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Abstract

The  current  dogma  is  that  epithelial-to-mesenchymal  transition  (EMT)  promotes
circulating tumour cell (CTC) formation and is ultimately a driver of metastasis. There
is also accumulating evidence that EMT-phenotype changes are commonly associated
with therapy resistance. Thus, capturing EMT-phenotype CTCs is expected to yield
important clinical information in regard to prognosis and response to therapy as well
as allowing the study of metastatic processes. However, the isolation and identifica‐
tion of EMT-phenotype CTCs with commonly used isolation/detection methods are
suboptimal, and current efforts on improving the isolation of EMT-phenotype CTCs are
associated with pitfalls that need to be overcome. This chapter explores the signifi‐
cance of EMT in CTC formation and the role of EMT in cancer metastasis and resist‐
ance to therapy. We also comprehensively review the past and current limitations of
evaluating EMT phenotypes in CTC isolation and analysis and discuss how CTCs can
be seen in a more holistic fashion as important biomarkers for clinical management.
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1. Introduction

Circulating tumour cells (CTCs) were first discovered by the Australian pathologist Thomas
Ashworth in  1869,  who described single  cells  and cell  clusters  in  a  patient’s  blood and
proposed a role for CTCs in the metastatic  process [1].  Recently,  due to improved CTC
detection techniques, these cells, together with circulating tumour nucleic acids (ctNA), are
emerging as  attractive,  accessible,  non-invasive  biopsies  to  guide the  best  therapy for  a
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patient’s cancer. CTC counts are closely related to cancer progression and stage, and there is
mounting evidence from studies on prostate-, breast-, colorectal- and other cancers that CTCs
have prognostic value (reviewed by Caixeiro et al. [2]).

In essence, CTCs are very rare cells, and usually only between 0 and 30 CTCs can be isolated
from a 5–10-ml blood sample of a cancer patient; although for some patients, CTC counts can
be considerably higher. Isolation technologies allow enrichment and separation of CTCs from
the millions of surrounding blood cells by initial gradient centrifugation or red blood cell lysis
followed by further enrichment of CTCs due to their physical properties or by employing
antibody-based negative or positive enrichment techniques (reviewed by Yu et al. [3]).
Enrichment steps are followed by CTC identification primarily by immunocytostaining. The
most common CTC identification pattern relies on positive staining for nucleated cells (4',6-
diamidino-2-phenylindole (DAPI) or Hoechst staining) and cytokeratin (CK; positive CTC
marker) associated with a lack of CD45 staining (negative CTC marker, expressed on leuco‐
cytes). Advances in single cell analysis technology have contributed to maximise the informa‐
tion that can be gained from CTCs isolated from a single blood sample. Tumour biomarkers
such as gene amplification, mutation, rearrangement and expression can be successfully
analysed while CTC protein levels can be determined. There are high expectations that CTC-
based assays will find utility for clinical testing, guiding therapy and monitoring treatment in
the not-too-distant future (reviewed by Becker et al. [4]). However, cancer cells, including
CTCs, are extremely heterogeneous, and therefore, isolating a representative range of CTCs
remains difficult.

A particular challenge is the capture of CTCs that have undergone epithelial-to-mesenchymal
transition (EMT) [5, 6]. EMT and its reverse, the mesenchymal-to-epithelial transition (MET),
are reversible phenotypical changes that allow a cell to form either dense epithelial structures
with tight interaction to neighbouring epithelial cells or, by undergoing EMT, to loosen
interactions with other cells and become more mesenchymal and migratory. The ability to
undergo these changes is important for cells during development to allow the migration of
cells and the formation of different tissues. Cancer cells that are able to take advantage of these
processes and undergo EMT are proposed to be more motile and consequently are more likely
to become CTCs by entering the blood stream [7]. Not surprisingly, EMT-phenotype cancer
cells are linked to the presence of metastases. Additionally, cancer cells that have undergone
EMT tend to be distinctly more resistant to chemo and radiation therapy [8]. Consequently,
the detection and analysis of EMT-phenotype CTCs appear necessary to fully harness CTC
information about a given cancer and monitor disease evolution; yet, we are still poorly
equipped to detect these cells. Currently, most methods to isolate CTCs, and nearly all current
approaches to identify CTCs, rely on the presence of epithelial cell markers. CTC isolation
predominantly relies on immunomagnetic targeting of the epithelial cell adhesion molecule
(EpCAM), but this epithelial glycoprotein diminishes during EMT, thereby compromising the
effectiveness of this strategy [5, 6]. The identification of CTCs usually involves immunocytos‐
taining for epithelial proteins of the cytokeratin protein family, which are similarly downre‐
gulated during EMT [9]. Equally problematic is the method of probing for EpCAM, which is
frequently used to identify CTCs after size exclusion enrichment [10].
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In this chapter, we summarise the current understanding of EMT in CTC formation, detection
of EMT markers in CTCs isolated by common methods and their limitations, and new
approaches to better isolate and identify EMT-phenotype CTCs (EMT-CTCs). The clinical
relevance of detecting EMT-CTCs is also discussed.

