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Abstract

This chapter focuses on investigating the dynamic transient response of viscoelastic
structures.  First,  the influence of nonviscous modes on the vibrational response of
exponentially damped systems has been studied on lumped parameter systems where
the analytical  solution has been derived by modal superposition and by means of
Laplace transformation. Then, the analytical solution is obtained by modal superposi‐
tion and compared to two numerical solutions derived for continuous systems by finite
element formulations. These numerical solutions have been solved by modal superpo‐
sition and by direct integration applying through a particularly built method together
with  the  Newmark  method.  Finally,  an  experimental  procedure  for  studying  the
influence  that  geometrical  properties  of  viscoelastic  joints  have  on  the  vibrational
response of a metallic beam doubly supported on viscoelastic adhesive joints has been
developed.

Keywords: viscoelastic adhesives, relaxation functions, noise and vibration reduction,
numerical simulation, experimental test

1. Introduction

This chapter focuses on investigating the dynamic transient response of viscoelastic struc‐
tures. Mechanical behavior of viscoelastic materials is not only related to the instantaneous
stress, but it is also a consequence of the past history of the stress. If dissipative forces in a
structural  system  arise  from  viscoelastic  materials,  the  classical  governing  equations  of
structural  dynamics  is  not  reached  and  direct  methods  or  internal  variables  should  be
employed. Nevertheless, direct methods do not provide any information about the contribu‐
tion of each vibration mode, information of main importance for engineering applications.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



For the point of view of the practical application, viscoelastic adhesive joints are used in
structural noise control due to its capability to introduce effective modal damping below 1 kHz.
In structures under dynamic loads, the transmission of noise and vibration is governed by joint
behavior.

Hence, an experimental procedure is presented to analyze the influence of geometry of
viscoelastic joint over the dynamic response of the low-order flexural modes of adhesively
bonded beams.

2. Analysis of exponentially damped systems

This chapter is aimed at investigating the influence of nonviscous modes on vibrational
response of viscoelastic systems. Thus, exponential damping models are considered.

2.1. Lumped parameters systems

In short, the main objective of the present section is to study the influence of nonviscous modes
on the vibrational response of exponentially damped systems. The analysis is carried out in
time domain over a single degree of freedom (dof). The conditions for the equivalence between
Zener and exponential damping models are stated. Next, the time response for free vibration
is obtained. On the one hand, the need for solving internal variables is avoided through the
Laplace transform properties. On the other hand, internal variables are used, and modal
superposition is applied.

Figure 1. Single dof system: (a) using a Zener model, (b) using relaxation functions.

2.1.1. Analysis via a single degree-of-freedom system

The equations of motion for the free vibration of a single dof system using a Zener and an
exponential model are obtained in this section. The conditions for the full equivalence between
both models are also deduced. The analytical response is reached by two ways: first, the
internal variables are eliminated and the transient response is computed by means of Laplace
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transformation; and second, the internal variables are kept, allowing to apply traditional modal
superposition.

2.1.1.1. Solution without solving internal variables

Next, the single dof systems represented in Figure 1 are analyzed, whose dissipative forces
are modeled by means of Zener and exponential damping models, respectively.

The equation of motion for the lumped mass m results in

z 1 z 0 z( ) 0mu c u y k u+ - + =&& & & (1)

where c1 denotes the damping coefficient, k0 the stiffness of the parallel spring, uz represents
the displacement of the mass, and y is an internal variable needed to solve the problem. This
internal variable represents the displacement of the connection point between the dashpot and
the in-series spring. In fact, it is necessary to write the force equilibrium equation for the
internal variable y, yielding

1 1 z( ),k y c u y= -& & (2)

where k1 denotes the stiffness of the spring in series with the damper. Combining Eqs. (1) and
(2) the linear differential equation for the displacement uz is obtained as

01
z z 1 z 0 z

1 1

1 0.kc mu mu c u k u
k k

æ ö
+ + + + =ç ÷ç ÷

è ø
&&& && & (3)

To solve this third-order differential equation, the initial displacement uz(0)=u0, the initial

velocity , and the initial acceleration üz(0)= ü0 are needed. (In structural dynamics
just initial displacement and the initial velocity are needed.) However, this third condition
(initial acceleration üz(0)= ü0) can be obtained as a function of the initial displacement.

One way to solve Eq. (3) is making use of the Laplace transform properties, the response ūz(s)
being

( )21 1 1
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1 1 1
z
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1 1
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(4)

Dynamic Transient Response of Viscoelastic Structures
http://dx.doi.org/10.5772/64253

247



where ūz(s) represents the Laplace transform for the time response uz(t). Consequently, this
time response uz(t) can be obtained by means of the inverse Laplace transform of Eq. (4).

However, the conditions for the equivalence between both considered damping models are
deduced first. Regarding the exponential model, the motion equation [1] for the 1 dof system
yields

( )
e e 0 e0
( ) e ( )d ( ) 0

t tmu t c u k u tm tm t t- -+ + =ò&& & (5)

where ue represents the displacement for the exponential formulation and c the damping
coefficient. In contrast to the previous case, to solve Eq. (5) only two initial conditions are
needed, the initial displacement ue(0)=u0 and the initial velocity .

Accordingly to the Zener formulation, by transforming Eq. (5) into the Laplace domain, the
Laplace transform of the displacement ūe(s) satisfies

2
0 0 0 0 0

e
3 2 0

0

1 1

( )
1 1

mu s m u u s mu cu
u s

kms ms c s k
c

m m

m m

æ ö
+ + + +ç ÷

è ø=
æ ö

+ + + +ç ÷
è ø

& &
(6)

At this point, by comparing Eqs. (4) and (6), a useful observation can be made. These two
considered damping models are fully equivalents if three conditions are fulfilled. The first
condition to be hold is that the damping coefficients of both models must be the same, c1 = c.
The second condition is that the relaxation parameter μ of the exponential model and the
parameters k1 and c1 of the Zener one are related according to μ =k1 / c1.

