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Abstract

Hypercholesterolemia is a complex disorder presenting in different forms, including
the familial form (FH), with varying underlying aetiology, and contributing substan‐
tially to coronary artery disease. Particularly, the FH underlies monogenic changes in
genes  involved  in  cholesterol  synthesis  and  transport,  including  the  low  density
lipoprotein receptor, proprotein convertase sublitisin/kexin type 9 and apolipoprotein
B. However, hyperlipidemia is largely a complex interaction of changes in multiple
genes  with  environmental  factors,  such  as  diet,  overweight  and  obesity  that  are
controllable  by  adopting  healthy  eating  habits  and  exercise,  which  may  vary  by
ethnicity. Diet alone is often not adequate to achieve the desired lipid lowering effect in
individuals  harbouring  very  high  cholesterol  levels,  necessitating  the  use  of  lipid
lowering medication or other forms of therapy. Antilipidemic drugs fall into (a) bile acid
sequestrants  (b)  cholesterol  absorption  inhibitors,  (c)  3‐hydroxy‐3‐methylglutaryl
coenzyme A reductase inhibitors, (d) fibric acid derivatives (e) proprotein convertase
subtilisin/kexin type 9 inhibitors, (f) miscellaneous agents and (g) drug combinations.
Mutations in their various metabolizing enzymes, particularly the cytochrome P450
family, often lead to partially/non‐functional, or even rapid metabolizing phenotypes,
triggering great variations in the way individuals respond to drug therapy, which in
turn depends on ethnicity. This may produce unexpected outcomes such as therapeutic
failure, adverse side effects and toxicity in individuals of different ethnic origin. Hence,
in‐depth information of the impact of ethnicity on these relationships has the huge
potential of achieving optimal quality use of drugs as well as improving the efficacy
and safety of antilipidemic therapeutic agents.

Keywords: cholesterol, hypercholesterolemia, ethnicity, gene polymorphism, poly‐
genic complex disease, anti‐lipidemic drug therapy, drug metabolism
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1. Introduction

Cholesterol is a sterol that presents one of the three major classes of lipids synthesized and
utilized by animal cells to construct their cell membranes. It also serves as a precursor of the
steroid hormones, bile acids and vitamin D, and is transported in the blood plasma within
lipoproteins. These lipoproteins are classified according to their density as (a) very‐low‐density
lipoproteins (VLDLs), (b) low‐density lipoproteins (LDLs), (c) intermediate‐density lipoproteins
(IDLs) and (d) high‐density lipoproteins (HDLs) [1]. Hypercholesterolemia (also often referred
to as dyslipidemia) describes a condition characterized by elevated lipid (hyperlipidemia) or
lipoprotein levels (hyperlipoproteinemia) (>240 mg/dL) in circulation [2]. Such elevated levels
of lipoproteins,  other than HDL (also called non‐HDL‐cholesterol),  particularly the LDL‐
cholesterol, are associated with an increased risk of coronary artery disease (CAD) [3]. In contrast,
increased HDL‐cholesterol levels are deemed protective [4]. An elevation in circulating non‐
HDL‐ and LDL‐cholesterol may be triggered by diet, obesity, genetic disorders or presence of
other diseases, such as diabetes and dysfunctional thyroid [2, 5]. Hyperlipidemia is one of the
most important players in developing cardiovascular disease leading to high mortality [6, 7].
Hence, management of hyperlipidemia not only maintains healthy lipoprotein levels, but is also
designed to avert the more deleterious consequences of CAD manifestation.

Hyperlipidemia affects humans globally with a prevalence of approximate 34 million in the
USA. It occurs partly as an inheritable monogenic (Mendelian) disease, specifically the familial
form, which affects 1 in 500 individuals globally, but more frequently so, as a result of an
interaction of genetic changes with environmental factors, that may or may not be modifiable.
Inheritable forms include the familial types, such as homozygous familial hypercholesterole‐
mia (HOFH) or familial hyperbetalipoproteinemia (FHBL), a disorder that impairs the body’s
capability to absorb and transport fats. This form of the disease is characterized by early signs
of cholesterol infiltrates with premature CAD, accompanied by a building up of excess
cholesterol in other tissues such as the skin, tendons and coronary arteries. This, in turn, is also
accompanied by growths defined as tendon xanthomas, known to affect the Achilles tendons
as well as tendons in hands and fingers [8]. Other forms of cholesterol deposits also exist, such
as xanthelasmata under the eyelid skin and cornealis, accumulating at the edge of the clear
front surface of the cornea. The complex form of hypercholesterolemia is triggered by some
interplay between genetic variants with modifiable risk factors, such as lifestyle or diet
and/or unmodifiable variables, such as age, ethnicity, gender and family history. Some of the
modifiable predisposing factors such as diet, overweight and obesity are controllable by
adopting a healthy eating plan, staying active and managing personal weight scale. However,
patients with very high cholesterol levels, such as in familial hypercholesterolemia (FH), diet
alone is often not adequate to achieve the desired lipid lowering effect, necessitating the use
of lipid lowering medication to reduce its production and absorption [9], as well as other
therapies including LDL apheresis or surgery. Several drug families are employed targeting
different components of cholesterol metabolism. The success of treatment may vary in different
communities, depending on a number of contributing factors, particularly ethnicity. Impor‐
tantly, while the influence of the unmodifiable risk traits is likely to be felt alike across
ethnicities, their actual impact on disease will often be defined by the extent to which genetic
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changes interact with these environmental factors within a given population. These risk factors
can also influence drug response and toxicity, whereby the penetrance of these interactions on
disease and drug therapeutic outcomes similarly depends on ethnicity, with some influence of
the confounding modifiable risk factors. This chapter therefore focuses on the impact of
ethnicity on interaction of these predisposing factors, particular genetic polymorphism, in the
management of hypercholesterolemia.

2. Ethnicity and hypercholesterolemia

Blood lipid levels are highly heritable traits. Essentially, hypercholesterolemia occurs as a result
of the low‐density lipoprotein receptor (LDLR) being unable to remove cholesterol effectively
from circulation. This can be caused by mutations in one or more genes that regulate cholesterol
metabolism and transportation. The greatest contribution to the manifestation of hypercho‐
lesterolemia and difficulties related to maintaining health circulating cholesterol levels are
genetic changes in components of these pathways. While only a handful of Mendelian disease
genes and founder mutations for the autosomal recessive form of the disease have been
identified to date, there are many other genes that contribute to the complex form of the disease.
Thus, whereas the Mendelian form is likely to exert the same impact globally, the manifestation
of the complex trait will more often than not depend on the nature of the interactions between
the predisposing genes and environmental factors, which may vary among various ethnicities.
This, in turn, has a great impact on disease manifestation in a given society.

2.1. Ethnicity, race ancestry and disease

Ethnicity and race have traditionally been related to biological and sociological factors,
respectively. Accordingly, race presumes shared biological or genetic traits and is distinguish‐
able by the traits resulting from a shared genealogy due to geographical demarcations, while
ethnicity connotes shared cultural traits and history, and possibly linguistic or religious traits.
In terms of genetic undertones, therefore, individuals of the same racial background (ancestry)
are likely to carry more common genetic architecture than those belonging to the same
ethnicity. Hence, the impact of these two societal confounders on dyslipidemia manifestation
may not always be the same. Besides, in multi‐cultural societies, such as in the USA or Southern
Africa, many (ethnic) admixture groups have arisen in the course of time, from different
ancestral lineage, and are often placed into the one or the other ethnical group. This adds some
complexity to the estimation of the depth of genetic adulteration in racial genetic texture,
rendering the ancestral delineation more complex. Accordingly, the impact of intra‐ethnical
variations on disease might be over‐ or underestimated within a given community. Most
importantly, the influence of ethnicity on the disease manifestation or therapeutic outcome is
also often regulated by modifiable confounders as well as the depth of public awareness within
a given society. Hence, the accuracy in the estimation of the depth of the influence of ethnicity
on dyslipidemia and therapy thereof may depend on the constituent racial component of the
given society.
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2.2. Ethnicity and genetics of hypercholesterolemia

Genetically, hypercholesterolemia may occur in various forms depending on the type and
genomic location of the causative mutation. This may directly be caused by a structural change
in a gene involved in the transportation of the lipids. Thus, the monogenic (Mendelian) form,
often manifest as familial hypercholesterolemia (FH), is triggered by changes in a single gene.
To date, the monogenic form has been linked primarily to mutations in three genes, the LDLR
[10–15], proprotein convertase sublitisin/kexin type 9 (PCSK9) [16–23] and apolipoprotein B
(APOB) genes [24–28]. In most cases, individuals with FH will have inherited one or both
altered copies of the gene from affected parents. In this case, the disease can be acquired in an
autosomal recessive (presence of two copies of the mutated gene from both parents) such as
the autosomal recessive hypercholesterolemia (ARH), or in a dominant (presence of only one
copy of the mutated gene from either parent) form such as HOFH or heterozygous familial
disease (HEFH). The recessive type tends to lead to the more severe form of the disease, which
often appears in childhood. The HEFH is a very rare form of FH, affecting a small but noticeable
percentage of individuals, yet constituting an important cause of early onset of CAD. The
disease results from either biallelic pathogenic variants in one of the three genes or one
pathogenic variant in each of two different genes. It is thought to account for 60–80% of FH.

However, the most common forms of hyperlipidemia are complex in nature, resulting
primarily from an interaction between genetic changes and environmental factors [29]. Thus,
apart from the three genes, LDLR, APOB and PCSK9, known to cause the monogenic disease,
several others are also involved in the manifestation of the disease. The genes include the
peroxisome proliferator‐activated receptor‐alpha (PPAR-α), cholesteryl ester transport
protein (CETP), low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1), apolipopro‐
tein (APO) A1 (APOA1), A4 and A5 complex (APOA1/A4/A5) and apolipoprotein E (APOE),
3‐hyroxy‐3‐methylglutaryl coenzyme A reductase (HMGR), lecithin cholesterolacyltransfer‐
ase (LCAT) and lipoprotein lipase (LPL), just to name a few. The genes associated with the
different forms of dyslipidemia are summarized in Table 1.

Among the genes associated with dyslipidemia to date, the LDLR is understandably the most
well defined. This gene encodes the LDLR protein which binds to low‐density lipoproteins
(LDLs) particles, the primary carriers of cholesterol in the blood. This receptor resides on the
outer surface of many cell types, particularly in the liver, where it picks up circulating LDL
particles and transports them into the cell. Within the cell, the receptor is broken down in order
to release cholesterol for utilization by the cell, storage or removal from the body. The LDLR
is essential in regulating the amount of circulating cholesterol, whereby the speed at which the
later gets eliminated from the system depends on the receptor expression. Hence, alteration
in the structure of these receptors will lead to fundamental changes in the regulation of
circulating cholesterol levels. Such mutations in the LDLR gene are thought to be the primary
cause for FH, with a greater frequency in a population with founder mutations. Several such
hyperlipidemia‐related variants have been identified thus far in this gene [10–15]. These
mutations have different effects on the function of the protein. For example, some of them do
so by reducing the number of LDLRs produced within the cells, while others disrupt the ability
of the receptors to remove the LDLs from circulation. As a result, individuals harbouring LDLR
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mutations will have very high circulating cholesterol levels, ultimately leading to the familial
form of the disease. Some of these mutations have been implicated in both the autosomal
recessive (ARH) and dominant (ADH) forms of hypercholesterolemia, whereby in some ethnic
populations, the ADH has been shown to exhibit allelic heterogeneity [11, 30]. Thus, genetic
diversity has been described in FH [30, 31], pointing to the likelihood of differences in the
extent to which these mutations may cause disease in different populations. This may be
ascribable to differences in life style. It has also been suggested that the LDLR gene has a sex‐
specific pleiotropic effect, as is indicated by changes in the relationship between traits [32].
This suggests in turn that environmental factors, such as diet or even migration, may play a
significant role in modulating the phenotype of heterozygous FH.