2. EMT in CTC formation

The role of EMT in the metastatic process has been controversial mainly because cells in
metastatic tumours often display epithelial rather than mesenchymal characteristics, despite
the presence of cells with mesenchymal features in the primary cancer. The recognition that
EMT is a reversible process has led to a model adaptation, which postulates that EMT reversal,
termed MET, has to occur after extravasation to allow motile cancer cells to resettle and form
metastases [11] (Figure 1). Regardless of robust in vivo data that show increased metastasis
associated with an EMT phenotype in the primary tumour, experimentally tracking EMT or
MET in the metastatic process remains challenging [12].

Figure 1. EMT in CTC formation. Simplified illustration of cells in a primary tumour undergoing EMT changes, which
enable them to disseminate from the primary cancer, intravasate into the blood stream and travel as CTCs before ex‐
travasating the vascular system and, by undergoing MET, regain the ability to form a metastatic tumour.

Several elegant studies and in vivo evidence (mainly from mouse models) show that EMT aids
tumour cell dissemination and promotes intravasation into the vascular system (CTC forma‐
tion). MDA-MB-468 breast cancer cells that can be driven to undergo EMT by epidermal
growth factor (EGF) exposure were used in a severely compromised immunodeficient (SCID)
mouse xenograft model. Xenografts in this model lead to lung and liver metastases, and a peak
in CTC counts coincided with the appearance of cells strongly staining for the EMT marker
vimentin in the initial xenograft. Vimentin was also expressed in CTCs and CTC clusters,
suggesting that EMT promoted CTC formation [13]. Another study, in which KRAS-pancreatic
tumour model mice were treated with cerulein to induce pancreatitis and EMT changes in the
cancer cells, showed significant increases in CTC counts [14]; however, this finding was not
corroborated in a more recent study involving a similar model [15]. A role for EMT in CTC
formation was further substantiated when a squamous cell carcinoma prone mouse model
with targeted transcription factor Twist1 induction confirmed that Twist1 caused tumour cells
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to undergo EMT, and this was associated with a doubling of CTC counts as well as increased
metastasis [16]. Recently, an innovative model of endothelial cells that form vascular-like
structures in vitro was used to show that SW620 colorectal cancer cells could migrate into these
‘vessels’, especially when hypoxia-induced EMT was triggered [17]. A concept supporting the
notion that mesenchymal properties afford cancer cells some protection in circulation suggests
that any cells shedding from a tumour without undergoing EMT might undergo stressful,
traumatic events required for the interruption of the strong epithelial cell-cell interactions
resulting in reduced viability [18]. Additionally, EMT-phenotype changes are generally
thought to reduce sensitivity to stress signals that would normally lead to apoptosis [8]. Taken
together, these observations underpin the emerging opinion that EMT-CTCs may comprise a
more viable, aggressive tumour cell population than epithelial CTCs, and go some way to
explain the association of EMT-CTCs and increased metastasis. In that regard, it is worth noting
that transforming growth factor β (TGFβ), which is commonly released by platelets, may
promote or maintain EMT in CTCs while in the circulation and promote extravasation [19].
The current understanding of the role of CTCs in establishing distant metastatic sites was
recently reviewed and is beyond the scope of this chapter [2, 20].

