were calculated.

Person M1(JP) M2(TD) M3(LV) F1(AP) F2(BB) F3(ZS)

F0 mean [Hz] 133 127 98 228 177 207

Weight [kg] 78 75 80 53 50 55

Table 1. The mean F0 values and approximate weights of the persons participated in the experiment.

The second corpus consists of the speech signal collected in dependence on the tested noise
reduction method: one or/and two channels—using only one or/and two pick-up microphones
for signal recoding. They all originate from the recordings of six voluntary persons lying in
the MRI scanning area (3 + 3 male/female) with different mean F0 values and different
approximate weights—see Table 1. The main database of long Czech and Slovak vowels was
consequently used for creation of the second one consisting of manually selected ROIs
corresponding to the stationary parts of the vowels ‘a’, ‘e’, ‘i’, ‘o’ and ‘u’ (typically three to five
parts with the mean duration of 3 s). Due to different F0 values of the persons participating in
our experiment, different parameters of the window length wL and the window overlapping
wO must be set—we use 24-ms frames for processing of the male voice speech signal and 20-
ms frames for the female one. The parameter N0 for limitation of the real cepstrum was chosen
in correspondence with the period of the noise part of the signal LN equal to 256 (when
NFFT = 1024) for both types of voices. The whole comparison process consists of three steps:

1. Visual comparison of the calculated spectrograms and periodograms using different
frequency ranges: up to 2.5 kHz or in the whole bandwidth up to half the sampling
frequency.

2. Numerical matching of the spectral distances as well as the signal RMS values.

3. Localization and determination of the maximum difference ΔPmax between spectral
envelopes of the original noisy speech signal and the signal after noise suppression (in the
low-frequency band) for final comparison of effectiveness of all three described noise
reduction methods.
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4. Discussion of results

From the performed auxiliary measurements of the acoustic noise SPL, directional pattern in
the three distances follows that the maximum level of about 72 dB was achieved for the nearest
location of the SPL meter (DL = 45 cm), while the background noise SPL0 originated from the
temperature stabilizer reached approximately 52 dB (measured in the time instant when the
no scan sequence is executed)—see the left graph in Figure 12. To prevent any interaction
between the ferromagnetic pieces of the measuring devices (it holds mainly for the recording
microphones) and the stationary magnetic field of the MRI equipment, we eliminated this close
distance for future use in our experiments. On the other hand, differences between the
measured SPLs in 60- and 75-cm distances were small; therefore, we finally chose the middle
distance of DL = 60 cm as the basic one for next measurements and recording experiments.
Obtained results of the second auxiliary experiment are in the correspondence with our
expectation that the maximum SPL should be achieved at the height h = 85 cm (in the middle
between the upper and the lower gradient coils and the permanent magnets of the MRI device)
where the noise from two components is superimposed, while for the SPL meter located at the
heights of 75 and 95 cm, the noise distribution is practically the same and about 3 dB lower
than at the middle height—compare the right directional pattern in the Figure 12.

Figure 12. Measured directional patterns of the MRI gradient coils noise together with the background noise SPL0: for
three SPL meter distances at the height of 85 cm (a) and for three SPL meter heights at the distance of DL = 60 cm (b).

Within the next auxiliary measurement, the influence of a weight of a lying person/water
phantom in the scanning area of the MRI device on the vibration and subsequently generated
acoustic noise SPL was analysed. The performed comparison of SPL measurement first of all
shows that the maximum values are obtained at the position of 30° where the noise produced
by the temperature stabilizer contributes for the most part of the resulting acoustic noise, and
the minimum SPLs are achieved for the position of 15° with the maximum distance from the
stabilizer. For all three measured directions, the noise SPL values measured with the examined
person lying in the MRI scanning area were about 10 dB lower in comparison with the situation
when the water phantom was used. When male and female testing persons lay on the bottom
plastic holder of the permanent magnet and gradient coils, the obtained noise SPL values were
roughly inversely proportional to their weights: the group of males with approximate weights
of 78 kg and the group of females with the mean weight of 53 kg—as documented by the bar
graph in Figure 13.
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Figure 13. Comparison of the noise SPL values measured in the directions of 30, 90 and 150° using the water phantom,
male and female persons lying in the scanning area of the MRI device without phonation, the SPL meter in the height
of h = 85 cm, at the distance of DL = 60 cm.

Figure 14. Box-plot of basic statistical properties of the basic and supplementary noise spectral parameters summar-
ized for the groups of male/female persons lying in the scanning area of the MRI device: centroid (a), flatness (b),
spread (c), skewness (d), kurtosis (e) and gama2 (f), signals recorded at the position of 150°.

