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Abstract

In linear viscoelasticity, a large variety of regular kernels have been classically
employed, depending on the mechanical properties of the materials to be modeled.
Nevertheless, new viscoelastic materials, such as viscoelastic gels, have been recently
discovered and their mechanical behavior requires convolution integral with singular
kernels to be described. On the other hand, when the natural/artificial aging of the
viscoelastic material has to be taken into account, time-dependent kernels are needed.
The aim of this chapter is to present a collection of nonstandard viscoelastic kernels,
with special emphasis on singular and time-dependent kernels, and discuss their ability
to reproduce experimental behavior when applied to real materials. As an applica-
tion, we study some magneto-rheological elastomers, where viscoelastic and magnet-
ic effects are coupled.

Keywords: Materials with memory, Viscoelasticity, Unbounded memory kernels, Ex-
istence of solutions, Asymptotic solutions’, Behavior

1. Introduction

The stress-strain relation in linear viscoelasticity involves a convolution integral with amemory
kernel. The fading memory principle requires that the memory kernel decays quickly as the
elapsed time goes to infinity, but no limitation is imposed to its behavior near zero. So, a wide
range of kernels may be used depending on the nature of the materials to be modeled. Start-
ing from the rheological model of a standard viscoelastic solid, whose kernel involves a single
exponential, a large variety of regular kernels have been classically employed: discrete and
continuous Prony series, completely monotonic functions, etc. Recently, new viscoelastic
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materials, such as viscoelastic gels, have been described by virtue of convolution integral with
singular kernels: for instance, fractional and hypergeometric kernels [1]. On the other hand,
when the natural/artificial aging of the viscoelastic material has to be taken into account, time-
dependent kernels are needed. Furthermore, the behavior of some new materials, for in-
stance, ferrogeland magneto-rheological elastomers, canbe determined by coupling viscoelastic
and magnetic effects.

The material of this chapter is organized as follows. First we present the model of a viscoelastic
body which represents the basis for our study. It is assumed to be homogeneous and isotropic,
and its crucial feature is that the stress response at time f linearly depends on the whole past
history of the strain up to t. Then, we look for the modeling of aging isothermal viscoelasticity,
assuming that the viscoelastic structural parameters are time dependent while the material is
subject to chemical or physical agents at constant temperature. Finally, singular kernel
problems are addressed to, at first, in the case of a viscoelastic body and, later, when the
viscoelastic behavior is coupled with magnetization. In particular, the case of magneto-
viscoelastic bodies is considered. Indeed, the idea of coupling the viscoelastic behavior with
magnetic effects is suggested by new materials which are obtained by inserting magnetic
defects into a solid body to have the opportunity to influence the mechanical properties of the
body when a magnetic field is applied.

2. Preliminary notions and notations

This section is devoted to provide the key notions concerning the model of isothermal
viscoelastic body with memory. For sake of simplicity, the body is supposed homogeneous.
In order to briefly introduce the subject, at the beginning, we restrict our attention to one-
dimensional processes. Let ¢ denote the uniaxial strain and ¢ the corresponding tensile stress
at every point x of the reference configuration of the sample. According to Boltzmann's
formulation of hereditary elasticity [2], a linear viscoelastic solid may be described by a stress-
strain relation in the Riemann-Stieltjes integral form

(1) = [ G(t-s)d,&(x,5) )

where G is named Boltzmann function (or memory kernel ) and ¢(-) is a fading strain history,
namely

lime(x,5)=0,  &(x,5)=[ d.e(x,¢). @)

S§—>—0

In particular, when the strain history vanishes from —e to 0, then Eq. (1) reduces to
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o(x,t)= [ G(t - 5)d £(x,5). 3)

A peculiar behavior of viscoelastic solid materials is named relaxation property: if the solid is
held at a constant strain starting from a given time f,>0, the stress tends (as t — ) to a constant
value which is “proportional” to the applied constant strain. Indeed, if ¢(x, -) is continuous on
(—oo, tO] and

e(x,t)=e(x,t)) = ¢g,(x), Vt=t,,
it follows that

limo(x,0) =1limG,&(x,1) + limJ.tSO[G(f —8) =G, 1d,e(x,5) = G&(%),

t—0 t—0 t—oo ¥
where the relaxation modulus

G, =1imG(7)

T—>0

is assumed to be positive. Then, using Eq. (2) and letting
G(r)=G(r)-G, (4)
the stress-strain relation (1) may be rewritten as
o(x,1) =G e(x,t)+ [ G(t-s)d &(x,5). )

Of course, the choice of G is required to satisfty some basic principles, like the fading memory
principle and the dissipation principle, a thermostatic version of the second law of thermody-
namics (see [3], for instance). In general, these conditions allow the memory kernel to be
unbounded at the origin.

In the terminology of Dautray and Lions [4], hereditary effects with long memory range are
represented by a convolution integral, where

Gel'(0,T)nC2(0,T), VT>0 (6)
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whereas a short memory range is related to singular kernels of the Dirac delta type. In the latter
case, letting G= I'6, where 6, denotes the Dirac mass at 0%, from Eq. (1) it follows:

o(x,t)=G e(x,t)+10,&e(x,t) (7)
where 0, denotes partial derviation with respect to ‘t".

which is named the Kelvin-Voigt model. On the other hand, assumption (6) may be strengthened
by letting G be bounded along with its derivatives

Ge Lm(O,T)me(O,T), vT>0. (8)
If this is the case,
G, = limG(7)
r—0"

and an integration by parts changes Eq. (1) into the alternate forms
o(x,t) = G,e(t) + j' G'(t —s)&(x,5)ds = G e(x, 1) + j:’c;'(r)g(x,t —7)dr, 9)

where the relaxation function G'(7) is the derivative with respect to 7 of the Boltzmann function
G. This constitutive stress-strain relation is based on the Lebesgue representation of linear
functionals in the history space theory devised by Volterra [5]. Provided that Eq. (2) holds true,
the Boltzmann and the Volterra constitutive relations are equivalent. The latter approach,
however, can be applied to a wilder class of strain histories (uniformly bounded, for instance),
in which Eq. (2) is no longer needed.

