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Abstract

A plethora of investigations demonstrated that vitamin D (VitD) has a broad immuno‐
modulatory  potential.  It  induces  tolerogenic  dendritic  cells  in  vitro  leading  to  the
development  of  regulatory  T  cells  that  have  a  key  role  in  immunomodulation  of
autoimmune diseases including multiple sclerosis (MS). Studies showed that many MS
patients present lower serum levels of VitD than healthy subjects. In addition, VitD
supplementation has been associated with a reduced relative risk of developing MS.
Considering the alterations in VitD levels in patients and also the immunomodulatory
properties of VitD, it would be interesting to evaluate VitD potential as a tolerogenic
adjuvant in experimental models of MS. In this context, our research team has been
investigating strategies employing VitD to establish an in vivo tolerance state toward
central nervous system antigens in experimental autoimmune encephalomyelitis (EAE).
We observed that the association between a myelin peptide and VitD determined both
therapeutic and prophylactic effects on EAE development.

Keywords: vitamin D, multiple sclerosis, experimental autoimmune encephalomyeli‐
tis, immunomodulation, myelin peptides

1. Introduction

The immune system is well known by its ability to defend the host against infections. In this
sense,  it  is  academically subdivided into innate and adaptive immune responses.  Innate
immunity is the first defense line and includes the microbicidal activity of macrophages and
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polymorphonuclear cells. Host defense against microorganisms is dependent upon recognition
of pathogen‐associated molecular patterns, mainly by toll‐like receptors (TLRs) present in these
cells. Otherwise, adaptive immunity requires specific antigen recognition by B and T lympho‐
cytes. Differently from B cells that can directly recognize the antigens, T cells require previous
antigen processing and interaction of epitopes with major histocompatibility complex proteins
that are then expressed at the surface of antigen‐presenting cells (APCs) as, for example, dendritic
cells (DCs). Due to their strong potential for proliferation and activation, B and T cell activity
needs to be regulated. A special T‐cell subpopulation called regulatory T (Treg) cell plays a major
role in controlling inflammatory immune responses. To maintain its homeostasis, the immune
system has to manage a balance between inflammatory and anti‐inflammatory responses. The
imbalance of these immune responses leads to the development of many diseases such as
autoimmune pathologies. In this context, other T‐cell subpopulations such as T helper type 1
(Th1) and type 17 (Th17) cells, which are inflammatory, and type 2 cells (Th2), which are
predominantly anti‐inflammatory, are also involved. Besides its ability to eliminate pathogens
and restore the host homeostasis, the immune system has also a mechanism to hamper the
development of an immune response against the body’s own tissues. This mechanism, called
self‐tolerance, can be disrupted by the combination of a variety of genetic, environmental, and
immunological factors that lead to autoimmunity. The relevance of vitamin D (VitD) in multiple
sclerosis (MS), which is an autoimmune disease involving the central nervous system (CNS), is
discussed in this chapter.

2. VitD metabolism

The history of VitD is strongly linked to rickets and its treatment with cod liver oil. In 1922,
McCollum [1] coined the term vitamin D to refer to the antirachitic factor found in cod liver
oil [2]. For this reason and for a long time, the most widely accepted physiological role of
VitD was related to calcium and phosphorus metabolism and bone mineralization [3]. How‐
ever, since the 1980s, many researches implicated VitD on the cardiovascular, endocrine,
and central nervous system (CNS), as well as on the immune system physiology. The active
form of VitD (1α,25‐dihydroxyvitamin D3) determines pleiotropic effects in human body
through binding to vitamin D receptor (VDR), which is a member of the steroid hormone
receptor superfamily found in a variety of human cells. The biological effects of VitD can be
elicited by non‐genomic and genomic mechanisms depending on the cell location of VDR.
The non‐genomic (rapid) mechanisms consist in VitD direct effect on the cells through
membrane VDR binding. These effects include, for example, the activation of protein kinase
C in different organs [4]. The genomic mechanism is determined by intracellular VDR that
heterodimerizes with retinoic X receptor after binding to active VitD. This heterodimer is
then translocated to the nucleus leading to activation or inhibition of a vast diversity of
genes [5].

Some of the most important aspects of VitD epidemiology have been established by the
scientist Michael Holick and his collaborators. As many people do not have an adequate
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sunlight exposure due to skin cancer risk, sedentary lifestyle, darker skin, or during the winter
in countries far from the equator, there is an increasing number of persons with VitD deficiency
around the world [6]. In the past few years, VitD deficiency has been associated with the
etiology of many chronic diseases, like Crohn’s disease, infections of the upper respiratory
tract, cancer, myocardial infarction, Alzheimer’s disease, autoimmune diseases, and others [7].
According to current knowledge, VitD serum levels should be between 30 and 100 ng/mL in
healthy humans. VitD insufficiency is related to levels between 21 and 29 ng/mL, whereas a
pronounced VitD deficiency is considered in individuals whose VitD levels are below
20 ng/mL. On the other hand, serum levels over 150 ng/mL can determine intoxication VitD
intoxication [8]. Excessive oral intake of VitD may cause a hypervitaminosis condition with
toxic effects such as hypercalcemia and hypercalciuria. Theories concerning the mechanisms
of VitD toxicity involve elevated plasma concentration of VitD itself or its metabolites that
culminates in overexpression of a variety of genes [9]. Although solubility of vitamins (fat or
water) has no direct effect on toxicity, the ability of fat‐soluble vitamins such as VitD to
accumulate in the adipose tissue determines their higher toxic potential than water‐soluble
vitamins. For example, subcutaneous fat necrosis releases tissue‐accumulated VitD that leads
to hypervitaminosis and its toxic effects [10].

The highest amounts of VitD are synthesized by the skin exposed to sunlight. Ultraviolet
radiation converts 7‐dehydrocholesterol in pre‐vitamin D3. Then pre‐vitamin D3 suffers a
spontaneous thermal isomerization into vitamin D3, named cholecalciferol [11]. Due to this
essential role of sunlight, this vitamin has been called “sunshine vitamin” [12]. Smaller
amounts of VitD can be obtained from intake of certain foods such as mushrooms, fish, milk,
and eggs [13]. To become a metabolically active hormone, cholecalciferol needs to be hydroxy‐
lated twice. The first hydroxylation takes place in the liver and converts cholecalciferol into
25‐dyhidroxyvitamin D (calcidiol) via the enzyme 25‐hydroxilase [14]. Plasma calcidiol levels
are usually used as a parameter of VitD status because it increases in proportion to VitD intake
[15]. After that, calcidiol binds to a carrier molecule, known as the vitamin D‐binding protein,
to be systemically transported to tissues that express 1α‐hydroxylase (CYP27B1) [16]. The
second hydroxylation, which generates the bioactive metabolite 1,25‐dihydroxyvitamin D3
(calcitriol), occurs at the renal proximal tubular cells that are rich in CYP27B1 [17]. This reaction
involves the sequential reduction of flavoprotein, renal ferredoxin, and cytochrome P‐450 [18].
A critical physiological role in skeletal homeostasis is mediated by calcitriol. Concisely,
hypocalcemia stimulates parathyroid glands to release parathyroid hormone, which activates
renal CYP27B1 enzyme function, resulting in calcitriol production. Besides, parathyroid
hormone stimulates osteoclast maturation to release calcium and phosphate from the bones.
Calcitriol also reduces renal calcium excretion and increases calcium absorption from foods
in the intestine. When normal calcium levels are obtained, calcitriol exerts a feedback
regulation in the parathyroid gland, downregulating CYP27B1 activity to avoid VitD intoxi‐
cation [14]. Besides the kidneys, 1α‐hydroxylase has been reported in many tissues including
bone, placenta, prostate, and parathyroid gland. In addition, several cancer cells and immune
cells, such as macrophages, T lymphocytes, and DCs, are also able to produce this enzyme
[19,20].
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3. Immunomodulatory properties of VitD

First evidences of VitD role in the immune system regulation date from the 80s. Haq [21]
demonstrated that active VitD, but not its non-active form, blocked the production of IL
(interleukin)-2 and consequently inhibited T-cell proliferation. Based on this downmodulatory
effect, the potential of VitD to increase organ survival in experimental allograft transplantation
was also evaluated. First studies in this field were based on the in vitro immunosuppressive
effects of VitD and its analogs. One of the most evident toxic effects of high VitD doses, which
are usually required to avoid transplant rejection, is hypercalcemia. To avoid this and other
toxic effects such as bone resorption, many efforts were done to develop synthetic structural
analogs of active VitD that still preserved its immunomodulatory properties [22]. When tested
in vivo, a 20-epi-vitamin D3 analog did not prolong renal allograft survival in Lewis rats and
also led to the development of hypercalcemia [23]. These authors emphasized the importance
of more experimental studies to evaluate the potential of VitD and its analogs to prevent graft
rejection. Later, Hullett et al. [24] successfully demonstrated that Lewis rats orally receiving
active VitD presented prolonged survival heart allografts without hypercalcemia. Over the
years, a much broader role of VitD in the immune system was disclosed and the mechanisms
underlying its immunomodulatory effects were progressively elucidated. Currently, calcitriol
is largely known to modulate both innate and adaptive immunity through its binding to VDR,
which is present in a multitude of immune cells. Although VitD can bind to both genomic and
non-genomic targets, the most important immunomodulatory properties are elicited by
genomic mechanisms [25].