Gene Chr
locus 

Protein function Mechanism Disorder (mutations)

APO A1 11q23.3 Promotes Chol efflux from
tissue to the liver for excretion.

Cofactor for LCAT hTG; HDL deficiencies;
Tangier disease; HALP

APO A4 11q23.3 Major HDL and chylomicron
component; chylomicron and
VLDL secretion and catabolism

Required for lipoprotein lipase
activation by ApoC‐II; potent
activator of LCAT

Chronic inflammatory
demyelinating
polyneuropathy

APO A5 11q23.3 Regulating plasma TG levels;
inhibitor of hepatic VLDL
production

Minor apolipoprotein associated
with HDL, may activates LCAT

hTG; HLP

APOB 2p24‐
p23 

Internalization of LDL particles
by apoB receptor

Recognition signal for cellular
binding; major constituent of LDL
and VLDL

FHBL (>50); HL; FDB
(>5), ADH

APOE 19q13.2 Ligand for LDLR and specific
apo‐E receptor (chylomicron
remnant)
of hepatic tissues

Mediates binding, internalization
and catabolism of lipoprotein
particles

Polygenic HL; HLP type
II and III

CETP 16q21 Transfer of neutral lipids, e.g.
cholesteryl ester and triglyceride
among lipoprotein particles

Allows net movement of choles
teryl ester from HDL to TG‐rich
VLDL and TG and vice versa

HALP; hTG, Low HDLC

LDLR 19p13.2 Intracellular cholesterol transfer
and transport in blood

Binding to bile acids in intestines FH (>1000)

LDLRAP1 1p36.11 LDL binding and internalization;
endocytosis

Adapter protein for LDLR
endocytosis in hepatocytes and
lymphocytes

HL (>10)

PCSK9 1p32.3 Regulation cholesterol
homeostasis 

Binds to LDLRs, VLDLR, APOER,
APOER2

Familial HBLP

PPAR‐α 3p25.2 Key regulator of lipid
metabolism

Binds to peroxisome proliferators,
e.g. hypolipidemic drugs

ADH, autosomal dominant hypercholesterolemia; ApoB, apolipoprotein B; APOER, apolipoprotein receptor; CETP,
cholesteryl ester transport protein; FDB, familial defective apoB‐100; Chol, cholesterol; Chr; chromosomal position; FH,
familial hypercholesterolemia; FHBL, familial hyperbetalipoproteinemia; HALP, hypoalphalipoproteinemia; HBLP,
hypobetalipoproteinemia; HDLC, high‐density lipoprotein‐cholesterol; HMG‐CoA; 3‐hyroxy‐3‐methylglutaryl
coenzyme A reductase; HLP, hyperlipoproteinemia; hTG, hypertriglyceridemia; LCAT, lecithin cholesterol
acyltransferase; LDLR, low‐density lipoprotein receptor; LDLRAP1, low‐density lipoprotein receptor adaptor protein
1; LPL, lipoprotein; PCSK9, proprotein convertase sublitisin/kexin type 9; PPAR‐α, peroxisome proliferator‐activated
receptor‐alpha; VLDL, very‐low‐density lipoprotein.

Table 1. Gene polymorphisms currently known to contribute to hypercholesterolemia.
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One other important gene involved in HL is that encoding the apolipoprotein B (apoB)
proteins. This gene encodes two versions of the protein: a shorter version (apoB‐48) and a
longer version (apoB‐100). Both isoforms are involved in transporting fat‐like particles,
including cholesterol, in the blood. They are synthesized primarily in two organs, whereby the
apoB‐48 is produced in the intestines, while the apoB‐100 is synthesized primarily in the liver.
The former functions as a component of the chylomicron lipoproteins and is important for the
absorption of certain fat‐soluble vitamins, such as the vitamins A and E. The apoB‐100, on the
other hand, constitutes a component of other forms of lipoproteins, specifically the VLDLs,
IDLs and LDLs, all of which are involved in the transportation of fats and cholesterol in the
blood. Accordingly, apoB facilitates the LDL binding to their receptors in the liver cell surface.
This in turn enables the transportation of these lipoproteins into the cell, where they are broken
down to facilitate the release of cholesterol. Thus, mutations in the APOB gene can cause
familial hyperbetalipoproteinemia (FHBL) or hypercholesterolemia by triggering the produc‐
tion of abnormally short forms of the protein, and therefore a reduction or lack of dietary fat
and cholesterol transportation and ultimately the body’s ability to absorb fats and fat‐soluble
vitamins from the diet. The severity of the disease depends on the length of the abnormal
protein. Accordingly, a resultant protein that is longer than the apoB‐48 will not hamper its
production; hence, it should still be capable of forming chylomicrons. On the other hand, a
similar product of the apoB‐100 in the liver will not be able to produce LPLs efficiently. Hence,
protein products that are shorter than the apoB are associated with more severe symptoms
than in cases where some normal apoB‐48 is produced. APOB mutations may also trigger the
familial ligand‐defective apoB‐100 (FDB) [27] and ADH conditions [26]. These states are
characterized by the presence of very high circulating cholesterol levels and therefore increased
risk of disease. The impact of genetic changes in APOB on hypercholesterolemia is, however,
less described than that of the LDLR gene. Besides, there has been some inconsistences in
reports on the impact of some of these mutations in different populations [10], pointing to its
variation by ethnicity [33, 34].

The proprotein convertase sublitisin/kexin type 9 (PCSK9) functions by enhancing the
regulation of circulating cholesterol levels, thereby possibly controlling the number of LDLRs
on the cell surface. It probably acts by breaking down the LDLRs before they reach the cell
surface. A few hypercholesterolemia‐related mutations have been reported in the PCSK9 to
date [16, 35], and have been linked mainly to ADH [20–23]. Accordingly, the mutations
responsible for the disease are termed ‘gain‐of‐function’ mutations as they enhance the protein
activity or lead to the protein acquiring new atypical functions. Serum lipoprotein Lp(a) is
thought to be elevated in FH as a result of such PCSK9 gain‐of‐function mutations [18, 19], for
example. The overactive protein significantly reduces the number of LDLRs on the surface of
the liver cells, possibly by triggering faster breakage of the LDLRs. Thus, the attenuated
production of the receptors leads to more cholesterol accumulation, and therefore the possi‐
bility of the disease occurring. Other mutations in the gene defined as ‘loss‐of‐function’
mutations reduce blood cholesterol levels (hypocholesterolemia) by decreasing the PSCK9
activity or reducing its amount in the cell. These mutations lead to an increase in the number
of LDLRs on the surface of liver cells. Harbouring of such mutation has been linked to a
significantly lower than average risk of developing heart disease. Furthermore, elevated
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PCSK9 levels are thought to be detrimental for patients carrying either non‐FH or HEFH [36],
since they tend to correlate with LDL‐cholesterol levels [37].

The PPAR‐α, −β/γ are ligand‐activated transcription factors serving as the primary regulators
of several activities including glucose, fatty acid and lipoprotein metabolism, energy balance,
cell proliferation and differentiation, inflammation and atherosclerosis. Thereby, the PPAR‐α
activates the lipoprotein lipase (LPL) to ultimately reduce the formation of VLDL‐cholesterol
and triglycerides as well as increasing HDL‐cholesterol. The genes have been collectively
implicated in hypertriglyceridemia [38], possibly through gene‐gene interactive mechanisms,
and may modulate the risk of CAD by influencing both fasting and postprandial lipid
concentrations [39]. Together with the PPAR‐γ, the PPAR‐α has also been implicated in HL
[40–43] and low HDL levels [44, 45].

As the name denotes, the function of cholesteryl ester transfer protein (CETP) is to transfer
neutral lipids, such as cholesteryl ester, forming cholesterol among lipoprotein particles.
Specifically, it controls the net influx of cholesteryl ester from HDL to triglyceride‐rich VLDL
and the equimolar transport of triglyceride from VLDL to HDL. Thus, it regulates the reverse
cholesterol transport through which the lipid is removed from peripheral tissue and returned
to the liver for elimination. Defects such as CETP Taq1B polymorphism in the encoding gene
have been implicated in harbouring of low HDL‐cholesterol [46, 47] and hypertriglyceridemia
[48].

The low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) acts essentially by
influencing the function of the LDLRs. Hence, mutations in this gene would either prevent the
cell from making functional receptors or alter their function. It probably interacts with the
LDLRs thereby removing them together with the attached LDLs from the cell surface to the
interior of the cell to facilitate the breaking down of the latter and the release of cholesterol. In
the absence of a functional LDLRA1 protein, LDLR particles cannot be transported into the
cell, even if they bind normally to them. This triggers the retention of the lipids in circulation,
therefore leading to abnormally high cholesterol levels. Mutations in the gene have been
associated with ARH [49–52]. This is thought to be a result of the gene producing an abnormally
small, non‐functional version of the protein or preventing the cell from making the functional
protein.

The apolipoprotein A‐1 promotes cholesterol efflux from tissue to the liver for excretion. It is
also a co‐factor for lecithin cholesterol acyltransferase (LCAT), which is responsible for the
formation of the majority of cholesteryl esters. Some recent reports indicate that the increase
in HDL‐cholesterol on statin treatment may also be influenced by APOA1 genotypes. The
APOA1 gene is closely linked to three other apolipoprotein genes, APOA4, APOA5 and APOC3
in a cluster form of APOA1/C3/A4/A5 on chromosome 11. This complex has been associated
with hypertriglyceridemia in various ethnic groups [53, 54]. The APOA4 gene is a major
component of HDL and chylomicrons, but not so much associated with VLDL. It is thought to
be a potent activator of LCAT. It may play a role in chylomicrons and VLDL secretion and
catabolism, and is needed by the apoC‐II for efficient activation of LPL. The apo A5 regulates
plasma triglyceride levels by acting both as a potent stimulator of triglyceride hydrolysis by
apoC II‐mediated LPL activity and as an inhibitor of hepatic VLDL production. However, its
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activation of LCAT is weak and does not enhance the efflux of cholesterol from macrophag‐
es. The APOA5 gene polymorphism has been associated with hypertriglyceridemia and
hyperlipoproteinemia type 5 [54].

The apolipoprotein E (APOE) polymorphism is regulated through three common alleles,
epsilon 2, 3 and 4, coding for proteins that differ in lipoprotein receptor binding activity or
their catabolism. This lipoprotein contains two different polypeptides apoB‐100 and the
(lipoprotein) Lp(a) glycoprotein. The latter exhibits a genetic polymorphism that is regulated
by a series of autosomal alleles at a single locus and is associated with lipoprotein plasma
concentrations. This suggests that the same gene locus is involved in determining Lp(a)
glycoprotein phenotypes and its plasma concentrations. Hence, variability in apolipoprotein
genes related to the normal variance of lipoprotein concentrations play a major genetic role in
multi‐factorial forms of HL such as hTG, familial type III HL, polygenic HL [55] and ADH [24].

