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Abstract

Fractional  calculus  and fuzzy  calculus  theory,  mutually,  are  highly  applicable  for
showing different aspects of dynamics appearing in science. This chapter provides
comprehensive  discussion  of  system of  fractional  differential  models  in  imprecise
environment.  In  addition,  presenting  a  new  vast  area  to  investigate  numerical
solutions  of  fuzzy  fractional  differential  equations,  numerical  results  of  proposed
system are carried out by the Grünwald‐Letnikov's fractional derivative. The stability
along with truncation error of the Grünwald‐Letnikov’s fractional approach is also
proved. Moreover, some numerical experiments are performed and effective remarks
are  concluded  on  the  basis  of  efficient  convergence  of  the  approximated  results
towards the exact solutions and on the depictions of error bar plots.

Keywords: fuzzy‐valued functions, fuzzy differential equations, fractional differential
equations, Grünwald‐Letnikov’s derivative

1. Introduction

It is worthwhile mentioning, since last few decades, the theory of fractional calculus has gained
significant importance in almost every branch of science, for having the capability to consider
integrals and derivatives of any arbitrary order. The characteristic feature of generalizing the
classic integer‐order differentiation and n‐fold integration to arbitrary fractional order have
broadened its  application in  modeling several  phenomena of  physics,  mathematics,  and
engineering. The differential models of fractional order, due to the nonlocal properties of
fractional operator, are excellent instruments for providing information about the current as
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well as the historical state of the system. For these reasons, it is intensively developed and
advanced, and existence of its solution is studied by well‐known authors, Euler, Laplace,
Liouville, Riemann, Fourier, Abel, Caputo, etc., to further widen its scope in describing various
real‐world problems of science, for instance see [1–6]. Another wide‐spreading exploration of
mathematics is theory of fuzzy calculus, which has a lot of interesting applications in physics,
engineering, mechanics, and many others. It is the theory of a particular type of interval‐
valued functions, in which mapping is made in such a way that it takes all the possible values
in 0, 1  and not only the crisp values as found in usual interval‐valued functions. After the
inception of fuzzy set theory by Zadeh [7], its attributes have been extended and established to
overcome impreciseness of parameters and structures in mathematical modeling, reasoning,
and computing [8–12].

Advanced development of mathematical theories and techniques has gained very high
standard. On the basis of classical theories, new theories are pioneered by undergoing its
inadequacies and widening its scope in many disciplines. In a similar manner, the aforemen‐
tioned theories have been brought together in modeling different aspects of applied sciences,
to analyze the change in the respective system at each fractional step with the uncertain
parameters. Agarwal et al. [13] initiatively incorporated uncertainty into dynamical system,
modeled fractional differential equations with uncertainty, and studied its possible solutions.
Ahmad et al. [14] described the situation of impreciseness of initial values of fractional
differential equations and discussed its solutions by utilizing Zadeh’s extension principle. In
[15, 16], authors considered the concept of Caputo and Riemann fractional derivative, respec‐
tively, together with the Hukuhara differentiability and demonstrated the fuzzy fractional
differential equations and a lot of others [17–23].

In light of noteworthy applications of above‐mentioned theories, in this chapter, we demon‐
strate fractional order dynamical models in fuzzy environment to depict unequivocal frac‐
tional differential equations of dynamical system. Moreover, we investigate its numerical
solutions using the well‐known Grünwald‐Letnikov's fractional definition. This definition is
widely applicable as a numerical scheme to solve linear and nonlinear differential equations
of fractional order [24–26]. It is considered as an extended form of the classical Euler method.
Here it will be utilized, for the first time, to solve fractional differential equations of imprecise
functions. Sequentially, this chapter features description of fuzzy theory and fuzzy‐valued
functions for the explanation of impreciseness, modeling of system of nonlinear fractional
order differential equations with imprecise functions, deliberation of Grünwald‐Letnikov’s
fractional approach in conjunction with its truncation error for the proposed system, tabulated
and pictorial investigations of some examples, and conclusive remarks of the undergone
experiments and findings of the whole manuscript.

2. Basic descriptions

Fuzzy calculus theory is the branch of mathematical analysis that deals with the interval
analysis of imprecise functions. This section comprises some rudiments of fuzzy calculus
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theory and acquaints the necessary notations that are prerequisite for the whole paper. All the
below‐mentioned descriptions are widely elaborated and used in literature, for instance [13–
23].