And finally, the third condition for the fully equivalence between both formulations results
from the relationship between initial displacement and acceleration

0
0 0 ,ku u

m
= -&& (7)

implying that in reality, only two independent initial conditions must be taken into account.
Having verified that both formulations are equivalent, from now on, a unique response
u(t) = uz(t) = ue(t) is considered. Thus, the transient response u(t) can be obtained by means of
the inverse Laplace transform of Eq. (4) or (6), either, resulting in

23
0 0 0 0

2
1 0

( ) ( )( ) e
3 2

is ti i i
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(8)
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where si denotes the roots of the third-order characteristic equation

3 2 0 0 0.c k ks s s
m m

m m
m

+
+ + + = (9)

These three roots may be solved by means of the Cardan method [2], yielding

3

1,2
1 3( ) i ( )

3 2 2
cs u v u v* = - - + ± - (10)

and

3 ( )
3
cs u v= - + + (11)

where  , the parameters p and q being p = 3B −C 2

9  and q = 9 CB − 27 A − 2C 3

54 , respec‐

tively, with A = μ, B = 1
m (cμ + k0), and C =

k0μ
m .

It should be pointed out that, in contrast to a viscous 1 dof system, three roots have been found
instead of two, the third extra root being always real, involving an overdamped vibration
mode. This fact implies that the system could not oscillate even if the roots s1,2

∗  are complex
(this question was extensively studied by Muller [3] and Adhikari [4]).

2.1.1.2. Solution solving internal variables

Next, the time response for the system modeled in Figure 1(a) is obtained by means of classical
modal superposition, using the internal variable y(t). Rewriting Eqs. (1) and (2) in matrix form,
a classical second-order differential equation for free vibration

( ) ( ) ( )t t t+ + =Mz Cz Kz 0&& & (12)

is reached, where M, C, and K are the mass, damping, and stiffness matrices, given by

1 1 0

1 1 1

00
; ;

00 0
c c km
c c k

é ù é ùé ù -
= = =ê ú ê úê ú -ë û ë û ë û

M C K (13)

where z(t) vector satisfies z(t)= {u(t) y(t)}T.
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Solving the eigenproblem for Eq. (12), the eigenvalues are obtained from the characteristic
equation

3 2 1 01
1 0

1 1

1 ( ) 0.k kks s k k s
c m c m

+ + + + = (14)

As it was expected, Eqs. (9) and (14) are equivalent, and the same three eigenvalues s1
*, s2

*, and
s3 given by Eqs. (9) and (10) are obtained. Associated to the ith eigenvalue si, the ith eigenvector
Zi satisfies

1

1

1
1

1

i
i

i

i

U
kY

s c

ì ü
ï ïì üï ï ï ï= =í ý í ý

ï ïî þ ï ï+
ï ïî þ

Z (15)

Thus, applying modal superposition, the time response z(t) can be written as

31 2
1 1 2 2 3 3( ) e e es ts t s tt q q q

* *

= + +z Z Z Z (16)

where q1, q2, and q3 denote the modal participation factors. To solve them, initial conditions z(0)

and z
.
(0) have to be employed. Nevertheless, to establish the initial value for the internal

variable y(0) and its derivative , some physical assumptions can be made. In order to respect
the force equilibrium at the initial instant, the value of the internal variable y(0) must be zero
and its time derivative  must be the same as the initial velocity . Hence, the internal variable
does not introduce extra energy into the system: the spring of stiffness k1 is not deformed and
the dashpot presents a rigid movement dissipating no energy. Therefore, the initial conditions

are given by  and .

However, applying these initial conditions, a four equation system with three unknowns is
reached. Nevertheless, the system has a unique solution because the rank of the resulting
system matrix is 3. This fact is due to the linear combination among the internal variable y(t),
its time derivative , and the velocity  according to Eq. (2). Thus, the three equations
needed to solve the modal participation factors yield
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0 1
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u q
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* *

ì ü é ù ì ü
ï ï ï ïê ú=í ý í ýê ú
ï ï ï ïê úî þ ë û î þ

& (17)

Therefore, once the modal participation factors are solved, the transient response can be
achieved using Eq. (16) by modal superposition.

In short, the conditions for the equivalence between the Zener and the exponential models
have been established. Using these nonviscous damping models, a 1 dof system has been
analyzed and three roots have been obtained. The analytical response has been reached
without solving and solving the internal variable. For the former, Laplace transform properties
have been employed. For the latter, using the initial value of the internal variable, modal
superposition has been applied.

2.2. Continuous systems

Next, different procedures for solving the dynamics of an exponentially damped rod are
described. First, the analytical solution is derived by means of modal superposition, solving
and without solving internal variables. Then, two different finite element formulations are
proposed; one is derived for direct integration methods, and the other to apply modal
superposition procedures. The latter allows analyzing the impact of nonviscous modes into
the global response.

Figure 2. Representation of a continuous and homogeneous rod.

2.2.1. Analytical solution

Regarding the analytical solution, two different procedures are presented. The first developed
procedure solves internal variables and the solution is obtained by modal superposition. In
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the second one, internal variables are avoided and a third-order time derivative field equation
is found. The solution conditions are obtained and applied reducing the system equation to
that reached using internal variables and enabling the application of modal superposition
(Figure 2).