3. EMT phenotypes in CTCs isolated by EpCAM targeting

It is important to emphasise that, despite the epithelial nature of EpCAM, CTCs isolated by
EpCAM targeting can display markers of EMT. This is due to the fact that changes between
epithelial and mesenchymal phenotypes are dynamic, and cells can be found in intermittent
stages and express mesenchymal as well as epithelial markers at the same time. Accordingly,
mesenchymal markers have been successfully detected in CTCs after EpCAM-based isolation.
For instance, intermittent EMT phenotype characterised by co-expression of mesenchymal
proteins vimentin, N-cadherin and CD133 with epithelial markers EpCAM, CK and E-cadherin
was shown in breast cancer and prostate cancer CTCs isolated by EpCAM targeting [21].
EpCAM-based breast cancer CTC isolation also yielded cells with common gene expression
of the EMT markers TGFβ1, FOXC1, CXCR4, NFKB1, VIM and ZEB2 [22]. Moreover, higher
breast cancer staging correlated with mesenchymal vimentin and fibronectin expression in
EpCAM-enriched CTC samples. Interestingly, vimentin and fibronectin expression was also
detected in 31 of 92 (34%) of patient samples, which were CTC negative according to the
common CTC definition (DAPI+, CK+, CD45-) but not in samples from healthy control indi‐
viduals, suggesting the presence of CTCs lacking CK in some patients [23].

4. EMT phenotype in CTCs isolated with alternate strategies

The inability of EpCAM-based CTC isolation to optimally account for EMT-CTCs with EpCAM
loss has led to the targeting of alternative, EMT-associated cell-surface markers, for CTC
enrichment, or by avoiding these methods altogether and focussing on CTC enrichment due
to physical cancer cell properties, mainly size exclusion. Not surprisingly, when EpCAM-
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based immunomagnetic CTC isolation was directly compared with size exclusion CTC
enrichment of parallel blood samples from 40 NSCLC patients, CTCs were isolated from a
higher proportion of patients (80 vs 23%) by size exclusion, and as expected the isolated cells
tended to lack EpCAM; however, they expressed CK and had elevated levels of the EMT-
associated epithelial growth factor receptor (EGFR) and thus likely were tumour cells [24].

An elegant approach to account for the CTCs missed during EpCAM-based capture in HER2-
positive breast cancer patients utilised CD45 immunomagnetic depletion of blood cells after
an initial EpCAM-based CTC capture, to further enrich the remaining EpCAM-negative CTCs.
The EMT-linked transcription factors SNAI1 and ZEB1 were more commonly expressed in
these EpCAM-negative cells that were likely tumour-derived cells compared to the EpCAM-
isolated counterparts [25]. Vimentin, best known for its functions as a cytoskeletal support
protein, can also be present on the cell surface of mesenchymal cells and has been successfully
targeted in immunomagnetic isolation of CTCs from colorectal cancer patients and breast
cancer patients. After CD45 immunodepletion, CTCs were positively selected with cell-surface
vimentin (CSV) targeting. The authors suggest that CSV expression is restricted to cancer cells,
and CSV targeting isolates significantly more CTCs from colorectal cancer patients with
progressive disease than those with stable disease; moreover, higher CSV-CTC counts were
more commonly found in therapy-resistant patients. In a direct comparison of CSV- and
EpCAM-based CTC isolation (CellSearch CTC platform) in breast cancer patients, CTCs
isolated with CSV targeting were a more reliable marker for progressive disease compared to
stable disease. In both CSV-isolated breast and colorectal cancer CTCs, the EMT markers
FOXC2, SNAIL, Twist-1 and Slug tended to be highly expressed while E-cadherin and EpCAM
levels were low. The CSV antibody is currently not commercially available, thus limiting its

Figure 2. EMT analysis in isolated CTCs. Quadruple staining to detect CTCs with EMT phenotype according to levels
of the EMT marker vimentin. (A) CTCs were identified by nuclear Hoechst staining ‘Ncl’ (blue, Fluxion enumeration
kit) and cytokeratin (CK) staining (green; FITC-conjugated anti-cytokeratin antibody: clone c-11, Sigma-Aldrich) as
well as exclusion of CD45 expression (red, antibodies: CTC enumeration kit, Fluxion). Vimentin staining, ‘Vim’ (or‐
ange, AF647-conjugated anti-vimentin antibody: clone V9, Abcam), in CTCs, was scored as indicated: Staining of a rep‐
resentative cell for each category, negative (−), weak (+), positive (++) and strongly positive (+++), is depicted. (B) Cell
counts for vimentin-positive EMT-CTCs isolated from a representative patient sample using EpCAM- versus N-cad‐
herin- ‘N-cad’-based isolation of CTCs using the quadruple staining assay. CTCs were isolated with the IsoFlux CTC
isolation platform using EpCAM-based or N-cadherin-based immunomagnetic isolation with the Rare Cell Isolation
Kit, Fluxion.
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EMT markers Main finding/clinical correlation [reference]