2.1. Fuzzy numbers

Let E  be the set of subsets of the real axis R . If τ ∈E  and τ : 0, 1 → R  such that, τ is
normal, fuzzy convex, upper semi‐continuous membership function and compactly supported

on the real axis R , then E  is said to be the space of fuzzy numbers τ. Any τ ∈E  can be

represented in level sets explicitly, i.e. 
[ ] ( ) ( ),τ τ τ =  
  

 for [ ]0,1∈ , where ( )τ   and ( )τ 

signify as the lower and upper branches of τ, respectively, that satisfy the following conditions:

a. ( )τ   is bounded non‐decreasing lower function, left continuous on (0, 1  and right

continuous at 0=

b. ( )τ   is bounded non‐increasing upper function, left continuous on (0, 1  and right

continuous at 0=

c. ( ) ( )τ τ≤ 

The sum and scalar product of any fuzzy number is the consequence of Zadeh’s extension
principal. Let ⊕ , •  and Θ  be the symbols of addition, multiplication and subtraction,
accordingly, for fuzzy numbers, which will be greatly used throughout the paper, then, for

[ ]0,1∈ :

i. [ ] [ ] [ ] ( ) ( ) ( ) ( ), ,τ υ τ υ τ υ τ υ τ υ ⊕ = ⊕ = + + ∈ 
  

    E

ii.

For 

iii.

[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

min , , , ,

max , , ,

τ υ τ υ τ υ τ υ
τ υ

τ υ τ υ τ υ τ υ

 
 • =  
  

       


       

iv. ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }min , ,max ,τ υ τ υ τ υ τ υ τ υ Θ = − − ℘ − −       

The distance between any two fuzzy numbers τ and υ is given by the Hausdorff metric  as:
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( )
[ ]

[ ] [ ]( )
[ ]

( ) ( ) ( ) ( ){ }
0,1 0,1

, sup , sup max ,τ υ τ υ τ υ τ υ
∈ ∈

= = − −D D
 

 

    (1)

Thus, ( E , ) defines a complete metric space with the properties of Hausdorff metric for fuzzy
numbers.

2.2. Fuzzy-valued Function and its fractional derivative

Any interval‐valued function  is said to be a fuzzy‐valued function if  is defined as

. Its ‐level set can be represented by real‐valued functions  and 

as its lower and upper branches, accordingly, i.e. ,

. Moreover, if  and  exist as finite fuzzy numbers, then

 exists. Consequently, let  be the space of continuous fuzzy‐valued functions, then

 if  and  are continuous. The arithmetic for any two fuzzy‐valued

functions  and  can be defined as previously mentioned in Section 2.1 for fuzzy numbers.

Subsequent to existence of limit and continuity of , the fuzzy‐valued function (t) is said

to be differentiable at each t0∈ a, b , if  exists, such that

( ) ( ) ( )0 0

0
0

Lim
h

t h t
t

h→

+ Θ
′ =

 
 F F

F (2)

where h  is taken in a way that (t0 + h )∈ (a, b). For ,  is said to

be differentiable at t∈ a, b  if its lower function  and upper function  are

differentiable at t∈ a, b , i.e. for all  ∈ 0, 1 ,

( ) ( ) ( ) ( ) ( )min ; , ; ,max ; , ;
d d d d

t t t t t
dt dt dt dt

    ′ =         
    F F F F F (3)

In a similar manner, fractional order differential of  can be defined as, for all  ∈ 0, 1 , if

 and  are differentiable of order ω >0, then  is differentiable of order ω >0,
i.e.
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( ) ( ) ( ){ } ( ) ( ){ }min ; , ; ,max ; , ;
t t t t t

t D t D t D t D t
ω ω ω ω ω =  

    F F F F FD (4)

where  can be either fuzzy Riemann‐Liouville fractional differential operator or fuzzy
Caputo-type fractional differential operator [15, 16, 19, 22, 23]. Here it is considered as fuzzy
Caputo‐type fractional derivative that is approximated by Grünwald‐Letnikov's approach,
illustrated in the next sequel.