Also another effect can be observed when the examined person lies in the scanning area of the
open-air MRI and the holder of the lower gradient coils is loaded with his/her weight. The
changed mass of the whole mechanical system affects its mechanical resonance modes, and
the altered spectrum of the generated acoustic noise is apparent. To minimize the acoustic noise
component caused by the temperature stabilizer, for further analysis of this phenomenon, the
recording microphone was placed at 150° in the main experiment. The performed evaluation
comprises comparison of the supplementary spectral properties for the weight pairs of male
and female person groups—the box-plot of the basic statistical parameters (minimum,
maximum, mean value and standard deviation) is shown in Figure 14 and calculated histo-
grams of the noise spectral properties is shown in Figure 15. The differences are most
significant in the case of the spectral centroid feature with typical peaks of the histogram
located around 375 Hz (for the male person group) and near 425 Hz for the female testing
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person group. In addition, the deviation of the obtained values is higher for the female person
group than for the male one. It can be explained by greater differences among the weights
within this group (compare the approximate values in Table 1).

Figure 15. Histograms of the noise spectral properties summarized for the groups of male/female persons lying in the
scanning area of the MRI device in correspondence with Figure 14: centroid (a), flatness (b), spread (c), skewness (d),
kurtosis (e) and gama2 (f).

Figure 16. Detailed analysis of the influence of different TR parameter settings on changes in the basic spectral proper-
ties of generated noise signals: examples of vibration signals in the selected ROI in 250-ms time interval for TR = 33 ms
(a) and TR = 10 ms (b), corresponding spectral densities including the spectral envelopes depicted for the frequency
range up to 500 Hz together with the determined basic F0N frequencies (c and d), the used scan sequence of 3D SSF
type with setting TR = 10 ms.

The aim of the last auxiliary experiment was to analyse how the setting of the basic scan
parameters of the used MR sequence (TR and TE times) impacts the spectral properties of the
generated acoustic noise. The performed detailed analysis shows that different settings of TR
and TE parameters are manifested by changes of the noise spectral properties as follows:

• The repetition time has much influence on the basic F0N frequency of the generated
periodical noise as documented by the graphs of the spectral density together with the
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smoothed spectral envelopes as well as by the results of the statistical analysis of the F0N

frequencies for different TR time settings (see Figures 16 and 17).

Figure 17. Summary comparison of influence of different TR parameter settings on the basic spectral properties of gen-
erated noise signals: box-plot of basic statistical properties of the determined basic F0N frequencies for TR = {10, 20, 30
and 40 ms} (a) and corresponding histograms (b), the processed scan sequence of 3D SSF type with TE = 10 ms.

Figure 18. Influence of different TE parameter settings on the spectral properties of the generated noise: spectral enve-
lopes depicted for the low-frequency band up to 2.5 kHz (a), box-plot of statistical parameters of Scentr (b), histograms
of distribution of Scentr (c), box-plot of statistical parameters of Sflat (d) and histograms of distribution of Sflat (e), the used
scan sequence of 3D SSF type with setting of TR = 30 ms and TE = {10, 14, 18 and 22 ms}.

• Echo time settings have effect on higher frequencies of the noise signal, as it is well docu-
mented by its supplementary spectral properties—see the box-plot of the basic statistical
parameters of the centroid and the flatness together with their histograms in Figure 18.

The performed main comparison experiment confirms usability of all three applied noise
reduction methods based on cepstral limitation and clipping, or using one-channel/two-
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channel spectral subtraction. The significant differences between the noisy and the cleaned
speech signals were observed for all processed samples as documented by the graphs in
Figures 19–21, and by the resulting mean, spectral distances were calculated between spectral
envelopes of vowels recorded in MRI noisy environment and cleaned by both noise reduction
methods summarized in Table 2, as well as the calculated mean spectral differences ΔP at the
basic noise frequency F0N for all analysed stationary parts of vowels listed in Table 3 (for both
speaker genders). Comparison of calculated spectral distances between the original noisy and
the cleaned speech signals shows that spectral changes are higher when using the second noise
reduction method. However, in practical realization, it is very difficult to fulfil the basic
condition—to find a suitable arrangement of the Mic. 2 for the pure noise recoding. It means
that there are some recording imperfections resulting in a crosstalk of the speech signal into
the Mic. 2 intended only for noise recording. Next disadvantage of the spectral envelope
subtraction method consists in the fact that this approach brings also undesirable effects (e.g.
aliasing), and therefore, some frequency filtering must be subsequently carried out. This
shortcoming can be solved also in the cepstral domain—by greater limitation of the real
cepstrum expansion, but it would be contradictory to the requested higher quality of the finally
reconstructed speech signal.