In the three-dimensional case, all fields depend on the space-time pair (x, t) € Q x R, where
Q) C R3 is the reference configuration. The displacement vector u(x, t) is given by

u(x,t) = u(x,t)—x,

where u(x, -) is the motion of x, and
E- l[w +Vu' ]
2 b

is the infinitesimal strain tensor. Borrowing from Eq. (9), the viscoelastic Cauchy stress tensor
T is given by
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T(x,t) =G E(x,t)- j;G'(t —5)E(x,s)ds = G E(x,t)+ j:G'(r)E(x,t —7)dr. (10)

where G:R* — Lin(Sym) stands for the relaxation function and

G, =G(0), G, =1im G(7), G'(r)=0,G(r).

T—>0

A simple manipulation of Eq. (10) yields an alternate stress-strain relation:
T(x,t)=G_E(x,t)- IOwG’(r)[E(x,t) - E(x,t—7)ldz. (11)

For fading strain histories obeying Eq. (2), an integration by parts allows Eq. (10) to be rewritten
as

T(x,t)=G_E(x,t)+ I;@(t —5)d E(x,s) =G, E(x,t)- I:@(r)drE(x,t ~7), (12)

where G is defined as G in Eq. (4). The material is said to enjoy the fading memory principle
when, for every ¢ > 0 there exists a positive time shift Sy(¢), possibly dependent on the strain
history, such that

‘ j:G'(r +9)E(x,t—7)dr

= ‘ J':@(r +s)d E(x,t-7)|<¢, Vs>s,. (13)

Note that Eq. (13) does work even if G(t) is allowed to be singular and non-integrable at the
origin. Indeed, the fading memory property requires that the memory kernel decays quickly
as the elapsed time T go to infinity, but no limitation is imposed to its behavior near zero.

3. Aging models in linear viscoelasticity

Aging is a gradual process in which the properties of a material change, over time or with use,
due to chemical or physical agents. Corrosion, obsolescence, and weathering are examples of
aging. In metallurgical processes, aging may be induced by a heat treatment (age hardening).
Consequences of aging are of various types. For instance, the damages caused by melting or
time-deteriorating processes are examples for decreasing stiffness in elastic springs. Instead,
solidification of concrete is an irreversible transition process where the system increases its
stiffness and releases a large amount of energy per volume. As pointed out in the sequel, the
former type of aging is compatible with thermodynamics under isothermal conditions, while
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the latter involves a latent heat and then requires a non-isothermal framework. For definite-
ness, in this section, we investigate viscoelastic solids and assume that the viscoelastic model
holds while the material is subject to chemical or physical agents at constant temperature. It
is then understood that we look for the modeling of aging isothermal viscoelasticity.

In modeling aging effects, we might think that in Eq. (1), the dependence of the Boltzmann
function G on t and s is not merely through the difference t — s but involves t and s separately.
It is a central problem to understand how to model G and we would like to argue as far as
possible on physical grounds. The recourse to physical arguments to model aging properties
is not new in the literature (see, e.g., [6, 7]). Quite naturally one may refer to the classical
rheological models with regular kernels (8) and hence to express the aging properties in terms
of time-dependent elasticity and viscosity coefficients.

To this purpose, we first address attention to rheological models and, in particular, we consider
the standard solid and the Wiechert-Maxwell model [8, 9]. Hence, we establish the functional
providing the stress in terms of the strain. This procedure has the advantage of showing how
the dependence on the present value and that on the history of ¢ are influenced by the
rheological parameters. Next we generalize the model and look for the corresponding three-
dimensional version. For a generic time-dependent relaxation function, a free energy is found
to hold for the stress functional as a suitable Graffi-Volterra functional [3, 5, 10]. As a conse-
quence, the stress functional is found to be compatible with thermodynamics subject to weak
restrictions on the relaxation function.

3.1. Insights from a rheological model

To get some insights about the modeling of aging viscoelastic solids, we start from the classical
standard linear solid where a Maxwell unit, consisting of a spring and a dashpot connected in
series, is set in parallel with a lone spring. While we have in mind the behavior of the model
in terms of elongation and forces, we extend the formulae to the continuum framework by the
standard analogies stress-force and strain-elongation. It is understood that the model is framed

£(t)
—/5555500——
K, (t) o
L/ 5000000\—
TR0 e

Figure 1. Mechanical scheme of an aging standard viscoelastic solid.
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within a one-dimensional picture, so that both strains and stresses are scalar fields depending
on (x,t). Since the elastic and Maxwell elements are in parallel, the strain is the same for every
element and the applied stress is the sum of the stress in each element (see Figure 1).

Hereafter, the dependence on x of all the fields involved is understood and not written. For
the Maxwell element, let ¢, and ¢, be the strain of the spring and that of the dashpot. Hence,
denoting by ¢ the common strain we have

e=¢ +é&g, (14)

Let o, be the stress on the isolated spring while o, the stress on the Maxwell element. Then,
the total applied stress is given by

c=o0,+0,.

Moreover let k and k, be the elastic modulus (or rigidity) of the spring of the Maxwell element
and of the spring in parallel, respectively, and y the viscosity of the dashpot (Figure 1). It is
the essential feature of the aging effect that k, k. and y are positive functions of the time ¢. In
the Maxwell unit, the spring and the dashpot are in series and hence they are subject to the
same stress so that, according to the Hook's law,

o,=ke, o, =ke =y0.¢,, (15)

where 0, denotes partial differentiation with respect to time . Using the last equality, from Eq.
(14) we have

1
—0,6, &, =¢, oa=— (16)
a /4

Incidentally, if k. and k are time independent then time differentiation of Eq. (14) and use of
Eq. (15) give

0,6 = l(8,0‘ —k0,&)+ l(0' — k&),
k 4

which holds for any viscoelastic standard element. Letting g, =k, + k and g.=k,, this differential
equation is equivalent to

ata = gOatg - (X(O' - goog)5
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which is commonly used in the literature. So far it is only assumed that
(A1) k., k yeC'(R) and k.(t), k(t)=0, y(t) = y,>0 for every tER.

t

(A2) Ja(é)dé =00

—co

The last condition is fulfilled when «a = k/y is a constant function, for instance.