2.3. System of fractional order fuzzy differential equations

In particular, modeling of differential equations of fractional order in imprecise characteristics

is obtained by encompassing fuzzy‐valued functions. Let , then fuzzy differ‐
ential equation of fractional order ω∈ (0, 1 , subjected to initial conditions, is structured as:

( ) ( )( ),

t
t t t

ω = Ψ X XD (5)

( )0 0
t = X U (6)

where the unknown fuzzy‐valued function  can be written in form of ‐levels as, for all 

∈ 0, 1 , , where as  can be linear or nonlinear term in the

form of fuzzy‐valued function and  is the fuzzy number, which can also be expressed as

, for all . Concisely, Eq. (5) is considered to have a unique and stable

solution, for the reason that  is continuous and satisfies the Lipschitz condition, i.e.
there exists L >0 such that for 

( ) ( )( ) ( ) ( ) ( ), , , . , , , ,t t L t tΨ Ψ ≤ ∀ ∈ ∈D D       X W X W X W ,X,WR E (7)

Many papers [14, 15, 22] comprise the theorems of stability and uniqueness of the solution of
Eq. (5).

Here, we consider the system of fractional order fuzzy differential equations of the following
form:

( ) ( ) ( ) ( )( )1 , , ,
t

t t t t
ω = Ψ   

1 1 2 n
X X X XD

( ) ( ) ( ) ( )( )2 , , ,
t

t t t t
ω = Ψ   

2 1 2 n
X X X XD

(8)
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( ) ( ) ( ) ( )( ), , ,

n

t
t t t t

ω = Ψ   
n 1 2 n

X X X XD

with the initial conditions,

( ) ( ) ( )0 1 0 2 0
, , ,

n
t t tν ν ν= = =    

1 2 n
X X X (9)

where ν̃1, ν̃2, …, ν̃n are the fuzzy numbers that can be written as, for all

, n≥1, ω1, ω2, …, ωn are the fractional orders such that ωn∈ (0, 1  and
the right hand side of Eq. (8) represent a system of fuzzy nonlinear equations with crisp
coefficients kij, i ≥1, j ≤n, i.e.

( ) ( ) ( )( ) ( )
1

, , , , 1
n

ij

j

t t t k t m
=

Ψ = ≥∑    m

1 2 n jX X X X (10)

Therefore, Eq. (8) can be remodeled as:

(11)

And as mentioned earlier,  are taken as the fuzzy Caputo‐type fractional differential
operators and are numerically interpreted using Grünwald‐Letnikov’s fractional derivative
definition.

3. Grünwald‐Letnikov’s fractional derivative

This section comprises the description of Grünwald‐Letnikov’s fractional derivative in
conjunction with the algorithm to solve the system of Eq. (11) and undergoes some requisite
theorem and lemma of the governing approach.
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Consider a function  in finite interval [0, T], let the interval be divided into equidistant
grids of step size h as:

0 1 10 witht h hs s sh h h s h h -= < < < = = - =L (12)

( ) ( ) ( )
0

0

1
lim 1

t

h
iGL

t
h

i

D t t ih
ih

ω
ω

ω
 
  

→
=

 
= − − 

 
∑Y Y (13)

where (ωi ) are the binomial coefficients that are obtained by the formula:

( )
( )

1

! 1i i i

ω ω
ω

Γ + 
=  Γ − + 

(14)

and t
h  represents the integral part.

3.1. Lemma

Let  be a smooth function in 0, T , such that it can be expressed as a power series for
t <T , where t  is the integral part of t , then the Grünwald‐Letnikov’s approximation for each

0< t <T , a series of step size h  and t =σh  can be stated as:

( ) ( ) ( ) ( ) ( )
0

1
1 0

iGL

t i

i

D t t O h h
ih

σ
ω

σω

ω
−

=

 
= − + → 

 
∑Y Y (15)

This definition is considered to be equivalent to the definition of Riemann‐Liouville fractional
derivative and for equivalence to Caputo’s fractional definition the following term of initial
value is added to the right hand side of Eq. (15), i.e.

( ) ( ) ( ) ( ) ( )
0

1
1 0

1

iGL

t i

i

t
D t t

ih

ωσ
ω σ

σω

ω
ω

−

−
=

 
= − −  Γ − 

∑Y Y Y (16)

That becomes zero if initial values of Caputo‐type differential equations are homogeneous and
again reduces to that of Riemann‐Liouville definition. Since here the fuzzy Caputo‐type
fractional differential equations are considered with inhomogeneous initial values, the
definition in Eq. (16) will be used for the approximation of Eq. (11).
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Now let  be a fuzzy‐valued function such that , then Grünwald‐Letnikov’s

fractional derivative of (t) is expressed as:

(17)

and in ‐level sets it is sorted out as, for all ∈ 0, 1 ,

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1
1 , 0, ,

1

1
1 , 0,

1

i

i

i
GL

t

i

i

i

t
t

ih
t

t
t

ih

ωσ
σ

σω
ω

ωσ
σ

σω

ω
ω

ω
ω

−

−
=

−

−
=

  
− −   Γ −  =    − −  Γ −  

∑

∑

 



 

F F

F

F F

D (18)

Next consider the fractional system in Eq. (11), for the cases of inhomogeneous initial values.
Assume the uniform grids tσ =σ h , where σ =1, …, M , such that Mh =T , M ∈ . Applying
Grünwald‐Letnikov’s fractional derivative on left hand sides of Eq. (11) we get,

(19)

Solving above system fuzzy-valued functions of respective fuzzy functions are generated at
different grid points.

3.2. Theorem: truncation error

Let fuzzy‐valued functions  be the approximations to the true
solutions X̃ 1(tσ), X̃ 2(tσ), ⋯ , X̃ n(tσ), respectively and consider Ψ satisfies Lipchitz condition,

then the local truncation error of the proposed numerical approach is O(h 1+ωn), for n ≥1, i.e.
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1

2

1

1

1

2

1

,

,

.n

n

t X t O h

t X t O h

t X t O h

ω
σ σ

ω
σ σ

ω
σ σ

+

+

+

Θ =

Θ =

Θ =

 

 



 

1

2

n

X

X

X

(20)

Proof:

Assume the nth equation of the system (19) and on applying Grünwald‐Letnikov’s fractional
derivative we have,

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
0

1
1 0 , , ,

1

n

n

i n

i

i n

t
t t t t

ih

ωσ
σ

σ σ σ σω

ω
ω

−

−
=

 
− Θ = Ψ  Γ − 

∑     
n n 1 2 n

X X X X X (21)

for n ≥1 and from Lemma 3.1 we can attain,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2

0

1
1 0 , , ,

1

n

n

i n

n i n n

i n

t
X t X O h X t X t X t

ih

ωσ
σ

σ σ σ σω

ω
ω

−

−
=

 
− Θ + = Ψ  Γ − 

∑      (22)

Subtracting Eq. (22) from Eq. (21),

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

0 0

1 2

1 1
1 0 1

1

0 , , ,
1

, , ,

n

n n

n

i in n

n i n i

i in

n

n

t
X t X t

i ih h

t
O h X t X t X t

t t t

ωσ σ
σ

σ σω ω

ω
σ

σ σ σ

σ σ σ

ω ω
ω

ω

−

− −
= =

−

   
− Θ Θ −   Γ −   

⊕ + = Ψ
Γ −

ΘΨ

∑ ∑  

   

  

n

n

1 2 n

X

X

X X X

(23)

Let, for i =0, 1, …σ −1, , then on further manipulation we get,

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1
, , ,

, , ,

n
n n

X t t O h X t X t X t
h

t t t

σ σ σ σ σω

σ σ σ

 Θ + = Ψ 

ΘΨ

   

  

n

1 2 n

X

X X X

(24)

or it can be rearranged as:
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

1 2

1

, , , , , , ,n

n

n n
t X t h t t t X t X t X t

O h

ω
σ σ σ σ σ σ σ σ

ω+

  Θ = Ψ Ψ   

+

D       
n 1 2 n

X X X X

(25)

where  defines Hausdroff distance. On using Lipschitz condition, i.e. Eq. (7), proof is
completed by obtaining the following equation:

( ) ( ) ( ) ( )1
1   1n n

n n
L h t X t O h  n

ω ω
σ σ

+ − Θ ≤ ∀ ≥ 
 

n
X (26)

4. Numerical illustrations

Subsequent to the algorithm demonstrated in Section 3, here numerical experiments of some
system of fuzzy fractional differential equations are presented. Results for fuzzy‐valued
functions are depicted in tabular form in the finite interval 0, 1  at different values of
ω∈ (0, 1 . In addition, error bar pictorials are given for each respective example. All the exact
values and calculations are carried out through Mathematica 10.