2.2.1.1. Solution using internal variables

To solve the displacement field u(x, t) of the rod, the material behavior law

01
0 1

1 1

d ( ) d ( )( ) ( ) 1
d d

Ec t tt E t c
E t E t

s es e
æ ö

+ = + +ç ÷ç ÷
è ø

(18)

has to be taken into account, where ε(x, t)= ∂u(x , t )
∂ x  represents the strain field and where σ

denotes the stress, ε the strain, c̄1 represents the damping coefficient, t is the current time, and
E1 and E0 are stiffness parameters. The governing equations are obtained using an internal

variable field y(x, t). Its gradient εy(x, t)= ∂ y(x , t )
∂ x  is related with its time derivative  and

the strain rate ε
.
(x, t)  as

1 1( , ) ( , ) ( , )y yE x t c x t x te e eé ù= -ë û& & (19)

Besides, the force equilibrium equation satisfies

1 0( , ) ( , ) ( , ) ( , ) 0yx t c x t x t E x ts e e eé ù- - - =ë û& & (20)

Thus, the field equation can be written in matrix form yielding

2 2
1 1 0

2 2
1 1 1

00 ( , ) ( , ) ( , ) 0
00 0 ( , ) ( , ) ( , ) 0

c S c S E SS u x t u x t u x t
c S c S E Sy x t y x t y x tx x

r é ù é ùé ù ì ü - ì ü ì ü ì ü¶ ¶ï ï ï ï ï ï ï ï- - =í ý í ý í ý í ýê ú ê úê ú - ¶ ¶ï ï ï ï ï ï ï ïë û î þ î þ î þ î þë û ë û

&& &
&& & (21)

where ρ is material density and S denotes cross-sectional area. It should be remarked the
correspondence between Eqs. (19) and (21), to those relating the 1 dof case (Eqs. (1)–(3)). Thus,
applying variable separation for u(x, t) and y(x, t) as

( , ) ( )
( , ) e

( , ) ( )
stu x t U x

x t
y x t Y x
ì ü ì üï ï ï ï= =í ý í ý
ï ï ï ïî þ î þ

z (22)
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U(x) being the spatial component, Y(x) the component for the internal variable y, and s a
complex variable, the time dependence can be eliminated yielding

2
2 1 0 1

2
1 1 1

0 ( ) ( ) 0d
0 0 ( ) ( ) 0d

sc E scU x U x
s

sc sc EY x Y xx
r é ùé ù ì ü - - ì ü ì üï ï ï ï ï ï+ =í ý í ý í ýê úê ú - +ï ï ï ï ï ïë û î þ î þ î þë û

(23)

The solution of the eigenproblem (23) provides the eigenfunctions {U j(x) Y j(x)}T and the
eigenvalues λj given by

( ) 1
sin( )

( )
j

j j
jj

U x
q x

AY x
l

ì ü ì üï ï ï ï=í ý í ý
ï ïï ï î þî þ

(24)

and

π (2 1)
2j jl = -
l

(25)

respectively, j being the mode number, qj the modal participation factor, Aj the amplitude
relationship, and ℓ the rod length. As it can be verified through Eq. (25), all eigenvalues λj are
real. Actually, proportional damping can be considered based on the homogeneity of the
material. Therefore, the system presents normal modes, the eigenfunctions Uj(x) being those
of the undamped one (see, e.g., Muller [3], for the solution of an undamped rod).

Using eigenfunctions {U j(x) Y j(x)}T and the eigenvalues λj, the characteristic equation for Eq.
(23) yields

3 2 2 21 0 0 11

1 1

0,j j
E E E EEs s s

c c
l l

r r
+

+ + + = (26)

which is a third-order equation, analogous to that of 1 dof case. Consequently, the solution is
configured by infinite groups of three roots s j ,1

* , s j ,2
* , and s j ,3, associated to each eigenfunction

{U j(x) Y j(x)}T and eigenvalue λj. Thus, in each vibration mode, two elastic and one nonviscous
components are involved.

Thus, the time response by means of modal superposition can be written as

( ),1 ,2 ,3

,1 ,1 ,2 ,2 ,3 ,3
1

( , ) e e e sin( )j j js t s t s t
j j j j j j j

j
x t q q q xl

* *¥

=

= + +åz Z Z Z (27)
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where qj,k (k =1, 2, 3) are the modal participation factors and Zj,k are eigenvectors given by

,
1,

, 1

1
1 1

1
j k

j k

j k

EA
s c

ì ü
ï ïì üï ï ï ï= =í ý í ý

ï ï ï ïî þ +
ï ïî þ

Z (28)

It should be noted that the resulting expression for the eigenvectors of the continuous system
hold in Eq. (28) is analogous to the one corresponding to the 1 dof case (see Eq. (15)). Therefore,
the time response can be obtained by modal superposition by solving, for each jth mode the
modal participation factors qj,k. However, from the equations provided by the initial conditions

z0(x) and z
.

0(x),

( )0 ,1 ,1 ,2 ,2 ,3 ,3
1

( ) sin( )j j j j j j j
j

x q q q xl
¥

=

= + +åz Z Z Z (29)

and

( )* *
0 ,1 ,1 ,1 ,2 ,2 ,2 ,3 ,3 ,3

1
( ) sin( )j j j j j j j j j j

j
x s q s q s q xl

¥

=

= + +åz Z Z Z& (30)

these qj,k cannot be directly solved because infinite unknowns are present. To overcome this
situation, the consideration of proportional damping can be recalled, concluding that the
eigenfunctions Uj(x) have to be orthogonal with respect to the mass and stiffness operators.
Hence, the modes can be decoupled according to (see, e.g., Ref. [5] for details)

( ) ( )d 0, for i jU x SU x x i jr = ¹òl (31)