We may regard Eq. (16) as a differential equation in the unknown ¢,4(t). Then, integration over
[to t] yields

&()=¢, (ro)exp[— | a(y)dy] +f exp[— | a(y)dyja(s)e(s)ds.

fy

Itis convenient to let t,——°°. By assuming that ¢, is uniformly bounded on (-°°,t], assumption
(A2) allows us to take

lim Ed(to)exp(—ja(s)ds] =0.

th—>—0
0 £

Hence, we have
g(0=] exp(— | a(y)dy}a(s)e(s)ds,

and from the representation
o=ke+ke =k, +kle—ke,,

we obtain the stress-strain relation
o(t) = [k, (£) + k(B)]e(t) - jtwk(t)exp{— [ a(y)dy]a(s)g(s)ds. (17)

which involves both the present value ¢(t) and the past history ¢(s),s € —oo,t. Since
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exp(— | a(y)dy}a(s) =0, exp(—ja(y)dy}

an integration by parts allows (17) to be rewritten as

o(t) =k (B)e(t) + I_twk(t)eXp(— | a(y)dyjasg(s)ds. -

provided that ¢ is uniformly bounded on [-99,t). A change of variables 7 = t—s within Eq. (17)

leads to the alternate form

T

o(t) = [k (t) + k(B)]e(t) - J.:k(t)exp(—'[a(t - §)d§Ja(t —7)&(t —7)dr. (19)

0

Finally, after introducing the so-called relative history,

n'(r)=e(t) -t -1),
the stress-strain relation may be rewritten as

T

o(t) =k (De(t) + J:k(t)exp(— [at- cf)d.fja(t — o)’ (r)dz. (20)

0

3.2. Some remarks on the aging effect

To give some evidence to the aging effects, we fix a time ¢, <t and we let
ke :ke(to)’ k:k(t0)7 7:700)

This statement holds even if ¢, = —° provided that we identify the constant values with the

limits as t — —°°. If no aging affects the material, then

k.(t)y=k, k(t)=k, y(t)=y VteR.
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Otherwise, remembering that a = k/y, we introduce the functions
k() =k@)/k, xO=k®)/k, wy)=aly)/a.

In particular, x, x and w equal unity for non-aging materials. This approach leads to identify
x and w with the aging factors of the elastic and the Maxwell elements, respectively. Moreover,
Eq. (18) becomes

o(t) =k x(t)e(t) - J‘;kexp[—a(t —s)]H(t,s)0 &(s)ds (21)

where
H(t,s)= %(t)exp{a fr- w(y)]dy}.

This suggests that aging effects can be modeled by means of two functions: ¥ and H. In our
notation, the present value &(t) is affected by the factor x(¢), whereas the history of ¢ is affected
by the function H(t,s). Letting

J(t) =k, + kexp[—-ar], J,=limJ(r)=k,, j(z‘) =J(r)-J,

the stress-strain relation (21) may be rewritten as

o(6)=J k(O(0) + [ J(t—5)H(2,5)0,8(s)ds 22)
For non-aging materials, x(t) = H(t,s) = 1, and this relation reduces to Eq. (5).
We end by observing that in [11] fatigue effects are modeled by using the convolution form (3)
modified by the occurrence of a reduced time ¢, in place of time t, that is

o(t)= jo’fG(zr —5)d.£(s)ds = G e(t) + j;ré(tr — 5)0.£(s)ds, (23)

where
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t, ZJ-I ! dr,
Ca(7)

ar being named the time-temperature shift factor. A similar approach may equally well model
other aging effects. If we denote by f(t) the function associated with the aging process applied
to the body, then we may introduce a rescaled time t, which is given by

AR Iotf(z')dr.

To our mind the use of a rescaled time ¢, is an operative way of accounting for aging effects.
Hereafter, we show that Eq. (18) may be represented as a linear convolution integral after
introducing a suitable rescaled time. We start by letting

exp[— | a(y)dyj = exp(—[A(t)— A(s)])

where, for every fixed ¢,

As) = ey, s<t,

is positive and nondecreasing because of (Al). Moreover, from (A2) lim A(s)=—eo, s0 that

§ ——oo

t=A(t) plays the role of a rescaled time. Letting Q(A(s))=e(s), we have
0 4/ (A(s))dA(s) = 0,£(A(s))ds = 0,&(s)ds

and the stress-strain relation (18) may be rewritten as

(1) = k(D) + k(D) " exp(LAWD) ~ A$)1)2 ., E(A(s)dA(s).

This expression suggests that aging effects may be partly represented by a suitable change of
the time scale within the memory integral. Indeed,

6(t,) = k. (0E(t,) + k()" exp[(t, —5,)]0, £(s,)ds,. &9

305
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where t=A(t), s=A(s), and g(tr)=a(t). This expression completely matches with Eq. (23) only if
k. and k are constants. For non-aging materials, the scaling turns out to be linear, t=A(t)=at,
and Eq. (24) becomes

o(t)=ke(t)+ | kexp[-a(t—5)]0,6(s)ds.

3.3. From long to short memory: a possible aging effect
Instead of (A1) and (A2), we assume here

(B1) k., >0 are constants.

(B2) ke CY(R) is positive, nondecreasing and such that

lim k()= >0, lim k(¢) = .

t—>—0 t—w

From (B1), the viscosity of the damper and the rigidity of the lone spring are constants, whereas
(B2) translates the fact that the spring in the Maxwell element becomes completely rigid in the
longtime. Under the additional very mild assumption’

(B3) lim—2; =0,

e L))

we can prove that the Kelvin-Voigt viscoelastic model (7) is recovered when t — ©°. Namely,
letting

1 ¢t
k(s) = k(t)exp[—; Lk(y)dy}
within (B1)-(B3) the distributional convergence
k= 6, (25)

occurs as t — ©°, so that Eq. (18) collapses into the Kelvin-Voigt stress-strain relation

Oy =k.&+)0.¢.

! Tt is easily seen that (B3) always holds, for instance, when k is eventually concave down as f — ©°.
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The rigorous proof can be found in [12]. Since the function k(-) is nonnegative for every ¢, Eq.
(25) follows by showing that, for every fixed v >0,

lim|, k,(s)ds =

t—©

y 1fv=0,
0 ifv>0.

Assumptions (B1)-(B3) comply with the dissipation principle, as proved by Example 2 in
Section 3.7.

3.4. The Wiechert-Maxwell model with aging

The Wiechert-Maxwell model (or Generalized Maxwell model) is composed by a bunch of (say
N) Maxwell elements, assembled in parallel, and a further spring in parallel with the whole
array. Since all elements are in parallel the strain is the same for every element and the applied
stress is the sum of the stress in each element.