4.1. Example 1

Following nonlinear fractional system is solved in [27] using homotopy analysis method, here

the system is restructured with imprecise functions  and  as:

( ) ( )1 0.5
t

t t
ω = 

1 1
X XD

( ) ( ) ( )2

t
t t t

ω = ⊕   2

2 2 1
X X XD (27)

with ω1, ω2∈ (0, 1  and subjected to initial conditions

( ) [ ] ( ) [ ]0 0.75 0.25 ,1.125 0.125 , 0 1,1= + − = − −    
1 2

X X (28)

On applying Grünwald‐Letnikov’s fractional definition on left hand side of Eq. (27) and
following the algorithm, the differential equations are reduced to nonlinear algebraic equa‐
tions as:
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( ) ( )( ) ( )
( ) ( ) ( )

1

1

1

0 1

1
1 0 0.5 ,

1

i

i

h
i h h

ih

ωσ

ω

ω σ
σ σ

ω

−

=

 
− − Θ =  Γ − 

∑   
1 1 1

X X X

( ) ( )( ) ( )
( ) ( ) ( ) ( )

2

2

2

0 2

1
1 0

1

i

i

h
i h h h

ih

ωσ

ω

ω σ
σ σ σ

ω

−

=

 
− − Θ = ⊕  Γ − 

∑     2

2 2 2 1
X X X X (29)

which on expanding to ‐levels of  and  convert into system of four nonlinear

equations, i.e. for all  ∈ 0, 1 ,

(30)

Exact solutions Approx. solutions Absolute error

0 [0.7881, 1.1821] [0.7881, 1.1821] [9.7543×10-6, 1.4632×10-5]

0.2 [0.8406, 1.1558] [0.8406, 1.1558] [1.0404×10-5, 1.4307×10-5]

0.4 [0.8931, 1.1296] [0.8931, 1.1296] [1.1055×10-5, 1.3982×10-5]

0.6 [0.9457, 1.1033] [0.9457, 1.1033] [1.1705×10-5, 1.3656×10-5]

0.8 [0.9982, 1.0770] [0.9982, 1.0770] [1.2355×10-5, 1.3331×10-5]

1 [1.0508, 1.0508] [1.0508, 1.0508] [1.3006×10-5, 1.3006×10-5]

Table 1. Numerical results and absolute errors of  for Example 1 at ω1 =1, ω2 =1, h =0.001 and t =1.

Solving this system, numerical approximations of Eq. (27) are obtained. Tables 1 and 2 rep‐

resent absolute error of  and , respectively, for ω1 =ω2 =1, h =0.001, t =1 and at dif‐
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ferent values of , whereas Table 3 shows the approximations of  and  for

ω1 =0.95, ω2 =0.87, h =0.1 and t =1, at different values of  . In Figures 1 and 2, the pointwise

error variations of  and X̃ 2(t), accordingly, at each time within the given interval for
ω1 =ω2 =1, h =0.1 and  = 0.6, are plotted. In these graphs, each approximated point is plotted
against the value of σ in a discrete manner and each bar line on respective approximated
point illustrates the measure of the absolute error at that point. Absolute error is obtained by
taking the point‐to‐point difference between exact and the solutions calculated by Grün‐
wald‐Letnikov’s fractional approach. Since these variations show small differences, this im‐
plies our results are in good agreement with the exact solutions.

Exact solutions Approx. solutions Absolute error

0 [-1.0426, 1.2424] [-1.0426, 1.2426] [9.1289×10-6, 1.9828×10-4]

0.2 [-0.8133, 1.0155] [-0.8133, 1.0157] [2.8859×10-5, 1.8104×10-4]

0.4 [-0.5835, 0.7888] [-0.5834, 0.7889] [4.9162×10-5, 1.6393×10-4]

0.6 [-0.3531, 0.5621] [-0.3530, 0.5623] [7.0025×10-5, 1.4696×10-4]

0.8 [-0.1222, 0.3356] [-0.1221, 0.3358] [9.1457×10-5, 1.3014×10-4]

1 [0.1093, 0.1093] [0.1094, 0.1094] [1.1346×10-4, 1.1346×10-4]

Table 2. Numerical results and absolute errors of  for Example 1 at ω1 =1, ω2 =1, h =0.001 and t =1.

 

0  [1.2745, 1.9117] [-1.0584, 8.2274]

0.2  [1.3594, 1.8692] [-0.1017, 7.3564]

0.4  [1.4444, 1.8267] [0.8747, 6.4903]

0.6  [1.5294, 1.7842] [1.8707, 5.6291]

0.8  [1.6143, 1.7418] [2.8863, 4.7728]

1  [1.6993, 1.6993] [3.9215, 3.9215]

Table 3. Approximations of  and  of Example 1 for ω1 =0.95, ω2 =0.87, h =0.1 and t =1.
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Figure 1. Bar plot of σ of of Example 1 for h =0.1, ω1 =ω2 =1 and  = 0.6.