Although FH is thought to be monogenic to a greater part, some inter‐ethnical differences have
been reported in the prevalence of the disease. In the USA, for example, dyslipidemia is thought
to be highly prevalent among Hispanics (Latinos), with Cubans appearing to be particularly
at risk, possibly explained by socio‐economic status and acculturation [56], while increased
African ancestry has been apparently linked to a decrease in triglyceride and LDLC as well as
increased HDLC levels [57]. Also, lower odds for combined hyperlipidemia have been
demonstrated for African‐Americans compared to whites, despite higher body mass index
(BMI) and abnormal adiposity, while Hispanics had slightly higher and Asian no difference
odds to whites [58]. These differences may to a greater part be due to variations in the genetic
modifiers among ethnic groups, a subject that continues to be unravelled. Similarly, the
prevalence of the CEPT polymorphism appears to vary among ethnic groups as suggested by
a Singaporean study reporting highest prevalence in Indian and lowest in the Malays with the
Chinese showing an intermediate value, while African‐American veterans exhibited higher
blood pressure, LDL‐cholesterol and protein A1c levels than Whites [59]. Differences have also
been reported in the distribution of the APOA5 gene variants in various ethnic groups in China
[54] and Singapore [59]. These variations have been partly linked to the existence of population
admixture [60]. It has also been observed that some polymorphic gene locus controls the
concentrations of Lp(a) lipoprotein complex in plasma which may vary very widely between
individuals. Hence, variability in apolipoprotein genes related to the normal variance of
lipoprotein concentrations play a major genetic role in multi‐factorial forms of HL such as hTG,
familial type III HL and polygenic HL [55], as well as ADH [24]. Furthermore, the effects of
the APOE alleles on the phenotypic variance of plasma lipoprotein concentrations have been
found to differ significantly among ethnic groups. This has been explained by the fact that
APOE polymorphism encodes different proteins with different binding properties. However,
to date, most of the large‐scale studies have been performed primarily in individuals of
European descent, but many other ethnic groups have not been exhaustively studied yet.
Importantly, due to lack of studies in such populations, we might be missing important data
relevant in the influence of ethnicity of the manifestation of the disease. For example, it is quite
likely that because of consanguinity among ethnic Arab populations, their prevalence would
rank among the highest in the world. Therefore, data needs to be collected on such populations
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to define more precisely the impact of ethnicity on the relationship between gene polymor‐
phism and HL manifestation, which is likely to be unique for that particular ethnic group.
Nonetheless, these data furnish support to the notion of the inter‐ethnic variations in lipid
traits being linked to genetic variants that exhibit differences in frequencies in individuals of
African, Asian and European ancestry [61]. Besides, differences in lifestyle, such as leisure
time, smoking and pedantic life style, for example, will also exert an impact on the disease
manifestation, as demonstrated by the different levels of awareness of health risks among
urban population compared to rural ones. Therefore, their ultimate effect on disease manifes‐
tation may vary between different ethnic groups, even within a given society.

2.3. Confounders for ethnicity interactions with hyperlipidemia disease

As stated above, in the majority of cases, HL is a product of an interaction of a combination of
lifestyle choices with structural alterations in a multiple of genes, rather than a result of a single
inherited condition. The disease penetrance will be dependent on the prevalence of various
risk factors, including diet, exercise and tobacco smoking, but more importantly gender and
age. The latter are also important determinants of the influence of dyslipidemia and other
diseases, such as diabetes and obesity, on the manifestation of CAD. Ultimately, the impact of
these interactions on dyslipidemia varies by ethnicity. The impact of ethnicity on HL mani‐
festation is, in turn, also greatly influenced by these lifestyle confounders, particularly the
modifiable variables, such as obesity, diet and lifestyle. According to the World Health
Organisation (WHO), obesity is a condition in which the body accumulates fat to the extent
that the health and well‐being of the individual are adversely affected [62]. The primary causes
for this disorder are sedentary lifestyle and high‐fat energy‐rich diets. This is a result of
fundamental adaptive changes involving the societal and behavioural patterns of modern
communities, attributable mainly to increased urbanization and industrialization at the cost
of the fading or disappearing traditional ways of living. These traits are themselves signifi‐
cantly influenced by other risk factors, such as BMI, which exhibits great inter‐ethnical
variability. To begin with, BMI is determined by the distribution of the body fat, which in turn
depends on age and sex. The average body fat is known to differ among ethnic populations,
as suggested by studies demonstrating that most Asian ethnicities have higher average body
fat percentage than whites of the same age and BMI [63–65], for example. These variations
appear to be a result of the distribution of body fat for a given BMI. A study in the Singaporean
population established differences among its ethnic subpopulations in the association of the
CETP variants, Taq1B and ‐629C>A, with plasma HDL‐cholesterol in which the BMI was
uniformly linked to disease [59]. The adverse health outcomes associated with these variations
are often accompanied by additional complexities, especially since the depth of their relation‐
ships can also differ by ethnicity. To add to the intricacy of the problem, the relationship of
BMI and such adverse health outcomes involves additional complexities of displaying intra‐
ethnical variations. For example, among white populations, Europeans have been reported to
have a higher percentage of body fat at a given BMI than whites in the USA [63, 66], and a
study in the Chinese showed lower average BMI levels among rural compared to urban
populations [64, 67]. Thus, the BMI levels may also differ considerably among subpopulations
within an ethnic group because of prevailing environmental and lifestyle conditions. Given
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the variations in the ratios of body fat for a given BMI [64–66], some of these studies have led
to the notion that Asians may be predisposed to a greater risk of clinical events, such as
acquiring hypertension and cardiovascular disease, despite having lower BMI levels than
Caucasians [63, 67–70]. Taken together, these data imply that the global impact of obesity on
hyperlipidemia is similar across ethnicity, while that of the BMI may differ considerably even
within an ethnic group, since the relationship between BMI and percentage of body fat depends
on age and sex, and differs across ethnic groups [63, 65]. Gender has also been implicated,
whereby for example, female veterans have been shown to display higher LDL‐cholesterol
than males [71]. Hence, the penetrance of their influence is ultimately dependent on their
distribution by ethnicity. Differences in lipid profiles, prevalence of dyslipidemia and their risk
factors can also be explained as product of combined effects of lifestyle and genetic factors [72].
Such inter‐ethnical differences in the prevalence of obesity, cholesterol, hypertension and
diabetes have similarly been ascribed to socio‐economic effects and lifestyle changes [73]. The
direct influence of the different risk traits on dyslipidemia can also vary within an ethnic group
in presence of racial admixturing. All these variations will affect the appropriateness of
managing dyslipidemic disorders in an ethnicity‐dependent fashion.

3. Drug therapy of hypercholesterolemia

3.1. Anti-lipidemic agents

Anti‐lipidemic agents are entities that are employed to enhance the reduction of circulating
lipid levels. These agents can reduce LDL‐cholesterol level and/or triglyceride levels, or
facilitate the elevation of HDL‐cholesterol, thereby preventing both the primary and secondary
symptoms of CAD. These agents fall into one of the following categories: (a) bile acid seques‐
trants, (b) cholesterol absorption inhibitors, (c) 3‐hydroxy‐3‐methylglutaryl coenzyme A
(HMG‐CoA) reductase inhibitors, (d) fibric acid derivatives, (e) proprotein convertase subti‐
lisin/kexin type 9 (PCSK9) inhibitors and (f) miscellaneous agents (Table 2).

3.1.1. Bile acid sequestrants

Bile acid sequestrants are a group of polymeric ion exchange resins that disrupt the enterohe‐
patic circulation of cholesterol‐containing bile acids by combining with bile components and
preventing their re‐absorption from the gut. These drugs are not absorbed following oral
administration. They also do not undergo hydrolysis by digestive enzymes or become
adsorbed into systemic circulation, but rather bind to bile acids in the intestines and prevent
their reabsorption into the body. Hence, they are employed to reduce LDL‐cholesterol levels
by binding to cholesterol‐containing bile acids in the intestines. Since the bound complex is
insoluble, it is excreted in faeces. Accordingly, the liver is triggered to produce more bile acids,
subsequently reducing the levels of circulating LDL‐cholesterol. A decrease in bile leads to an
increase in hepatic synthesis of bile acids from cholesterol, and a depletion of cholesterol
increases LDLR activity, therefore increasing the removal of LDL‐cholesterol from circulation.
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Class Drugs (examples) Function Mechanism Metabolizing pathways/
enzymes

Bile acid
sequestrants

Cholestyramine
Colesevelam
Colestipol

Binding to bile acids
in intestines leading
to LDLC reduction

Prevent resorption,
decrease in bile acid;
increase in hepatic
synthesis of bile acids

P‐glycoprotein; currently no
CYP450‐related information
available

Cholesterol
absorption
inhibitors

Ezetimibe Reduce dietary and
biliary cholesterol
absorption through
the intestines

increased hepatic
LDLR activity, thereby
leading to increase
clearance of LDLC

UGT‐glucuronidation; Currently
no CYP450‐related information
available

Fibric acid
derivatives

Bezafibrate
Clofibrate
Gemfibrozil
Fenofibrate
Clinofibrate

Decrease formation of
VLDL ‐cholesterol
and triglycerides and
an elevation in HDLC

Activating PPARs
inducing transcription
of gene that facilitate
lipid metabolism

Hepatic, CYP3A4; P‐glycoprotein;
UDP‐glucuronosyltransferases

Statins
(HMG‐CoA
reduc
tase inhibi
tors)

Atorvastatin
Fluvastatin
Pravastatin
Lovastatin
Simvastatin
Rosuvastatin

Increase in LDL
membrane receptors,
and therefore clear
ance of LDLC from
blood

inhibit the function of
the HMG CoA
enzyme; P‐glyco
protein substrates

Hepatic; CYP3A4; CYP3A5;
CYP2C9; CYP2C19; CYP1A1;
CYP2C8; CYP2D6; UGT‐
glucuronidation

PCSK9
inhibitors

Alirocumab
Evolcumab

Antibodies, preven
ting LDLR destruction

inhibits PCSK9
Increase LDLR
availability

Reticuloendothelial system?
Currently no CYP450‐related data

Nicotinic
acid agents

Niacin Niacor
Slo‐Niacin

Reduction in LDLC
and increase in total
HDL; decrease
ApoB‐100 levels

Precursors for NAD
and NADP involved
in hydrogen transfer
processes

Hepatic; currently no CYP450‐
related information available

CETP
inhibitors

Torcetrapid
Anacetrapid
Evacetrapid

Blocking all major
plasma CETP lipid
transfer functions

Induction of non‐
productive enzyme
complex with HDL

Currently no CYP450‐related
information available

ApoB‐100, apolipoprotein B‐100; CETP, cholesteryl ester transport protein; CVD, atherosclerotic cardiovascular
disease; HEFH, heterozygous familial hypercholesterolemia; HDL, high‐density lipoprotein; HDLC, high‐density
lipoprotein‐cholesterol; HMG‐CoA; 3‐hydroxy‐3‐methylglutaryl coenzyme A; HOFH, homozygous familial
hypercholesterolemia; LDL, low‐density lipoprotein; LDLC, low‐density lipoprotein cholesterol; LDLR, low‐density
lipoprotein receptor; NAD, nicotinamide adenine dinucleotide; NADP, NAD phosphate; PCSK9, proprotein convertase
subtilin/kinase subtype 9; PPARs; peroxisome proliferator‐activated receptors; TG, triglycerides; UGT, uridine
5′diphosphate‐glucuronosyltransferase.