Accordingly, applying Eqs. (29)–(31), it is obtained

( ) 2
0 ,1 ,1 ,2 ,2 ,3 ,3( )sin( )d sin ( )dj j j j j j j jx x x q q q x xl l= + +ò òz Z Z Z

l l
(32)

and

( ) 2
0 ,1 ,1 ,1 ,2 ,2 ,2 ,3 ,3 ,3( )sin( )d sin ( )dj j j j j j j j j j jx x x s q s q s q x xl l* *= + +ò òz Z Z Z

l l
& (33)

Viscoelastic and Viscoplastic Materials254



which constitute a four-equation and three unknown system. Here, it should be pointed out
(see Eq. (19)) that the internal variable y(x, t) and its time derivative  are linearly combined
together with the displacement u(x, t). Consequently, the rank of the equation system is 3.
Therefore, only the initial conditions are needed, namely u0(x) and , together with the

initial value for the internal variable field y0(x) or together with its time derivative . The

initial condition for y0(x) and its time derivative  have to satisfy y0(x)=0 and ,
respectively. Hence, the equation to resolve each group q j ,1, q j ,2, and q j ,3 of modal participation
factors is given by

l * *

é ù ì üì ü
ê ú ï ïï ï ï ï= ê úí ý í ý
ê úï ï ï ï

î þ ê ú ï ïë û î þ
òl &l

,10

0 ,1 ,2 ,3 ,2

,1 ,2 ,3 ,3

1 1 1( )
2 ( ) sin( )d

0

j

j j j j j

j j j j

qu x
u x x x s s s q

A A A q
(34)

Thus, once the modal participation factors are solved for each mode, the transient response by
modal superposition can be achieved, giving

( ),1 ,2 ,3

,1 ,2 ,3
1

( , ) e e e sin( )j j js t s t s t
j j j j

j
u x t q q q xl

* *¥

=

= + +å (35)

2.2.1.2. Solution without using internal variables

Next, the analytical solution for the displacement field u(x, t) of the rod is reached without
introducing internal variables. Thus, recalling the material behavior law (Eq. (18)), the field
equation can be written as

2 2
01

1 02 2
1 1

( , ) ( , )( , ) ( , ) 1 0Ec u x t u x tSu x t Su x t c S E S
E E x x

r r
æ ö ¶ ¶

+ - + - =ç ÷ç ÷ ¶ ¶è ø

&&&& && (36)

Eq. (36) is a third-order equation in time, analogous to the one relating the 1 dof case (Eq. (3)).
Applying variable separation for u(x, t) as u(x, t) = U(x) est it yields

2
3 2 01

1 0 2
1 1

( )( ) 1 0Ec U xs s U x sc E
E E x

r r
é ùé ù æ ö ¶

- + + + + =ê úç ÷ê ú ç ÷ ¶ê úë û è øë û
(37)

The solution of the eigenproblem (37) provides the eigenfunctions Uj(x), given by
Uj(x) = Bj sin(λjx) where the eigenvalues λj are those of Eq. (25), j being the mode number and
Bj the amplitude. Therefore, the characteristic Eq. (26) is reached also.
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Hence, if the solution is going to be derived without using internal variables, it is formed by
infinite groups of three roots s j ,1

* , s j ,2
* , and s j ,3, associated to each eigenfunction Uj(x) and

eigenvalue λj. Although, three initial conditions are needed to solve Eq. (36). These are the
initial displacement u(x, 0)=u0(x), the initial velocity , and the initial acceleration
ü(x, 0)= ü0(x), but, it can be proved that this initial acceleration ü0(x) can be written as a function
of the initial displacement u0(x).

In fact, using the Boltzmann superposition principle [6], the memory of a viscoelastic material
can be properly modeled using hereditary models. The stress can be evaluated using relaxation
functions R(t) through convolution integrals given by

00 0
( ) ( ) ( )d ( ) ( ) ( )d

t t
t E t E t R ts t e t t e t e t t= - = + -ò ò& & (38)

where E(t) is the relaxation modulus of the material, τ corresponds to the retardation time, and
(• ) represents time derivative. A relaxation function R(t) widely used in the literature [7–9] is
the exponential model R(t) = cμ e− μ t, where μ is the relaxation parameter and c represents the
damping coefficient. Hence, using Eq. (38) and writing the force equilibrium for the continuous
rod, it is obtained

2 2

0 2 20

( , ) ( , )( , ) ( ) d .
tu x t u x tu x t E R t

x x
r t t¶ ¶

= + -
¶ ¶ò&& (39)

Assuming causality, the material presents no memory prior to initial conditions and therefore,
the initial acceleration ü0(x) can be written as

2
0

0 2

( ,0)( ) .E u xu x
xr

¶
=

¶
&& (40)

Hence, recalling Eq. (37), from Eq. (40) the initial acceleration yields

20
0 0( ) ( ).Eu x u xl

r
= -&& (41)

Thus, the time response can be written also as

( ),1 ,2 ,3

,1 ,2 ,3
1

( , ) e e e sin( )j j js t s t s t
j j j j

j
u x t B B B xl

* *¥

=

= + +å (42)
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where Bj,k (k =1, 2, 3) are the modal participation factors. Thus, these modal participation factors
Bj,k must be solved for each jth mode in order to solve the time response by means of modal

superposition. However, from the equations derived from the initial conditions u0(x), ,
and ü0(x)

( )0 ,1 ,2 ,3
1

( ) sin( )j j j j
j

u x B B B xl
¥

=

= + +å (43)

( )* *
0 ,1 ,1 ,2 ,2 ,3 ,3

1
( ) sin( )j j j j j j j

j
u x s B s B s B xl

¥

=

= + +å& (44)

and

( ) ( ) ( )2 2 2* *
0 ,1 ,1 ,2 ,2 ,3 ,3

1
( ) sin( )j j j j j j j

j
u x s B s B s B xl

¥

=

é ù= + +ê úë ûå&& (45)

these Bj,k cannot be directly solved because infinite unknowns are present. Hence, applying the
orthogonality conditions, the modes can be decoupled according to Eq. (31) where variable
separation together with Eq. (25) is needed. Consequently, it is obtained