It is well known that VitD stimulates the innate immune system by enhancing the antimicrobial
ability of monocytes and macrophages. This effect is mainly associated with TLRs activation
and increased release of cathelicidin and IL-1β by these cells [26]. Clinical evidences suggested
a strong correlation between a poor VitD status and an increased susceptibility to infections.
VitD has also been linked to more severe infectious diseases [27–29]. Moreover, Nouari et al.
[30] recently demonstrated that active VitD can enhance the microbicidal activity of human
monocyte-derived macrophages against Pseudomonas aeruginosa.

Conversely, VitD has an inhibitory effect on the adaptive immune system. It directly targets
APCs, which are a very important link between the innate and adaptive immunity. In this
sense, conventional APCs as DCs are profoundly affected by VitD. The mechanisms underly-
ing the effects of VitD on DC function were recently reviewed by Barragan et al. [31]. In vitro
treatment with active VitD or its analogs inhibits both differentiation and maturation of human
and murine DCs leading to changes in its phenotype and function [32]. The immature or semi-
mature state induced by VitD is generally characterized by a decreased expression of co-
stimulatory molecules such as CD40, CD80, and CD86. This state determines a tolerogenic DC
phenotype associated with reduced IL-12 and increased IL-10 production. The addition of VDR
agonists or active VitD during differentiation of DCs in vitro determines a reduction in
subsequent T-cell proliferation and also in interferon-gamma (IFN-γ) production [33].
Tolerogenic DCs are also able to induce the development of Treg cells that are mainly charac-
terized by the expression of CD4 and CD25 molecules and production of anti-inflammatory
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cytokines such as IL‐10 and transforming growth factor‐β (TGF‐β) [34]. As mentioned before,
Treg cells play a major role in controlling inflammatory immune responses. The main mech‐
anisms underlying their suppressive activity include the induction of inhibitory molecules
such as cytotoxic T‐lymphocyte antigen 4, the production of inhibitory cytokines that leads to
impaired T‐cell expansion and the release of granzymes and perforin that trigger T‐cell death
[35]. Chambers et al. [36] demonstrated that addition of active VitD on human CD4+ T
lymphocytes significantly increased the expression of forkhead box protein P3 (Foxp3) that
characterizes Treg cells.

The direct effect of VitD on T cells was the first evidence of the immunomodulatory activity
of this hormone. Active VitD suppresses Th1 inflammatory immune response through
inhibition of IL‐2 and IFN‐γ production, which are the main cytokines produced by this Th
cell subset. This subject was revised by Lemire et al. [37]. These authors described that VitD
preferentially inhibited Th1 functions having little effects over Th2 cells. At that time, they
already suggested that this vitamin could have a potential therapeutic application in Th1‐
mediated diseases as is the case of some autoimmune pathologies.

Many inflammatory responses are also related to the development of Th17 cells and its
signature cytokine named IL‐17. It is largely known that this T‐cell subpopulation is involved
in the pathogenesis of a variety of inflammatory and autoimmune disorders [38]. In this
context, Th17 cell pathogenicity is frequently related to a Th17‐Th1 functional plasticity that
is regulated by the cytokine milieu [39]. The immunomodulatory effects of VitD on Th17 cells
are not clear and depend upon the disease. Most of what is known concerning VitD effect on
these cells is based on experimental studies. For example, oral treatment with active VitD
prevented and partly reversed experimental autoimmune uveitis in mice. This effect was
related to both decreased IL‐17 production and impaired development of Th17 cells [40].
Moreover, Chang et al. [41] demonstrated that active VitD treatment protected mice from
experimental autoimmune encephalomyelitis (EAE) by inhibiting the differentiation and
further migration of Th17 cells to the central nervous system (CNS). Even though the effect of
VitD on animal models is evident, human data are controversial and there is not a consensus
in the literature yet.

Data on the effects of VitD on the development of Th2 cells are also conflicting. This T‐cell
subset is able to suppress Th1 inflammatory immune response through the production of anti‐
inflammatory cytokines such as IL‐4 and IL‐5. A direct effect of active VitD on Th2 cells was
demonstrated by Boonstra et al. [42]. Even in the absence of APCs, these authors observed an
increased frequency of IL‐4‐, IL‐5‐, and IL‐10‐producing murine CD4+ T cells after in vitro
stimulation with VitD. In addition, there was a decrease in the frequency of IFN‐γ‐producing
cells. However, Staeva‐Vieira and Freedman [43] demonstrated that active VitD inhibited the
in vitro production of both, IFN‐γ and IL‐4 by murine CD4+ T cells.

Other T‐cell subsets such as CD8+ T cells and natural‐killer T cells (NKT) are also targets of
VitD. Chen et al. [44] demonstrated that active VitD signaling through VDR is essential to
control pathogenic CD8+ T cells in inflammatory bowel diseases. The importance of VDR was
also highlighted by Yu et al. [45] who demonstrated a critical role of VDR expression in the
development of induced NKT cells from mice fed with synthetic diets containing active VitD.
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There are few studies concerning the impact of VitD on B cells. In vitro assays indicated that
the active form of VitD inhibited the production of immunoglobulin E and increased IL‐10
production by B cells [46,47]. Similarly to the effect over DCs, active VitD also downregulated
the expression of co‐stimulatory molecules at the surface of human B cells. Drozdenko et al.
[48] demonstrated that the antigen‐presenting function of B cells was compromised by in vitro
addition of active VitD to B and T cell co‐cultures. The authors detected a reduced expression
of the co‐stimulatory molecule CD86 in B cells along with diminished T‐cell expansion and
lower cytokine production by these cells. A general scheme indicating some of the most
relevant effects of VitD on innate and adaptive immunity is displayed in Figure 1.

Figure 1. VitD action on the immune and the central nervous systems. (A) Effect of active VitD on the innate and the
adaptive immunity cells and (B) direct and indirect effects of active VitD on the central nervous system.

The immunomodulatory potential of VitD has been widely explored in the field of autoim‐
mune diseases. Epidemiological studies demonstrated that low VitD is correlated with a higher
incidence of autoimmune diseases. Besides, genetic factors as VDR polymorphisms are also
linked to autoimmune disorder susceptibility. The association between VitD and systemic and
organ‐specific autoimmune diseases, including multiple sclerosis (MS), was carefully re‐
viewed by Agmon‐Levin et al. [49].
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4. Epidemiological evidence that VitD is relevant in MS

MS is an autoimmune disease characterized by the activation of self‐reactive T cells specific
for CNS antigens. This immune response triggers an initial inflammation in brain and spinal
cord that is then followed by demyelination, axonal damage, and scar formation [50]. The
pathogenic immune response observed in MS is mainly mediated by Th1 and Th17 [51].
About 85% of MS patients present with a biphasic disease characterized by alternating epi‐
sodes of neurological disability and recovery, which is entitled as relapsing remitting MS
(RRMS). Within 20–25 years, 60–70% of these patients progress to a secondary‐progressive
disease that is characterized by progressive neurological deterioration. Approximately 10%
of the patients display a disease course classified as primary progressive MS, which is char‐
acterized by a continuous decline in neurological performance without any recovery epi‐
sode [52]. Magnetic resonance imaging (MRI) is playing a prominent role in the diagnosis
and also in the analysis of MS therapy efficacy [53]. As mentioned before, autoimmune dis‐
eases result from the interactions of environmental and genetic risk factors. Environmental
risk factors considered essential for MS development include infections and non‐infectious
factors that comprise differences in diet and other behaviors, such as cigarette smoking and
sunlight exposure [54,55]. The development of MS has been strongly associated with viral
and bacterial infections [54,56]. More recently, a possible relationship between MS and Can‐
dida species was proposed [57–59]. Our research team recently demonstrated that previous
infection with Candida albicans, a commensal and opportunistic human pathogen, aggravates
the clinical signs of EAE [60].

Epidemiological data on MS incidence and prevalence drew attention to a possible link
between the geographical distribution of the disease and exposure to the sun, UV radiation/
intensity, and VitD levels. This sunshine hypothesis also known as latitude‐gradient effect was
initially proposed by Limburg [61] that suggested a correlation between higher MS occurrence
and increasing distance from the equator. According to the World Health Organization [62],
the highest prevalence of MS occurs in Europe (80 per 100,000 people) and the lowest preva‐
lence in Africa (0.3 per 100,000). More recently it was reported that, until 2013, the number of
MS was higher in northern hemisphere and lower in southern hemisphere, with the exception
of Australia and New Zealand [63]. A latitudinal variation was also identified in the continents.
For example, geospatial analysis carried out in North American regions showed an inverse
correlation between MS and UV radiation, that is, higher MS rates have been associated with
lower UV radiation due to a south‐north latitudinal gradient [64]. Interestingly, a series of
lifestyle changes that include sun evasion associated with skin protection and extra time
indoors, or increased charter tourism to warmer countries during the winter, seems to abolish
latitude effects on UV radiation exposure [65]. According to these authors, this association
between sun exposure and MS can be determined by distinct effects: by the VitD generated by
sun exposure, by direct sun effects, or by a combination of both. These possibilities are
reinforced by data from experimental animals and also from dietary studies in human
populations. Dermal application of VitD ointments and UV radiation in VDR knockout mice
were both able to induce Treg cells [66]. Further study indicated that these UV‐induced Treg
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cells were able to migrate to the CNS of mice with EAE where they downregulated the
inflammatory activity [67].