EpCAM-based immunomagnetic isolation:

EpCAM, CK, E-cadherin,
vimentin, N-cadherin, CD133

CTCs with intermittent EMT phenotype are common in advanced prostate- and
breast cancer [21]

CK Low CK level CTCs were correlated with receptor negative metastatic breast cancer
and with poorer OS [30]

Vimentin Vimentin expression in prostate cancer CTCs is associated with decreased OS [31]

TGFß1, FOXC1, CXCR4, NFKB1,
VIM, ZEB2

Gene expression of EMT markers shown in CTCs [22]

HER2, VIM, FN1 Presence of EMT-CTCs correlates to disease stage [23]

CK, VIM, FN1 The presence of EMT-CTCs correlates to shorter PFS [32]

EpCAM-based isolation combined/compared with other methods:

Cell-surface vimentin (CSV) EMT-CTC numbers were a more reliable progressive disease marker for breast can‐
cer patients when isolated targeting CSV versus EpCAM [27]

Vimentin, twist, ZEB1, ZEB2,
snail, slug and E-cadherin

The expression of both twist and vimentin in CTCs was significantly correlated with
portal vein tumor thrombus in liver hepatocellular carcinoma [33].

CK, EpCAM Most CTCs from metastatic breast cancer patients showed intermittent phenotype
while 16% of patients had EpCAM- only CTCs and 33% EpCAM-null CTCs [34]

CK, EpCAM, CDH1, FN1, CDH2 Combined EpCAM/EGFR/Her2-based CTC isolation was linked to
increased EMT-CTC numbers in metastatic breast
cancer patients with disease progression [35]

TWIST1, SLUG, SNAIL1, ZEB1,
FOXC2

EMT-CTCs were more common in primary breast cancer
patients with poorer prognostic markers (ie
needed neoadjuvant treatment) [36]

Targeted immunomagnetic isolation (non-EpCAM):

Cell-surface vimentin (CSV) >5 >5 EMT-CTCs more common in progressive colorectal cancer [26]

CD45-based immunomagnetic blood cell depletion:

Vimentin, twist, CK EMT -CTCs more prevalent in CTCs from metastatic breast cancer
patients [37]

EpCAM, CK, VIM CTCs of ‘CTC-negative’ NSCLC patient by EpCAM based isolation
were tumorigenic in mice [29].

Isolation by cell size:

Vimentin, CK Pancreatic cancer CTCs without CK or vimentin are more commonly in
patients with lymphnode metastasis [38].

CK, EpCAM,VIM, TWIST Proportion of EMT-CTCS is linked to response to therapy in gastric cancer [39]

EpCAM, CK, VIM, TWIST Intermittent phenotype and EMT CTCs were predominant in hepatocellular
carcinoma and correlated with metastasis [40]

OS: overall survival, PFS: progression-free survival. Dependent on their nature, EMT markers follow protein or gene
nomenclature

Table 1. Detection of EMT biomarkers in CTCs.
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use and confirmation of the data by others [26, 27]. A study that investigated gene expression
in ovarian cancer CTCs showed the expression of EMT markers in most individual CTCs from
three patients, while only 30% of these cells also expressed epithelial CK5 or CK7. However,
all CTCs expressed epithelial MUC1 [28]. In a patient with non-small cell lung cancer who was
CTC-negative according to EpCAM-based (CellSearch) enrichment, it is worth noting that
CTCs enriched by CD45 depletion were tumourigenic in mice and CTCs isolated from the
same patient by size exclusion showed predominant EMT or intermittent phenotype [29].

In our laboratory, we embarked on the isolation of CTCs from advanced ovarian cancer
patients using N-cadherin-based immunomagnetic isolation and captured approximately
three times more CTCs- when using N-cadherin-based versus EpCAM-based CTC isolation
(data not shown). We also developed an assay to probe CTCs for vimentin as marker of EMT,
which showed that N-cadherin-based CTC isolation from advanced ovarian cancer patients
increased the capture of EMT-CTCs (Figure 2). Studies that investigated EMT markers in CTCs,
isolated by various strategies, are compiled in Table 1.