( ) 2
0 ,1 ,2 ,3( )sin( ) d sin ( )dj j j j ju x x x B B B x xl l= + +ò òl l

(46)

( )* * 2
0 ,1 ,1 ,2 ,2 ,3 ,3( )sin( )d sin ( )dj j j j j j j ju x x x s B s B s B x xl l= + +ò òl l
& (47)

and

( ) ( ) ( )2 2 2* * 2
0 ,1 ,1 ,2 ,2 ,3 ,3( )sin( )d sin ( )dj j j j j j j ju x x x s B s B s B x xl lé ù= + +ê úë ûò òl l
&& (48)

which constitute a 3-equation and 3-unknown system. Hence, the equation to solve each group
B j ,1, B j ,2, and B j ,3 of modal participation factors is given by
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or taking into account Eq. (41), it can be also written as
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It should be remarked that the system equations provided in Eq. (34) to solve the modal
participation factors q j ,1, q j ,2, and q j ,3 are equivalent to that provided in Eq. (50) to solve those
of the system without internal variables B j ,1, B j ,2, and B j ,3. In fact, it can be verified that the
third row of Eq. (50) is a linear combination of the third and first rows of Eq. (34) as

3,39 1,22 3,22row row rowj ja b= ´ + ´ (51)

where  and .

As a conclusion it should be highlighted that if internal variables are avoided, the system
equation reached (Eq. (49)) is equivalent to the one obtained using internal variables (Eq. (34)).
Accordingly, the response of Eq. (34) can be derived by modal superposition through Eq.
(35).

As a conclusion, the governing equations for a nonviscously damped rod have been obtained,
using and without using internal variables. First, considering internal variables, the analytical
response has been reached applying modal superposition. Then, without considering internal
variables a third-order equation system in time is found where three initial conditions needed
(see solve Eq. (36)). However, it has been proved that the initial acceleration ü0(x) is a function
of the initial displacement u0(x). Also, the equality between the equation systems (49) and (34)
has been validated. Consequently, the response has been solved by modal superposition.
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2.2.2. Finite element formulation

In this section, two finite element formulations are developed. These formulations allow to
compute the motion (see Eq. (21) or (36)) of continuous rods with exponential damping. One
is conceived to apply modal superposition and the other for direct integration methods.

The one for modal superposition allows to compute the time response (Eq. (21)) by solving
two internal variables per finite element. The one created for direct integration, solves Eq. (36)
by direct methods. This solution is accurate and efficient (no internal variables are solved).

2.2.2.1. Finite element formulation for modal superposition

Next, a finite element formulation to solve Eq. (21) is presented. It is a two-node formulation,
leading to a four dof nodal displacement vector ze(t)= {u1(t) y1(t) u2(t) y2(t)}T considering the
nodal displacements u1(t) and u2(t) and the corresponding internal variables y1(t) and y2(t). The
approximate displacement ze(x, t) can be written as
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where N(x) is the matrix of interpolation functions, in which linear interpolation ones are
employed (see, e.g., Refs. [5, 10] for details about the finite element method). Thus, the
weighted residual technique from the Galerkin point of view gives
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Solving by parts the second and the third integrals, Eq. (53) yields
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Therefore, a classical second-order equation with constant coefficients
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is reached. Consequently, the mass, damping and stiffness elementary matrices yield
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and
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Assembling the elementary matrices, the state-space equation
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is reached. It should be remarked that the size of the eigenproblem obtained from Eq. (59)
becomes 4N . However, reminding that the extra degrees of freedom have no associated mass,
the rank of the matrix system is 3N . Hence, the response yields

3

1
( ) e j

N
s t

j j
j

t q
=

=åz Z (60)

where qj represents the modal participation factors, Zj the system eigenvectors, and sj the
system roots. To compute the 3N  modal participation factors, 2N  equations can be written
from the initial conditions u0 =u(0) and , where the N remaining equations can be
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derived from the initial values for the internal variables, satisfying . Therefore, once
the modal participation factors qj are solved, the response can be computed by modal super‐
position through Eq. (60).

2.2.2.2. Finite element formulation for direct integration

Next, a finite element formulation to solve Eq. (36) is presented. For that, the rod is discretized
in two-node finite elements of length ℓe with linear interpolation functions. The weighted
residual technique from the Galerkin point of view gives
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where  denotes the transposition operator, N(x) is the matrix of interpolation functions, and

ue(t)= {u1(t) u2(t)}T is the nodal displacement vector. Solving by parts the third and the fourth
integrals of Eq. (61), it gives

e e

e

e

T T1
e e

1
T

0
1 e

1
T

0 e e

( ) ( )d ( ) ( ) ( )d ( )

d ( ) d ( )1 d ( )
d d

d ( ) d ( ) d ( ) ( ),
d d

cx S x x t x S x x t
E

Ex xc S x t
x E x

x xE S x t t
x x

r r+ +

æ ö
+ +ç ÷ç ÷

è ø

=

ò ò

ò

ò

N N u N N u

N N u

N N u F

l l

l

l

&&& &&

& (62)

where Fe(t) represents the external forces nodal vector. Thus, the third order in time matrix
system

e e e e e e e e e( ) ( ) ( ) ( ) ( )t t t t t+ + + =J u M u C u K u F&&& && & (63)

is reached, in which the elementary matrices to be assembled are
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Assembling all the finite element matrices, Eq. (63) yields

( ) ( ) ( ) ( ) ( )t t t t t+ + + =Ju Mu Cu Ku F&&& && & (68)

To solve Eq. (68) by means of traditional direct methods of structural dynamics, the procedure
employed in the Cortes Mateos Elejabarrieta (CME) method [11] is used next. For that, the
backward definition of the first derivative  of the displacement u(t) at the time tn+1 can be

approximated as , where Δt = tn+1− tn is a finite time step. Hence, Eq. (68)

yields

eq 1 1 1 eq, 1n n n n+ + + ++ + =M u Cu Ku F&& & (69)

with Meq =M + Δt −1J and Feq,n + 1 = Fn + 1 + Δt− 1Jün representing an equivalent second-order forced

system. The system response can be computed through direct integration methods as, for
example, the Newmark method.

