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Abstract

Neuronal intermediate filaments (NIFs) are the most abundant cytoskeletal element in
mature neurons. They are composed of different protein subunits encoded by separate
genes such as neurofilament light chain (NFL), neurofilament medium chain (NFM),
neurofilament  heavy chain  (NFH),  ɑ‐internexin  and peripherin.  NIFs  are  dynamic
structures  playing  important  functions  in  cell  architecture  and  differentiation,
interactions between proteins or subcellular organelles, and in axonal calibre determi‐
nation and myelination. Consequently, their presence modulates electrophysiological
properties  of  axons.  NIFs  have  long  been  assigned  a  role  in  the  pathogenesis  of
amyotrophic lateral sclerosis (ALS). Indeed, accumulation and abnormal phosphoryla‐
tion of NIF subunits in motor neuron are one of the major pathological features in both
sporadic  and familial  forms of  the  disease.  Moreover,  mutations  in  the  NFH and
peripherin genes and elevated cerebrospinal fluid NIF levels reported in ALS cases,
associated with studies in transgenic mice, provided the evidence that primary defects
in NIFs could be causative for motor neuron disease. However, the processes leading
to the NIF abnormalities and the links to the pathogenesis of ALS remain unclear,
leaving a challenging open field for further investigations in this highly disabilitating
disease. Here, we review the main characteristics of these NIFs and their involvement
in the pathomechanisms of ALS.

Keywords: Intermediate filaments, Neurofilaments, cytoskeleton, amyotrophic lateral
sclerosis, tubulin, microtubules, axonal transport
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1. Neuronal intermediate filaments

1.1. Characteristics

Intermediate filaments (IFs) are components of the cytoskeleton, together with microtubules
(MTs) and microfilaments. IFs are defined by their diameter when examined by transmission
electronic microscopy (10 nm), which is intermediate between microtubules (15 nm) and
microfilaments (6 nm). They also differ from these two structures by the various sizes and
primary organisation of their constitutive proteins, their non‐polar architecture and their relative
insolubility. Intermediate filaments form a large family of proteins; they are classified into five
types according to their gene organisation, size, structure and cell‐type expression (Table 1).
IFs expressed in neurons of the central and peripheral nervous systems are called neuronal
intermediate filaments (NIFs) and include nestin, synemin, vimentin, α‐internexin, peripher‐
in and neurofilaments (NFs) that are composed of three subunits, neurofilament light chain
(NFL), neurofilament medium chain (NFM) and neurofilament heavy chain (NFH) (for low‐,
medium‐, and high‐molecular‐weight NFs) [1–5].

Neurons express differentially IF proteins depending on their developing stage and their
localisation in the nervous system. While nestin, synemin and vimentin are mainly expressed
during the neuronal development, NFs, peripherin and ɑ‐internexin are the main intermediate
filament subunits in mature neurons from the central and peripheral nervous system [6]. In
this chapter, we focus on those three subtypes of NIFs.

Type Name Cell/tissue
I Acid keratins Epithelia

II Basic keratins Epithelia

III Desmin Muscle

GFAP Astroglia

Peripherin PNS neurons

Vimentin Mesenchyme

IV Neurofilaments (NFL, NFM, NFH) PNS and CNS neurons

ɑ‐Internexin CNS neurons

Nestin CNS stem cells

V Nuclear lamins Nucleus

IFs found in mature neurons are NFL, NFM, NFH, peripherin and α‐internexin. Abbreviations: GFAP, glial fibrillary
acidic protein; CNS, central nervous system; PNS, peripheral nervous system [7].

Table 1. Classification of intermediate filaments.

1.2. Expression and post‐translational modifications

Genes coding for NFL and NFM (NEFL and NEFM) are closely linked on chromosome 8 (8p21),
while NFH gene (NEFH) is located on chromosome 22 (22q12.2) [8–10]. Peripherin is encoded
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by PRPH located on chromosome 12 (q12–q13) [11], and ɑ‐internexin is encoded by INA located
on chromosome 10 (10q24.33) [3]. As for other IFs, NFs, peripherin and ɑ‐internexin share a
common tripartite structure, with non‐helical amino‐ and carboxy‐terminal regions (head and
tail domains) flanking a 46‐nm‐long central α‐helical rod domain composed of approximately
310 highly conserved amino acids [9, 10, 12] (Figure 1). These segments are joined by short
non‐helical linker sequences, aligning the individual IF subunits prior to filament assembly.
While peripherin and NFL have a short‐tail domain, those of NFM and NFH are longer and
contain numerous KSP (Lys‐Ser‐Pro) repeats that can be phosphorylated on serine (S) residues.
These sites are frequently modified by phosphorylation, glycosylation, nitration, oxidation
and ubiquitination, which can impact NIF interactions and dynamics [6].