Table 2. Summary of the function, functional mechanism and metabolic pathways of anti‐lipidemic drugs.

3.1.2. Cholesterol absorption inhibitors

Cholesterol absorption inhibitors, such as ezetimibe, belong to a group of chemicals known as
monobactams. They decrease the amount of intestinal cholesterol that is delivered to the liver
by reducing the absorption of dietary and biliary cholesterol through the intestines. Thus, these
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drugs exert their effects by lowering both LDL‐cholesterol and total cholesterol. Specifically,
ezetimibe selectively inhibits the intestinal absorption of cholesterol and related phytosterols,
thereby leading to a decrease in cholesterol clearance from the blood. It does not, however,
inhibit cholesterol synthesis in the liver. A reduction in cholesterol levels delivered to the liver
results in increased hepatic LDLR activity. This, in turn, enhances the clearance of LDL‐
cholesterol. The use of ezetimibe is called for especially in individuals who cannot take statins
or as additional drug in cases where a need arises to maintain a low statin drug dose because
of side effects. Ezetimibe is primarily metabolized via glucuronide conjugation.

3.1.3. Fibric acid derivatives

Fibric acid derivatives are broad‐spectrum lipid lowering drugs, whose main action leads not
only to a decrease in triglyceride levels, but also a reduction in LDL‐cholesterol levels, thereby
contributing to the elevation of HDL‐cholesterol. The drugs are believed to activate the
peroxisome proliferator‐activated receptor alpha (PPAR‐α). This protein activates the lipo‐
protein lipase, ultimately resulting in decreased formation of VLDL cholesterol and triglycer‐
ides and an elevation in HDL‐cholesterol. The three drugs, bezafibrate, clofibrate and
gemfibrozil, are hepatically metabolized. Clofibrate is metabolized and rapidly de‐esterified
in the gastrointestinal tract or through first pass metabolism to its active form clofibrate acid
(chlorophenoxy isobutyric acid). Gemfibrozil undergoes UDP‐glucuronidation (oxidation)
through different isoforms of the UDP‐glucuronosyltransferase to gemfibrozil 1‐b‐glucuro‐
nide, to eventually form a hydroxymethyl and a carboxyl metabolite. However, the enzymes
responsible for bezafibrate metabolism have not been identified yet. Currently, no metabolic
pathway has been defined for fenofibrate and clinofibrate yet.

3.1.4. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors

The 3‐hydroxy‐3‐methylglutaryl coenzyme A (HMG CoA) reductase (HMGCR) inhibitors,
also known as statins, are drugs that reduce cholesterol synthesis in the liver by competitively
inhibiting the HMGCR activity. A decrease in cholesterol production leads to an increase in
the number of membrane LDLRs, which enhances the clearance of LDL‐cholesterol from
circulation. This, in turn, leads to an increased hepatic LDLR expression and greater uptake of
LDL‐cholesterol from plasma, thereby reducing the production of very low‐density lipopro‐
tein (VLDL), the precursor of LDL. The net statin dose‐dependent reductions in LDL choles‐
terol are 20–60%, accompanied by some reductions in plasma triglyceride and a small rise in
HDL‐cholesterol.

The most commonly used statins are simvastatin and artovastatin. Until recently atorvastatin
was considered the most effective statin available for decreasing LDL given in daily doses of
10–80 mg. Furthermore, the higher dose was shown to decrease serum triglycerides by 45% in
individuals with hypertriglyceridemia. However, rosuvastatin appears to be even more
effective than atorvastatin in lowering LDL‐cholesterol over its licensed dose range of 10–40
mg, although there appears to be no significant difference between 40 mg rosuvastatin and 80
mg atorvastatin in this respect. The advent of statins into anti‐lipidemic therapy was triggered
by the discovery and deciphering of the role of the LDLR in FH. They were soon found not
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only to lower the LDL‐cholesterol levels, but also to effect a significant reduction in cardiac
events and mortality. They are probably the most effective drugs in lowering LDL‐cholesterol
available to date. They lower both the LDL‐cholesterol and risk for cardiovascular disease in
a concentration‐dependent fashion.

3.1.5. Proprotein convertase sublitisin/kexin type 9 inhibitors

The proprotein convertase sublitisin/kexin type 9 (PCSK9) inhibitors, alirocumab and evolo‐
cumab, are human monoclonal antibodies, which act by inhibiting the PCSK9 function to
increase the LDLR availability. They are employed primarily for treating adults with HEFH,
HOFH or clinical atherosclerotic cardiovascular disease taking other cholesterol lowering
medication, but requiring additional lowering of cholesterol. Inhibition of PCSK9 function
holds significant promise as a therapeutic option especially for reducing cardiovascular risk.

3.1.6. Cholesteryl ester transport protein inhibitors

The cholesteryl ester transport protein (CETP) inhibitors apparently function by blocking all
of the major lipid transfer functions of plasma CETP through an induction of a non‐productive
complex between the transfer protein and HDL. By inhibiting the CETP function of transferring
HDL‐cholesterol to the VLDLs or LDLs, they increase the HDL levels and reduce that of the
LDLs.

3.1.7. Nicotinic acid agents

The nicotinic acid agents, such as the nicotinic acid (niacin) itself, are water‐soluble vitamin B
derivatives, which increase the lipoprotein levels in high doses, lower total cholesterol, LDL‐
cholesterol and triglyceride levels, while raising HDL‐cholesterol level. Niacin is a precursor
to nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phos‐
phate (NADP), which are co‐factors to several enzymes. These agents are hepatically metab‐
olized. The mechanism involved in their lipid lowering actions in not fully understood yet. It
appears to involve several actions, such as a decrease in esterification of hepatic triglycerides.

3.1.8. Combinations and miscellaneous agents in anti-lipidemic therapy

As described above, some of the anti‐lipidemic agents target the lowering of LDL‐cholesterol,
some aim to reduce triglyceride levels, while others assist in raising HDL‐cholesterol. They
can prevent both primary and secondary symptoms of CAD. However, some patients who are
statin‐resistant or intolerant do not respond to or do so very weakly for single drug treatment.
Combinations of different anti‐lipidemic agents, such as niacin or ezetimibe with statins, can
lead to significant reduction in the levels of LDL‐cholesterol and triglycerides in blood.
Treatment with ezetimibe‐bile acid sequestrants and statin‐gemfibrozil is also available [74].
Anti‐lipidemic agents are also available in combination with anti‐hypertensive agents. This is
consistent with the concept that taking one tablet of such a combination of agents makes it
more conducive and easier for patients to take their medications, which in turn increases
compliance. Apart from the above‐mentioned classes of drugs, several other agents are also
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employed to treat patients for lowering of LDL‐cholesterol and triglycerides as well as raising
HDL‐cholesterol.

3.2. Influence of ethnicity on patient response to anti-lipidemic therapy

The response (efficacy) of a drug is a product of both its pharmacodynamic and pharmacoki‐
netic characteristics. However, genetic factors also have a significant, albeit less well docu‐
mented, impact on how individuals respond to drug therapy. Pharmacodynamics is a
discipline that characterizes the biochemical and physiological effects of drugs, the mecha‐
nisms of drug action and the relationship between drug concentrations and effect. Pharmaco‐
kinetics, on the other hand, relates to the interaction of a drug with the body with respect to
absorption, distribution, metabolism and excretion (ADME) properties. Hence (pharmaco)dy‐
namically, the effect of the drug will be influenced by structural changes, particularly to
receptor proteins and signalling transduction entities, while (pharmaco)kinetically, these
effects will be modulated by modifications in entities, particularly enzymes, involved in the
bioavailability or excretion of the drug. Hence, polymorphisms in genes encoding proteins
that mediate the effects of the anti‐lipidemic drugs, such as receptors, as well as in the
cholesterol biosynthetic pathways exert a significant impact on the therapeutic outcome of
these drugs in a given population. With respect to hyperlipidemia, in particular, structural
changes in the majority of the genes involved in the binding of cholesterol to its vehicles, such
as the LDLR or apoA1, for example, would affect the dynamics, while those that are involved
in its different ADME phases would influence the kinetics. For example, the ARH individuals
appear to be more responsive to lipid lowering drugs. Furthermore, patients with ARH
resulting from LDLRAP1 mutations are likely to have more severe cardiovascular involvement
than the hypercholesterolemia homozygotes, and will also present with lower LDL‐cholesterol
and higher HDL‐cholesterol levels. It is also generally thought that patients with HOFH do
not respond well to lipid lowering therapy with statins because they cannot respond to an
increased demand for hepatic cholesterol through the up‐regulation of the LDLR activity.
Variation in response to anti‐lipidemic agents has also been linked to polymorphisms in the
CETP, APOE, HMGCR, CLMN and APOC1 genes, whereby, for example, APOE genotypes
have been associated with differential response to treatment with fenofibrate [75].

The efficacy of a drug is determined not only by its pharmacodynamic state, but also by its
pharmacokinetic (ADME) properties. Accordingly, drug metabolism passes through three
phases. These include the modification of the drug through interaction with the CYP450 family
of enzymes (phase I) to introduce a reactive or polar group. This is followed by the conjugation
of the altered substance to a polar compound in phase II reactions. This is then catalysed by a
transferase enzyme, such as glutathione S transferases. In the final stage (phase III), the
conjugated product may be further processed prior to recognition by efflux transporters and
removed from the cells. Hence, the metabolic rate usually determines the duration and
intensity of the pharmacological action of an agent.

The CYP450s constitute a multi‐gene family of primarily membrane‐associated proteins that
are expressed in most organ systems and play important roles in the synthesis and biotrans‐
formation of hormones, cholesterol and vitamin D, among others, and are engaged in a large
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and diverse range of enzymatic activities, including the catalysis of organic substrate oxida‐
tion [76–78]. Specifically, they constitute the most important metabolizers for anti‐lipidemic
agents, particularly the HMGCR inhibitors (statins) [79]. The most important CYP450 phase I
enzymes in the metabolism of anti‐lipidemic drugs are the CYP2C and CYP3A subfamily as
well as the CYP2D6 and CYP1A1 enzymes. Table 3 gives examples of some of the important
CYP variants in anti‐lipidemic therapy. These enzymes vary in the extent of their involvement
in drug metabolism, whereby some metabolize a limited cohort while others process multiple
substrates. Thus, for example, atorvastatin is metabolized through at least two CYP450s,
CYP3A4 and CYP3A5, to the ortho‐ and parahydroxylated metabolites, all of which are capable
of inhibiting the HMGCR activity, while fluvastatin is metabolized hepatically via hydroxy‐
lation to the 6‐hyroxyfluvastatin, 5‐hydroxyfluvastatin and N‐deisopropylfluvastatin by the
CYP2C9, but is also thought to be metabolized to a lesser extent to the 5‐hydroxyfluvastatin
by a number of other subtypes including the CYP1A1, CYP2C8, CYP2D6 and CYP3A4. It
undergoes glucuronidation via the uridine diphosphate glucuronyltransferase (UGT) enzyme
system. Pravastatin appears to be hepatically metabolized by CYP2C9, CYP2D6 and CYP3A4
with no notable effect on its overall activity and elimination. Simvastatin is similarly hepati‐
cally metabolized to its β‐hydroxyacid metabolite through CYP3A4. Rosuvastatin is only
slightly metabolized to the rosuvastatin 5 S‐lactone by CYP2C9 and N‐desmethylrosuvastatin
by the CYP2C9 and CYP2C19. Lovastatin is hepatically metabolized primarily to the β‐
hydroxyacid, through as yet undefined enzymes, and undergoes glycosylation by the P‐
glycoprotein pathway. In the presence of a genetic change in the metabolizing enzymes, these
intended therapeutic end‐point may be adversely affected leading to lack of activity or even
enhanced side effects of the drugs.