5. The pitfalls of non-EpCAM-based CTC isolation

The clear advantage of EpCAM-based CTC isolation is the observation that EpCAM is only
rarely found on cells circulating in the blood stream of healthy individuals, resulting in a
limited number of false-positive ‘CTCs’. In our hands, using the IsoFlux CTC platform and
EpCAM-based enrichment, the average Hoechst+, CK+, CD45−-false positive ‘CTCs’, obtained
from 10 healthy blood donors is 1.8 per 9 ml of blood with a range of 0–5 cells. By contrast, the
greatest problem with the use of EMT markers for CTC isolation or CTC identification, or with
CTC isolation techniques relying on physical cell properties such as size and plasticity, is the
increased risk of detecting false-positive ‘CTCs’. This is the case because some rare cells found
in normal blood can express a number of epithelial and mesenchymal markers. For instance,
circulating endothelial cells (CECs) can be found at varying numbers in blood samples of
healthy individuals (0–29/ml blood) [41] and increased numbers in cancer patients [42]. CECs
do not only express cytokeratin, but typical EMT markers such as N-cadherin, EGFR, vimentin
and fibronectin [43–48]. Moreover, circulating endothelial cells tend to be above 10 μm in
diameter [49], and some endothelial cells might therefore not be excluded from size-based CTC
enrichment. There are currently limited data evaluating potential CEC contamination in either
filter-enriched CTC samples or samples enriched by positive or negative immunotargeting.
However, it is likely that the inclusion of CECs in CTC counts in the literature (i.e. false-positive
CTCs) has inadvertently led to overestimation.

A particularly interesting approach to avoid the issues surrounding EpCAM is the use of
CD146 (MCAM)-based immunomagnetic CTC isolation. Elevated expression of CD146 has
been reported for melanoma, breast-, ovarian- and prostate cancer [50], and CD146-based
immunomagnetic CTC isolation was reported for breast cancer and melanoma patients [44,
51]. However, CD146 is also an endothelial marker used to define and target CECs [41]. Thus,
CD146-based CTC isolation needs to be complemented by cancer-specific CTC identification,
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such as Melan-A for melanoma CTCs, for example. Alternatively, there is a need to distinguish
co-purified CECs from CTCs using specific endothelial markers not expressed on cancer cells.
The endothelial marker CD34 has been used to distinguish CD146-enriched breast cancer CTCs
from CECs [44]. Whether CD34 is the most reliable or specific marker to distinguish true CTCs
from false positives still needs to be confirmed.

Our preliminary data suggest that the accumulation of false positives, most likely endothelial
cells, is also an issue when using N-cadherin-based immunomagnetic CTC isolation. While
CTC numbers isolated from advanced ovarian cancer patients were approximately four times
higher than EpCAM-isolated CTC numbers, we also detected more Hoechst+, CK+, CD45− false-
positive ‘CTCs’ in the blood from seven individuals without any history of cancer (data not
shown). N-cadherin, EGFR and cytokeratin expression of endothelial cells suggest that
targeting these proteins in CTC isolation or identification might lead to similar problems.
Moreover, other cells in the circulation, such as monocytes, macrophages and neutrophils, also
express the EMT markers EGFR, vimentin and N-cadherin. Further, tumour-associated
macrophages of breast cancer and prostate cancer patients were also shown to express
cytokeratin and therefore could be confused with CTCs [52–55]. Thus, while non-EpCAM-
based CTC isolation techniques appear to produce higher CTC counts and favour isolation of
CTCs with EMT features, they also may enrich for false-positive cells, and as long as identifi‐
cation solely relies on CK and CD45 staining of nucleated cells, these cannot be sufficiently
well discriminated from CTCs. Advances in identifying CTCs and distinguishing them from
false positives, in particular endothelial cells, will refine CTC detection and help avoiding
diagnostic errors when progressing CTC-based assays into the clinic.