However, assuming causality, there is no memory prior the initial conditions are applied and
therefore, the initial acceleration ü0 = ü(0) is computed from

0 0 0+ =Mu Ku F&& (70)
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3. Experimental analysis of the vibrational response of an adhesively
bonded beam

In this section, an experimental procedure for studying the influence that geometrical prop‐
erties of adhesive joints have on the vibrational response of a metallic beam doubly supported
on viscoelastic adhesive joints is presented. A test bench has been specifically constructed for
the experimental program. At a first step, the modal shapes have been experimentally
identified. Regarding the experiments, the beams are seismically excited and the influence of
joint thickness and overlapping length on the beam motion is studied by computing the root-
mean-square (rms) value of 21 transmissibility functions obtained along the length of the beam.
The analysis is carried out on resonance frequencies, peak amplitudes, and modal loss factors.

3.1. Experimental program

The objective of the experiments is to obtain sets of frequency f dependent transmissibility
functions T(f) to study the influence that overlapping length ℓ0 and joint thickness h have on
the beam vibrational response.

Item Use

PC 1 Controls the dSPACE card

dSPACE (+charge amplifier) Activates the piezoelectric actuator

Piezoelectric actuator PPA40M Imposes the motion to the adhesive base

Tri-axial accelerometer ICP PCB 356A16 Measures the adhesive base acceleration

PULSE B&K acquisition system Samples and processes the transducer time signal

PC 2 Controls the PULSE B&K acquisition system

Laser interferometer (+signal amplifier) Measures the beam velocity response

Table 1. Measurement equipment.

3.1.1. Equipment

Figure 1 shows a schematic diagram of the experimental setup, whereas Table 1 gives the
details about measuring equipment. Figure 1 shows three groups of components: excitation
of the system, data acquisition and processing, and the adhesively bonded beam itself
(Figure 3).

The base motion is imposed by a PPA40M piezoelectric actuator [12] controlled by a DS1104
dSPACE real-time control card [13]. This card governs the piezoelectric actuator by a control
program developed in Simulink® that generates a digital control signal. This is converted into
an analogical one by the dSPACE card. Finally, it is amplified and sent to the piezoelectric
actuator.
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Figure 3. Experimental setup: (a) computer 1, (b) real-time dSPACE card, (c) signal conditioner, (d) piezoelectric device,
(e) triaxial accelerometer (1), (f) beam specimen, (g) triaxial accelerometer (2), (h) PULSE acquisition system, (i) com‐
puter 2, (j) laser signal amplifier, (k) laser interferometer OFV-505.

Figure 4. Test bench: general view.

The data acquisition is done by a B&K PULSE acquisition system [14]. Two response sensors
are used: a triaxial accelerometer ICP 356A16 of PCB electronics [15] for measuring the
adhesive base motion and a laser interferometer OFV-505 of POLYTEC [16] for measuring the
beam response. Hence, to validate the excitation, the acceleration of the adhesive base is
measured in three directions, whereas the beam motion is measured just transversally. This

velocity signal  is derived to obtain the corresponding acceleration .
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The designed test bench ensures a repetitive test procedure. Mainly, it is composed by a moving
and a steady support assembled on a rigid base. Figure 4 illustrates a general view of the test
bench while Figure 5 shows the moving support.

Figure 5. Test bench: detailed view of the excitation system.

Figure 4 shows the test bench and Figure 5 shows the excitation system. Particularly, Fig‐
ure 4 shows (i) the test bench base, (ii) where the excitation support, (iii) the steady support,
and (iv) an adhesively bonded beam can be appreciated. Figure 5 shows the components of
the excitation support; these are: (i) the actuator base, (ii) the piezoelectric device used as
excitatory (PPA40M of CEDRAT technologies), (iii) the base of the adhesive, and (iv) the car-
guide set. It should be noted that the seismic motion is directly imposed to the adhesive base
by the piezoelectric actuator.

Two groups of metallic pieces are used to ensure the overlapping length ℓ0. Figure 6 shows
these pieces. It should be noted that the evenly spaced slots are used to ensure five different
overlapping lengths. The procedure is analogous for both sides and therefore left and right
overlapping lengths are always nominally identical. Experimental results are presented for
three different overlapping lengths, ℓ0 =10, ℓ0 =30, and ℓ0 =50 mm, respectively.
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Figure 6. Components for controlling the overlapping length ℓ0.

Figure 7. Components for controlling the thickness h.

Figure 8. Detailed view of the hollow for the adhesive joint.

The adhesive joint thickness h is determined by a set of pieces that are mounted onto the ones
used for determining the overlapping length. Analogously, it is repeated exactly and simul‐
taneously in both supports ensuring that both adhesive joints are nominally identical. These
devices support the beam during the adhesive curing. Figure 7 shows one of them.
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Figure 7 shows placement strategy where five sets have been manufactured. Each set has a
particular height related to a particular joint thickness.

The components determining overlapping length and joint thickness are assembled together
onto the adhesive bases before the adhesive material is applied. Once they are mounted, the
hollow for the adhesive joint is formed among them and the beam itself. This can be appreciated
in Figure 8.

These components are removed prior to the measurements.