Figure 2. Bar plot of approximate solutions and absolute error versus σ of  of Example 1 for
h =0.1, ω1 =ω2 =1 and  = 0.6.

4.2. Example 2

Consider the following nonlinear fractional system [27] with imprecise functions ,

and  as:

( ) ( )1 ,
t

t t
ω = 

1 1
X XD

( ) ( )2 2
t

t t
ω =  2

2 1
X XD

Numerical Solution of System of Fractional Differential Equations in Imprecise Environment
http://dx.doi.org/10.5772/64150

179



( ) ( ) ( )3 3
t

t t t
ω = •  

3 1 2
X X XD (31)

with ω1, ω2, ω3∈ (0, 1  and subjected to initial conditions

( ) ( ) [ ] ( ) [ ]0 0 0.75 0.25 ,1.125 0.125 , 0 1,1= = + − = − −     
1 2 3

X X X (32)

On employing Grünwald‐Letnikov’s approach, the differential equations are converted into
nonlinear algebraic equations as:

( ) ( )( ) ( )
( ) ( ) ( )

1

1

1

0 1

1
1 0 ,

1

i

i

h
i h h

ih

ωσ

ω

ω σ
σ σ

ω

−

=

 
− − Θ =  Γ − 

∑   
1 1 1

X X X

( ) ( )( ) ( )
( ) ( ) ( )

2

2

2

0 2

1
1 0 2

1

i

i

h
i h h

ih

ωσ

ω

ω σ
σ σ

ω

−

=

 
− − Θ =  Γ − 

∑    2

2 2 1
X X X

( ) ( )( ) ( )
( ) ( ) ( ) ( )

3

3

3

0 3

1
1 0 3

1

i

i

h
i h h h

ih

ωσ

ω

ω σ
σ σ σ

ω

−

=
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and in ‐levels of , , and X̃ 3(t) the system above converts into six nonlinear equations,

i.e. for all ,
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(34)

Thus, numerical results of Eq. (31) are obtained from the above system. Tables 4–6 present

absolute error of , and X̃ 3(t), respectively, for ω1 =ω2 =ω3 =1, h =0.001, t =1 and at

different values of  . In Table 7, the approximations of , and X̃ 3(t) are rendered
for h =0.1, ω1 =0.95, ω2 =0.87, ω3 =0.79 and t =1, at different values of . Additionally, the

pointwise error variations between approximated and exact solutions of , and X̃ 3(t)

at each time within the given interval for ω1 =ω2 =ω3 =1 and  = 0.6 are plotted in Figures 3–5,
respectively. It is to be noted that the small length of bar lines on each point is illustrating small
differences between the exact and the result obtained by the proposed approach that shows
the acceptable convergence of the solution towards the exact values.

Exact solutions Approx. solutions Absolute errors

0 [0.8281, 1.2421] [0.8281, 1.2421] [4.1012×10-5, 6.1521×10-5]

0.2 [0.8832, 1.2145] [0.8833, 1.2145] [4.3747×10-5, 6.0154×10-5]

0.4 [0.9384, 1.1869] [0.9385, 1.1869] [4.6482×10-5, 5.8788×10-5]

0.6 [0.9937, 1.1593] [0.9937, 1.1593] [4.9217×10-5, 5.7421×10-5]

0.8 [1.0489, 1.1317] [1.0489, 1.1317] [5.1952×10-5, 5.6054×10-5]

1 [1.1041, 1.1041] [1.1041, 1.1041] [5.4688×10-5, 5.4688×10-5]

Table 4. Numerical results and absolute errors of  for Example 2 at ω1 =ω2 =ω3 =1, h =0.001 and t =1.