A lower prevalence of MS in some northern countries, which in a general way are expected to
have a higher number of patients with the disease, could be explained by VitD‐related dietary
factors. For example, VitD sufficiency could be achieved through a traditional diet that includes
fatty fish and cod liver oil. This possibility has been suggested to explain the reduced risk of
MS in Norway that is located at the north of the Arctic Circle [68]. The relevant role of dietary
VitD intake in MS was examined in two large cohorts of women: the Nurses' Health Study
(NHS; 92,253 women followed between 1980 and 2000) and the Nurses' Health Study II (NHS
II; 95,310 women followed between 1991 and 2001). The authors concluded that intake of VitD
from supplements had a protective effect on the risk of developing MS [69]. A recent study
with 953 MS patients indicated an inverse association between MS risk and the dose of cod
liver oil during adolescence, suggesting that this stage of life is an important susceptible period
for adult‐onset MS, reinforcing the importance of dietary VitD as a risk factor for MS [70].
Altogether these data supported the possibility that MS patients could have lower levels of
VitD. Regarding this, the largest study to date compared VitD levels present in Iranian MS
patients (n = 700) to the ones found in healthy individuals (n = 1000) and demonstrated that
VitD levels were significantly lower in patients with MS [71]. Strong evidences also support
the likelihood that low VitD levels can be related to disability and progression of this disease.
In a study with 267 patients, lower serum VitD levels were also associated with higher rates
of both relapse and disability [72]. Other authors showed an association between a low VitD
status at the start of RRMS and the early conversion to secondary progressive MS [73]. The
possible effect of VitD levels in the therapeutic efficacy of interferon beta 1b(IFN‐β‐1b),
fingolimod (FTY), and glatiramer acetate (GA) was also investigated. Among patients treated
with IFN‐β‐1b, higher VitD levels were associated with a reduced risk of relapse [74], whereas
lower VitD levels early in the disease course correlated with a strong risk factor for long‐term
MS activity and progression [75]. In a similar way, in FTY‐treated patients, higher VitD levels
were associated with an approximately 50% reduction in new inflammatory events and in
relapses [76]. By contrast, there was no significant benefit of higher VitD levels with respect to
inflammatory events, relapses, or disability progression in GA‐treated patients [76]. The strong
correlation between low VitD levels and higher MS susceptibility reinforces the hypothesis
that VitD deficiency leads to MS and/or disease progression and stimulates new researches
focused on supplementation of these patients with VitD.

5. Supplementation of MS patients with VitD

The recent identification of VitD as a risk factor for MS susceptibility, and more recently as a
potential modifier of disease course, inspired several clinical trials in relapsing MS [77]. It has
been proposed that VitD supplementation is a low‐cost and a low‐risk intervention that may
potentiate the efficacy of certain treatments against MS, without the risk of provoking serious
adverse events as occurs with other combination therapies [76]. In effect, many patients are
being already supplemented with VitD. However, it is not known whether supplementation
has a significant impact on MS progression. A clinical trial (NCTO1339676) employing oral
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supplementation with active VitD (20,000 IU/week, cholecalciferol, Dekristol) administered
once a week during 12 months together with IFN‐β‐1b resulted in reduction of MRI lesions in
the brain of MS patients [78]. In another clinical trial (NCT 00785473), this same dose (20,000 IU/
week, cholecalciferol, Dekristol) was administered during 24 months in RRMS patients under
treatment with IFN‐β‐1b, GA, or natalizumab. Even though the patients presented a significant
increase in serum VitD levels, the markers of systemic inflammation were not modified. The
authors suggested that the anti‐inflammatory effects of VitD supplementation are limited to
RRMS patients with VitD insufficiency or to earlier stages of the disease [79]. A higher dose of
VitD3 (50,000 IU/week) administered by oral route during a short period (2 months) reduced
disability in RRMS patients and surprisingly upregulated IL‐6 and IL‐17 gene expression in
the peripheral blood mononuclear cells of these patients [80]. Similarly, the same VitD dose
(50,000 IU) administered by oral route every five days for 3 months in 94 RRMS patients under
treatment with IFN‐β‐1b reduced disability of these patients but also increased IL‐17 serum
levels in comparison to a placebo group [81]. Investigations in this area suggested that changes
in IL‐17 levels could be related to the adopted VitD doses. For example, Golan et al. [82]
demonstrated that IL‐17 serum levels were significantly increased in a lower dose group
(800 IU/per day), whereas patients that were taking higher doses (4370 IU/per day) presented
heterogeneous IL‐17 responses: 40% of them had decreased serum IL‐17 levels, whereas 45%
had increased IL‐17 levels after three months of supplementation. These authors suggested
that IL‐17 data must be interpreted with caution as serum IL‐17 is not an established biomarker
of MS disease activity. Furthermore, IL‐17 serum levels before treatment with IFN‐β could not
be correlated to disease activity parameters [83]; IL‐17 also showed a trend toward higher levels
in MS patients with inactive disease compared to those with active disease [84]. More recently,
40 patients with RRMS were randomized to receive 10,400 IU or 800 IU of cholecalciferol daily
for 6 months. Mean increase of VitD levels from baseline to the ones detected at final visit was
larger in the high‐dose group than in the low‐dose one and adverse events were minor and
did not differ between the two groups. Interestingly, in the high‐dose group, but not in the
low‐dose one, there was a reduction in the proportion of IL‐17+CD4+ T cells. The authors
concluded that daily cholecalciferol supplementation with 10,400 IU is safe and well tolerated
in patients with MS and determines in vivo pleiotropic immunomodulatory effects [85].
Considering that IL‐17 is an important cytokine involved in MS pathogenesis, further studies
are needed to clarify the role of VitD on these unexpected elevated IL‐17 levels. Therefore, until
nowadays it is not possible to consider IL‐17 as a biological marker for VitD levels in human
body.

The researches done so far strongly suggest that VitD supplementation could be useful in MS
treatment. However, the exact doses to be prescribed to patients presenting different clinical
symptoms are still waiting to be determined [86]. Regarding the side effects of VitD that include
hypercalcemia [87] and the imbalance in serum concentration of parathyroid hormone [88],
monitoring serum VitD would also be extremely important. In spite of the findings that VitD
directly regulates the nervous system development and function [89], there is no scientific
evidence to support its use as a monotherapy for MS in clinical practice [90]. Recent human
trials concerning VitD supplementation in MS patients suggest that higher VitD doses are more
efficient to control the symptoms and disease inflammatory markers. Nonetheless, to fix the
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ideal dose, it is essential to measure VitD serum levels before supplementation and to follow
up the patients by constantly monitoring side effects. It is important, however, to highlight
that the ideal dose could vary from one patient to another. The possible use of VitD analogs
devoid of side effects must be also evaluated. World Health Organization (WHO) and Multiple
Sclerosis International Federation (MSIF) published in 2008 the first Atlas of MS [62], corre‐
lating the epidemiology, diagnosis, and therapy. To the best of our knowledge, WHO did not
define a specific VitD dose to treat MS.

6. Therapeutic effect of VitD in EAE

Experimental autoimmune encephalomyelitis (EAE) is an animal model universally employed
to investigate mechanisms of inflammation in the CNS in the context of MS. EAE is mainly
induced in rodents either by active immunization with CNS antigens associated with adjuvant
or by passive transfer of CNS‐specific T cells. Most of the therapeutic procedures adopted
nowadays were initially tested in murine EAE [91]. In 1991, it was demonstrated that VitD
administration every other day for 15 days, starting 3 days before EAE induction, significantly
prevented disease development and prolonged the survival of SJL/J mice [92]. This was the
first report concerning the therapeutic potential of VitD on EAE. To avoid undesirable
hypercalcemia in vivo, the immunomodulatory activity of VitD analogs were confirmed and
they were equally efficient to suppress EAE development [93,94]. Since then, EAE has been
widely employed to understand the mechanisms involved in VitD efficacy against MS. In this
regard, one of the first studies was done with the Lewis rat model. The authors observed that
VitD administered after the beginning of clinical signs determined significant clinical im‐
provement. This therapeutic effect was associated with a striking decrease in the number of
CD4+ cells, macrophages, and activated microglia in the CNS [95]. VDR is also essential for
the beneficial effects of VitD on EAE since VitD treatment was not able to prevent disease
manifestations in VDR‐knockout mice [96]. The efficacy of VitD over EAE has also been
attributed to effects on cells from the innate immunity. It decreases macrophage accumulation
[97], inhibits chemokine synthesis and inducible NOS, and also suppresses CD11b+ monocyte
recruitment into the CNS [98]. NKT cells also contribute to the protective effect of VitD on
murine EAE. All mice lacking NKT cells [CD1d(−/−)] presented EAE symptomatology upon
VitD administration, whereas the same treatment completely avoided EAE development in
wild‐type mice [99]. More recent data revealed that VitD administration induces tolerogenic
DCs in the lymph nodes, which leads to suppression of encephalitogenic T cells, resulting in
less inflammatory response in the CNS [100].

Critical effects of VitD on CD4+ T cells have been reported, whereas it is not evident if this
vitamin affects CD8+ T cells, which express the highest concentrations of VDR. The effect of
VitD on CD8+ T cells in EAE was evaluated in one report. The authors demonstrated that VitD
inhibits EAE development even in mice lacking functional CD8+ cells, suggesting that they
were not essential for VitD‐suppressive effect in murine EAE [101]. The conception that the
CD4+ T‐cell subset was the main VitD target during EAE therapy was then established. VitD
treatment triggered a reduction in the total number of lymphocytes, while the amount of IL‐4
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and TGF‐β‐1 transcripts increased in the CNS of EAE mice [102]. Still regarding anti‐inflam‐
matory cytokines, VitD therapy was reported to be much less effective in preventing EAE
symptoms in IL‐4‐deficient mice [103] and also failed to inhibit EAE in mice with a disrupted
IL‐10 or IL‐10R gene [104]. A more recently described profile of CD4+ T cells termed Th17 plays
a critical role in numerous inflammatory conditions and autoimmune diseases. In this context,
researchers showed that VitD can inhibit the differentiation and migration of Th17 cells to the
CNS, ameliorating EAE symptoms [41,105].