3.1.2. Experiments and data processing

The experiment consists on exciting the adhesive base and measuring the beam vibration
response. The response is sequentially measured at 21 beam locations using the laser vibrom‐
eter.

Figure 9. Imposed displacement to the adhesive base: time domain response w1(t).

Figure 10. Imposed displacement to the adhesive base: signal-to-noise ratio for autospectrum W11( f ).
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The piezoelectric actuator receives a 0.8 V step signal that induces the displacement of the
adhesive base shown in Figure 9. The signal-to-noise ratio for the autospectrum of W11( f )
represented in Figure 10. This signal-to-noise ratio is calculated as the ratio for the signal at
the adhesive base while the beam is vibrating, to the signal while the beam is at rest. The
adhesive base displacement was computed by numerical integration from the acceleration
measured signal. The measure was carried out for a sample period Ts =2 s , the time resolution
being Δt =0.0025 s, involving 800 data lines.

From the experimental data, transmissibility functions Tj(f) between adhesive base and each
jth point beam are obtained by means of the H1( f ) definition [14]

12
1

11

( )( )
( )

W fH f
W f

= (71)

where W12( f ) represents the cross-spectrum between input w1(t) and output w2(t) and W11( f )
the input autospectrum. The motion w2(t) is computed by numerical integration from the

velocity  measured by means of the laser vibrometer [16] for each of the 21 points of the
beam. The study is performed in the 0–200 Hz frequency range, the frequency resolution being
Δf =0.5 Hz.

Prior to the experiments and aimed at understanding the flexural behavior of the vibrating
beam, the first three flexural modal shapes are obtained from these transmissibility functions
[17]. This is done just for one of the specimens.

For the experimental analysis, the rms value (for the set of 21 points) is computed as
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with N =21. From the rms(T(f)), the ith resonance frequency fi, peak amplitude Ai, and modal
loss factor ηi of each specimen are studied.

3.1.3. Materials and specimens

The considered adhesive is a flexible one, concretely a Bostik™ modified silane commercially
named ISR 70-03. Its mechanical behavior was analyzed in earlier works [18, 19], where the
relaxation modulus and the complex modulus were determined. It was done under tensile
strain where the strain level imposed was of 0.5%. The test specimens were obtained from
plates of the cured adhesive that were manufactured using casts of 50 mm × 70 mm × h, where
h represents the nominal thickness. Three casts were manufactured with different thickness h
of 0.5, 1, and 1.5 mm using Teflon™, which ensures that after the curing of the adhesive, a plate
of solid material can be easily demolded without degradation. For the present case, the curing
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time was 48 h for all plates; the curing process was carried out at room temperature and no
specific equipment was employed [20].

Figure 11 represents the complex modulus E*(f) for the adhesive in the form of storage modulus
E′(f) and loss factor η(f).

Figure 11. Tested adhesive material complex modulus E*(f) in the form of storage modulus E′(f) and loss factor η(f).

The metallic beam specimens were manufactured from the same stainless steel sheet by water-
jet cutting in order to ensure homogeneous properties and undeformed specimens. The
nominal beam dimensions are 400 mm × 10 mm × 1 mm , representing length, width, and
thickness, respectively; the experimental values being 397 mm × 10 mm × 1 mm.

To prepare the adhesively bonded beam specimens an adhesive curing time of 72 h was
established. This curing process was carried out at normal conditions (room temperature and
atmospheric pressure). The test sample preparation procedure is outlined as follows:

• At a first step, the devices determining overlapping length and joint thickness h (see
Figures 6 and 7) are mounted onto the supports (see Figure 8).

• Then, the adhesive is applied. It should be emphasized that this is done in a single motion
ensuring that the nozzle does not get in touch with the adhesion surface. Otherwise, void
creation is promoted.

• Immediately, the beam is placed forcing the adhesive to fill the gap among the components
and the beam itself. The spare adhesive material is removed once it is cured.

Five different configurations were tested with three specimens for each configuration. Table 2
shows, for each configuration, the nominal joint overlapping length and thickness together
with the particular dimensions for each specimen. Also, the mean value is reported (in
parenthesis). Three different overlapping lengths (BS1, BS2, and BS3) and three joint thick‐
nesses (BS1, BS4, and BS5) were tested using the ISR 70–03 adhesive. It should be highlighted
that constant length beam specimens are employed. This means that the higher the overlapping
length, the lower the vibrating length.
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Specimen
group

Overlapping lengthℓo(mm) Joint thicknessh (mm)

Nominal Excitation side
individual (mean)

Steady side
individual (mean)

Nominal Excitation side
individual (mean)

Steady side
individual (mean)

BS1 55 55.2/55.0/55.0 (55.1) 55.1/55.1/55.2 (55.1) 0.5 0.6/0.6/0.5 (0.6) 0.5/0.5/0.6 (0.5)

BS2 35 35.2/35.1/35.2 (35.2) 35.1/35.2/35.0 (35.1) 0.5 0.6/0.5/0.6 (0.6) 0.6/0.5/0.5 (0.5)

BS3 15 15.2/15.2/15.1 (15.2) 15.1/15.1/15.2 (15.1) 0.5 0.5/0.5/0.6 (0.5) 0.6/0.6/0.6 (0.6)

BS4 55 55.1/55.1/55.2 (55.1) 55.0/55.3/55.1 (55.2) 1 1.2/1.0/1.2 (1.1) 1.1/1.1/1.0 (1.1)

BS5 55 55.1/55.1/55.0 (55.1) 55.1/55.2/55.1 (55.1) 2.5 2.6/2.5/2.6 (2.6) 2.5/2.5/2.6 (2.6)

Table 2. Joint dimensions for the beam specimens: individual and mean values.

Figure 12. Modal shapes below 200 Hz: rigid body mode.