¢ denotes the common strain and o, denotes the stress on the isolated spring, while o,...,0y
are the stresses on the Maxwell pairs. Moreover, let k,, k..., ky be the elastic modulus (or
rigidity) of the N + 1 springs and y;,,...,yy the viscosity coefficients of the dashpots. It is the
essential feature of the aging effect that k,, k,,..., ky and y,,...,)y are functions of the time ¢ (see
Figure 2).

{ ( 7
k& K, K,
keg .....
Y1LH YZLH Y,ITI
) ) )
{ ( 7

Figure 2. Mechanical scheme of a Wiechert-Maxwell model.

The dependence of k and y on time requires that we review the elementary arguments to
determine the relations among o,, 0y,...,0y and ¢. For each jth Maxwell element, let ¢,; and ¢;
be the strain of the spring and that of the dashpot. Hence, we have

E=¢&,+¢&y, o, =ke, o, =ke; =y,0¢&,

As a consequence, ¥0,¢4; + kie4; = ki€, and then

307



308 Viscoelastic and Viscoplastic Materials

0,6, ta e, =ae, a, =k ly, (26)

Previous assumptions are generalized for any j =1,...,N, as follows:

(C1) ko k,y; € C(R)and k(t) 20, k(t) =0, y(t)=y0>0, foreveryte R,
t

(C2) Jaj(é)d£= oo, for every t € R.

)

By regarding Eq. (26) as a differential equation in the unknown &4(t), for the jth Maxwell
element we have

o, (t) = k,(De(t) ~ k(1) jw exp[— Jo y)dyja_,. (s)e(s)ds.

The whole stress on the Wiechert-Maxwell model is then given by
N N p t
o) =| k() + Y k(1) |e(t) = Dk, (1) LO exp —ja_,. (v |a,(5)e(s)ds. 27)
Jj=1 Jj=1 K

To give some evidence to the aging effects as in Section 3.2, we assume that all springs and
dashpots within the Maxwell elements have common aging factors.

(C3) There exist a time t, € R (possibly, ¢, = ->°) and two functions », w: R — R such
that x(t,) = w(t;) = 1 and for every j = 1,...,N

k()=k, (), a;(y)=a,—a[l-w(y)], where &=%Zf_laj

N

N
In particular, Z aj(y)=Z a;w(y). Defining the aging factors as follows:
j=1

k()= k()] k(t,),  H(t,5)= %(t)eXp{ﬁj[l - W(y)]dy}

the stress-strain relation (27) may be rewritten in the form (22) by letting
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J, =k(@), J@)= ikj exp[-a].

J=1

Asin the standard solid model, the present value ¢(t) is affected by the factor x(¢) only, whereas
the history of ¢ is affected by the function H(t, s).

3.5. Time-dependent linear viscoelasticity

Borrowing from the Wiechert-Maxwell solid developed above, we now state the uniaxial
stress-strain constitutive equation that allows for time-dependent properties. If we introduce
the function

G(t,s) =k (1)+ ij(t)exp[— j a (y)dyJ

which is defined on the half plane D ={(t, s) € R?:s <t}, the Wiechert-Maxwell constitutive law
(27) may be rewritten into the general form

o(x,t)=G,(t)e(x,t) - J:t 0,G(t,s)e(x,s)ds, (28)
where 0, denotes partial differentiation with respect to the variable s and
N
Gy(t):= G(t:1) = k() + D, (0,
j=1
for all t € R. In addition, from (C1)—-(C2) we have

G.()= imG(t.s)=k()>0,  G,(t)-G, (t)= ikj (£)> 0.

For further convenience, we define G: R x R* — R as G(t, 1) = G(t, t - 7) so that

G,(1)=G(t,0)>0, G, (t)=1im G(t,7)>0, 0.G(t,t—7)=03.G(t,7).

T—®

Finally, remembering that G,(t) = G(t, t), an integration by part of (28) yields
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o(x.0)= [ G(t.)0,6(x.5)ds = G, (0e(t) + [ G(1.5)0,2(x.5)ds 29)

provided that Eq. (2) holds and
G(t,s) = G(t,s)— G (7).
The classical expressions (5) and (9) are recovered from Egs. (29) and (28), respectively, by

simply assuming that G(t, s) = G(t-s), s < t. If this is the case, Gy and G.. turn out to be constants.

We now look for a general, though linear, time-dependent three-dimensional model. Accord-
ing to Eq. (28), the Cauchy stress tensor T is given by

T(x,t)= G, () E(x,1) - [ 0,G(t,5)E(x,5)ds, (30)
where G stands for the t-dependent relaxation function and
G : D — Lin(Sym), G, (1) :=G(z,1).
Letting G: R xR*— Lin(Sym) such that
G(t,7) = G(t,t - 1),
a change of the integration variable into Eq. (30) yields an alternate stress-strain relation
T(x,t)=G,(t)E(x,t)+ I:@TG(t,r)E(x,t -7r)dr, (31)
or equivalently
T(x,t)=G_(t)E(x,t)— j:@T@(t,T)[E(x,t) - E(x,t—7)]dr. (32)

Moreover,
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G,(0)=G(t,0), G_(O)=1imG(t.7), .Gt 7)=0.G(t,t-7).

T—>0

For non-aging materials, G(t, s) and G(t, 7) reduce to G(t-s) and G(7), respectively.

Hereafter, for ease in writing, we introduce the function
G(t,7)=-0.G(t,r), (t,7)eRxR", (33)

which is assumed to satisfy the following properties.

(t,7)—> G(t,7r)e L"(C)

(M1) for every compact set C C R x R".

(M2) For every fixed t € R, the map = G(t7)
uous and summable on R*. Then, for every t € R

is positive semi-definite, absolutely contin-

j:g(z,r)dr =G,(1)-G, () >0.
Besides, it is differentiable for all T € R* and
(t,7)—> 0.G(t,7) e L*(C)

for every compact set C C R x R*.

t—G(t,7)

(M3) For every fixed 7 >0, the map is differentiable for all + € R. Besides,

(t,7)—> 0.G(t,7) e L*(C)

for every compact set Cc R xR

(M4) There exists a nonnegative scalar function M: R — R, bounded on bounded intervals,
such that

0,G(t,1)+0,G(t,7)<-M(t)G(t,7)

for every (t, 7) € R x R™.