After the first demonstration that VitD leads to induction of CD4+CD25+Foxp3+ cells with
suppressive activity in vitro [106] and that these regulatory cells are directly involved in the
natural resolution of EAE [107], many studies validated the correlation between VitD treatment
and the increment of a Foxp3+ regulatory profile in EAE [99,103,104] (Figure 1B). The potential
for reversing inflammatory and demyelinating processes in the CNS has been attributed to an
augmented generation of Foxp3+ Treg cells in the periphery and their further migration to the
CNS [100,108]. New therapeutic approaches have also been tested to improve VitD efficacy in
EAE. A synergistic effect was found by association of VitD with estrogen, which determined
more CD4+Helios+Foxp3+ Treg cells and fewer CD4+ T cells among CNS mononuclear cells,
preventing EAE development [109]. In addition to the large contribution of VitD immunomo‐
dulatory activity in EAE, this treatment can also directly act on neural cells promoting CNS
remyelination and other neuroprotective effects (Figure 1B). In vitro assays indicated that this
vitamin significantly enhanced proliferation of neural stem cells and their differentiation into
neurons and oligodendrocytes [110]. In addition, VitD treatment modulated autophagic
activity and neuroapoptosis in EAE mice. As autophagy is an evolutionarily conserved cellular
catabolic process that recycles damaged organelles and its inhibition causes neurodegenera‐
tion in mature neurons, this process plays an essential role in maintaining neuronal homeo‐
stasis [111]. In summary, VitD controls EAE symptoms through reduction of inflammatory
immune response and elicitation of a regulatory profile. As EAE reproduces specific features
of the histopathology and neurobiology of MS [112], highlighting these mechanisms in rodent
models is essential to translate VitD supplementation to MS patients.

Emphasis has been given to specific therapies, that is, to procedures that target CNS anti‐
gen and that would be, therefore, more efficient and devoid of side effects. In this context,
MOG administration by different routes as intravenous [113], oral [114] or nasal [115], was
able to suppress EAE symptoms. Various formulations containing myelin antigens were
tested to control EAE. MOG conjugated with nanoparticles [116], mannan, [117] or inserted
into a plasmid DNA [118] reduced EAE symptoms through induction of Foxp3+ Treg cells
and dowmodulation of Th17 and Th1 cells. Our research group has been working in this
context. Considering that an antigen from the CNS can provide the required specificity and
that VitD is endowed with a strong downmodulatory potential, we anticipated that VitD
could work as a tolerogenic adjuvant. Differently from the conventional immunogenic ad‐
juvants that reinforce the immune response, the denominated tolerogenic adjuvants have
the ability to downmodulate or modify the specific immune response when associated with
specific antigens. Confirming this hypothesis, we recently demonstrated that a combined
therapy with MOG + VitD blocked EAE development. This elevated efficacy was correlated
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with reduced production of IL‐6 and IL‐17 by spleen and CNS cell cultures stimulated with
MOG, reduced splenic DC maturation, and also a striking decline in CNS inflammation
[119] (Figure 2).

Figure 2. MOG + active vitamin D3 association strategy for EAE prophylaxis and treatment. C57BL/6 mice were vacci‐
nated or treated with this association and the effect on EAE was evaluated in the acute EAE phase. Both strategies de‐
creased production of inflammatory cytokines by CNS mononuclear cells, frequency of CD4+CD25+Foxp3+ Treg cells,
and inflammation in the CNS.

7. Prophylactic effect of VitD on EAE

Prophylactic strategies in EAE, and also in other autoimmune pathologies, are based in the
concept of "inverse vaccination.” This procedure refers to the use of an immunization protocol
that, differently from classical vaccination, aims to achieve an antigen‐specific tolerogenic
state [120]. Even though the term “inverse vaccination” could also be used as a therapeutical
strategy, in this text we applied it only in the context of prophylactic vaccination. The majority
of the prophylactic strategies in EAE have been done by administration of a diversity of MOG
formulations delivered by distinct routes. A few examples of these procedures and the main
histological and immunological findings are illustrated in Table 1.

The prophylactic potential of VitD (or analogs) alone or associated with other pharmaceuti‐
cals has been tested in EAE. The adopted experimental protocols are not standardized and
therefore, different amounts of VitD are administered by distinct routes. Time periods
chosen for VitD administration in relation to EAE induction are also variable and some
procedures consist in prolonged administration periods, even reaching the disease clinical
phase. However, a general consensus is that VitD is able to improve clinical disease mani‐
festation and also to trigger evident effects on the CNS and the immune system. Some of
the effects observed in mice with EAE that were previously injected with VitD are exempli‐
fied in Table 2.
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Peptide formulation Animal model Effects References

Plasmid DNA vaccines

encoding MOG35–55

C57BL6/J mice ↓Microglia/macrophage activation,

astrogliosis, and axonal damage

↑CD4+CD25+Foxp3+ Treg

Fissolo et al. [118]

MOG35–55 conjugated to

mannan, intradermally

C57BL/6 and SJL/J

mice

↓Demyelination

↓Inflammatory infiltrates

Tseveleki et al. [117]

Tolerogenic DC pulsed with

MOG40–55

C57BL/6 mice ↑IL‐10 production by MOG‐stimulated

splenocytes

↑CD3+CD4+CD25+FoxP3+ cells

Mansilla et al. [121]

MOG35–55‐PLGA + IL‐10‐

PLGA, subcutaneously

C57Bl/6 mice ↓IL‐17 and IFN‐α production by

splenocytes↓Demyelination score

Cappellano et al.

[122]

Table 1. MOG prophylactic procedures in EAE.

Route Animal model Effects References

Diet CD8+ −/− mice Protection independent of TCD8+ cells Meehan and DeLuca [101]

Intraperitoneally C57BL/6 mice ↓MyD88, IRF‐4, IRF‐7 and NF‐kB expression

↓Several TLRs

Li et al. [123]

Oral, gavage C57BL/6 mice Intact blood–CNS barrier

↓Inflammatory infiltrates in the CNS

Grishkan et al. [124]

Intraperitoneally C57BL/6 mice ↓Demyelination

↑Beclin‐1 expression in neurons

Zhen et al. [111]

Table 2. Vitamin D3 prophylactic procedures in EAE.

The combination of VitD with other substances as calcitonin [125], IFN‐β [126], bisphospho‐
nate [127], rapamycin [128], and cyclosporine [129] has determined cooperative effects over
EAE control. We recently tested the association of VitD with MOG as a prophylactic approach
to control EAE development. Again, in this procedure, we explored the concept of VitD as a
tolerogenic adjuvant. This concept and its potential application to trigger self‐tolerance in
autoimmune diseases were conceived by Kang et al. [130]. These authors validated this
hypothesis by demonstrating that FK506 (tacrolimus) associated with MOG was prophylactic
in encephalomyelitis [131]. In this context, we hypothesized that active VitD could also behave
as a tolerogenic adjuvant if associated with a CNS‐specific antigen. Vaccination with MOG
associated with VitD, before EAE induction in C57BL/6 female mice, determined a significant
clinical improvement characterized by absence of clinical score and no body weight loss. An
impressive reduction in CNS inflammation, DC maturation and also cytokine production by
CNS and spleen cell cultures was detected in these vaccinated animals [132]. As described in
Section 6 of this chapter, this combination of MOG with VitD was also very efficient as a
therapeutic procedure in the EAE model. This prophylactic and therapeutic potential of the
MOG/VitD association in EAE is illustrated in Figure 2. The possible use of VitD as a tolero‐
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genic adjuvant in association with other self‐antigens, as a strategy to control autoimmune
pathologies, warrants future investigation. In our opinion, the fact that VitD is already accepted
for human supplementation will facilitate its adoption for MS treatments based on its associ‐
ation with neuronal self‐antigens.

Acknowledgments

The authors are thankful for the financial support from São Paulo State Foundation (FAPESP)
—Grant #2013/26257‐8, Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq)—Grant #302710/2013‐2 and also Pró‐Reitoria de Pesquisa—Universidade Estadual
Paulista (PROPe—UNESP). Special thanks are given to Danilo Sanches Moreno for his
substantial contribution to the art of drawing and figures.

Author details

Sofia F.G. Zorzella‐Pezavento, Larissa L.W. Ishikawa, Thais F.C. Fraga‐Silva,
Luiza A.N. Mimura and Alexandrina Sartori*

*Address all correspondence to: sartori@ibb.unesp.br

Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Sao Paulo
State University (UNESP), Botucatu, São Paulo, Brazil

References

[1] McCollum EV, Simmonds N, Becker JE, Shipley PG. Studies on experimental rickets,
XXI: an experimental demonstration of the existence of a vitamin which promotes
calcium deposition. The Journal of Biological Chemistry. 1922;53:293–312.

[2] Rajakumar K, Greenspan SL, Thomas SB, Holick MF. SOLAR ultraviolet radiation and
vitamin D: a historical perspective. American Journal of Public Health. 2007;97:1746–
1754.