Figure 1. Schematic representation of adult neuronal IF subunits. All NIF subunits share a highly conserved central
helical domain of 310 amino acid residues involved in the formation of coiled‐coil structures. Flanking this central rod
domain are the amino‐ and the carboxy‐terminal domains conferring functional specificity to the different types of NIF
proteins. The NFM and NFH carboxy‐terminal regions contain Lys‐Ser‐Pro (KSP) repeats, which can be phosphorylat‐
ed. Abbreviations: NF, neurofilament; NFL, NF‐light; NFM, NF‐medium; NFH, NF‐heavy; C, carboxy‐terminal; N,
amino‐terminal.

Multiple aspects of IF biology are regulated by their post‐translational modifications. The
phosphorylation state of NIF proteins depends on a dynamic balance between the activities of
kinases and phosphatases. Phosphorylation of the head domain by secondary‐messenger‐
dependent protein kinase A (PKA) and protein kinase C (PKC) prevents NIF subunits
assembly or leads to the disassembly of pre‐existing filaments [13, 14]. Phosphorylation of the
KSP motifs on NFM and NFH tail domains by cyclin‐kinase Cdk5 and microtubule‐associated
protein (MAP) kinase promotes the formation of cross‐bridges with MTs and slows NF axonal
transport [15, 16]. Phosphorylation of the head and tail domains is closely related; indeed,
phosphorylation of NFM head domain by PKA reduces the phosphorylation of tail domain
by MAP kinases [17]. This mechanism could be a way to protect neurons from abnormal
accumulation of phosphorylated NIFs in perikarya. NIF dephosphorylation is mainly cata‐
lysed by phosphatase 2A; dephosphorylation of the head domain is necessary to allow NIF
polymerization and transport into the axon, while dephosphorylation of the tail domain
facilitates their interaction with other cytoskeletal proteins and their degradation [18, 19].
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NIFs are also post‐translationally modified by glycosylation and nitration. Glycosylation
resides on attachment of O‐linked N‐acetyl glucosamine (O‐GlcNAc) to S and threonine (T)
residues; the precise function of glycosylation is still unknown, but several clues suggest a role
in the NIF assembly [20]. NIF nitration is catalysed by superoxide dismutase 1 (SOD1) on
tyrosine residues; the nitration of NIFs changes hydrophobic residues into negatively charged
hydrophilic residues, thereby disrupting their assembly and stability.

1.3. Transport, assembly and degradation

Following their synthesis in the cell body, NIF proteins are assembled into filamentous
structures and transported into the axons. They are transported bidirectionally in the axon
along microtubules using kinesin (anterograde) or dynein (retrograde) motor proteins [21,
22]. Studies analysing the transport of green‐fluorescent protein (GFP)‐tagged NIF subunits
have shown that NIFs are transported intermittently in axons, their movements being
interrupted by prolonged pauses. Only a small fraction of NIFs moves at any given time and
direction, and approximately 97% of NIFs spent their time pausing [23–25]. The direction of
NIF transport is modulated by their phosphorylation status, since phosphorylation promotes
their release from kinesin and increases their affinity for dynein [22, 26].

Figure 2. Schematic model of IF assembly in mature neurons. Two NIF subunits (NFL and either NFH or NFM) form
head‐to‐tail coiled‐coil dimers (a), anti‐parallel half‐staggered tetramers (b), protofilaments (c) and 10‐nm NF (d). C‐
terminal domains of NFM and NFH form lateral projections and participate in the stabilisation of the filament network
[33].