Figure 19. Comparison of spectral envelopes for noise reduction method I: summary view in the full frequency range
up to fs/2 (a), detailed part for the frequency range up to 1 kHz with the determined spectral difference ΔP at the fre-
quency F0N (b), processed speech signal of the long vowel “o” (female voice) in the selected ROI of 2.5-s time interval,
the used scan sequence of 3D SSF type, TR = 8 ms, fs = 16 kHz.

Figure 20. Comparison of spectral envelopes for noise reduction method II: summary view in the full frequency range
up to fs/2 (a), detailed part for the frequency range up to 1 kHz with the determined spectral difference ΔP at the fre-
quency F0N (b), processed speech signal of the long vowel “a” (male voice) in the selected ROI of 2.5-s time interval, the
used scan sequence of 3D SSF type, TR = 10 ms, fs = 16 kHz.
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Figure 21. Comparison of spectral envelopes for noise reduction method III: summary view in the full frequency range
up to fs/2 (a), detailed part for the frequency range up to 1 kHz with the determined spectral difference ΔP at the fre-
quency F0N (b), processed speech signal of the long vowel “o” (female voice) in the selected ROI of 2.5-s time interval,
the used scan sequence of 3D SSF type, TR = 8 ms, fs = 16 kHz.

Stationary part of vowel Male voice Female voice

Method I Method II Method III Method I Method II Method III

a: DRMS [dB] 7.32 5.58 4.21 5.45 5.33 3.87

e: DRMS [dB] 6.49 5.24 3.97 4.86 5.01 3.82

i: DRMS [dB] 7.36 5.63 4.14 5.27 5.14 3.10

o: DRMS [dB] 5.66 4.98 4.02 6.11 4.86 3.19

u: DRMS [dB] 4.73 4.89 3.81 5.46 4.78 4.42

Table 2. Comparison of the mean values of spectral distances of the analysed vowels (DRMS are calculated between
spectral envelopes of the original noisy and the cleaned speech signals) for male and female voices.

Stationary part of vowel Male voice Female voice

Method I Method II Method III Method I Method II Method III

a: ΔP [dB] 6.38 7.22 3.26 4.89 6.72 2.84

e: ΔP [dB] 5.79 6.59 2.95 5.12 5.84 2.86

i: ΔP [dB] 6.11 7.23 3.45 5.64 6.18 3.28

o: ΔP [dB] 5.07 5.86 3.08 4.85 5.68 3.11

u: ΔP [dB] 5.58 4.97 2.86 5.34 5.02 2.85

Table 3. Results of mean spectral differences ΔP at the basic noise frequency F0N (determined between the spectral
envelopes of the original noisy and the cleaned speech signals) for male and female voices.

Noise suppression based on cepstral peaks clipping can also cause suppression in the spectrum
at the fundamental speech frequency F0 or at the first formant frequency F1 if they are close
to the clipped noise frequency F0N. Generally, it holds that the values of these frequencies F0
and F1 depend merely on the speaker vocal tract characteristics and they may not be affected
by noise suppression in the speech signal. The third noise suppression method based on the
noise estimation techniques using statistical evaluation of the spectral properties has a
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principal handicap—this approach is not able to track real variations in the noise and its
application in noise suppression results in an artificial residual fluctuating noise and a
distorted speech.

5. Conclusions

The achieved results will serve to create databases of initial parameters (such as the filter bank
for noise signal pre-processing) used to design a filter for noise suppression in the speech signal
recorded simultaneously with 3D human vocal tract scanning. It will be useful in experimental
practice when it often occurs that the basic parameter setting of the used scanning sequence
as well as the other scanning parameters must be changed depending on the person that is
currently examined. The advantage of the system is in the design method of the device noise
elimination by specially developed software which enables to measure the acoustic character-
istics of the subject during phonation in the MRI device with good accuracy. Finally, these three
described algorithms have much a wider range of applications than indicated by the particular
experimental arrangement in this paper.

For better knowledge of the acoustic noise conditions in the scanning area and in the vicinity
of the MRI device, it is necessary to carry out additional measurement and experiments. The
results obtained in this way will help to describe the process of the gradient coil electric
excitation, the subsequent mechanical vibration and the resulting acoustic noise generation in
the MRI device scanning area and its neighbourhood. There is also need for the knowledge
about the contribution of the upper gradient coil (and its plastic holder) to the resulting acoustic
noise. For this reason, the parallel measurement of the vibration signal on the surface of both
plastic holders as well as the analysis of reflective properties of the metal shielding cage and
its influence on the progression of the acoustic wave should be performed.
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