[3] Holick, MF. Vitamin D and bone health. The Journal of Nutrition. 1996;126:1159S–
1164S.

[4] Norman AW, Okamura WH, Bishop JE, Henry HL. Update on biological actions of
1alpha,25(OH)2‐vitamin D3 (rapid effects) and 24R,25(OH)2‐vitamin D3. Molecular
and Cellular Endocrinology. 2002;197:1–13. DOI: 10.1016/S0303‐7207(02)00273‐3

A Critical Evaluation of Vitamin D - Clinical Overview218



[5] Kongsbak M, Levring TB, Geisler C, von Essen MR. The vitamin D receptor and T cell
function. Frontiers in Immunology. 2013;4:148. DOI: 10.3389/fimmu.2013.00148

[6] Holick, MF. Vitamin D deficiency. The New England Journal of Medicine. 2007;357:266–
281.

[7] Holick MF. Vitamin D deficiency in 2010: Health benefits of vitamin D and sunlight: a
D‐bate. Nature Reviews. Endocrinology. 2011;7:73–75. DOI: 10.1038/nrendo.2010.234

[8] Holick MF, Binkley NC, Bischoff‐Ferrari HA, Gordon CM, Hanley DA, Heaney RP,
Murad MH, Weaver CM, Endocrine Society. Evaluation, treatment, and prevention of
vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of
Clinical Endocrinology and Metabolism. 2011;96:1911–1930. DOI: 10.1210/jc.2011‐0385

[9] Jones G. Pharmacokinetics of vitamin D toxicity. The American Journal of Clinical
Nutrition. 2008;88:582S–586S.

[10] Ozkan B, Hatun S, Bereket A. Vitamin D intoxication. The Turkish Journal of Pediatrics.
2012;54:93–98.

[11] Holick MF. Vitamin D: a millennium perspective. Journal of Cellular Biochemistry.
2003;88:296–307

[12] Nair R, Maseeh A. Vitamin D: the "sunshine" vitamin. Journal of Pharmacology &
Pharmacotherapeutics. 2012;3:118–126. DOI: 10.4103/0976‐500X.95506

[13] Lamberg‐Allardt C. Vitamin D in foods and as supplements. Progress in Biophysics
and Molecular Biology. 2006;92:33–38.

[14] Dusso, Brown, Slatopolsky E. Vitamin D. American Journal of Physiology. Renal
Physiology. 2005;289:F8–F28.

[15] Holick MF. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine
system. The Journal of Investigative Dermatology. 1981;77:51–58.

[16] Zhang J, Habiel DM, Ramadass M, Kew RR. Identification of two distinct cell binding
sequences in the vitamin D binding protein. Biochimica et Biophysica Acta.
2010;1803:623–629. DOI: 10.1016/j.bbamcr.2010.02.010

[17] Suzuki Y, Landowski CP, Hediger MA. Mechanisms and regulation of epithelial Ca2+

absorption in health and disease. Annual Review of Physiology. 2008;70:257–271. DOI:
10.1146/annurev.physiol.69.031905.161003

[18] DeLuca HF, Schnoes HK. Metabolism and mechanism of action of vitamin D. Annual
Review of Biochemistry. 1976;45:631–666. DOI: 10.1146/annurev.bi.45.070176.003215

[19] Hewison M, Zehnder D, Chakraverty R, Adams JS. Vitamin D and barrier function: a
novel role for extra‐renal 1a‐hydroxylase. Molecular and Cellular Endocrinology.
2004;215:31–38.

Therapeutic and Prophylactic Potential of Vitamin D for Multiple Sclerosis
http://dx.doi.org/10.5772/64501

219



[20] Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the
immune system. Current Opinion in Pharmacology. 2010;10:482–596. DOI: 10.1016/
j.coph.2010.04.001

[21] Haq AU. 1,25‐Dihydroxyvitamin D3 (calcitriol) suppresses IL‐2 induced murine
thymocyte proliferation. Thymus. 1986;8:295–306.

[22] Mathieu C, Adorini L. The coming of age of 1,25‐dihydroxyvitamin D(3) analogs as
immunomodulatory agents. Trends in Molecular Medicine. 2002;8:174–179. DOI:
10.1016/S1471‐4914(02)02294‐3

[23] Lewin E, Olgaard K. The in vivo effect of a new, in vitro, extremely potent vitamin D3
analog KH1060 on the suppression of renal allograft rejection in the rat. Calcified Tissue
International. 1994;54:150–154.

[24] Hullett DA, Cantorna MT, Redaelli C, Humpal‐Winter J, Hayes CE, Sollinger HW,
Deluca HF. Prolongation of allograft survival by 1,25‐dihydroxyvitamin D3. Trans‐
plantation. 1998;66:824–828.

[25] O'Brien MA, Jackson MW. Vitamin D and the immune system: beyond rickets. Veteri‐
nary Journal. 2012;194:27–33. DOI: 10.1016/j.tvjl.2012.05.022

[26] van Etten E, Mathieu C. Immunoregulation by 1,25‐dihydroxyvitamin D3: basic
concepts. The Journal of Steroid Biochemistry and Molecular Biology. 2005;97:93–101.
DOI:10.1016/j.jsbmb.2005.06.002

[27] Griffin AT, Arnold FW. Review of metabolic, immunologic, and virologic consequences
of suboptimal vitamin D levels in HIV infection. AIDS Patient Care and STDs.
2012;26:516–525. DOI: 10.1089/apc.2012.0145

[28] Pareek M, Innes J, Sridhar S, Grass L, Connell D, Woltmann G, Wiselka M, Martineau
AR, Kon OM, Dedicoat M, Lalvani A. Vitamin D deficiency and TB disease phenotype.
Thorax. 2015;70:1171–1180. DOI: 10.1136/thoraxjnl‐2014‐206617

[29] Furuya‐Kanamori L, Wangdi K, Yakob L, McKenzie SJ, Doi SA, Clark J, Paterson DL,
Riley TV, Clements AC. 25‐hydroxyvitamin D concentrations and clostridium difficile
infection: a meta‐analysis. JPEN Journal of Parenteral and Enteral Nutrition. 2015. DOI:
10.1177/0148607115623457 [Epub ahead of print]

[30] Nouari W, Ysmail‐Dahlouk L, Aribi M. Vitamin D3 enhances bactericidal activity of
macrophage against Pseudomonas aeruginosa. International Immunopharmacology.
2016;30:94–101. DOI: 10.1016/j.intimp.2015.11.033

[31] Barragan M, Good M, Kolls JK. Regulation of dendritic cell function by vitamin D.
Nutrients. 2015;7:8127–8151. DOI: 10.3390/nu7095383

[32] Berer A, Stöckl J, Majdic O, Wagner T, Kollars M, Lechner K, Geissler K, Oehler L. 1,25‐
Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro.
Experimental Hematology. 2000;28:575–583. DOI:10.1016/S0301‐472X(00)00143‐0

A Critical Evaluation of Vitamin D - Clinical Overview220



[33] Adler HS, Steinbrink K. Tolerogenic dendritic cells in health and disease: friend and
foe! European Journal of Dermatology. 2007;17:476–491. DOI: 10.1684/ejd.2007.0262

[34] Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y,
Nomura T, Toda M, Takahashi T. Immunologic tolerance maintained by CD25+ CD4+
regulatory T cells: their common role in controlling autoimmunity, tumor immunity,
and transplantation tolerance. Immunological Reviews. 2001;182:18–32. DOI:
10.1034/j.1600‐065X.2001.1820102.x

[35] Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nature Reviews
Immunology. 2008;8:523–532. DOI: 10.1038/nri2343

[36] Chambers ES, Suwannasaen D, Mann EH, Urry Z, Richards DF, Lertmemongkolchai
G, Hawrylowicz CM. 1α,25‐dihydroxyvitamin D3 in combination with transforming
growth factor‐β increases the frequency of Foxp3+ regulatory T cells through preferen‐
tial expansion and usage of interleukin‐2. Immunology. 2014;143:52–60. DOI: 10.1111/
imm.12289

[37] Lemire JM, Archer DC, Beck L, Spiegelberg HL. Immunosuppressive actions of 1,25‐
dihydroxyvitamin D3: preferential inhibition of Th1 functions. The Journal of Nutri‐
tion. 1995;125:1704S–1708S.

[38] Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong DT, Hahn BH, Hossain
A. Th17 cells in inflammation and autoimmunity. Autoimmunity Reviews.
2014;13:1174–1181. DOI: 10.1016/j.autrev.2014.08.019

[39] Kleinewietfeld M, Hafler DA. Regulatory T cells in autoimmune neuroinflammation.
Immunology Reviews. 2014;259:231–244. DOI: 10.1111/imr.12169

[40] Tang J, Zhou R, Luger D, Zhu W, Silver PB, Grajewski RS, Su SB, Chan CC, Adorini L,
Caspi RR. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on
the Th17 effector response. Journal of Immunology. 2009;182:4624–4632. DOI: 10.4049/
jimmunol.0801543

[41] Chang JH, Cha HR, Lee DS, Seo KY, Kweon MN. 1,25‐Dihydroxyvitamin D3 inhibits
the differentiation and migration of T(H)17 cells to protect against experimental
autoimmune encephalomyelitis. PLoS One. 2010;5:e12925. DOI: 10.1371/journal.pone.
0012925

[42] Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O'Garra A. 1alpha,25‐
Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the
development of Th2 cells. Journal of Immunology. 2001;167:4974–4980. DOI: 10.4049/
jimmunol.167.9.4974

[43] Staeva‐Vieira TP, Freedman LP. 1,25‐dihydroxyvitamin D3 inhibits IFN‐gamma and
IL‐4 levels during in vitro polarization of primary murine CD4+ T cells. Journal of
Immunology. 2002;168:1181–1189.