NIF subunits can assemble into filaments as soon as they are expressed in neurons, depending
on their post‐translational modifications. Subunits can also disassemble and reassemble
during their transport. NIF assembly does not require nucleotide binding or hydrolysis. The
first step of the filament formation is the dimerisation of an NFL subunit with either an NFM
or an NFH subunit, via the association of their rod domains to form parallel side‐to‐side coiled‐
coil dimers. Two coiled‐coil dimers line up in a half‐staggered manner, forming an anti‐parallel
tetramer. Tetramers combine to form protofilaments, which finally assemble to constitute the
final 10‐nm filament [27, 28] (Figure 2). The C‐terminal domains of NFM and NFH form lateral
projections extending from the filament core [29]. Those projections participate to the stabili‐
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sation of the filament network and interact with other filament structures and subcellular
organelles. Peripherin and α‐internexin can co‐assemble with NFL, NFM and NFH to form
NIFs in mature neurons, respectively, in the peripheral and in the central nervous system [30–
32]. Thus, NIFs are heteropolymers composed of different subunits, with a ratio changing
during neuronal development and activity. This stoichiometry is particularly important and
can lead to severe NF disorganisation when unbalanced.

In normal neurons, non‐phosphorylated NIFs are found primarily in the soma and proximal
axons, while phosphorylated NIFs are located more distal in axons and in terminals [34]. Inside
the axon, NIFs are organised into a three‐dimensional array interconnected with the other
components of the cytoskeleton by several cross‐bridges. NIFs, microtubules and actin
filaments are interlinked by proteins of the plakin family including, among others, plectin,
bullous pemphigoid antigen‐1 protein (BPAG1), actin cross‐linking factor 7 (ACF7), desmo‐
plakin, envoplakin and periplakin [35–38]. Lateral projections of NFH and NFM tails also
fasten adjacent structures (Figure 3).

Figure 3. Schematic representation of the cytoskeleton organisation in axons. The components of the axoplasm are or‐
ganised into a three‐dimensional array interconnected by NFM and NFH tails and plakin‐family proteins [39].

Following their synthesis, assembly and disassembly, NIFs are slowly transported towards
the nerve terminal where they are degraded by specific calcium‐activated proteases, such as
calpain I, and neutral proteases. NIFs are also degraded by non‐specific proteases like
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cathepsin D, trypsin and α‐chymotrypsin. As mentioned above, post‐translational modifica‐
tions regulate NIF degradation: for example, phosphorylation protects NIFs from proteolysis,
while ubiquitination facilitates their degradation [40, 41].

1.4. Roles

As members of the cytoskeletal system, NIFs work together with microtubules and microfila‐
ments to enhance structural integrity and cell shape [42]. In the last decades, it has become
increasingly apparent that IFs, instead of being inert, are in fact highly dynamic structures [43]
relaying signals from the plasma membrane to the nucleus [44], orchestrating the position and
function of cellular organelles [45] and regulating protein synthesis [46]. These interactions are
principally mediated through NIF‐associated proteins that can modulate NIF structure and
function. Linker proteins such as Fodrin, Hamartin or MAP2 are responsible for NIF interac‐
tions with filaments and organelles [29, 47, 48], whereas enzymes (principally kinases and
phosphatases) modulate their architecture, assembly and spacing.

Another major role recognised for NIFs is to modulate the calibre of axons, with a direct
repercussion on the axonal conduction velocity, myelin thickness and inter‐nodal length.
Indeed, NIF density is correlated with axonal calibre in sciatic nerve fibres of rats and mice [49].
Moreover, the axonal radial growth during axonal development or regeneration coincides with
the entry of NFs into axons [50]. In the same way, triple heterozygous knockout mice (NFL±,
NFM± and NFH±), with a reduction of NF content but with a normal structure and stoichi‐
ometry of the NIF network, exhibit a 50% decrease of the axonal diameter in L5 ventral root
[51]. Finally, the disruption of the NFM gene expression or the deletion of its carboxy‐terminal
domain in mice reduces the inter‐filament spacing and axonal calibre, illustrating the prepon‐
derant role of NFM in determining axonal diameter [52, 53]. The phosphorylation state of NFM
and NFH carboxy‐terminal domains might be linked to axon calibre control by regulating NF
transport and inter‐filament spacing, but the exact mechanisms remain unknown.

Thus, NIFs have a central role in cell architecture, dynamics of the organelles, axon structure
and calibre. Therefore, defects in their metabolism could lead to neurodegenerative processes.

2. Implication in amyotrophic lateral sclerosis

2.1. Clinical features

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised
by the loss of motor neurons of the spinal cord, brain stem and motor cortex. Common clinical
symptoms of the disease are progressive paralysis, muscle atrophy and death within 2–5 years
usually from respiratory failure [54]. Although most cases are sporadic (sALS), approximately
10% of ALS patients have a positive family history (fALS). To date, there is no curative
treatment of the disease.