According to (M2), the t-dependent relaxation function G may be represented as
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G(t,7) = G, () - [ G(t,0)do.
Borrowing from the scalar case, G_(t) is assumed to be positive definite for every t € R, namely

Go(t)E-E >0 VE € Sym.

Finally, an integration by part of Eq. (30) yields
T(x.0)= [ G(t,)0,E(x,5)ds = G, (VE(x.0)+ [ G(t,5)0,E(x.5)ds (34)
provided that Eq. (2) holds for E and

G(t,5)=G(t,5)—G_(2).

As an advantage, within Eq. (34), G may be unbounded at the origin.

In order to stress the aging effects, we might assume the following factorization of the memory
kernel G.

(M5) There exist three functions, # : R — R*, H: D — Lin™(Sym) and J : R* — Lin(Sym),

such that H is uniformly bounded, lim; 00 J(7) = Joo and, forevery t € Rand s <t,
G(t,s)=Ht)It-9-1,1. G, (0)=T,x0).

Accordingly, the stress-strain relation (34) may be rewritten into the form (22). The aging
factors x and H reduces to unit when non-aging materials are considered.

So far, we restrict our attention to scrutinize stress-strain relations in the form (30). In particular,

for isotropic materials G takes the special form

G(t,7) = At, D)l ®1+2u(1,7)L,

where 1 is the unit second-order tensor, I is the symmetric fourth-order identity tensor, and A,
p: R x R* are named Lamé relaxation functions. Accordingly,
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G(t,7) = -0 A(t, 1)1 ®1-20 u(t,7)I,

3.6. A Wiechert-type three-dimensional model

1 9=6101+4]

In the sequel, we scrutinize the special isotropic vector-valued kerne , where

G, and 9, are given by
N T
G(t,r)= Zkﬁ(t)aﬁ(t - T)exp(—jaﬁ(t - y)dyj i=1,2, (35)
=1 0

as in the rheological Wiechert-Maxwell model devised in Section 3.1. We first prove that
properties (M1)-(M4) hold provided that some additional restrictions are imposed on the
material functions k;; and «;;. Finally, we give some examples of these functions that fulfill these
conditions.

* (M1) Starting from (C1), it is quite trivial to prove this property.

* (M2) By virtue of Eq. (35) and (C1), G;, i=1,2, are positive and continuously differentiable
with respect to t and 7. Moreover,

o w w N N 36
[ ot n)dr=[G(tr)dr 101+ [ G,(t,r)dr = ]Z:;kﬂ(t) 1®1+ ;kﬂ(t) I. %0

Hence, G(t), is summable and vanishing at infinity for every t € R. In addition, we have

0.9,(6,7) = i[a;i(t —T) (i - T)]exp(_j.aﬁ(t - J/)dy} =12,

Hence (M2) is fulfilled.

* (MB3) It is obviously true as a; € C'(R) by virtue of (C1)-(C2). In particular,
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N
0G.(t,r)= Z[kj’.i (D, (t—s)+k (D, (t—7)
j=1
_ kji (t)aﬁ (t— r)[aﬁ (t)- a; (t— z')]]exp[—f a; (t— y)dyJ
0
N T
- Z[k;z (t) - kj[ (t)aji (t)]a_j[ (t / T) eXp _Iaj[ (t - y)dy - arg[(t’r)'
J=1 0
* (M4) In order to prove this property we need more restrictive conditions. Since
0,6+0.6=(0,G +0.G)1®1+(0,G,+0,G,)1
a sufficient condition to ensure (M4) is given by

0,G+0.G <k(hG, =12 (37)

In order to prove these inequalities, we now assume
K.y () <ki(t), VteR. (38)

and for every t € R we let

K0
M(t) = n;llll;l 41’rllinN{05j,-(t) - kj—(t)j|

It is apparent that M(t) > 0 and then from (35) it follows:

u k' P
atgi(t’r) + 8rgi(t’r) = _Z|:aji(t) _kﬂ—gij|kﬁ(t)aﬁ(t - r)exp{—jaﬁ(t _y)dyj

<MK, (O, (1-7) exp(—j ot - y)dy] = MG (1.0

When non-aging material parameters are involved, Eq. (37) reduces to 9, gi +M gi <0,i=1, 2,

which implies the exponential decay of the kernels.
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3.7. Some examples

We present here some special expressions of material functions k]-i and @, j=1,2,..,N,i=1,2,
which fulfill properties (M1)-(M4).

* Example 1.

For simplicity, we restrict our attention to a single Maxwell element. Letting j=1.and i =1,
2, we choose

k(O =k, 7 O=—2—,  Buk.n, >0
e +1

and then

a, ()= +1),

1

so that (A1) and (A2) hold true. Condition (38) is fulfilled for all ¢+ € R and for every choice
of the parameters, so that

M(#) = min {ﬁ " +1)} >0 VieR
i=1,2 771.

* Example 2.

Otherwise, for j=1. and i = 1,2, we can choose
k.()=r(e" +1), y.()=n, VieR, i=12,
where w;, k;, n;> 0. Accordingly,

a, ()=t +1), VieR, i=1,2,

1

so that (A1) and (A2) hold true. On the other hand, condition (38) reduces to
one” <k (e +1)°, i=1,2.

which is equivalent to
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7, — 2Ki <e
K

i

.
1

t —;t .
+e @ =coshwt, i=1,2,

and is fulfilled for all ¢t € R provided that w; <3 K; / 1;. If this is the case,

M (?) = min

i=1,2

K‘l_ (ea)it + 1)2 _ a)lnl e(l)it
77i (e(Uil + 1)

}>0 VteR.

3.8. Motion, free energies, and thermodynamics

We now derive the motion equation related to the time-dependent viscoelastic stress-strain
relation (32) and we examine its compatibility with thermodynamics. The displacement field
u: QxR — R3, relative to the reference configuration Q2 C R?, is subject to the equation of motion

pou=V-T+f,

where fis the body force, per unit volume. Hence, from Egs. (32)—(33), we obtain

po,u(x,t)=V-G_(t)Vu(x,t)-V- J.:g(t,s)V[u(x, t)y—u(x,t—s)]ds= f(x,t). 39)

In order to introduce the initial boundary value problem for this equation, we have to take in

mind that it is not invariant under time shift.