Therapeutic and Prophylactic Potential of Vitamin D for Multiple Sclerosis
http://dx.doi.org/10.5772/64501

221



[44] Chen J, Bruce D, Cantorna MT. Vitamin D receptor expression controls proliferation of
naïve CD8+ T cells and development of CD8 mediated gastrointestinal inflammation.
BMC Immunology. 2014;15:6. DOI: 10.1186/1471‐2172‐15‐6

[45] Yu S, Zhao J, Cantorna MT. Invariant NKT cell defects in vitamin D receptor knockout
mice prevents experimental lung inflammation. Journal of Immunology. 2011;187(9):
4907–4912. doi: 10.4049/jimmunol.1101519

[46] Heine G, Anton K, Henz BM, Worm M. 1alpha,25‐dihydroxyvitamin D3 inhibits anti‐
CD40 plus IL‐4‐mediated IgE production in vitro. European Journal of Immunology.
2002;32:3395–3404. DOI: 10.1002/1521‐4141(200212)32:12<3395::AID‐IMMU3395>3.0.
CO;2‐#

[47] Heine G, Niesner U, Chang HD, Steinmeyer A, Zügel U, Zuberbier T, Radbruch A,
Worm M. 1,25‐dihydroxyvitamin D(3) promotes IL‐10 production in human B cells.
European Journal of Immunology. 2008;38:2210–2218. DOI: 10.1002/eji.200838216

[48] Drozdenko G, Scheel T, Heine G, Baumgrass R, Worm M. Impaired T cell activation
and cytokine production by calcitriol‐primed human B cells. Clinical and Experimental
Immunology. 2014;178:364–372. DOI: 10.1111/cei.12406

[49] Agmon‐Levin N, Theodor E, Segal RM, Shoenfeld Y. Vitamin D in systemic and organ‐
specific autoimmune diseases. Clinical Reviews in Allergy and Immunology.
2013;45:256–266. DOI: 10.1007/s12016‐012‐8342‐y

[50] Loleit V, Biberacher V, Hemmer B. Current and future therapies targeting the immune
system in multiple sclerosis. Current Pharmaceutical Biotechnology. 2014;15:276–296.
DOI: 10.2174/1389201015666140617104332

[51] Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G. Functional and
pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalo‐
myelitis. PLoS One. 2010;5:e15531. DOI: 10.1371/journal.pone.0015531

[52] Dutta R, Trapp BD. Relapsing and progressive forms of multiple sclerosis: insights from
pathology. Current Opinion in Neurology. 2014;27:271–278. DOI: 10.1097/WCO.
0000000000000094

[53] Brown JW, Chard DT. The role of MRI in the evaluation of secondary progressive
multiple sclerosis. Expert Review of Neurotherapeutics. 2016;16:157–171. DOI:
10.1586/14737175.2016.1134323

[54] Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the
role of infection. Annals of Neurology. 2007a;61:288–299. DOI: 10.1002/ana.21117

[55] Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II:
noninfectious factors. Annals of Neurology. 2007b;61:504–513. DOI: 10.1002/ana.21141

[56] Gilden DH. Infectious causes of multiple sclerosis. The Lancet Neurology. 2005;4:195–
202. DOI: 10.1016/S1474‐4422(05)01017‐3

A Critical Evaluation of Vitamin D - Clinical Overview222



[57] Benito‐León J, Pisa D, Alonso R, Calleja P, Díaz‐Sánchez M, Carrasco L. Association
between multiple sclerosis and Candida species: evidence from a case‐control study.
European Journal of Clinical Microbiology & Infectious Diseases. 2010;29:1139–1145.
DOI: 10.1007/s10096‐010‐0979‐y

[58] Pisa D, Alonso R, Carrasco L. Fungal infection in a patient with multiple sclerosis.
European Journal of Clinical Microbiology & Infectious Diseases. 2011;30:1173–1180.
DOI: 10.1007/s10096‐011‐1206‐1

[59] Pisa D, Alonso R, Jiménez‐Jiménez FJ, Carrasco L. Fungal infection in cerebrospinal
fluid from some patients with multiple sclerosis. European Journal of Clinical Micro‐
biology & Infectious Diseases. 2013;32:795–801. DOI: 10.1007/s10096‐012‐1810‐8

[60] Fraga‐Silva TF, Mimura LA, Marchetti CM, Chiuso‐Minicucci F, França TG, Zorzella‐
Pezavento SF, et al. Experimental autoimmune encephalomyelitis development is
aggravated by Candida albicans infection. Journal of Immunology Research.
2015;2015:635052. DOI: 10.1155/2015/635052

[61] Limburg CC. The geographic distribution of multiple sclerosis and its estimated
prevalence in the United States. Research publications—Association for Research in
Nervous and Mental Disease. 1950;28:15–24.

[62] World Health Organization [Internet]. Atlas Multiple Sclerosis resources in the World.
2008. Available from: http://www.who.int/mental_health/neurology/Atlas_MS_WEB.
pdf [Accessed: 2016‐02‐128]

[63] Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ.
Atlas of Multiple Sclerosis 2013: a growing global problem with widespread inequity.
Neurology. 2014;83:1022–1024. DOI: 10.1212/WNL.0000000000000768

[64] Beretich BD and Beretich TM. Explaining multiple sclerosis prevalence by ultraviolet
exposure: a geospatial analysis. Multiple Sclerosis. 2009;15:891–898. DOI: 10.1177/
1352458509105579

[65] Sundstrӧm P and Salzer J. Vitamin D and multiple sclerosis—from epidemiology to
prevention. Acta Neurologica Scandinavica. 2015:132:56–61. DOI: 10.1111/ane.12432

[66] Schwarz A, Navid F, Sparwasser T, Clausen BE, Schwarz T. 1,25‐dihydroxyvitamin D
exerts similar immunosuppressive effects as UVR but is dispensable for local UVR‐
induced immunosuppression. The Journal of Investigative Dermatology.
2012;132:2762–2769. DOI: 10.1038/jid.2012.238

[67] Breuer J, Schwab N, Schneider‐Hohendorf T, Marziniak M, Mohan H, Bhatia U, Gross
CC, Clausen BE, Weishaupt C, Luger TA, Meuth SG, Loser K, Wiendl H. Ultraviolet B
light attenuates the systemic immune response in central nervous system autoimmun‐
ity. Annals of Neurology. 2014;75(5):739–758. DOI: 10.1002/ana.24165

[68] Kampman MT, Wilsgaard T, Mellgren SI. Outdoor activities and diet in childhood and
adolescence relate to MS risk above the Arctic Circle. Journal of Neurology.
2007;254:471–477. DOI: 10.1007/s00415‐006‐0395‐5

Therapeutic and Prophylactic Potential of Vitamin D for Multiple Sclerosis
http://dx.doi.org/10.5772/64501

223



[69] Munger KL, Zhang SM, O'Reilly E, Hernán MA, Olek MJ, Willett WC, Ascherio A.
Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62:60–65. DOI:
10.1212/01.WNL.0000101723.79681.38

[70] Cortese M, Riise T, Bjørnevik K, Holmøy T, Kampman MT, Magalhaes S, et al. Timing
of use of cod liver oil, a vitamin D source, and multiple sclerosis risk: the EnvIMS study.
Multiple Sclerosis Journal. 2015;21:1856–1864. DOI: 10.1177/1352458515578770

[71] Karampoor S, Zahednasab H, Ramagopalan S, Mehrpour M, Safarnejad Tameshkel F,
Keyvani H. 25‐hydroxyvitamin D levels are associated with multiple sclerosis in Iran:
a cross‐sectional study. Journal of Neuroimmunology. 2016;290:47–48. DOI: 10.1016/
j.jneuroim.2015.11.017

[72] Smolders J, Menheere P, Kessels A. Association of vitamin D metabolite levels with
relapse rate and disability in multiple sclerosis. Multiple Sclerosis Journal.
2015;14:1220–1224. DOI: 10.1177/1352458508094399

[73] Muris AH, Rolf L, Broen K, Hupperts R, Damoiseaux J, Smolders J. A low vitamin D
status at diagnosis is associated with an early conversion to secondary progressive
multiple sclerosis. The Journal of Steroid Biochemistry and Molecular Biology.
2015;pii:S0960‐0760:30136‐30139. DOI: 10.1016/j.jsbmb.2015.11.009

[74] Simpson S Jr, Taylor B, Blizzard L. Higher 25‐hydroxyvitamin D is associated with
lower relapse risk in multiple sclerosis. Annals of Neurology. 2010;68:193–203. DOI:
10.1002/ana.22043

[75] Ascherio A, Munger KL, White R, Köchert K, Simon KC, Polman CH, et al. Vitamin D
as an early predictor of multiple sclerosis activity and progression. JAMA Neurology.
2014;71:306–314. DOI: 10.1001/jamaneurol.2013.5993

[76] Rotstein DL, Healy BC, Malik MT, Carruthers RL, Musallam AJ, Kivisakk P, et al. Effect
of vitamin D on MS activity by disease‐modifying therapy class. Neurology: Neuro‐
immunology & Neuroinflammation. 2015;2:e167. DOI: 10.1212/NXI.0000000000000167

[77] Cree BA. 2014 multiple sclerosis therapeutic update. Neurohospitalist. 2014;4(2):63–65.