Primary evidence for a contribution of NIFs in ALS pathogenesis came from neuropathological
observations. Most of all, ALS is characterised by the loss and degeneration of upper motor

Update on Amyotrophic Lateral Sclerosis200



neurons in the motor cortex (Betz cells), and lower motor neurons in the brainstem (cranial
motor nuclei) and spinal cord (anterior horn) [55]. One of the hallmarks of both sporadic and
familial ALS is the presence of inclusion bodies in the perikarya of degenerating motor
neurons, described as Lewy body‐like inclusions (LBLIs), Skein‐like inclusions (SLIs) or
hyaline conglomerate inclusions (HCIs). Other typical images observed in the disease are
motor neurons with swollen argyrophilic perikarya, and large swellings of the proximal part
of the axons called spheroids. In immunocytochemical studies, these abnormalities have been
shown to contain several proteins, such as ubiquitin or stable tubule‐only polypeptide (STOP)
[56], but they are particularly reactive for neurofilament subunits [57, 58] and peripherin [59,
60] (Figure 4). Interestingly, NIF inclusions in the cell body and the proximal axon are
hyperphosphorylated, while as mentioned above in normal neurons NIFs are dephosphory‐
lated in those sites and only phosphorylated in more distal part of the axon.

Figure 4. Neuropathological features in ALS. Immunohistochemistry for neurofilaments subunit (phosphorylated
form): diffuse labelling in neuronal swelling perikarya (a) and axonal spheroids (b) in ventral horn of cervical spine.
Scale bars, 20 μm.

Evidence for the involvement of NIFs in the pathogenesis of ALS has been reinforced in the
last 20 years by the discovery of NIF gene mutations linked to the disease. Indeed, codon
deletions and insertions in PRPH and NEFH genes have been identified in several sporadic
ALS patients [61–64]. Although these mutations are not considered as a cause of familial ALS,
they could be a risk factor for sporadic ALS occurrence.

Other evidences came from several studies showing that cerebrospinal fluid NIF levels are
significantly higher in ALS patients than in patients with other neurodegenerative diseases,
especially for those with rapidly progressive disease [65, 66]. Although their contributions to
ALS pathogenesis remain unclear, all these clinical and neuropathological features suggest
that NIFs represent a component of the pathological mechanisms of the disease.

2.2. Animal model contributions

On the basis of these findings, several animal models have been developed, including mice
knockout for NIF genes, and mice expressing mouse, human and modified NIF subunits. While
deletions of NIF genes have limited phenotype and thus are not extensively used to study ALS

Neuronal Intermediate Filaments in Amyotrophic Lateral Sclerosis
http://dx.doi.org/10.5772/63161

201



pathogenesis, the axonal calibre reduction seen in knockout mice for NFL, NFM and NFH
genes demonstrated that neurofilaments play an important role in the radial growth of axons
(Table 2). Interestingly, transgenic mice overexpressing either NFL, NFM, NFH, human NFH,
peripherin or a mutated NFL show clinical and/or neuropathological alterations similar to
those found in ALS (Table 3). Finally, in order to investigate NF dynamics, NFH‐LacZ and
NFH‐GFP mice have been generated; while NFs are retained in cell bodies and deficient in
axons in NFH‐LacZ mice, the fluorescent fusion protein is normally transported along axons
in NFH‐GFP mice, suggesting that β‐galactosidase reporter alters the fusion protein dynamics
whereas GFP does not [67, 68]. All these animal models are therefore very useful to study the
processes underlying NIF accumulation and their role in motor neuron death.

Mice Motor dysfunction Axonal calibre reduction References

NFL -/- No >50% [69]

NFM -/- No >50% [70]

NFH -/- No 10% [71]

α‐Internexin -/- No No [72]

Peripherin -/- No No [73]

Table 2. Knockout mice for NIF genes.

Mice Motor dysfunction NF inclusions References

Mouse NFL Yes Spinal motor neurons and DRG [74]

Mouse NFM No Spinal motor neurons and DRG [75]

Mouse NFH No Spinal motor neurons and DRG [76]

Human NFL No Thalamus and cortex [77]

Human NFM No Cortex and forebrain [78]

Human NFH Yes Spinal motor neurons and DRG [79]

Mutated NFL (tail) Yes Spinal motor neurons and DRG [80]

α‐Internexin No Purkinje cells [81]

Peripherin Yes Spinal motor neurons [82]

Table 3. Mice overexpressing neuronal IF genes or expressing mutated neuronal IF proteins.