Consistent with linear viscoelasticity, we restrict attention to isothermal processes, namely
those where the temperature is constant and uniform. Hence, the local form of the second law
inequality reduces to the dissipation inequality

d
—po—w+T-D>0,
Pdtl//

where p is the mass density, ¥ is the Helmholtz free energy density per unit volume, and D is
the stretching tensor. Again for consistency with the linearity of the model, we let the mass
density p be constant and take the approximation

1
D ~ 8tE = 5 V(?tu + V@tuT} .
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Accordingly, we take the dissipation inequality in the form

pd%y/srvatu. (40)

In materials with memory, the motion equations are required to rule both the displacement
instantaneous value u(t) and its history up to t. Letting ¢, € R be arbitrarily fixed, we define
the relative displacement history C'(x,s), with (t,5) € [t, T] x R*, by

u(x,t)—u(x,t—s), s<t-t,

41
g"to(x,s—t+t0)+u(x,t)—u(x,t0), s>t—t,, (41)

¢'(x,s) ={

where C, is the prescribed initial (relative) past history of u up to t,,

g”to(x,s) =u(x,t,)—u(x,t,—s) s €[0,+o).
Accordingly, C'(x,0) = 0 and the motion equation (39) becomes a system

PO, u(x,t) =V -G, (Va(x,) =V - [ 'G(t,5)VE '(x,5)ds = f(x,b),

(42)
0,¢ '(x,8)=0,u(x,t) -0, {'(x,s)

where u : Qx[t,, +e0) and C' : QxR* — R3, T € [t,, +o°) are the unknown variables. Their initial
conditions are prescribed at t, € R as follows

u(x,t,)= u, (x),

ou(x,t,)= Y (x), (43)

& (x,s) = ¢, (x,5), sel0+0).

Let H’=[L? (Q) and H' = [H'y(Q))]°, and let (-, - ) ; denote the usual inner product in H/, j=0,1.

For every t > t, we introduce the family of memory spaces
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M=L,RSH),  (£.8),, =[(G5)¢(5), &), ds,

where <'7 '>Mt denotes the t-dependent weighted L? inner product equipping each M. In this
functional framework, the motion equation admits a unique regular solution. The proof of this
result can be found in [12, Th. 4.5].

Theorem 1.Let 3¢, = H' x H° x M; and f € H°. Under assumptions (M1)-(M4), for every T > ¢,

g, = v .6 )eH
and every initial datum ° R t

z(t) = (u(t), omu(t), C') on the interval [t,,T] such that

0, problem (42)-(43) admits a unique solution

ueC(t, TLH)NC'(t,, TLH),  ¢'eM, Vtelt,T],

and

sup |[z(4)[», <C,
te[t()aT]

for some C >0 depending only on T, t, and the size of the initial datum | z|| 45,

Now, we introduce a time-dependent free energy density borrowing its expression from the
Graffi’s single-integral quadratic form (see [13] and references therein). Let

w(Vu(t),V ¢t =%Gw(t)Vu(t)-Vu(t) +% [tV ¢'(9)-V £ (9)ds.

For ease in writing, hereafter the dependence on x is understood and not written. In addition,

we assumep = 1. After integrating over (2, we end up with the total free energy functional
t t 1 1 t
¥ (u(1),67) = L;,V(Vu(t),v ¢ 0dv==(G (u@), (1)), +5|| Il -

Theorem 2. For an aging viscoelastic material, the dissipation inequality (40) is fulfilled
provided that (M4) holds and

G' (<0, VteR. (44)

Proof. First we observe that
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< (. 00,10, = 2. (Ou(D. 0,10, + (G (1), w1,
Then, by virtue of (42) and some integration by parts, we obtain
L1 ¢, = [, 10,905 +2.80.901 €1(5), (51,05 + 2 £0,u0).
and, taking into account (41),

(T(0),V0,u(1)), = (G, ()u(t) + | Gt )¢ (5)ds, 0,u(1)),
= G, (}a(0),0,u(1)), +(¢ ", 0,u(0)),,

In summary, we end up with

Sop(ulr), €)= (TOVO,0), + (G O, w0,

#1069 +0.80.91 ¢'(5). ¢ (5D, ds
Owing to (M4), this yields
d%‘l’t(u(t), &) <(T(1),Vo,u(t)), —%M(z‘) IV é””i/tt +%(G’w(t)Vu(t),Vu(t)>

where M(t) > 0, and (44) finally implies the dissipation inequality

%‘Pt(u(t), &N S(T(t),Vo,u(t)),.

4. Singular kernel models in linear viscoelasticity

The study of singular kernel problems is motivated by the modeling of new materials and, in
particular, of the mechanical behavior of some new viscoelastic polymers and bio-inspired
materials. As noticed in [14], the appropriate way to handle the response of certain time-
dependent systems exhibiting long tail memories is to account for power laws, both for creep
and relaxation, leading to the occurrence of fractional hereditariness. Another example
encountered in natural materials is mineralized tissues as bones, ligaments, and tendons. They
exhibit a marked power-law time-dependent behavior under applied loads (see e.g. [15]), since
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the high stiffness of the crystals in such tissues is combined with the exceptional hereditariness
of the collagen protein-based matrix. In all these cases, we are forced to abandon the regularity
assumptions (8) and assume the memory kernels obey Eq. (6) and are unbounded at the origin.

The idea of singular kernels to model particular cases of viscoelastic behaviors was introduced
by Boltzmann [2] in the nineteenth century. The fast growth of polymer science motivated
turther developments of viscoelasticity in the middle of the twentieth century [16, 17], but a
Volterra-type integro-differential equation with a regular kernel (typically, a finite sum of
exponentials) was preferred to the Boltzmann approach in the modeling of the mechanical
response [5, 18]. Later, however, many authors addressed their interest to singular kernel
problems, both under the analytical as well as the model point of view [19-24], and their
thermodynamical admissibility was analyzed in [25]. In modern viscoelasticity, it is a central
problem to understand how to model the memory kernels, and it should be argued as far as
possible on physical grounds. So, the first question to answer to is why do we consider singular
kernel models. More recently, new viscoelastic materials, such as viscoelastic gels, have been
discovered and their mechanical properties are well described by virtue of convolution integral
with singular kernels: for instance, fractional and hypergeometric kernels [1]. This applicative
interest gave rise to a wide research activity concerning singular kernel problems, both in rigid
thermodynamics with memory as well as in viscoelasticity (see, for instance, [26-31], and
especially concerning applications of fractional calculus to the theory of viscoelasticity and the
study of new bio-inspired materials [15, 32-35]. A recent book [36] provides an overview on
this subject. In this framework, Fabrizio [37] analyzes the connection between Volterra and
fractional derivatives models and shows how experimental results motivate us to adopt, as in
this present article, less restrictive functional requirements on the kernel representing the
relaxation modulus.