[78] Åivo J, Lindsröm BM, Soilu‐Hänninen M. A randomised, double‐blind, placebo‐
controlled trial with vitamin D3 in MS: subgroup analysis of patients with baseline
disease activity despite interferon treatment. Multiple Sclerosis International.
2012;2012:802796. DOI: 10.1155/2012/802796

[79] Røsjø E, Steffensen LH, Jørgensen L, Lindstrøm JC, Šaltytė Benth J, Michelsen AE, et al.
Vitamin D supplementation and systemic inflammation in relapsing‐remitting multi‐
ple sclerosis. Journal of Neurology. 2015;262:2713–2721. DOI: 10.1007/
s00415‐015‐7902‐5

[80] Naghavi Gargari B, Behmanesh M, Shirvani Farsani Z, Pahlevan Kakhki M, Azimi AR.
Vitamin D supplementation up‐regulates IL‐6 and IL‐17A gene expression in multiple

A Critical Evaluation of Vitamin D - Clinical Overview224



sclerosis patients. International Immunopharmacology. 2015;28:414–419. DOI: 10.1016/
j.intimp.2015.06.033

[81] Toghianifar N, Ashtari F, Zarkesh‐Esfahani SH, Mansourian M. Effect of high dose
vitamin D intake on interleukin‐17 levels in multiple sclerosis: a randomized, double‐
blind, placebo‐controlled clinical trial. Journal of Neuroimmunology. 2015;285:125–128.
DOI: 10.1016/j.jneuroim.2015.05.022

[82] Golan D, Halhal B, Glass‐Marmor L, Staun‐Ram E, Rozenberg O, Lavi I, et al. Vitamin
D supplementation for patients with multiple sclerosis treated with interferon‐beta: a
randomized controlled trial assessing the effect on flu‐like symptoms and immuno‐
modulatory properties. BMC Neurology. 2013;13:60. DOI: 10.1186/1471‐2377‐13‐60

[83] Bushnell SE, Zhao Z, Stebbins CC, Cadavid D, Buko AM, Whalley ET, et al. Serum
IL‐17F does not predict poor response to IM IFNbeta‐1a in relapsing‐remitting MS.
Neurology. 2012;79:531–537. DOI: 10.1212/WNL.0b013e318259e123

[84] Kallaur AP, Oliveira SR, Colado Simao AN, de Almeida ER D, Kaminami Morimoto H,
Lopes J, et al. Cytokine profile in relapsing remitting multiple sclerosis patients and the
association between progression and activity of the disease. Molecular Medicine
Reports. 2013;7:1010–1020. DOI: 10.3892/mmr.2013.1256

[85] Sotirchos ES, Bhargava P, Eckstein C, Van Haren K, Baynes M, Ntranos A, et al. Safety
and immunologic effects of high‐ vs low‐dose cholecalciferol in multiple sclerosis.
Neurology. 2016;86:382–390. DOI: 10.1212/WNL.0000000000002316

[86] Ganesh A, Apel S, Metz L, Patten S. The case for vitamin D supplementation in multiple
sclerosis. Multiple Sclerosis and Related Disorders. 2013;2:281–306. DOI: 10.1016/
j.msard.2012.12.008

[87] Bell DA, Crooke MJ, Hay N, Glendenning P. Prolonged vitamin D intoxication:
presentation, pathogenesis and progress. Internal Medicine Journal. 2013;43:1148–
1150. DOI: 10.1111/imj.12269

[88] Zittermann A, Prokop S, Gummert JF, Börgermann J. Safety issues of vitamin D
supplementation. Anti‐Cancer Agents in Medicinal Chemistry. 2013;13:4–10. DOI:
10.2174/1871520611307010004

[89] Wrzosek M, Łukaszkiewicz J, Wrzosek M, Jakubczyk A, Matsumoto H, Piątkiewicz P,
et al. Vitamin D and the central nervous system. Pharmacological Reports. 2013;65:271–
278.

[90] Brum DG, Comini‐Frota ER, Vasconcelos CC, Dias‐Tosta E. Supplementation and
therapeutic use of vitamin D in patients with multiple sclerosis: consensus of the
Scientific Department of Neuroimmunology of the Brazilian Academy of Neurology.
Arquivos de Neuro‐Psiquiatria. 2014;72:152–156. DOI: 10.1590/0004‐282X20130252

[91] Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune ence‐
phalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology

Therapeutic and Prophylactic Potential of Vitamin D for Multiple Sclerosis
http://dx.doi.org/10.5772/64501

225



and treatment. Handbook of Clinical Neurology. 2014;122:173–189. DOI: 10.1016/
B978‐0‐444‐52001‐2.00008‐X

[92] Lemire JM, Archer DC. 1,25‐dihydroxyvitamin D3 prevents the in vivo induction of
murine experimental autoimmune encephalomyelitis. The Journal of Clinical Investi‐
gation. 1991;87:1103–1107.

[93] Lemire JM, Archer DC, Reddy GS. 1,25‐Dihydroxy‐24‐OXO‐16ene‐vitamin D3, a renal
metabolite of the vitamin D analog 1,25‐dihydroxy‐16ene‐vitamin D3, exerts immuno‐
suppressive activity equal to its parent without causing hypercalcemia in vivo.
Endocrinology. 1994;135:2818–2821.

[94] Mattner F, Smiroldo S, Galbiati F, Muller M, Di Lucia P, Poliani PL, Martino G, Panina‐
Bordignon P, Adorini L. Inhibition of Th1 development and treatment of chronic‐
relapsing experimental allergic encephalomyelitis by a non‐hypercalcemic analogue of
1,25‐dihydroxyvitamin D(3). European Journal of Immunology. 2000;30:498–508.

[95] Nataf S, Garcion E, Darcy F, Chabannes D, Muller JY, Brachet P. 1,25 Dihydroxyvitamin
D3 exerts regional effects in the central nervous system during experimental allergic
encephalomyelitis. Journal of Neuropathology and Experimental Neurology.
1996;55:904–914.

[96] Meehan TF, DeLuca HF. The vitamin D receptor is necessary for 1alpha,25‐dihydrox‐
yvitamin D(3) to suppress experimental autoimmuneencephalomyelitis in mice.
Archives of Biochemistry and Biophysics. 2002;408:200–204.

[97] Nashold FE, Miller DJ, Hayes CE. 1,25‐dihydroxyvitamin D3 treatment decreases
macrophage accumulation in the CNS of mice with experimental autoimmune
encephalomyelitis. Journal of Neuroimmunology. 2000;103:171–179.

[98] Pedersen LB, Nashold FE, Spach KM, Hayes CE. 1,25‐dihydroxyvitamin D3 reverses
experimental autoimmune encephalomyelitis by inhibiting chemokine synthesis and
monocyte trafficking. Journal of Neuroscience Research. 2007;85:2480–2490.

[99] Waddell A, Zhao J, Cantorna MT. NKT cells can help mediate the protective effects of
1,25‐dihydroxyvitamin D3 in experimental autoimmuneencephalomyelitis in mice.
International Immunology. 2015;27:237–244. DOI: 10.1093/intimm/dxu147

[100] Farias AS, Spagnol GS, Bordeaux‐Rego P, Oliveira CO, Fontana AG, de Paula RF, Santos
MP, Pradella F, Moraes AS, Oliveira EC, Longhini AL, Rezende AC, Vaisberg MW,
Santos LM. Vitamin D3 induces IDO+ tolerogenic DCs and enhances Treg, reducing the
severity of EAE. CNS Neuroscience & Therapeutics. 2013;19:269–277. DOI: 10.1111/
cns.12071

[101] Meehan TF, DeLuca HF. CD8(+) T cells are not necessary for 1 alpha,25‐dihydroxyvi‐
tamin D(3) to suppress experimental autoimmune encephalomyelitis in mice. Proceed‐
ings of the National Academy of Sciences of the United States of America. 2002;99:5557–
5560.

A Critical Evaluation of Vitamin D - Clinical Overview226



[102] Cantorna MT, Woodward WD, Hayes CE, DeLuca HF. 1,25‐dihydroxyvitamin D3 is a
positive regulator for the two anti‐encephalitogenic cytokines TGF‐beta 1 and IL‐4.
Journal of Immunology. 1998;160:5314–5319.

[103] Cantorna MT, Humpal‐Winter J, DeLuca HF. In vivo upregulation of interleukin‐4 is
one mechanism underlying the immunoregulatory effects of 1,25‐dihydroxyvitamin
D(3). Archives of Biochemistry and Biophysics. 2000;377:135–138.

[104] Spach KM, Nashold FE, Dittel BN, Hayes CE. IL‐10 signaling is essential for 1,25‐
dihydroxyvitamin D3‐mediated inhibition of experimental autoimmune encephalo‐
myelitis. Journal of Immunology. 2006;177:6030–6037.

[105] Joshi S, Pantalena LC, Liu XK, Gaffen SL, Liu H, Rohowsky‐Kochan C, Ichiyama K,
Yoshimura A, Steinman L, Christakos S, Youssef S. 1,25‐dihydroxyvitamin D(3)
ameliorates Th17 autoimmunity via transcriptional modulation of interleukin‐17A.
Molecular and Cellular Biology. 2011;31:3653–3669. DOI: 10.1128/MCB.05020‐11

[106] Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, Adorini L.
Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction
of CD4+Foxp3+ regulatory T cells by 1,25‐dihydroxyvitamin D3. Blood. 2005;106:3490–
3497.