The activity of each enzyme encoded by the combination of CYP450 alleles is categorized as
one of five possible phenotypes: normal (NM), poor (PM), intermediate (IM), rapid (RM) and
ultra‐rapid (URM) metabolizers [80]. Alleles that lead to defective, qualitatively altered,
diminished or enhanced rates of drug metabolism have been identified for most of the
CYP450s. Defective alleles are usually a product of gene deletions, or conversion, whereby
pseudo‐gene and single nucleotide polymorphisms cause frameshift, mis‐sense, nonsense or
splice site mutations. Thereby, homozygous forms lead to a total absence of an active enzyme
and impaired ability to metabolize drugs. The PM phenotype is caused by ‘loss‐of‐function’
alleles, while URMs are a result of a duplication or amplification of an active gene, and IM are
often heterozygous or carry alleles with mutations that decrease enzyme activity only
moderately. Star nomenclature is commonly used in describing the various allelic subtypes of
the enzyme. Accordingly, the *1 is designated as normal (commonly referred to as wild‐type
or fully functional) and subsequent variant alleles are numbered in the order that they are
identified and characterized. Each pharmacogenetic allele may include several SNPs in form
of a haplotype, rather than a single site mutation. Thus, functional changes in the encoding
genes lead to enzymes with decreased/increased activity or lack of enzyme expression/activity
through various molecular mechanisms. Furthermore, the incidence of a poor or slow metab‐
olizer phenotype for a given enzyme triggered by allelic variants may vary significantly
between populations.
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Gene  Common name RS ID Arabs  Eur  CEU  Jap  Chin  Afr  Asians

CYP1A1 CYP1A1*2C_2454A>G(I462V) rs1048943 0.061 0.031 0.232 0.209 0.232 0.036 0.256

 CYP1A1*4_2452C>A (T461N) rs1799814 0.829 0.030 0.025 0.011 0.000 0.003 n.a.

 CYP1A1_134G>A (G45D) rs4646422 0.001 0.000 0.000 0.168 0.139 0.000 0.14

 CYP1A1_1412T>C (I286T) rs4987133 0.965 n.a. 0.004 0.000 0.012 0.000 n.a.

CYP1A2 CYP1A2*1C_‐3860G>A (Promoter) rs2069514 0.915 0.020 0.081 ND ND 0.313 0.242

 CYP1A2*1F_‐163C>A (Promoter) rs762551 0.699 0.320 0.279 0.395 0.337 0.434 0.312

 CYP1A2*1K_‐729C>T (Promoter) rs12720461 0.958 n.a. 0.000 0.000 0.023 0.000 0.023

 CYP1A2*1K_‐739T>G (Promoter) rs2069526 0.096 n.a. 0.004 0.041 0.09 0.128 0.093

CYP2C8 CYP2C8*2 rs11572103 n.a. 0.004 0.000 0.000 0.000 0.190 n.a..

 CYP2C8*3 rs1050968,
rs11572080

n.a. 0.118 0.137 0.000 0.000 0.000 0.000

 CYP2C8*4 (C>G) rs1058930 n.a. 0.058 0.066 0.000 0.000 0.004 0.000

 CYP2C8*8 rs72558195 n.a. 0.001 n.a. n.a. n.a. n.a. n.a.

CYP2C9 CYP2C9*11_42542C>T (R335W) rs28371685 0.996 0.002 0.022 0.006 ND 0.024 0.000

 CYP2C9*2_3608C>T (R144C) rs1799853 0.852 0.124 0.104 0.000 0.000 0.008 n.a.

 CYP2C9*3_42614A>C (I359L) rs1057910 0.944 0.059 0.058 0.023 0.047 0.000 0.044

 CYP2C9*6 (−/A) rs9332131 N.A. 0.000 0.000 N.A. N.A. 0.008 N.A.

CYP2C18  CYP2C18_c. *31C>T (3’UTR) rs2860840 0.269 0.384 0.384 0.224 0.233 0.004 0.233

 CYP2C18_c. *592C>A (3’UTR) rs1326830 0.009 0.042 0.000 0.215 0.174 0.021 n.a.

 CYP2C18_c.204T>A (Y68X) rs41291550 0.012 n.a. 0.006 0.106 0.037 0.064 n.a.

CYP2C19  CYP2C19*17_‐806C>T rs12248560 0.744 0.224 0.217 0.000 0.022 0.275 0.022

 CYP2C19*2 rs4244285 n.a. 0.145 0.155 0.284 0.256 0.144 n.a.

 CYP2C19*3 rs4986893,
rs57081121

n.a. 0.000 n.a. n.a. n.a. 0.002 0.058

CYP2D6 CYP2D6*4 rs3892097 n.a. 0.186 n.a. n.a. n.a. 0.061 0.006

 CYP2D6*17 rs28371706(T);
rs16947 (A)

n.a. 0.002 n.a. n.a. n.a. 0.218 0.000

SCLO1B1  SLCO1B1*5 rs4149056 n.a. 0.161 0.158 0.110 0.151 0.014 0.128

UGT1A1 UGT1A1*28 rs4148323,
rs8175347

n.a. 0.007 0.000 0.111 0.200 0.001 0.161

Minor allele distribution of CAD‐related variation among different ethnic groups. Asians, represents studies done in
other (non‐Japanese, non‐Chinese) ethnicities; Afr, Africans, predominantly Yoruba; Arabs, ethnic Middle East Arabs;
Chin, Chinese, primarily the Han population; CEU, Caucasians; EUR, Europeans; Jap, Japanese; RS ID, DBSNP ID.

Table 3. Ethnicity and anti‐hypercholesterolemia therapy–related gene variants.

The CYP2Cs involved in anti‐lipidemic drug metabolism consist of four isoform members,
CYP2C8, CYP2C9, CYP2C18 and CYP2C19, which are also thought to metabolize approxi‐
mately 20% of all clinically used drugs [81]. The CYP2C8 gene resides within a cluster of
CYP450 genes on chromosome 10q23.33. In liver microsomes, it is involved in an NADPH‐
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dependent electron transport pathway engaged in the oxidation of structurally unrelated
compounds. It exhibits at least 16 allelic forms denoted *1A, *1B, *1C and *2‐*14 (http://
www.cypalleles.ki.se/). At least five of these (*2, *3, *4, *8 and *14) encode proteins with
decreased enzyme activity. The distribution of variant alleles of CYP2C8 gene differs among
ethnic populations [4]. The CYP2C8*2, the variant most common in Africans, is related to a
poor metabolizer phenotype (PM) in subjects carrying at least one copy of the defective allele
[4, 9]. Poor metabolizers experience a longer drug half‐life [12] and increased adverse side
effects.

The CYP2C9, which constitutes the main enzyme for rate‐limiting metabolism of fluvastatin,
pravastatin and rosuvastatin, appears to have the largest impact on the dose requirements,
and is thought to hydroxylate about 16% of therapeutically used drugs. The gene resides on
chromosome 10q23.33. It exists in at least 66 allelic forms (*1A‐D, *2A‐C, *3A, B, *4‐*60) (http://
www.cypalleles.ki.se/), whereby the vast majority encode proteins with decreased activity.
Hence, the impact of its variants on anti‐lipidemic drug therapy is of significant consequence.
Of special interest are those with a narrow therapeutic index, where impairment in CYP2C9
metabolic activity might cause difficulties in dose adjustment as well as toxicity [82]. In vitro
data have demonstrated an association of the CYP2C9*2 and *3 alleles with significant
reduction in intrinsic clearance of a variety of CYP2C9 substrates compared with the wild‐type
CYP2C9*1. However, the extent of these reductions appears to be highly substrate‐dependent
[83]. In addition, multiple in vivo investigations and clinical case reports have associated
genotypes expressing the CYP2C9*2 and *3 alleles with significant reductions in both the
metabolism and daily dose requirements of selected CYP2C9 substrates [83]. For example, an
allelic variant causing a Leu359 to Ile359 substitution has been implicated in the decreased
metabolic clearance of various therapeutic agents [81, 83]. Similarly, the variants coding for
R144C (*2) and I359L (*3) amino acid substitutions have been suggested to exert significant
functional effects and exhibit appreciably high population frequencies. Accordingly, individ‐
uals expressing these variant genotypes also appear to be significantly more susceptible to
adverse events with the narrow therapeutic index agents, especially during the initiation of
therapy [84]. The pharmacokinetics of fluvastatin enantiomers were found to depend on the
CYP2C9 genotypes [85], leading to the proposition for potential clinical utilization of the later
in adjustment of drug dose of the former [85].

Probably the most familiar of the CYP2C subfamilies with respect to their impact on drug
efficacy is the CYP2C19 [86, 87]. The encoding CYP2C19 gene is located on chromosome
10q23.33. At least 49 allelic forms (*1A‐C, 2A‐H, *2J, *3A‐C, *4A, B, *5A, B *6‐*35) have been
reported for this gene. The important phenotypes for its anti‐lipidemic therapy include the
ultra‐rapid (URM; *17), extensive (EM), intermediate (IM) and poor (*2 or *3) metabolizers as
well as loss‐of‐function (*4). Its PM phenotype is important in statin therapy, whereby these
individuals quite frequently experience exaggerated drug response and side effects at stand‐
ard doses.

The CYP2D6 (debrisoquine/sparteine hydroxylase) acts on about 25% of all prescription
medications, including the drugs that are employed in management of dyslipidemic disorders.
The encoding CYP2D6 gene itself, located on chr22q13.2, is highly polymorphic, and several
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mutations leading to the absence of a functional enzyme have been identified [80]. Currently,
there are more than 77 alleles (including *1A‐E, *1XN, *2A‐H, *2J‐M, *2XN, *3A, B, *4A‐H, *4J‐
P, *5, *6A‐D, *7‐9, *9X2, *10A‐D, *10X2K, *11‐13, *14A, B, *15‐17, *17XN, *18‐35) described for
this locus. Although the gene appears in several polymorphic forms, probably only the six
most common defective alleles will predict its phenotype with almost absolute certainty [88].
The PMs include *2 ‐ *6, *10, *17, *29 *35 and *41, whereby the null alleles do not encode a
functional protein with detectable residual enzyme activity. Combinations of altered alleles
have been described resulting from substitutions, deletions or copy number changes, such as
duplications of the entire gene leading to variant metabolizer phenotypes ranging from PM to
URM. The CYP2D6 PM phenotypes are important for patients taking anti‐lipidemic agents, as
they may exhibit poor tolerance to these drugs [89]. Like the CYP2C19, PMs of drugs metab‐
olized through the CYP2D6 often experience exaggerated drug response and side effects at
standard statin doses. Clinical consequences of the CYP2D6 polymorphism may manifest
either in form of adverse drug reactions or altered drug response. It has been demonstrated,
for example, that the pharmacokinetics of fluvastatin enantiomers depend on the CYP2C9
genotypes, leading to potentially toxic bioactivation reactions [85].