4.1. Singular isothermal viscoelastic body with memory

To start with, the one-dimensional classical viscoelasticity problem is recalled. It reads

t, =GO, + [ G(t -y, (2)dr + f (45)

u(-,0)=u,, u,(,0)=u, in Q; u=0 on X=0Qx(0,T) (46)

where Q) = (0,1). When, to model the physical behavior of new materials or polymers, the
regularity assumptions on the relaxation modulus are relaxed, G is assumed to satisfy the
following functional requirements

GeLl'(0,T)nC*0,T), G £L'0,T), VTeR (47)
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that is, now, the relaxation function G(t) is not required to be finite at t = 0 and then Eq. (45)
loses its meaning and, hence, needs to be replaced by a different one. The method to overcome
this difficulty, devised in [28], consists in the introduction of a suitable sequence of regular
problems, depending on a small parameter 0 < ¢ < 1 which, in the limit ¢ — 0 reduce to the
singular problem under investigation. The key steps of the approximation strategy can be
sketched as follows.

* Let K, termed integrated relaxation function, denote

K(&) :=j0‘fc(r)df , K(0)=0; (48)

1 +
it is well defined, since GeL(OT)VIeR"

* Then, introduce the regular problems:

P sy =GO, + [ G (t =)l (r)dz + f  where G*():=G(e+) (49)

together with the initial and boundary conditions
uly—o = uo(z), ufli=0 = ui(x), Ug!an(o,T) =0, t<T. (50)

* For each ¢, the problem P¢ is a regular approximated problem since G*(0) is finite and,
therefore, the initial boundary value problem (49)-(50) admits a unique solution:

* then, find approximated solutions u*, 0 <e¢ < 1,

u:=limu®
show the existence of the limit solution &0

* prove the uniqueness of the limit solution u which represents a weak solution admitted by
the singular problem.

Note that, corresponding to each value of ¢, the problem P¢is equivalent to the integral equation:

Pt () = [ KE(t -0yt (D)d e+t +u, + [ de [ f(£)dE, (1)

Partial derivation w.r. to t, twice, of Eq. (51) delivers Eq. (49) together with initial and boundary
conditions (50). Furthermore, when ¢ = 0, we obtain the well-defined problem

Piut)= [ K(t-r)u, (t)dr+u, t+u, + [ dr[ f(&)de (52)
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where the superscripts, in the case ¢ = 0, are omitted for notational simplicity. Hence, the
following theorems can be proved. Here only the outlines of the proofs are given; the details
are comprised in [28] when homogeneous Dirichlet b.c.s (50) are imposed and in [27] when
homogeneous Neumann b.c.s are considered.

Theorem 1Given u* solution to the integral problem P¢ (51), then
3u(t) =limu“ (1) in (Q),Q=0x(0,7) (53)

Proof’s outline:

* weak formulation, on introduction of test functions ¢ € H'(Q x (0,T) s.t. ¢, =0, on 002,
* consider separately the terms without ¢,

* the terms with u¢ and K¢,

* prove convergence via Lebesgue’s theorem.

Furthermore, the weak solution, as stated in the following theorem, is unique.

Theorem 2The integral problem (52) admits a unique weak solution.

Proof’s outline: The result is proved by contradiction, see [28] for details, assuming there are
two different solution and, then, showing that such an assumption leads to a contradiction.

As a final remark, we wish to emphasize that, since the isothermal rigid viscoelasticity model
exhibits remarkable analogies, under the analytical point of view [38], with rigid thermody-
namics with memory, then, analogous results can be obtained also in the study of singular
kernel problems in such a framework [29].

4.2. Magneto-viscoelasticity problems

This section is concerned about a problem in magneto-viscoelasticity, again under the
assumption of a memory kernel singular at the origin. The interest in magneto-viscoelastic
material finds its motivation in the growing interest in new materials such as magneto-
rheological elastomers or, in general, magneto-sensitive polymeric composites (see [39-41] and
references therein). The model adopted here to describe the magneto-elastic interaction is
introduced in [42]. Evolution problems in magneto-elasticity are studied in [43] and, later
magneto-viscoelasticity problems are considered in [44, 45]. Notably, under the analytical
viewpoint, when the coupling with magnetization is considered, the problem to study is
modeled via a nonlinear integro-differential system while the purely viscoelastic problem is
linear.

To understand the model equations, a brief introduction on the model magnetization here
adopted, based on [46], who revisited the Gilbert magnetization model. Accordingly, when
Q) C R? denotes the body configuration, the related magnetization changes according to the
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Landau Lifshitz equation, which, in Gilbert form, where m represents the magnetization vector

reads
}/"lmt—mx(aAm—mt)=0 Jml=1,7,aeR". (54)

The quantities of interest, in the general three-dimensional case, are the following ones:

u:=u(x,t) displacement vector
m:=m(x,t) magnetization vector
G(s) = {Grimn(s)}, s €[0,T] visco-elasticity tensor

L = { Akimn} magneto-elasticity tensor
E = {em} strain tensor

e(u) = {am(u)} = S{um + wm,} deformation tensor

G Vu - Vv = Giimn€ri(®)€mn (V)
Lm @ m = {Agimnmemy }
Lm ® Vu = {Agmnmiem (u)}

Lm ®@m - Vu = NgmnMepmi€mn ()

where the coefficients Ay, are subject to the condition

ﬂ’z’jkl = Aié‘ijkl + A’Zé‘ijé‘kl + j“3(51'k5;z + 5'15jk) (55)

1

Then, the following constitutive assumptions are assumed. Thus, the exchange magnetization

energy is given by

1
E(m)=> [ .a,m, m, dQ (56)
where
® a;; = aj; symmetric positive definite matrix
e a;; =ad;, ac R’ diagonal matrix (most materials).