[107] McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from
autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within
the central nervous system. Journal of Immunology. 2005;175:3025–3032.

[108] Nashold FE, Nelson CD, Brown LM, Hayes CE. One calcitriol dose transiently increases
Helios+ FoxP3+ T cells and ameliorates autoimmune demyelinating disease. Journal of
Neuroimmunology. 2013;263:64–74. DOI: 10.1016/j.jneuroim.2013.07.016

[109] Spanier JA, Nashold FE, Mayne CG, Nelson CD, Hayes CE. Vitamin D and estrogen
synergy in Vdr‐expressing CD4(+) T cells is essential to induce Helios(+)FoxP3(+) T cells
and prevent autoimmune demyelinating disease. Journal of Neuroimmunology.
2015;286:48–58. DOI: 10.1016/j.jneuroim.2015.06.015

[110] Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang GX. 1,25‐Dihydroxyvitamin D3
enhances neural stem cell proliferation and oligodendrocyte differentiation. Experi‐
mental and Molecular Pathology. 2015;98:240–245. DOI: 10.1016/j.yexmp.2015.02.004

[111] Zhen C, Feng X, Li Z, Wang Y, Li B, Li L, Quan M, Wang G, Guo L. Suppression of
murine experimental autoimmune encephalomyelitis development by 1,25‐dihydrox‐
yvitamin D3 with autophagy modulation. Journal of Neuroimmunology. 2015;280:1–7.
DOI: 10.1016/j.jneuroim.2015.01.012

[112] Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of
multiple sclerosis via animal models: 70 years of merits and culprits in experimental
autoimmune encephalomyelitis research. Brain. 2006;129:1953–1971. DOI: http://
dx.doi.org/10.1093/brain/awl075

Therapeutic and Prophylactic Potential of Vitamin D for Multiple Sclerosis
http://dx.doi.org/10.5772/64501

227



[113] Jiang Z, Li H, Fitzgerald DC, Zhang GX, Rostami A. MOG(35‐55) i.v suppresses
experimental autoimmune encephalomyelitis partially through modulation of Th17
and JAK/STAT pathways. European Journal of Immunology. 2009;39:789–799. DOI:
10.1002/eji.200838427

[114] Peron JP, Yang K, Chen ML, Brandao WN, Basso AS, Commodaro AG, Weiner HL,
Rizzo LV. Oral tolerance reduces Th17 cells as well as the overall inflammation in the
central nervous system of EAE mice. Journal of Neuroimmunology. 2010;227:10–17.
DOI: 10.1016/j.jneuroim.2010.06.002

[115] Levy Barazany H, Barazany D, Puckett L, Blanga‐Kanfi S, Borenstein‐Auerbach N, Yang
K, Peron JP, Weiner HL, Frenkel D. Brain MRI of nasal MOG therapeutic effect in
relapsing‐progressive EAE. Experimental Neurology. 2014;255:63–70. DOI: 10.1016/
j.expneurol.2014.02.010

[116] Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. Nanoparticle‐mediated
codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental
autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of
the United States of America. 2012;109:11270–11275. DOI: 10.1073/pnas.1120611109

[117] Tseveleki V, Tselios T, Kanistras I, Koutsoni O, Karamita M, Vamvakas SS, Apostolo‐
poulos V, Dotsika E, Matsoukas J, Lassmann H, Probert L. Mannan‐conjugated myelin
peptides prime non‐pathogenic Th1 and Th17 cells and ameliorate experimental
autoimmune encephalomyelitis. Experimental Neurology. 2015;267:254–267. DOI:
10.1016/j.expneurol.2014.10.019

[118] Fissolo N, Costa C, Nurtdinov RN, Bustamante MF, Llombart V, Mansilla MJ, Espejo
C, Montalban X, Comabella M. Treatment with MOG‐DNA vaccines induces
CD4+CD25+FoxP3+ regulatory T cells and up‐regulates genes with neuroprotective
functions in experimental autoimmune encephalomyelitis. Journal of Neuroinflamma‐
tion. 2012;9:139. DOI: 10.1186/1742‐2094‐9‐139

[119] Chiuso‐Minicucci F, Ishikawa LL, Mimura LA, Fraga‐Silva TF, França TG, Zorzella‐
Pezavento SF, Marques C, Ikoma MR, Sartori A. Treatment with Vitamin D/MOG
Association Suppresses Experimental Autoimmune Encephalomyelitis. PLoS One.
2015;10:e0125836. DOI: 10.1371/journal.pone.0125836

[120] Steinman L. Inverse vaccination, the opposite of Jenner’s concept, for therapy of
autoimmunity. Journal of Internal Medicine. 2010;267:441–451. DOI: 10.1111/j.
1365‐2796.2010.02224.x

[121] Mansilla MJ, Sellès‐Moreno C, Fàbregas‐Puig S, Amoedo J, Navarro‐Barriuso J,
Teniente‐Serra A, Grau‐López L, Ramo‐Tello C, Martínez‐Cáceres EM. Beneficial effect
of tolerogenic dendritic cells pulsed with MOG autoantigen in experimental autoim‐
mune encephalomyelitis. CNS Neuroscience & Therapeutics. 2015;21:222–230. DOI:
10.1111/cns.12342

[122] Cappellano G, Woldetsadik AD, Orilieri E, Shivakumar Y, Rizzi M, Carniato F, Gigliotti
CL, Boggio E, Clemente N, Comi C, Dianzani C, Boldorini R, Chiocchetti A, Renò F,
Dianzani U. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG

A Critical Evaluation of Vitamin D - Clinical Overview228



peptide and IL‐10 decreases the severity of experimental autoimmune encephalomye‐
litis. Vaccine. 2014;32:5681–5689. DOI: 10.1016/j.vaccine.2014.08.016

[123] Li B, Baylink DJ, Deb C, Zannetti C, Rajaallah F, Xing W, Walter MH, Lau KH, Qin X.
1,25‐Dihydroxyvitamin D3 suppresses TLR8 expression and TLR8‐mediated inflam‐
matory responses in monocytes in vitro and experimental autoimmune encephalo‐
myelitis in vivo. PLoS One. 2013;8:e58808. DOI: 10.1371/journal.pone.0058808

[124] Grishkan IV, Fairchild AN, Calabresi PA, Gocke AR. 1,25‐Dihydroxyvitamin D3
selectively and reversibly impairs T helper‐cell CNS localization. Proceedings of the
National Academy of Sciences of the United States of America. 2013;110:21101–21106.
DOI: 10.1073/pnas.1306072110

[125] Becklund BR, Hansen DW Jr, Deluca HF. Enhancement of 1,25‐dihydroxyvitamin D3‐
mediated suppression of experimental autoimmune encephalomyelitis by calcitonin.
Proceedings of the National Academy of Sciences of the United States of America.
2009;106:5276–5281. DOI: 10.1073/pnas.0813312106

[126] van Etten E, Gysemans C, Branisteanu DD, Verstuyf A, Bouillon R, Overbergh L,
Mathieu C. Novel insights in the immune function of the vitamin D system: synergism
with interferon‐beta. The Journal of Steroid Biochemistry and Molecular Biology.
2007;103:546–551. DOI: 10.1016/j.jsbmb.2006.12.094

[127] van Etten E, Branisteanu DD, Overbergh L, Bouillon R, Verstuyf A, Mathieu C.
Combination of a 1,25‐dihydroxyvitamin D3 analog and a bisphosphonate prevents
experimental autoimmune encephalomyelitis and preserves bone. Bone. 2003;32:397–
404. DOI: 10.1016/S8756‐3282(03)00030‐9

[128] Branisteanu DD, Mathieu C, Bouillon R. Synergism between sirolimus and 1,25‐
dihydroxyvitamin D3 in vitro and in vivo. Journal of Neuroimmunology. 1997;79:138–
147. DOI: 10.1016/S0165‐5728(97)00116‐1

[129] Branisteanu DD, Waer M, Sobis H, Marcelis S, Vandeputte M, Bouillon R. Prevention
of murine experimental allergic encephalomyelitis: cooperative effects of cyclosporine
and 1 alpha, 25‐(OH)2D3. Journal of Neuroimmunology.1995;61:151–160. DOI:
10.1016/0165‐5728(95)00076‐E

[130] Kang Y, Xu L, Wang B, Chen A, Zheng G. Cutting edge: immunosuppressant as
adjuvant for tolerogenic immunization. The Journal of Immunology. 2008; 180: 5172–
5176. DOI: 10.4049/jimmunol.180.8.5172

[131] Kang Y, Zhao J, Liu Y, Chen A, Zheng G, Yu Y, Mi J, Zou Q ,Wang B. FK506 as an adjuvant
of tolerogenic DNA vaccination for the prevention of experimental autoimmune
encephalomyelitis. The Journal of Gene Medicine. 2009;11:1064–1070. DOI: 10.1002/
jgm.1387

[132] Mimura LA, Chiuso‐Minicucci F, Fraga‐Silva TF, Zorzella‐Pezavento SF, França TG,
Ishikawa LL, Penitenti M, Ikoma MR, Sartori A. Association of myelin peptide with
vitamin D prevents autoimmune encephalomyelitis development. Neuroscience.
2016;317:130–140. DOI: 10.1016/j.neuroscience.2015.12.053

Therapeutic and Prophylactic Potential of Vitamin D for Multiple Sclerosis
http://dx.doi.org/10.5772/64501

229