The CYP3A4 and CYP3A5 form part of a CYP450 gene cluster constituting a group of heme‐
thiole mono‐oxygenases on chr7q21.1. The CYP3A4 protein localizes to the endoplasmic
reticulum and its expression is induced by glucocorticoids and some pharmacological agents.
The enzyme is apparently involved in the metabolism of about 50% of the drugs in use today,
including several HMGCR inhibitors, through the hydroxylation process. This process is often
followed by dehydrogenation leading to more complex metabolites [90]. However, most of the
drugs undergo deactivation by CYP3A4 either directly or by facilitated excretion from the
body. Alternative splicing of the gene results in many transcript variants. Thus far, about 45
alleles (*1A‐H, *1J‐T, *2‐14, *15A‐B, *17, *18A‐B *19‐26) have been described, majority of which
result in decreased function of the enzyme. The other member, CYP3A5, is localized to the
endoplasmic reticulum in liver tissue. In liver microsomes, the CYP3A5 is involved in NADPH‐
dependent electron transport pathways. At least two pseudo‐genes of the CYP3A5 gene have
been identified at this locus. It exists in about 25 allelic forms (*1A‐E, *2, *3A‐L, *4‐*10), the
majority of which encode proteins with severely attenuated enzyme activity. Furthermore, the
CYP1A1 resides on chromosome 15q24.1. To date, 16 alleles, *1, *2A‐C, 3‐*13, have been
described, but their characteristics have not been fully elucidated yet.

Several protein families, other than the CYPs, such as the uridine 5’diphosphate‐glucurono‐
syltransferase (UGTs) and solute carrier organic anion transporters (OATPs, SLCs), also
contribute to the ADME processes of anti‐lipidemic agents. The UGT family is responsible for
catalysing the glucuronidation and transfer of a wide range of drugs including statins,
environmental chemicals and endogenous substances. The major UGTs include the UGT1A1,
UGT2B7 and UGT2B15. Several non‐functional alleles have been described for the UGT1A1
including UGT1A1*6, UGT1A1*60 and UGT1A1*93. However, polymorphisms of this gene
have been primarily associated with disease manifestation, rather than drug response. The
SLCs are key determinants of ADME of various drugs, including statins, as a result of their
broad substrate specificity and tissue distribution. Several alleles have also been described,
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which form haplotypes leading to altered transport activity. Thereby, the SLCO1A2 mediates
the sodium‐independent transport of organic anions and conjugated and unconjugated bile
acids.

3.3. Impact of ethnicity on the role of genetic variations in anti-lipidemic drug
metabolizing enzymes

Apart from changes in the metabolic enzymes themselves, variations also exist in the impact
of these changes on anti‐lipidemic therapy among different ethnicities [91–97]. These varia‐
tions can be manifested in various ways, including changes in drug potency or metabolism
and the pharmacokinetics of the drug may in turn be attributable to alterations in polymorphic
traits of metabolic pathways. The impact of ethnicity becomes particularly apparent in the way
individuals respond to drug therapy of dyslipidemia, in which multiple researchers have
demonstrated great variability in the distribution of these genetic variants by ethnicity. For
example, in a number of studies in the USA, differences have been described in variants both
among indigenous populations as well as in comparison with African, Asian and European
populations. Such differences were documented, for example, between Oriental, Caucasians,
Saudis and American black populations, in the prevalence of defective CYP2C19 alleles [98].
Thereby, PMs represented approximately 3–5% of Caucasians and African‐Americans, but 12–
100% of Asian groups [81]. Similar variations have also been reported among Caucasians,
Africans and East Asians [99], whereby higher CYP2C19*2 and *3 (PMs) were observed in
Mexicans than in African‐Americans, whites, East Asians and Southeast Asians [100], among
the Chinese ethnic populations [101–103], between Sri Lankan and European populations
[104], between Hungarian and Roman populations [105] in a US pan‐ethnic groups of whites,
African American, Hispanics and Ashekenazi Jewish populations [106] as well as Pacific
individuals and New Zealand Europeans [103], among others. The CYP2C19*2 also appears
to be more common in Finland and Spain, respectively, than in the UK, while Asians appear
to exhibit low CYP2C19*2 and CYP2C19*12, but higher CYP2C19*2 frequencies compared to
the UK residents of European ethnicity [107]. Both variants have been found to be also more
frequent in East Asians and even higher in native populations from Oceania compared to
Mediterranean, South European and Middle Eastern ethnicities. The observation of an increase
in the Oceanians has been explained by genetic drift in the Pacific Islands [108]. Similar
differences have also been reported between the Malaysian Chinese and Caucasians and in
Israeli individuals of different ethnic backgrounds [109, 110]. Like the *2 and *3, significant
ethnic difference have also been observed in the frequency of the *17 (UM) variant that leads
to very rapid metabolism of its substrates among various groups in a pan‐ethnic study
including Mediterranean, South European and Middle Eastern than in East Asians [108].
Furthermore, although the role of CYP2C18 in drug metabolism remains obscure, it was
recently suggested that defective CYP2C19*3 and CYP2C18*1 alleles are completely linked,
implying that a CYP2C19*3 PM is a CYP2C18 PM and vice versa [111]. A gender‐dependent
activity of the CYP2C19 and higher incidence of PMs was also described in Koreans as
compared to Swedish [112].
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The gene encoding the CYP2C9 also harbours numerous variations which have increasingly
been acknowledged as determinants of the metabolic phenotype underlying inter‐individual
and inter‐ethnic differences in response to drug therapy [91, 92]. Existing data suggests that
the CYP2C9*2 and *3 alleles are present in approximately 35% of Caucasian individuals, but
significantly less so in African‐American and Asian populations [83]. Similar differences have
been observed between Amerindians and Admixed or European populations [113] as well as
Swedes and Koreans [114]. Thus, for example, CYP2C9*2 and *3 variants were more frequent
among white populations than in Africans and Asians, while CYP2C9*2 was detected only in
Asians [115]. The CYP2C9*2 frequency also appears to be lower in South Asians compared to
the UK residents of European ethnicity [107], but more common in Finland and Spain than in
the UK [107], comparatively lower among Mexican‐Americans compared to Spaniards [116].
Its distribution also varies between Beninese and Belgian populations [117], Ethiopians and
Italian Caucasians [118], Amerindians and European admixtures [119], Iranians, African and
Eastern Asian populations [120], Hungarian and Roma populations [121], as well as among
the Chinese minority ethnicities [101], ethnic Jewish groups [122] and Mexican ethnicities [123,
124]. Interestingly, to date, the CYP2C9*4 appears to have been exclusively identified in
Japanese patients, while the CYP2C9*5 and *6 were only found with a low allelic frequency
among African‐Americans, respectively [115].

Another genetically polymorphic CYP2C of potential clinical relevance with respect to anti‐
lipidemia therapy is the CYP2C8. Differences in the prevalence of the CYP2C8*2 allele have
been described between the Bantu and San populations in Botswana [125], between Caucasian
Europeans and South Asians [126], among the Chinese minority populations [127], South
Indian populations, African, European Chinese and Japanese [128], Ghanaian, Caucasians and
Asians [129], as well as among African‐American, European‐Americans, Japanese, Han
Chinese and Koreans [130]. Interestingly, Caucasian Americans also display large variability
in CYP2C8 and CYP2C9 suspected to be along ethnic ancestry, and a higher frequency is
thought to exist among Caucasian Americans with South European ancestry than with North
European ancestry. Notably, differences in the prevalence of CYP2C8*3, CYP2C9*2 and
CYP2C9*3 alleles have also been reported between Chinese and Japanese individuals, East and
South Asians as well as among Caucasian Europeans [126]. Furthermore, apart from inter‐
ethnical differences, there appears to be also intra‐ethnic variability in the CYP2C8 and
CYP2C9 allele frequencies [126]. This implies therefore that, for example, Asians or Caucasians
cannot be conceived as homogeneous populations with respect to these enzyme families.

The CYP2D6 can convert statins to a metabolizer that has a greater effect. It also exhibits
multiple non‐functional variants. In contrast to CYP2C19 distribution, CYP2D6 PMs are
reportedly more frequent among Europeans than in Asians, while differences were also
observed between Chinese and Caucasians in CYP2D6 PMs and IMs [109]. It has been
suggested that about 10% of Caucasians lack any CYP2D6 activity due to deletions and
frameshift or splice site mutations in the gene. The CYP2D6*4 appears to be the most common
PM among Europeans and to be more frequent in the UK than in Spain and Finland [107].
Furthermore, approximately 3% of Middle‐Europeans and 29% of Ethiopians display gene
duplication, leading to elevated URM phenotype. Distribution of CYP2D6 PM has also been
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reported to differ between the Russian, Yemente and Israeli Arab ethnic groups [131], Tibetian
and Han populations [132], the Amerindians and Asians in Venezuela [133] and among some
Chinese ethnic minorities [101, 103, 134]. In Mexico, differences have been observed in
CYP2D6*4 between Caucasians and Mexican Americans [135], while in Israel such variation
in CYP2D6*4, *10 and *17 alleles and CYP2D6 duplications have been described between the
Ethiopian, Sephardic Beduoin and Yemente Jews [136]. Prevalence of CYP2D6 UM in the
Mediterranean population was higher than those from North Europe [137], in the Mestizo than
in Amerindian and Afro‐Caribbean population in a Costa Rican study [138] and in the
Mediterranean compared to Northern Europe in an Italian study [139]. Similarly, differences
exist in the prevalence of defective alleles between Africans and South‐East Asians [140] and
Hispanics, North American Caucasians and African Americans [141] and between African
Americans and Caucasians [142].

The other enzyme sub‐families engaged in anti‐lipidemic therapy exhibiting significant inter‐
ethnical variation in defective alleles are the CYP3A4/5 gene cluster [143, 144]. The CYP3A4*19
appears to be frequent in Hispanics, while differences have been described in CYP3A4*18
among the different ethnic Chinese minorities [101, 145]. Also variations have been observed
in CYP3A4*IB and CYP3A5*3 between Brazilians of African and European descents [146,
147], between African‐Americans and Caucasians [148, 149] and between Indian, Malay,
Chinese and Caucasians in Singapore [150, 151]. In contrast, in Indo‐Pakistanis, for example,
it has been reported that, with the exception of the CYP3A4*1B, the proportion of patients
without a CYP3A4 polymorphism appears low.

The CYP1A constitutes a gene family that has been implicated in both drug metabolism and
disease. Thus, the gene contains at least four major polymorphisms that exhibit population
distribution that is dependent on ethnicity. Among the Chinese, variations have been observed
in the CYP1A2 distribution among a number of ethnicities [152]. In European studies, Hun‐
garians showed elevated rapid metabolizing tendencies compared with the Romans [153]. The
CYP1F2*1F was found to be more frequent in Mexican Amerindians than Mestizos in a
Mexican study [154], while differences in frequency were also reported among ethnic groups
in Singapore [155], between Taiwanese, Caucasians and African Americans [156], while
Ethiopians appeared to display at least twice the variations found in all other populations
combined. A significant association between CYP1A*2c and triglyceride level has been
described in Mexican Amerindian Tarahumaras compared to the Tepehuanos [157, 158]. It has
also been suggested that CYP1A1*3 may be specific for individuals of African descent, while
the CYP1A1*2 is closely linked to Asian ethnicity but less so to Caucasian [159].