Then, the magneto-elastic energy is given by

1
E,, (m, H) = [ Ayym,m. &, (H)dQ 57)
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® Nijki = MOijks + A20ii0k + A3(dindj1 + 6105k ),

o 0;iy =1if i =j =k =1and d;;,; = 0 otherwise,
° )\1' )\2’ >\3 IRcons‘cants'

The viscoelastic energy is given by
1 1 ¢t ,
Eve (ll) = E J.Qlemn (O)gklgmndQ + E IOdT (J.Qlemn (t - z-)gkl (T)gmn (T)dQ)

where the tensor’s entries of G satisty

* Gy =G, =Gy

* Gy, 2 Peye, p>0,e,=¢,
* Gy, <0

e G ee >0

klmn™~ kI~ mn

Then, the total energy of the system is given by

E(m,u)=E _(m)+E _(m,u)+E (u),

em

(58)

(59)

taking into account, further to the single magnetic and viscoelastic contribution, of the

exchange energy.

4.2.1. A regular magneto-viscoelasticity problem

The problem we are concerned about is the behavior of a viscoelastic body subject also to the
presence of a magnetic field; in the one-dimensional case, it is modeled by the nonlinear system

4, = GO) 0, =[Gt =), (7) de =% (A(m)-m), = 7,

in Q

(60)

where Q = (0,1), Q=0 x(0, T) and M = (0,m, where m = (m,, m,), denotes the magnetization
vector, orthogonal to the conductor, since u = (1, 0, 0), when both quantities are written in R?
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in addition, v is the outer unit normal at the boundary 00, A is a linear operator defined by
A(m) = (m,, m,) the scalar function u is the displacement in the direction of the conductor itself,
here identified with the x axis and A is a positive parameter. In addition, the term f represents
an external force which also includes the deformation history.

In [44], the existence and uniqueness of the solution to the problem given by (60), together with
the following initial and boundary conditions, is proved

u(,0)=u, =0, m(,0)=m,, Im,I=1 inQ, (61)
om

u=0, 6_ =0 on X=0Qx(0,T), (62)
1%

under the assumptions

up € H&(Q), U € L2(Q), mg € HI(Q),
{ (63)

feL?(Qx(0,T)), G(t)eC?*0,T),

Then, the following existence and uniqueness result [44] holds.

Theorem 3 Given the problem (60)-(63), it admits a unique solution for any given T >0 and ¢
small enough (i.e., eA >GT), s.t.
o ue C%0,T]; Hy()) N CH([0,T]; L*(2))

3

o m € C([0,T]; H(Q)) NL2(0,T; H*(Q)),

e m; € L?(0,T; L*(Q)).

The proof, is based on the a priori estimate on the viscoelastic term:
Lo Pax+l( g Pdx<ae’C CeR' 64
EJ‘Q Py x+5‘|‘9 ?, xXsae (f’¢0/¢1‘)’ a,L e (64)

A result of existence, in a three-dimensional regular magneto-viscoelasticity problem, is given
in [45].
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4.2.2. A singular magneto-viscoelasticity problem

’ 1
Now, as in the purely viscoelastic case, when the requirement G'eL(0T) is removed, the

magneto-viscoelasticity problem cannot be written under the form (60); however, since

1
GeLOT) yia integration with respect to time of the integro-differential equation, it can be

formulated in the following equivalent form

(1)~ [ G(t — ), (2)dr —u, jot%(A(m) -m),dr = [ f(o)dr
inQ (65)

Im* -1
m, +m

+AA(m)u, -m_ =0,

XX

The strategy to prove the existence result [47], relies on the fact that the classical problem (60)
as soon as the initial time is t, = ¢, for any arbitrary ¢ > 0, the relaxation modulus satisfies the

classical regularity requirements, namely, asin subSection 4.0.1, G (-): = G(¢ + -)implies that
G“€C?0, T]1Hence, each time-translated approximated problems

Il
—

& & & t e & 2’ & &
u, =G (O, - [ G (=) (2)dr = (A(m") - m),

P?: inQ (66)
Llmé PP -1

+AAmM* )yl —m’ =0,

with the assigned initial and boundary conditions

ué‘(.lo) = uo S 0/ u:(/o) T ulr mé(ro) = mg/ ln Q/ (67)
. om*

u® =0, 5 =0 on X=0Qx(0,T), (68)
1%

is regular. Then, according to [44], the problem P* admits a unique strong solution. According
to [47], where all the needed proofs are given, the following existence result can be stated.

Theorem 3.1For allT > 0, there exists a weak solution (u, m) to the problem (65)-(61)-(62), that is a
vector function (u, m) s.t.
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u € L=(0,T; Hy ());

ug € L*°(0,T; L2 (Q));
m e L®(0,T: H'(Q);

m; € L*(Q).

which satisfies

[ du (dxdis [ [[G(t-r)ul (o) ¢ drdudis |, jot% A(m)-m* ¢ dr dxdt

-, [ul +f f(r) de } pdxdt+[ y,-m* drdt+
(69)

lm* > -1 .
Igmo-w(-,O)dxdt+IQ 5 v -m° dx dt

—J.Q/l u: A(m°)-y dx dt—IQ m’ -y dxdt=0.

V¢ smooth s.t. ¢(0,t) = ¢(1,t) =0, ¢(-,T) =0, and Vip = (¢1,2) s.t. (x,T) =0, where ¢ and ¢
arbitrarily chosen test functions in Q.

The proof, not included here, is provided in [47].

Proof’s Outline:

* consider the viscoelastic energy associated to the problem to obtain a suitable a priori estimate

* consider the energy connected to interaction between magnetic and viscoelastic effects to
obtain further suitable estimates

* consider the total energy together with smooth enough initial data to estimate the energy
at the generic time ¢

* introduce an appropiate weak formulation and suitable test functions

consider separately the limit process when ¢ — 0

As a closing remark, we can note that, under the applicative point of view as well as under the
analytical one, the free energy associated to the model plays a crucial role. Indeed, the proof
relies on estimates which are based on the free energies connected to the model here adopted.
Specifically, the viscoelastic energy allows [47], also in the magneto-viscoelastic case, to prove
an a priori estimate on which the subsequent results are based. This is not surprising since the
connection relating free energies and evolution problems is well known; see for instance [48]
and references therein.
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