2.3. Pathophysiological hypotheses

Accumulation of neurofilaments in motor neurons undeniably participates in the pathogenesis
of ALS, breaking perikarya and axonal structures, disrupting organelles dynamics and
interactions, and affecting axonal transport. However, it is still difficult to determine whether
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NIF aggregations are the cause or consequence of the disease. For example, the motor neuron
loss caused by SOD1G85R mutation is still present despite the absence of NFL in transgenic
mice [83, 84], but the animal's lifespan is prolonged by approximately 15%, suggesting an
increased neuron toxicity when NFs are present in SOD1‐mediated disease.

The mechanisms governing the formation of IF aggregates in ALS remain unclear because
multiple factors can potentially induce the accumulation of NIFs. Firstly, these accumulations
could result from perturbations of NIF transport through their abnormal phosphorylation,
leading to accumulation in cell bodies and in proximal axons. Glutamate excitotoxicity could
be involved in this process by activating mitogen‐activated protein kinases and protein kinase
N1 [85, 86]. Direct disruption of the transport motors themselves could also result in NIF
accumulation, as it has been demonstrated in transgenic mice harbouring mutations or
modified expression in kinesin and dynein genes [87]. Finally, one of the emerging hypotheses
is that the aggregation of NIFs in ALS could result from their altered stoichiometry. Indeed,
overexpression of NFL, NFM or NFH in mice provokes NF aggregations and morphological
alterations similar to those found in ALS [74–76]. Remarkably, the motor neuron disease
caused by excess of human NFH in transgenic mice can be rescued by a correct stoichiometry
with the co‐expression of human NFL transgene in a dosage‐dependent fashion [88]. In a
similar way, the onset of peripherin‐mediated disease in transgenic mice overexpressing PRPH
is accelerated by the deficiency of NEFL [82], peripherin interacting with NFM and NFH to
form disorganised NIF structures. Another interesting point supporting this hypothesis is that
NFL mRNA level is 70% decreased in degenerating motor neurons from ALS patients [89].
This could be due to reduced transcript stability, with a possible involvement of mutated SOD1
and TAR DNA‐binding protein (TDP‐43) that can bind and destabilise NFL mRNA [90, 91].

2.4. The paradox concerning perikaryal versus axonal aggregation of NIF, and the protective
effect of perycarial NFH accumulation

Transgenic mice carrying mutant SOD1 transgenes develop neuronal, clinical and pathological
features similar to those observed in ALS [92]. Surprisingly, the removal of axonal NIF by
crossing the SOD1 transgenic mice with the NFH‐LacZ transgenic mice does not affect the
pathogenesis induced by SOD1 suggesting that axonal neurofilament aggregation is not the
cause of ALS [93]. On the other side, overexpression of mouse NFL and NFH in SOD1G93A
mice and overexpression of human NFH in SOD1G37R mice increase their lifespan by,
respectively, 15 and 65%, associated with an increase of perycarial NF inclusions and a decrease
of axonal spheroids (Table 4). Taken together, these last results suggest a protective effect of
perikaryal accumulation of NFH proteins in motor neuron disease caused by mutant SOD1.
Several hypotheses have been proposed to explain this protective effect. One possibility is that
NF proteins may act as calcium chelators thanks to their multiple calcium‐binding sites [94].
It also cannot be excluded that the accumulation of NFs could interfere with glutamate
receptors and prevent glutamate excitotoxicity [95]. Finally, NF inclusions may act as a
phosphorylation sink for cyclin‐dependent kinase 5 or for toxic oxygen radical species induced
by mutant SOD1, thereby reducing damage to other essential cellular components [96].
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Mice Lifespan Perycarial NF inclusions References

SODG85R – NFL -/- Increased by 15% No change [84]

SODG93A – NFL overexpression Increased by 15% Increased [97]

SODG93A – NFH overexpression Increased by 15% Increased [97]

SODG37R – human NFH overexpression Increased by 65% Increased [98]

Table 4. Effects of NF changes in SOD1‐mediated disease.

3. Future directions

Implications of NIF abnormalities in the pathogenesis of ALS remain unclear. Despite
extensive studies over the past 20 years, it is still unknown how these abnormalities occur and
what are their exact contributions to the disease pathogenesis. Understanding how they are
formed remains an important objective in the study of both sporadic and familial forms of the
disease. Perhaps, the analysis of future generation of mouse models with new familial ALS
mutations or conditional control of abnormal NIF proteins will help to address this issue.
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