Inter‐ethnical variation in the distribution of genetic alleles is not limited to the CYP450s only,
but is rather a general phenomenon for the majority of proteins involved in the bio‐distribution,
transport, metabolism and excretion of all drugs and pharmaceutical agents. One of such
protein families important for anti‐lipidemic drugs is the UGT. Polymorphisms of this gene
have been primarily associated with disease manifestation, and only scanty ethnicity‐based
studies are currently available. One such study in the Chinese has shown heterogeneity among
different ethnic groups [160]. Furthermore, differences have also been reported in the preva‐
lence of the UGT1A1*28 between Caucasians and Asians [161]. Besides, some sex‐dependent
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differences have also been discussed with regard to UGT functionality. They are also believed
to be involved in drug‐drug interactions. Several cell membrane transporters, such as the anion
transport polypeptide (OATP) 1B1, encoded by the SLCO1B1 gene, can influence the disposi‐
tion of statins. They are key determinants of ADME of various drugs as a result of their broad
substrate specificity and tissue distribution.

3.3.1. Gene polymorphism, ethnicity and adverse anti-lipidemic drug response

Many of the anti‐lipidemic agents frequently exhibit very serious side effects, often leading to
discontinuation of the therapeutic regimen. For example, it is thought that statin discontinu‐
ation rate due to side effects ranges between 1% and 5%. This is, in the majority of cases, due
to the sharing of metabolic pathways by other concomitantly employed drugs, but may also
be caused by mutations in the metabolic genes. Adverse effects of anti‐lipidemic drugs also
include drug resistance and intolerance, which have been linked to genetic polymorphisms in
several genes including LDLR, HMGCR, PCSK9, CETP, APOE, P‐glycoprotein and OATP, just
to name a few. Furthermore, drug dosage requirements are often dependent on ethnic
differences as explained, at least in part, by genetic and dietary factors. Such adverse effect
would be exacerbated in the presence of defective metabolizing alleles. Several factors,
including modes of action, biotransformation routes or concomitant food ingestion, may
contribute to these phenomena. Of particular importance in this regard are the CYP450s, which
are thought to mediate the majority of unwanted drug effects, as drugs interact with members
of this protein family in many different ways, whereby a drug may be metabolized by one or
multiple of these enzymes. Thereby, drugs that cause CYP450 metabolic interactions are
referred to as either inhibitors or inducers. Such drugs block the metabolic activity of one or
more enzymes, whereby the extent of its influence will depend on factors such as dose and the
capability of the drug to bind to the enzyme. On the other hand, a drug may induce its
metabolizing enzyme. Such enzyme inducers increase the CYP450 activity by increasing its
synthesis, often dependent on the half‐life of the drug. These factors render the therapy with
drugs undergoing metabolism through the CYP450 system complex. Notably, a drug may
inhibit the function of an enzyme that metabolizes it, with each cytochrome isozyme respond‐
ing differently to exogenous chemicals in terms of its induction and inhibition. Typically,
individuals with an aberrant CYP450 gene may experience diminished efficacy or increased
toxicity in response to particular drugs as a result of the difference in activity levels associated
with the variant genotypes. One example is myositis, the most important adverse effect of
statins, which may be greatly influenced by the presence of the defective enzymes, such as the
CYP2C9, CYP2C19 and CYP3A4 variants. Inhibition of these enzymes often adversely affects
the function of the HMGCR inhibitors in different fashions. For example, the CYP3A inhibitors
significantly enhance simvastatin plasma concentrations and its active forms. It has also been
shown that peak serum levels of simvastatin, which is metabolized solely by CYP3A4, can
increase by many times in PMs or with the addition of a potent inhibitor, leading to an increase
in the risk of myopathy and rhabdomyolysis at usual doses. The effect of CYP3A4*22 allele is
thought to lead to reduced enzyme expression. Combination of non‐functional CYP3A5*3 and
putative, functionally reduced CYP3A4*1G alleles may predict diminished clearance of
CYP3A4 substrates [162]. Carriers of one or more CYP2C variant alleles may be at risk for
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adverse drug reactions when prescribed together with drugs extensively metabolized by
CYP2C9 [115]. Atorvastatin‐related rhabdomyolysis and acute renal failure has also been
linked OATP1B1 polymorphism and CYP2C19 PMs [163].

The other important enzyme family in anti‐lipidemic drug metabolism is the UGT, which may
invariably influence drug metabolism through the CYP450 pathways, as demonstrated by the
observations that, for example, gemfibrozil exhibits glucuronidation‐ and reduction‐depend‐
ent activation to metabolites that inhibit CYP2C8, whereas ezetimibe shows glucuronidation‐
dependent protection against metabolism‐dependent inhibition of CYP3A4. Its polymorphism
has also been linked to artovastatin adverse effects by increasing its lactonization in the liver
through UGT1A3*2 [164, 165]. While artovastatin lactone is pharmacologically inactive, it is
suspected to be a muscle toxic and to cause statin‐induced myopathy. Furthermore,
UGT1A1*28 has been associated with decreased exposure of artovastatin lactone [166], and
also linked to changes in the pharmacokinetics of ezetimibe [167].

Other important gene variants influencing the actions of anti‐lipidemic drugs include the
CETP‐Taq1B and adenosine triphosphate binding cassette transport A1 (ABCA1)‐R219K gene
polymorphism, which seem to modify the response to lipid lowering therapy with simvastatin
or atorvastatin treatment [168, 169]. The frequency of the variant alleles for these drug
metabolizing enzymes often differ among ethnic populations. For example, inter‐individual
variability in statin exposure has been associated with changes in the uptake and efflux of
transporter genes. Hence, for each individual, it is important to establish the impact on drug
ADME characteristics in order to achieve maximal therapeutic outcomes. Mutations in the
solute carrier organic anion transport 1B1 (SCLO1B1) are also known to increase plasma
concentrations of simvastatin (and simvastatin‐induced myopathy) as well as moderately
increase those of pravastatin. In some studies, artovastatin concentrations have been associated
with changes in the SCO1B1 [170], although some other investigators failed to report similar
effects [171]. SLCO1B1 polymorphism, particularly the SNP rs4149056 (c.521T>C), has also
been linked to statin‐induced myopathy, while the SLCO1B1*5 allele and female sex have been
associated with mild statin‐induced side effects [172]. Other anti‐lipidemic drugs influenced
by the OATP1B1 include ezetimibe [173].

Besides, genes such the CETP and multi‐drug resistant protein 1 appear to harbour variants
that may either enhance LDL‐cholesterol or decrease triglyceride and HDL‐response to
pravastatin treatment [174], while certain LDLR and APOB mutations and haplotypes report‐
edly influence the lipid lowering effect of atorvastatin on LDL‐cholesterol and apoB levels
[175]. Treatment with pravastatin may lead to reduction of cholesterol in individuals harbour‐
ing heterozygous variants of the HMGCR [176]. These variants have also been implicated in
the variations in response to therapy with different anti‐lipidemic drugs. An example is that
of the APOE genotypes associated with response to treatment with fenofibrate [75]. Many
drugs are known to inhibit AOTP1B1 function, in vitro at least, possibly resulting in, for
example, an increase in plasma concentrations of statins. Gemfibrozil has also been shown to
increase concentrations of several OATP1B1 substrates.

The sterol regulatory binding proteins 1 and 2 (SREBPs) are transcription factors that regulate
lipid metabolism. A recent report also showed that the SREBP‐1c polymorphism (G952G) is
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associated with elevated cholesterol synthesis, and increased response to the effects of
ezetimibe on cholesterol absorption [177]. It is thought that inhibition of mevalonate synthesis
by statins reduces not only the biosynthesis of cholesterol, but also the production of ubiqui‐
none (CoQ10), which is synthesized in all cells. Reduction of CoQ10 levels causes statin‐
induced myotoxicity.

3.4. Confounders for the role of ethnicity in hyperlipidemia drug therapy

Since alterations in the metabolizing proteins will affect the pharmacokinetics of a drug, it is
also understandable that such changes are likely to play a major role in drug adverse effects.
In particular, the effects of anti‐lipidemic drugs are influenced in many different directions in
the presence of variations in their metabolizing enzymes, which may in turn be also influenced
by both modifiable and non‐modifiable confounders, including gender and age, as well as
concomitant therapies with different families of drugs. For example, one proposed mechanism
responsible for a differential effect of statins could be sex‐dependent drug clearance, given that
the clearance of lipid‐soluble statins involves CYP450s and the protein expression can vary by
sex. In some animal studies, the metabolic rate of simvastatin was found to be considerably
higher in males than in females. The statins might therefore be expected to have a greater
clinical effect on males. In contrast, human volunteers showed a lower degree of metabolism
of simvastatin and lovastatin in men than in women. Moreover, several epidemiological studies
have reported greater reductions in both LDL and total cholesterol in response to statins in
women than in men, which presumably could lead to between‐sex differences in clearance
rates, bioavailability and, consequently, the clinical effects achieved with the same dose of the
drug. One study has, for example, indicated that the variability in CYP1A2 activity could be
explained by the diet, lifestyle and genetic factors [178]. Some studies even suggest that statin
therapy leads to a greater reduction in the risk of cardiovascular events in men than in women
with cardiovascular disease. Several of the CYP450s are also implicated in diseases, which may
influence the therapeutic outcome with drugs that are metabolized through these enzymes.
Besides, diseases such as HIV/AIDS are also known to trigger lipid disorders and need to be
considered seriously in their management. It has been shown, for example, that a combination
of anti‐retroviral therapy is likely to trigger the incidence of metabolic risk factors such as
insulin resistance, dyslipidemia, lipoatrophy and abnormal fat distribution. As such, HIV‐
dyslipidemia is regarded as a common problem linked to an increase in the incidence of
cardiovascular disease.