Figure 13. Modal shapes below 200 Hz: first bending mode.

Figure 14. Modal shapes below 200 Hz: second bending mode.
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Figure 15. Modal shapes below 200 Hz: third bending mode.

3.2. Modal shapes and analysis

To understand the dynamic behavior of the adhesively bonded beams, the modal shapes are
experimentally obtained from the transmissibility functions [17]. Figure 12 represents the rigid
body mode and Figures 13–15 show the first, second, and third bending modes.

The analyzed system can be modeled as a pinned-pinned beam with torsion spring of stiffness
C applied at each pinned joint (see Figure 16). These torsion springs represent the resistance
to turn introduced by the joint to the beam.

Figure 16. Model with pinned-pinned beam with torsion spring at the pinned joints.

For the analysis, only the bending modes are taken into account.

3.3. Results and discussion

Next, the influence of overlapping length and joint thickness h are presented and discussed.
It should be reminded that the results shown represent the rms value of a set of 21 transmis‐
sibility functions where three different specimens are used for each configuration. The
particular and average result is reported together with the standard deviation.

Table 3 collects the resonance frequencies, peak amplitudes, and modal loss factor of the each
specimen tested. The loss factor ηi is computed by the Nyquist-circle method.

For the subsequently study, a distinction must be made between system stiffness and joint
stiffness. System stiffness refers to the stiffness property that globally affects the mechanical
behavior of the system, which is normally traduced in natural frequencies. The joint stiffness
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(corresponding to the previously mentioned torsion stiffness C represented in Figure 16) refers
to a local stiffness property of the joint. Actually, it has not a significant influence on the global
response (slightly affects natural frequencies), but affects to the vibration transmission
mechanism.

Individual and mean values: (a) BS1; (b) BS2; (c) BS3; (d) BS4; (e) BS5; (f) BS6.

Table 3. Frequency domain results for the analyzed beam specimens.

3.3.1. Overlapping length influence

Three overlapping lengths are analyzed: 55, 35, and 15 mm, the specimen groups being BS1,
BS2, and BS3 (see Table 2), respectively, the mean thickness being around 0.5 mm.

Figure 17. Transmissibility function amplitude |T(f)| for three different overlapping lengths ℓo.

Figure 17 shows the rms(T(f)) function for the set of the 21 transmissibility functions obtained.

From Figure 17, it should be pointed out that there are two resonances in the analyzed range
except for, in which three can be appreciated.

Viscoelastic and Viscoplastic Materials272



• About resonance frequency. As expected, the bigger the overlapping length, the bigger the
resonance frequencies. This is due to as the overlapping length increases, so does the system
stiffness. This is based on the decrement of the vibrating length.

• About resonance peak amplitude. Analogously, the higher is the overlapping length, the
higher are the resonance peak amplitudes. Besides, the amplitudes for the first mode are
higher than those of the second mode.

• About modal loss factor. Involving modal loss factor (see Table 3), it should be remarked
that the second modes present lower values than those of the first ones. It can be stated that
the higher the overlapping length, the lower the modal loss factor. However, this difference
is minimal.

3.3.2. Thickness influence

Three adhesive joint thickness values are analyzed. These are 0.5, 1.0, and 2.5 mm, the specimen
groups being BS1, BS4, and BS5 (see Table 2), respectively. Small adhesive joint thickness is
considered in order not to dramatically decrease the joint strength. Figure 18 illustrates the
function for the corresponding sets.

Figure 18. Transmissibility function amplitude |T(f)| for three joint thicknesses h.

• About resonance frequency. It can be concluded that the thinner the thickness, the higher
the joint stiffness, and therefore, the resonance frequencies increase. But, according to the
previously mentioned distinction between system and joint stiffness, by decrementing five
times the joint thickness, natural frequencies increase only about 10%.

• About resonance peak amplitude. The higher amplitude is found for the first resonance of
each case (see Table 3). For each mode, the amplitude presents an inverse evolution with
thickness: the minimum amplitude is given for the highest thickness h1 = 2.5 mm. It should
be noted that decreasing thickness results in increasing joint stiffness (leading to amplitude
decrement) and decrementing damping material amount (leading to amplitude augmenta‐
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tion). Nevertheless, the effect on damping results more significant concluding that the
thinner the thickness the higher the amplitude.

• About modal loss factor. Within each mode, the lower loss factor corresponds to the thinnest
case (h 3 =0.5 mm) due to the joint stiffness being higher, the damping capacity decreases by
material deformation. However, the modal loss factor presents a minimum for the inter‐
mediate thickness.

From this analysis, the following discussion can be made:

About stiffness

• The overlapping length modifies the system stiffness, whereas the joint thickness modifies
the joint stiffness.

• To decrease the system stiffness implies a decrement in the resonance frequencies and peak
amplitudes Ai.

• To decrease the joint stiffness decreases the amplitudes Ai, because the vibration is worse
transmitted. However, the resonance frequencies remain practically unaffected.

About damping

• The overlapping length and joint thickness h modify damping capacity because they are
related to the amount of viscoelastic material used.

• To decrease overlapping length, on the one hand, decreases joint damping capacity because
of the amount of material is decreased. However, on the other hand, as the joint stiffness is
decreased, the viscoelastic material deformation is augmented and so is the damping
capacity.

• To decrease joint thickness decreases joint damping capacity because of the joint stiffness is
increased, and therefore the deformations are dismissed. Besides, damping material amount
is decreased.

As a general conclusion, it can be drawn that increasing overlapping length or joint thickness
can lead to opposite effects. Hence, to know and optimize the behavior of these kinds of
adhesive joints, exhaustive experiments would be needed, or failing that, numerical simulation
should be required in order to separate and investigate the influence of each parameter.
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