6. EMT-phenotype CTCs, do they have clinical relevance?

Circumstantial evidence linking EMT changes to advanced disease and increased metastasis
is strong. EMT phenotype in patient tumour tissue is often prognostic and correlates negatively
to overall survival and disease progression. Most notably, a switch from the expression of the
epithelial cell-cell adhesion molecule E-cadherin to the mesenchymal N-cadherin is thought
to be central to EMT, and it is commonly found in association with disease progression in
various cancers including melanoma, pancreatic-, bladder- and colorectal cancer (reviewed by
Cavallaro et al. [56]). Other studies found elevated expression of a number of E-cadherin
transcriptional repressors such as Twist, Slug, ZEB1/2 and Snail1 linked to poorer prognosis
in endometrial-, colorectal-, hepatocellular-, bladder-, gastric- and lung cancer [57–63].
Equally, increased expression of vimentin was associated with poorer outcomes for patients
with gastric-, colorectal-, bladder- and breast cancer [58, 64–66]. However, the correlation of
EMT with poorer overall or disease-free survival is not universal. A recent study, which
established a comprehensive EMT gene expression signature in tumour tissue, found that
poorer disease-free survival was associated with an EMT gene expression pattern in ovarian
and colorectal cancer but not in breast cancer; therefore, it will be important to better define
the context in which EMT gives cancer cells a selective advantage [67]. As detailed above, EMT
marker gene or protein expression has also been studied in CTCs, and the overall emerging
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evidence suggests that increased EMT-phenotype detection in CTCs correlates with more
advanced disease stages and is the predominant phenotype found in the blood of patients with
metastatic disease (see Table 1).

Cancer cells frequently undergo EMT when exposed to stress, and this makes them signifi‐
cantly more resistant to a variety of therapies. However, it is not well understood whether the
range of phenotypic EMT changes that cause increased mobility and metastasis is instrumental
in resistance or merely associated with it. Mounting in vitro evidence suggesting that EMT
confers drug resistance has been thoroughly reviewed previously [8]. More recently, in vivo
data reaffirm the link between EMT and therapy resistance. For instance, the loss of E-cadherin
expression in erlotinib-treated non-small cell lung cancer tumour tissues correlated with
poorer progression-free patient survival [68], and EMT gene expression signatures in ovarian
or prostate cancer patient tissue were associated with resistance to platinum therapy or
docetaxel and androgen deprivation, respectively [69, 70]. Interestingly, two recent studies
suggested that in breast- and pancreatic cancer mouse models, the majority of cells that
metastasised to the lungs did not undergo EMT. Nevertheless, EMT was involved in drug
resistance and conditional metastatic outgrowth when mice were treated with the drugs
cyclophosphamide and gemcitabine, respectively [15, 71]. These data add to the controversy
regarding the role of EMT in the metastatic process and warrant further research. The data do
support the survival/therapy resistance functions associated with EMT and it is plausible that
cancer cells may ‘escape into EMT’ to render themselves resistant to drug treatment. Data are
starting to emerge suggesting these changes might be detectable by CTC analysis as subtyping
CTCs as possessing epithelial, intermittent or mesenchymal characteristics showed that gastric
cancer CTCs of a patient progressing on therapy were all of EMT phenotype. However, and
confusingly, any remaining CTCs detected in gastric cancer patients that responded to therapy
were more epithelial in nature [39].

Regardless, it is possible that therapy inadvertently induces cells that survive drug exposure
to change into more mobile, viable and aggressive clones. Due to their EMT phenotype, these
cells may be ideally equipped to leave the primary tumour, become CTCs, prevent anoikis and
potentially form distant metastases sites. Additionally, the survival advantage of EMT cancer
cells might allow time to acquire alternative resistance mechanisms such as mutations. In turn,
that would allow EMT-CTCs to undergo MET after extravasation to enable the resettling and
formation of proliferating metastases. The underlying mechanisms need to be more thorough‐
ly investigated, and the ability to accurately isolate EMT-CTCs will prove central to clarifying
the role of EMT in therapy resistance, disease relapse and metastatic processes. Efficient EMT-
CTC isolation and identification may also allow the development of diagnostic tests that
monitor escape into EMT as part of therapy response to inform improved patient management.

7. Conclusion

Despite open questions regarding how EMT contributes to cancer progression and drug
resistance, there is strong evidence that EMT changes, per se, are useful prognostic markers.
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Consequently, EMT-CTC isolation and analysis have the capacity to progress EMT research
and importantly allow the development of feasible, non-invasive diagnostic tests to predict
and monitor the effectiveness of specific therapies. More reliable identification of these cells
will permit the translation of EMT and CTC research into clinically relevant tests to guide
therapy.
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