Exact solutions Approx. solutions Absolute errors

0 [0.8732, 1.4021] [0.8733, 1.4024] [1.2956×10-4, 2.9153×10-4]

0.2 [0.9401, 1.3649] [0.9403, 1.3652] [1.4742×10-4, 2.7872×10-4]

0.4 [1.0082, 1.3280] [1.0084, 1.3283] [1.6644×10-4, 2.6619×10-4]

0.6 [1.0774, 1.2914] [1.0776, 1.2917] [1.8658×10-4, 2.5397×10-4]

0.8 [1.1476, 1.2551] [1.1478, 1.2553] [2.0789×10-4, 2.4202×10-4]

1 [1.2189, 1.2189] [1.2192, 1.2192] [2.3036×10-4, 2.3036×10-4]

Table 5. Numerical results and absolute errors of  for Example 2 at ω1 =ω2 =ω3 =1, h =0.001 and t =1.
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Exact solutions Approx. solutions Absolute errors

0 [-0.8102, 1.4429] [-0.8099, 1.4438] [2.6067×10-4, 7.7596×10-4]

0.2 [-0.5829, 1.2225] [-0.5827, 1.2232] [3.0938×10-4, 7.2979×10-4]

0.4 [-0.3538, 1.0026] [-0.3534, 1.0032] [3.6373×10-4, 6.8548×10-4]

0.6 [-0.1226, 0.7831] [-0.1222, 0.7838] [4.2389×10-4, 6.4299×10-4]

0.8 [0.1106, 0.5642] [0.1111, 0.5648] [4.9030×10-4, 6.0228×10-4]

1 [0.3458, 0.3458] [0.3464, 0.3464] [5.6330×10-4, 5.6330×10-4]

Table 6. Numerical results and absolute errors of 
( )t

3
X

 for Example 2 at ω1 =ω2 =ω3 =1, h =0.001 and t =1.

   

0  [2.2517, 3.3776] [5.9374, 12.7914] [16.8425, 57.0920]

0.2  [2.4018, 3.3025] [6.7016, 12.2538] [20.5781, 53.4113]

0.4  [2.5519, 3.2274] [7.5119, 11.7278] [24.7487, 49.8770]

0.6  [2.7020, 3.1524] [8.3682, 11.2134] [29.3793, 46.4859]

0.8  [2.8522, 3.0773] [9.2705, 10.7104] [34.4950, 43.2349]

1  [3.0023, 3.0023] [10.2189, 10.2189] [40.1209, 40.1209]

Table 7. Approximations of , and 
( )t

3
X

 of Example 2 for ω1 =0.95, ω2 =0.87 ω3 =0.79, h =0.1 and

t =1.

Figure 3. Bar plot of approximate solutions and absolute error versus σ of  of Example 2 for
h =0.1, ω1 =ω2 =ω3 =1 and  = 0.6.

Numerical Simulation - From Brain Imaging to Turbulent Flows182



Figure 4. Bar plot of approximate solutions and absolute error versus σ of  of Example 2 for
h =0.1, ω1 =ω2 =ω3 =1 and  = 0.6.

Figure 5. Bar plot of approximate solutions and absolute error versus σ of X̃ 3(t) of Example 2 for

h =0.1, ω1 =ω2 =ω3 =1 and  = 0.6.

5. Conclusion

In this chapter, system of fractional differential equations with fuzzy‐valued functions was
constructed to study the system in imprecise environment. We assessed numerical interpre‐
tations of the system using Grünwald‐Letnikov’s fractional derivative scheme, which has not
been considered for fuzzy differential equations in literature hitherto. In addition, we illus‐
trated the stability of the scheme for the system of fuzzy fractional differential equations.
Furthermore, we conducted experiment on some nonlinear fuzzy fractional systems and
successfully attained the approximated solutions. From the entire discussion and analysis,
collectively, we come up with the following remarks:
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• Scrutinizing differential models with arbitrary fractional order in combination with fuzzy
theory is effectively advantageous to analyze the change in the system at each fractional
step with imprecise parameters rather than crisp values.

• Grünwald‐Letnikov’s fractional definition is equivalent to either Riemann‐Liouville
fractional definition or Caputo-type fractional definition in case of homogeneous and
inhomogeneous initial values, respectively. Since Riemann‐Liouville fractional definition
and Caputo‐type fractional definition are greatly applicable for defining fractional deriva‐
tive of fuzzy‐valued functions, so is Grünwald‐Letnikov’s fractional definition found to be.

• Approximations of examples attained by undertaking Grünwald‐Letnikov’s fractional
derivative approach are efficaciously convergent towards the exact solutions that prove the
method to be appropriate for the solutions of fuzzy differential equations of fractional order
to a great extent.

• Pointwise explanation of errors through bar graph is conspicuously helpful in locating the
error between exact and calculated solutions at each time by simply measuring the length
of the bar at the respective point.
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