Other confounders include awareness, availability of resources and adequate health service
products. Such disparities contribute to inequality in health product supply of any societal
community, and to the way management of disease may be accomplished within a society.
Some disparities by ethnicity have also been established in the use of pharmacotherapy for
hyperlipidemia, orders by physicians, counselling of individual on food intake and exercise
[179]. Besides, drug responses are influenced by clinical variables such as age, gender, body
weight, general medical condition and liver function. All these factors contribute negatively
to attaining national therapeutic goals.
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3.5. Ethnicity-gene interactions and future management of hypercholesterolemia

The preceding paragraphs have summarized the causative genes for hyperlipidemia, the
diversity in gene variants encoding metabolizing proteins and their distributions in different
populations by ethnicity. The summarized data demonstrates that the interactions of these
variables do not only influence the expected drug actions, but, more importantly so, also the
untoward effects of the therapeutic agents for hypercholesterolemia. It is also evident that, in
addition to the complexity of the ethnicity‐gene environment interactions, intra‐ethnic
population admixtures of many modern societies may introduce an element of uncertainty
with regards to the interpretation of observations in such population structures. As a result,
this may lead to spurious genotype‐phenotype associations, which presents a challenge in
thriving to unequivocally isolate the ethnic‐specific disease‐related alleles from those pertain‐
ing to multiple population groups. However, the importance of ethnicity in complex disease
manifestation such as hyperlipidemia and its pharmacogenetics is now generally acknowl‐
edged and cannot be ignored. Rather, it should constitute a central focus of research as a basis
for establishing therapeutic goals for targeted disease management. To begin with, existing
data reveals that, for example, the disease‐causing gene variants and ADME‐related alleles are
not uniformly distributed among Caucasian, European or individuals from East Asia or Africa.
This asymmetric distribution of genotypes implies that we need to decipher their prevalence
by ethnicity for us to determine their relevance for any given ethnic group. Hence, knowledge
of the extent to which a particular variant may be present within an ethnic population is
therefore mandatory in order to establish the chances of success for a personalized therapeutic
regimen for anti‐hyperlipidemia therapy. The implication for this variability is also that
therapeutic modalities have to be predetermined for each individual ethnic population for
optimal disease management in any given society. In this regard, the WHO has recommended
establishing health action points that may be specific for each nation. On the other hand, there
might be some geographic similarities in the prevalence of some variants as shown by some
Asian populations sharing unique traits compared to Caucasians, for example. Therefore, it
also appears that the distribution of some of these genotypes is heavily influenced by geo‐
graphic origin. This scenario implies that, while the individuals belonging to these different
populations cannot be treated as homogeneous groups, they may nonetheless inherently share
some genetic traits that are regulated by geographic demarcations. Hence, the identification
and discerning of ethnic‐specific variants from such common regional traits should enhance
our understanding of the human diversities in genetic traits, and can therefore be exploited
more appropriately for therapeutic purposes in the future.

Importantly, the gene‐ethnicity relationships are also commonly influenced by confounders,
such as age and gender. These two variables are, however, not ethnic‐specific, and would
independently exert a similar impact on disease or therapy across ethnic groups. On the other
hand, however, modifiable traits such as obesity or BMI would be identifiable ethnic‐specific
traits. Therefore, combinations of these various confounders will impact the relationship of the
genotype, ethnicity and disease or therapy in different fashions that cannot be easily trans‐
posed from one ethnicity to another. Accordingly, consideration of specific underlying
environmental factors is a prerequisite in the management of complex disorders such hyper‐
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lipidemia for any given population. With regard to hyperlipidemia specifically, the issue is not
made easier by the fact that drugs, such as statins, are invariably metabolized through several
CYP450s, and vice versa. Thus, the rate of defects in ADME genes may occupy a unique
position in mediating these interactions. Therefore, specific knowledge of the metabolic
pathway of these ADME enzyme variants is also key to establishing the success of individual
therapy in any ethnic group within societies. Furthermore, understanding of the causal
relationship of these polygenic influences on drug dose requirements is vital in reducing inter‐
patient variability and optimizing anti‐lipidemic therapy. Detecting such genetic variations in
drug metabolizing enzymes is also particularly important for identifying individuals who may
experience adverse drug reactions or lack of drug response. In turn, it should help in the
prediction of more individualized loading and maintenance doses for safer drug therapy. In
fact, the different isoforms of the ADME enzymes probably present greater challenges with
respect to their possible adverse effects and the safety issues than the activity level, not only
due to intra‐individual, but more so inter‐ethnical differences in their prevalence across
societies. Ethnic diversity in some of these variants and complex interplay among them will
therefore dictate the success of anti‐lipidemic therapy in any given population. Thus, for
example, dosing for poor metabolizers may have to be significantly modified to meet the
ethnic‐specific requirements for adequate therapy, which may not necessarily be the case in
some societies. On the same note, ethnic‐based genetic tests can be used to screen for individ‐
uals with poor metabolizer phenotypes, for example, with the ultimate goal of predicting the
clinical effects of drugs. Furthermore, apart from drug efficacy, inter‐ethnical variations in the
prevalence of metabolic genes will naturally also influence drug toxicity. In addition to ethnic‐
delineable variants, common multi‐ethnic variants in important drug metabolizing genes have
also been described across ethnicities. This is exacerbated by the fact that some ethnic popu‐
lations also display a wide range of variations in the frequencies of these polymorphisms,
possibly due to population migrations. Put together, the overall clinical merits of a genotype‐
adapted anti‐lipidemic treatment regimen in a patient population can best benefit only if the
actual prevalent variants are known for that particular ethnic population. Thus, identification
of such ethnic‐specific allele frequencies and their phenotypic designation will provide the
basis for better clinical management.

Apart from traits directly related to societal structure, gene polymorphism and the reigning
classical modifiable risk traits, there are many other events that will determine the outcome of
therapeutic management hyperlipidemia. These features include public awareness as well as
availability of and access to information or national resources. To begin with, it has been shown
that the difference in the availability of health insurance may influence the way patients of
different ethnic groups respond to treatment. Furthermore, in many communities there is a
suffocating lack of data on the prevalence of the important disease‐causing or therapy‐related
genotypes. Unfortunately, thus far, the phenotypic expression has been studied primarily in
Caucasians and a few other ethnicities, but only poorly so in developing or semi‐developed
countries, such as Africa of the Arab world. Yet by virtue of consanguinity and inbreeding in
some of these societies, for example, the distribution pattern of clinically important variants
may differ considerably in such communities compared to others, as a result of disparity in
Hardy‐Weinberg distribution principal. Hence, there is acute need to characterize the preva‐
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lence of such variants in such ethnic populations, as they will almost certainly always be unique
in a particular society. For dyslipidemia specifically, this complexity is compounded by the
lack of community awareness reining in developing countries. Besides, often there are many
inconsistences in the data pertaining to different ethnic groups within the same geographical
regions. This naturally leads to disparity in the effectiveness of therapy in such societies. One
study suggested, for example, that the disparities in the use of pharmacotherapy for hyperli‐
pidemia, physician‐ordered or provided cholesterol screening, diet and exercise counselling
by specialists may be partly a result of lack of information [179]. Awareness influences
compliance, and compliance is a key determinant of successful drug therapy. Furthermore,
compliance to drug therapy is influenced by a number of other factors, including volume of
drugs to be consumed and rate of daily drug intake, and possibly even gender. Recently, a
gender difference in lipid control due to non‐adherence has been described [180]. Moreover,
apart from the cited studies pointing to differences among ethnic groups, there is also a large
amount of data failing to replicate the reports of such genotype‐related effects in the same
ethnic populations. This may be attributable to several factors, including admixture and lack
of information. These will in turn contribute to intra‐ethnical variations in the management of
drug treatment in a given community.

Availability or lack of resources and adequate health service products also play a central role
in the outcome of dyslipidemia therapy. For example, it has been shown that the difference in
the availability of health insurance may influence the way patients of different ethnic groups
may respond to treatment. In the USA, for example, variations across states in health insurance
and racial/ethnicity mixture have been associated with variations in the management of
hyperlipidemia. Thus, less‐insured states may be less effective, whereas those with more
private, Medicare or Medicaid coverage may be more effective. In states with proportionately
more African‐Americans versus Hispanics, lipid medications have also been found to be
prescribed differently [181]. Such disparities contribute to inequality in health product supply
of any societal community and therefore to the way management of dyslipidemic disorders
may be accomplished within that society. Indeed, such environmental factors will have an
impact on disease management that often goes unnoticed. Other environmental factors include
access to education, information or resources within the different ethnic populations, whose
importance can hardly be overstated. For example, in the USA the native Hawaiians are
regarded as the least educated proportionally and the lowest portion of the ladder of socio‐
economic strata relative to most ethnic groups in the USA, which may explain some of the
remarkable differences compared to other groups. One problem is the issue of availability of
basic information on disease risk factors and involvement in decision making for therapy
regimens, as shown by a study indicating that minorities considering hyperlipidemia therapy
may be less informed and less involved in the final decision‐making process therefore
contributing to racial disparity in health management of a nation [182].

Furthermore, while some developed societies may be made more conscious of risk factors for
a given disease, heterogeneity through population migration and levels of consciousness
among the different ethnic groups within a society may always change the dynamics of the
situation. This indeed plays a central role in the unequal distribution of the resources contri‐
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buting to disparities in the availability of health services. Most of it can be explained by the
prevalence of confounders, such as lack of awareness, in which disproportionate rates seem
to rank highly even in developed counties. Given the likelihood of ethnic differences in lipid
profiles and the prevalence of hyperlipidemia together with the lack of research in ethnic
minorities, it becomes clear that therapy of dyslipidemia remains a major concern worldwide.
Being a recognizable risk factor for cardiovascular diseases, it is also questionable whether
anti‐lipidemic therapy attains the same effect of cardiovascular risk prevention globally under
these conditions. Most importantly, profiling the gene variants in disease and drug response
to anti‐lipidemic therapy is the inevitable pathway towards establishing personalized treat‐
ment for this disorder. Pharmacogenetics has slowly found its rightful place in disease
management. It is now well acknowledged that polymorphisms in drug‐metabolizing
enzymes and transporters of anti‐lipidemic agents contribute to a wide variability in the
pharmacokinetic response and toxicity of these drugs. In this regard, ethnicity plays an
important role in defining the relevance of the genetic changes in achieving the ultimate goal
of personalized drug therapy. However, as demonstrated in the preceding paragraphs, further
studies are needed to explore deeper the gene‐dose, gene‐concentration and gene‐response
relationships especially for the drug metabolizing CYP450s. The more we make progress in
identifying the genetic variations of dyslipidemia or drug response to therapy, the greater the
likelihood that personalized medicine becomes a reality rather than remaining a myth in the
foreseeable future.

Because of the uncertainties summarized above, for the time being targeted drug therapy of
hyperlipidemia remains a dream of the future. Nonetheless, profiles of rare variants reflecting
on the inter‐individual variability in drug response are becoming more and more evident.
Hence, the knowledge we have already acquired of the differential distribution of the impor‐
tant gene variants should provide valuable information in guiding clinicians in determining
which gene variants may be relevant in screening patients for personalized therapy in clinical
settings in a given society. The validity and usefulness of such an undertaking for routine
procedures will depend foremost on the prevalence of such entities. Hence, recommendations
for genotype‐adjusted therapy will soon be of time.

4. Summary

Hypercholesterolemia is a complex disorder which presents in different forms, including the
familial form, with varying underlying aetiology, and contributes substantially to CAD
manifestation. Predisposing variables for the disease include modifiable risk traits, such as
diet, overweight and obesity, that are controllable by adopting healthy eating habits and
exercise, for example. However, diet alone is often not adequate to achieve the desired lipid
lowering effect in individuals harbouring very high cholesterol levels, such as in familial
hypercholesterolemia. This necessitates the use of lipid lowering medication to reduce its
production or absorption or other forms of therapy including LDL apheresis or surgery. It is
now well established that the response to anti‐lipidemic therapy depends on genetic changes
in the disease‐causing as well as ADME‐related genes, and the impact of these gene‐drug
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response relationships will depend on ethnicity. Inter‐ethnical variability in pharmacokinetics
of anti‐lipidemic agents may trigger unexpected outcomes such as therapeutic failure, adverse
effects and toxicity in individuals of different ethnic origin undergoing therapy. Hence, in‐
depth studies on these relationships have the huge potential of achieving optimal quality use
of drugs as well as improving the efficacy and safety of both prospective and currently available
anti‐lipidemic therapeutic agents.
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